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Who am I?
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Agenda

• Introduction

• Examples 

• Implementation

• Customization

• Hands-on Exercises
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Magritte
Introduction

Describe once,
Get everywhere

• Introspection

• Reflection

• Documentation

• Viewer building

• Editor building

• Report building

• Data validation

• Query processing

• Object persistency

• Object indexing

• Object setup

• Object verification

• Object adaption

• Object customization

    and much more

What is it useful for?
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• Describe once, get everywhere.

• Automatically build views and editors, 
process queries and store objects.

• Extensibility of classes is ensured.

• Fully customizable, e.g., it is possible to 
replace any automatically generated view 
with a modified or customized one.

Why is it useful?
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Why is it cool?

• Describe once, get everywhere.

• Be more productive.

• Lower coupling in software components.

• Do more, with less code.

• Do more, with less hacking.
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What is it used for? (1)

• Pier –!a meta-described collaborative web-
application framework.

• Aare –!a proprietary workflow definition 
and runtime engine with integrated 
document management system.

• Conrad – a conference registration and 
management system.
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What is it used for? (2)

• Seaside-Hosting –!free hosting service for 
non-commercial Seaside applications.

• DigiSens –!a proprietary monitoring system 
for high precision sensors.

• cmsbox – the next generation of a content 
management system.
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Pier
Content Management
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Seaside-Hosting
Hosting Application
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Aare
Workflow System
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Magritte
Examples

Describe once,
Get everywhere

Address Book

title
firstName
lastName
homeAddress
officeAddress
picture
birthday
phoneNumbers

Person

street
plz
place
canton

Address

kind
number

Phone

1
*

1

1

0..1

1
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“Describing” the Address

street
plz
place
canton

Address

street: StringDescription

plz: NumberDescription

place: StringDescription

canton: SingleOptionDescription

:Container
1000 - 9999

Solothurn, 
Aargau, 
Zuerich, 
Schwyz, 
Glarus, ...
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Defining Descriptions

• A object is described by adding methods 
named #description* (naming convention) 
to the class-side answering different 
description-entities.

• All descriptions will be automatically collected 
and put into a container description when 
sending #description to the object.

• Descriptions can be built programmatically.
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Describing the Address

MAAddressModel class>>descriptionStreet
^ MAStringDescription auto: 'street' label: 'Street' priority: 10.

MAAddressModel class>>descriptionPlz
^ (MANumberDescription auto: 'plz' label: 'PLZ' priority: 20)

min: 1000 max: 9999;
yourself.

MAAddressModel class>>descriptionPlace
^ MAStringDescription auto: 'place' label: 'Place' priority: 30.

MAAddressModel class>>descriptionCanton
^ (MASingleOptionDescription auto: 'canton' label: 'Canton' priority: 40)

options: #( 'Bern' 'Solothurn' 'Aargau' 'Zuerich' 'Schwyz' 'Glarus' ...);
reference: MAStringDescription new;
beSorted;
yourself.
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Seaside Interface
result := self call: (aModel asComponent

addValidatedForm;
yourself).
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Morphic Interface
result := aModel asMorph

addButtons;
addWindow; 
callInWorld.
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Address Book

title
firstName
lastName
homeAddress
officeAddress
picture
birthday
phoneNumbers

Person

street
plz
place
canton

Address

kind
number

Phone

1
*

1

1

0..1

1
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Describing the Person (1)

MAPersonModel class>>descriptionTitle
^ (MASingleOptionDescription auto: 'title' label: 'Title' priority: 10)

options: #( 'Mr.' 'Mrs.' 'Ms.' 'Miss.' );
yourself.

MAPersonModel class>>descriptionFirstName
^ (MAStringDescription auto: 'firstName' label: 'First Name' priority: 20)

beRequired;
yourself.

MAPersonModel class>>descriptionLastName
^ (MAStringDescription auto: 'lastName' label: 'Last Name' priority: 30)

beRequired;
yourself.
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Describing the Person (2)

MAPersonModel class>>descriptionHomeAddress

^ (MAToOneRelationDescription auto: 'homeAddress' label: 'Home Address')
classes: (Array with: MAAddressModel);
beRequired;
yourself.

MAPersonModel class>>descriptionOfficeAddress
^ (MAToOneRelationDescription auto: 'officeAddress' label: 'Office Address')

classes: (Array with: MAAddressModel);
yourself.

MAPersonModel class>>descriptionPicture
^ (MAFileDescription auto: 'picture' label: 'Picture')

addCondition: [ :value | value isImage ] labelled: 'Image expected';
yourself.
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Describing the Person (3)

MAPersonModel class>>descriptionPhoneNumbers
^ (MAToManyRelationDescription auto: 'phoneNumbers' label: 'P. Numbers')

classes: (Array with: MAPhoneNumber);
default: Array new;
yourself.

