Who am I?

® Academics
— PhD Student, University of Bern
® |ndustrial

Magritte

Lukas Renggli — Software Engineer, netstyle.ch

renggli@iam.unibe.ch o Communities
Software Composition Group

o — Author of Magritte and Pier, and some
University of Bern

other open-source projects

— Contributor to Seaside and Squeak

Agenda

® Introduction M .
rl
® Examples ag tte
® Implementation Introduction
e Customization
. Describe once,
® Hands-on Exercises Get everywhere

What is it useful for? Why is it useful?

® |ntrospection ® Object persistency
e Reflection e Object indexing ® Describe once, get everywhere.
e Documentation e Object setup (] Automaticall)f builddviews ant;:! editors,
. o . L rocess queries and store objects.
o Viewer building ® Object verification E bcll fd ; I p
. g . . ® Extensibility of classes is ensured.
e Editor building ® Object adaption Full Y‘ b - ol
- . N ® Fully customizable, e.g., it is possible to
® Report building ® Object customization y -6 P .
o replace any automatically generated view
¢ Data validation with a modified or customized one.
. and much more
® Query processing

Why is it cool? What is it used for? (1)

® Pier — a meta-described collaborative web-

® Describe once, get everywhere. application framework.

® Be more productive. ® Aare — a proprietary workflow definition
® Lower coupling in software components. and runtime engine with integrated

e Do more, with less code. document management system.

e Do more, with less hacking. ® Conrad —a conference registration and

management system.

o .
What is it used for? (2)
-
Pier 1.0.2
Views Change Owner
History
. . . . Wiki
® Seaside-Hosting — free hosting service for v Rocursivo: @Rocusve
non-commercial Seaside applications. S
- 3 . 3 Operation: T
e DigiSens — a proprietary monitoring system R Commanas: o 1]
. . . Change Group Edit Component
for high precision sensors. Change Oner et e
Change Owner Edit Form
. Copy. Edit Meta
® cmsbox — the next generation of a content = e
management system. e 522:;‘; P. r
Tree (Save) (Cancel) Ie
- Pier T
e Content Management
9 10
Edit Workflow
— . . X Close [Save [] Export g Roles () Run (@) Help
g - : S ‘ General || Graph | Diagram || Activities || Versions
Edit Activity: New Activity
3 Close (@ Help
o e 2 Personal General || Documents || Form || Conditions || Transitions || Versions
e rabat et —
First Name: Name Text Field [remove] [up] [down]
Last Name: Income EUR 0.00 Money Field [remove] [up] [down]
Age Number Field [remove] [up] [down]
Adss: 7 TeFied) (AdD) (rrevien)
Number Field
Phons: " Money Field I
Check-Box
; Opton-bax
— Date Field
Time Field

Timestamp Field

Seaside-Hosting Aare

simple Document
Managed Document

Hosting Application = Workflow System

Magritte

Examples

Describe once,
Get everywhere

Address Book

Person Address
title street
firstName plz
lastName / place
homeAddress / canton
officeAddress
picture 0..1 Phone
birthday 1 kind
phoneNumbers -———""" | number

“Describing” the Address

4{ street: StringDescription

o~
1000 - 9999

Address plz: NumberDescription
street
ol (Gonianer |
place
canton place: StringDescription

canton: SingleOptionDescri

=

Solothurn,
Aargau,
Zuerich,
Schwyz,
Glarus, ...

Describing the Address

e NN

MAR

’\‘MAStringDescript.ion auto: 'street' label: 'Street' priority: 10.

ddressModel class>>descriptio:
MANumberDescription auto: 'plz' label: 'PLZ' priority: 20)
== min: 1000 max: 9999;
yourself.

Place

A-MAStﬂngDescription auto: 'place' label: 'Place' priority: 30.

MAA

*(M.ASingIeOptionDescPiption auto: 'canton' label: 'Canton' priority: 40)
== options: #('Bern' 'Solothurn' 'Aargau’' 'Zuerich' 'Schwyz' 'Glarus' ...);
== reference: MAStringDescription new;

== beSorted;

yourself.