MAPersonModel class>>descriptionBirthday

^ MADateDescription auto: 'birthday' label: 'Birthday'.

MAPersonModel class>>descriptionAge

^ (MANumberDescription selector: #age label: 'Age')
beReadonly;
yourself.
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Recapitulation

• Put your descriptions on the class-side 
according to the naming-convention.

• Ask your object for its description-container 
by sending #description.

• Ask your object for an User-Interface by 
sending #asComponent or #asMorph.
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Magritte
Implementation

Describe once,
Get everywhere

Descriptions

• Problem

– Smalltalk classes are all very different and require 
different configuration possibilities.

• Example

– Boolean and String are not polymorphic, therefor 
different code for printing, parsing, serializing, editing, 
comparing, querying, etc. is necessary.

• Solution

– Introduce a descriptive hierarchy that can be 
instantiated, configured and composed.
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Descriptions

a composite pattern
to describe model-classes/-instances
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Description

Container ElementDesc.
children

StringDesc. BooleanDesc.

Accessor Condition

Descriptions
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Description

Container ElementDesc.

ColorDesc. MagnitudeDesc. StringDesc. ReferenceDesc.

DateDesc. NumberDesc. OptionDesc. RelationDesc.

ToOneDesc. ToManyDesc.SingleDesc. MultipleDesc.

children

BooleanDesc.

reference

Accessors

• Problem

– In Smalltalk data can be stored and accessed in very 
different ways.

• Examples

– Accessor methods, chains of accessor methods, 
instance-variables, dictionaries, blocks, etc.

• Solution

– Provide a strategy pattern to be able to access the 
data trough a common interface.
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Accessor

Cascade Selector Dictionary

Auto

Block Null

next, accessor

a strategy pattern 
to access model-entities

Accessors
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o: Object d: Description a: Accessor

readUsing: d

accessor

read: o

write: v using: d

accessor

write: v to: o

<strategy a>

<strategy a>

Conditions

• Problems

– End users want to visually compose conditions.

– Instances of BlockContext can be hardly serialized.

• Solution

– Introduce condition objects that can be composed 
to describe constraints on objects and data.
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Condition

Composed Constant

Any

Selector

All None FalseTrue

BlockContext

conditions

a composite pattern
to model constraints

Conditions
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Exceptions

• Problems

– Actions on the meta-model can fail.

– Objects might not match a given meta-model.

– Software would like to avoid errors.

– End users want readable error messages.

• Solution

– Introduce an exception hierarchy knowing about the 
description, the failure and a human-readable error 
message.
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a composite pattern
of smalltalk exceptions

Exceptions
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Exception

ValidationError

MultipleErrors KindError ConflictErrorRequiredError RangeError

Mementos

• Problems

– Editing might turn a model (temporarily) invalid.

– Canceling an edit shouldn’t change the model.

– Concurrent edits of the same model should be 
detected and (manually) merged.

• Solution

– Introduce mementos that behave like the original 
model and that delay modifications until they are 
proven to be valid.
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a proxy pattern
to cache model-entities

Memento

Strait Cached

Checked

ObjectDescription
description model

Dictionary

Dictionary

cache

original

Mementos
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Magritte
Customization

Describe once,
Get everywhere

Dynamic Descriptions

• Problem

– Instances might want to dynamically filter, add or 
modify their descriptions.

– Users of a described object often don’t need all the 
available descriptions.

• Solution

– Override #description on the instance-side to 
modify the default description-container.

– Add other methods returning different filtered or 
modified sets of your descriptions.
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Building Descriptions 
Dynamically

“ select descriptions “
MAPersonModel>>descriptionPrivateData

^ self description select: [ :each | 
#( title firstName lastName homeAddress )

includes: each accessor selector ].

“ add another description “
MAPersonModel>>descriptionWithEmail

^ self description copy
add: (MAStringDescription auto: ‘email’ label: ‘E-Mail’ priority: 35);
yourself.

“ modify existing description “
MAPersonModel>>descriptionWithRequiredImage

^ self description collect: [ :each |
each accessor selector = #picture

ifTrue: [ each copy beRequired ]
ifFalse: [ each ] ].
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Using Dynamic
Descriptions

model := MAPersonModel new.

“ get a morph “
morph := model descriptionPrivateData 

asMorphOn: model.

“ get a component “
component := model descriptionPrivateData

asComponentOn: model.
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Custom Validation

• Problem

– A lot of slightly different validation strategies leads to 
an explosion of the description class-hierarchy.

• Example

– A number must be in a certain range.

– An e-mail address must match a regular-expression.

• Solution

– Additional validation rules can be added to all 
descriptions.
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Validation Rules

• Use #addCondition:labelled: to add additional 
conditions to descriptions that will be automatically 
checked before committing to the model.

• The first argument is a block taking one argument, that 
should return true if the argument validates.

• Using a block-closure is possible, but you will loose the 
possibility to serialize the containing description. Send 
it the message #asCondition before adding to parse it 
and keep it as serialize-able AST within the description. 
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Validation Examples

(MANumberDescription selector: #age label: ‘Age’)
addCondition: [ :value | value isInteger and: [ value between: 0 and: 100 ] ] 
labelled: ‘invalid age’;
...

(MAStringDescription selector: #email label: ‘E-Mail’)
addCondition: [ :value | value matches: ‘#*@#*.#*’ ]
labelled: ‘invalid e-mail’;
...

(MADateDescription selector: #party label: ‘Party’)
addCondition: [ :value | self possiblePartyDates includes: value ]
labelled: ‘party hard’;
...
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Custom Description

• Problem

– In some cases it might happen that there is no 
description provided to use with a model class.

• Example

– Money: amount and currency.

– Url: scheme, domain, port, path, parameters, etc.

• Solution

– Create your own description.
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Your own Description

• Create a subclass of MAElementDescription.

• On the class-side override:

– #isAbstract to return false.

– #label to return the name of the description.

• On the instance-side override:

– #kind to return the base-class.

– #acceptMagritte: to enable visiting.

– #validateSpecific: to validate.

• Create a view, if you want to use it for UI building.
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Tips for Builders

• Have a look at existing descriptions.

• Carefully choose the right superclass.

• Reuse the behaviour from the superclass.

• Parsing, printing and (de)serialization is 
implemented in vistiors:

– MAStringReader, MAStringWriter

– MABinaryReader, MABinaryWriter
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Custom View

• Problems

– Custom descriptions mostly need a new view.

– Applications might need a special view for existing 
descriptions to adapt a better user experience.

• Example

– Money: an input-field for the amount and a drop-
down box to select the currency. 

• Solution

– Choose a different view or create your own.
48



Different Views
Single Option Multiple Option

aDescription componentClass: aClass

MASelectListComponent

MARadioGroupComponent

MAMultiselectListComponent

MACheckboxGroupComponent

MAListCompositonComponent
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Your own View

• Create a subclass of MADescriptionComponent.

• Override #renderEditorOn: and/or 
#renderViewerOn: as necessary.

• Use your custom view together with your description 
by using the accessor #componentClass:.

• Possibly add your custom view to its description into 
#defaultComponentClasses (there is no clean way 
to do that right now, Pragmas would help).

50

Custom Rendering

• Problem

– Automatic built UIs are often not that user-friendly, 
and they all look more or less the same.

• Example

• Solution

– Use CSS and customize the rendering of your UI.
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Possibility 1

• Create a subclass of WAComponent.

• Create an i-var holding onto the automatically built 
component: 
     dialog := aModel asComponent

• Don’t forget to return it as a child!

• Implement your own rendering code, accessing the 
magritte sub-views by calling: 
    dialog childAt: aModel class descriptionFoo

• Commit your model by sending:
    dialog commit
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Possibility 2

• Create a new subclass of MAComponentRenderer.

• Implement the new visitor to get the layout you need.

• Override the method #descriptionContainer in your 
model like this:

MyModel class>>descriptionContainer
^ super descriptionContainer

  componentRenderer: MyRendererClass;
  yourself.
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Possibility 3

• Create a new subclass of MAContainerComponent.

• Override the method #renderContentOn: to get the 
layout you need (avoiding the vistor).

• Override the method #descriptionContainer in your 
model like this:

MyModel class>>descriptionContainer
^ super descriptionContainer

  componentClass: MyComponentClass;
  yourself.
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Adaptive Model

• Problem

– End users require quick changes in their software.

– End users want to customize and build their own 
meta-models on the fly.

• Example

– Add additional fields to an address database.

• Solution

– Magritte is self described.
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Adaptive
Model

Description

Object

+ copy()

Copies the values, but

not necessarily associated 

descriptions.
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Adaptive Model 1

• Create a subclass of MAAdaptiveModel

• Create an editor for the adaptive descriptions:
anAdaptiveModel description asComponent

Adaptive Model 2

• Add an instance-variable description to your object 
and override #description.

• Add an instance-variable values to your object that is 
initialized with a Dictionary.

• Override two methods with something like:
AdaptiveModel>>readUsing: aDescription
!  ^ values at: aDescription ifAbsent: [ aDescription default ]

AdaptiveModel>>rwrite: anObject using: aDescription
! values at: aDescription put: anObject
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Component
Type

Component

Property
Type

Property

1 *

1

*
*1

*

1

Type 
Object

Type 
Object

(a) Type-Square

Object

Description
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attributes

1 *

(b) Magritte

Type-Square Conclusion

• Describe once, get everywhere.

• Ensure extensibility and maintainability.

• Automate boring tasks, like building and 
validating GUIs.

• Be adaptive.
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Magritte

Meta Described Web Application Development
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http://www.iam.unibe.ch/~scg/Archive/Diploma/
Reng06a.pdf