Defining Descriptions

® A object is described by adding methods
named #description* (naming convention)
to the class-side answering different
description-entities.

® All descriptions will be automatically collected
and put into a container description when
sending #description to the object.

® Descriptions can be built programmatically.

Seaside Interface

result := self call: (aModel asComponent
addValidatedForm;
yourself).

Street: | Philosophenweg 5
PLZ: (3007
Place: |Bern

Canton: | Bern)

(save) (Cancel)

Morphic Interface

result := aModel asMorph
addButtons;
addWindow;
calllnWorld.

19

Describing the Person (1)

MAPersonModel class>>descriptionTitle
~ (MASingleOptionDescription auto: 'title' label: 'Title' priority: 10)
options: #('Mr.' 'Mrs.' 'Ms.' 'Miss.');
yourself.

MAPersonModel i
~ (MAStringDescription auto: 'firstName' label: 'First Name' priority: 20)
== beRequired;
yourself.

MAPersonModel class>>descriptionLastName
~ (MAStringDescription auto: lastName' label: 'Last Name' priority: 30)
beRequired;
yourself.

Address Book

Person Address
title street
firstName 1| plz
lastName / place
homeAddress / canton
officeAddress
picture 0..1 Phone
birthday 1 * | kind
phoneNumbers = | number

20

Describing the Person (3)

Mﬂrsonmoda ipti

MAToManyRelationDescription auto: 'pholyf\l’umbers' label: 'P. Numbers")
classes: (Array with: MAPhoneNumber);
default: Array new;4e”
yourself.

Ml%rsonModel class>>descriptionBirthday
~ MADateDescription auto: birthday' label: '‘Birthday'.

MAPersonModel class>>descriptio:
AWANumber*Des.eription selector: #age label: 'Age")
‘beReadonly;
yourself.

Describing the Person (2)

'ersonModel

MAToOneRelationDescription auto: 'homeA

Address

classes: (Array with: MA AddressModel

‘beRequired;
yourself.

MAPersonModel

Address

ress' label: 'Home Address’)

~ (MAToOneRelationDescription auto: 'officeAddress' label: 'Office Address’)
classes: (Array with: MA AddressModel);

yourself.

MAhtsonModel class>>descriptionPicture
~ (MAFileDescription auto: ‘picture' label: 'Picture’)
addCondition: [:value | value islmage] labelled: Tmage expected’;

yourself.

22

'4

Recapitulation

® Put your descriptions on the class-side
according to the naming-convention.

® Ask your object for its description-container
by sending #description.
® Ask your object for an User-Interface by
sending #asComponent or #asMorph.

24

Magritte

Implementation

Describe once,
Get everywhere

Descriptions

a composite pattern
to describe model-classes/-instances

R

—— oemeeeeeeeeed

’ StringDesc. ‘ ’ BooleanDesc. ‘

27

Accessors

® Problem
- In Smalltalk data can be stored and accessed in very
different ways.
® Examples

- Accessor methods, chains of accessor methods,
instance-variables, dictionaries, blocks, etc.
e Solution

- Provide a strategy pattern to be able to access the
data trough a common interface.

29

Descriptions

® Problem

- Smalltalk classes are all very different and require
different configuration possibilities.
® Example

- Boolean and String are not polymorphic, therefor
different code for printing, parsing, serializing, editing,
comparing, querying, etc. is necessary.

® Solution

- Introduce a descriptive hierarchy that can be
instantiated, conﬁgureduand composed.

Descriptions

referenc
Description lerence

[omeome | [[omoaoee | [omarome]
‘ SingleDesc. ‘ ‘ MultipleDesc. ‘ ‘ ToOneDesc. ‘ ‘ ToManyDesc. ‘
28

a strategy pattern
to access model-entities

next, accessor

Accessor

———

Cascade ‘ ‘ Selector ‘

| a: Accessor

| oiobieat | [a:Description |

'
1
- readUsing: d

write: v using: d

accessor D

1
read: o

<strat.egy a>

accessor D

T
write: v to: 0

<strategy a>
o
1 1
1 1

I T | I

Conditions

® Problems

- End users want to visually compose conditions.

- Instances of BlockContext can be hardly serialized.
® Solution

- Introduce condition objects that can be composed
to describe constraints on objects and data.

conditions

Conditions

a composite pattern
to model constraints

Condition

Exceptions

® Problems
- Actions on the meta-model can fail.
- Objects might not match a given meta-model.
- Software would like to avoid errors.
- End users want readable error messages.
® Solution

- Introduce an exception hierarchy knowing about the
description, the failure and a human-readable error
message.

(oo | [saoom | (" [somsoonen
z 7
W[[e] [e [e]
33
E ti

a composite pattern
of smalltalk exceptions

Exception

ValidationError

4
[[

MultipleErrors ‘ ‘

KindError ‘ ‘ ‘ ‘ c

Mementos

® Problems
- Editing might turn a model (temporarily) invalid.
- Canceling an edit shouldn’t change the model.
- Concurrent edits of the same model should be
detected and (manually) merged.
® Solution
- Introduce mementos that behave like the original
model and that delay modifications until they are
proven to be valid.

Mementos

a proxy pattern
to cache model-entities

[Desorpton <deserpton model [onea

s]

Dynamic Descriptions

® Problem

- Instances might want to dynamically filter,add or
modify their descriptions.

- Users of a described object often don’t need all the
available descriptions.

® Solution

- Override #description on the instance-side to
modify the default description-container.

- Add other methods returning different filtered or
modified sets of your descriptions.

Magritte

Customization

Describe once,
Get everywhere

Using Dynamic
Descriptions

model := MAPersonModel new.

“ get a morph
morph := model descriptionPrivateData
asMorphOn: model.

“ get a component
component := model descriptionPrivateData
asComponentOn: model.

Building Descriptions
Dynamically

“ select descriptions “
MAP
~ self description select: [:each |
#(title firstName lastName homeAddress)
includes: each accessor selector].

“add another description “
MAP iptionWithEmail
~ self description copy
add: (MAStringDescription auto: ‘email’ label: ‘E-Mail’ priority: 35);
yourself.

“modify existing description
MAP Model ipti
~ self description collect: [:each |
each accessor selector = #picture
ifTrue: [each copy beRequired]
ifFalse: [each]].

Wi i Image

40

L ———

Custom Validation

® Problem

- A lot of slightly different validation strategies leads to

an explosion of the description class-hierarchy.
® Example
- A number must be in a certain range.
- An e-mail address must match a regular-expression.
® Solution

- Additional validation rules can be added to all

descriptions.
42

Validation Rules

e Use #addCondition:labelled: to add additional

conditions to descriptions that will be automatically
checked before committing to the model.

The first argument is a block taking one argument, that
should return true if the argument validates.

Using a block-closure is possible, but you will loose the
possibility to serialize the containing description. Send
it the message #asCondition before adding to parse it
and keep it as serialize-able AST within the description.

43

Validation Examples

(MANumberDescription selector: #age label: ‘Age’)

addCondition: [:value | value isInteger and: [value between: O and: 100]]
labelled: ‘invalid age’;

(MAStringDescription selector: #email label: ‘E-Mail’)

addCondition: [:value | value matches: ‘#*@#* #*’]
labelled: ‘invalid e-mail’;

(MADateDescription selector: #party label: ‘Party’)

addCondition: [:value | self possiblePartyDates includes: value]
labelled: ‘party hard’;

44

Custom Description

® Problem

- In some cases it might happen that there is no
description provided to use with a model class.

® Example

- Money: amount and currency.

- Url: scheme, domain, port, path, parameters, etc.
® Solution

- Create your own description.

45

Your own Description

® Create a subclass of MAElementDescription.
® On the class-side override:
- #isAbstract to return false.
- #label to return the name of the description.
® On the instance-side override:
- #kind to return the base-class.
- #acceptMagritte: to enable visiting.
- #validateSpecific: to validate.
® Create a view, if you wan;cs to use it for Ul building.

Tips for Builders

Have a look at existing descriptions.
Carefully choose the right superclass.
Reuse the behaviour from the superclass.
Parsing, printing and (de)serialization is
implemented in vistiors:

— MAStringReader, MAStringWriter
— MABinaryReader, MABinaryWriter

Custom View

® Problems
- Custom descriptions mostly need a new view.
- Applications might need a special view for existing
descriptions to adapt a better user experience.
® Example
- Money: an input-field for the amount and a drop-
down box to select the currency.
® Solution

- Choose a different view or create your own.
48

Different Views
Single Option Multiple Option
MA
MASelectListComponent Select Multiple: Eézk
Select Single: (o0 %)
MA:!
MARadiuGrouléComponent Select Meltiples g ‘?}i’x
.]
Select Single: () bar MALI i

Q zork

Select Multiple: =

aDescription componentClass: aClass

49

Your own View

® Create a subclass of MAADescriptionComponent.
® Override #renderEditorOn: and/or

#renderViewerOn: as necessary.

® Use your custom view together with your description

by using the accessor #componentClass:.

® Possibly add your custom view to its description into

#defaultComponentClasses (there is no clean way
to do that right now, Pragmas would help).

50

Custom Rendering

® Problem
- Automatic built Uls are often not that user-friendly,
and they all look more or less the same.

e Example

Account Login

Name: | 1 Name: v scasidehosting com
T . Password: |sesees 1

(save) (Cancel)

Account Login

(Signin) (Forgor) (Cance)

® Solution
- Use CSS and customize the rendering of your Ul.

51

Possibility |

o Create a subclass of WAComponent.
® Create an i-var holding onto the automatically built

component:
dialog := aModel asComponent

® Don’t forget to return it as a child!
® |mplement your own rendering code, accessing the

magritte sub-views by calling:
dialog childAt: aModel class descriptionFoo

® Commit your model by sending:

dialog commit
52

Possibility 2

® Create a new subclass of MAComponentRenderer.
® Implement the new visitor to get the layout you need.
® Override the method #descriptionContainer in your
model like this:
MyModel class>>descriptionContainer
~ super descriptionContainer
componentRenderer: MyRendererClass;
yourself.

Possibility 3

e Create a new subclass of MAContainerComponent.
® Override the method #renderContentOn: to get the
layout you need (avoiding the vistor).
® Override the method #descriptionContainer in your
model like this:
MyModel class>>descriptionContainer
" super descriptionContainer
componentClass: MyComponentClass;
yourself.

Adaptive Model

® Problem

- End users require quick changes in their software.

- End users want to customize and build their own
meta-models on the fly.

® Example

- Add additional fields to an address database.
® Solution

- Magritte is self described.

55

Copies the values, but
not necessarily associated
descriptions.

Adaptive
Tl Model

~| + copy()

Description

Adaptive Model |

e Create a subclass of MA AdaptiveModel

® Create an editor for the adaptive descriptions:
anAdaptiveModel description asComponent

Adaptive Model 2

® Add an instance-variable description to your object
and override #description.

® Add an instance-variable values to your object that is
initialized with a Dictionary.

® Override two methods with something like:
AdaptiveModel>>readUsing: aDescription
~ values at: aDescription ifAbsent: [aDescription default]

AdaptiveModel>>rwrite: anObject using: aDescription
values at: aDescription put: anObject

58

Type-Square

-7 Type T~ attributes

"™ Qbject "7}

¢ 'I;vu1 L

1

Object

Type >
Object_ -~

(a) Type-Square

Property |1 -
Type Property

Nl (b) Magritte

I

-- Description

description

Conclusion

® Describe once, get everywhere.

Ensure extensibility and maintainability.

® Automate boring tasks, like building and
validating GUIs.

® Be adaptive.

60

Magritte

Meta Described Web Application Development

http://www.iam.unibe.ch/~scg/Archive/Diploma/
RengO06a.pdf

