
Magritte
Lukas Renggli

renggli@iam.unibe.ch
Software Composition Group

University of Bern

• Academics

– PhD Student, University of Bern

• Industrial

– Software Engineer, netstyle.ch

• Communities

– Author of Magritte and Pier, and some
other open-source projects

– Contributor to Seaside and Squeak

Who am I?

2

Agenda

• Introduction

• Examples

• Implementation

• Customization

• Hands-on Exercises

3

Magritte
Introduction

Describe once,
Get everywhere

• Introspection

• Reflection

• Documentation

• Viewer building

• Editor building

• Report building

• Data validation

• Query processing

• Object persistency

• Object indexing

• Object setup

• Object verification

• Object adaption

• Object customization

 and much more

What is it useful for?

5

• Describe once, get everywhere.

• Automatically build views and editors,
process queries and store objects.

• Extensibility of classes is ensured.

• Fully customizable, e.g., it is possible to
replace any automatically generated view
with a modified or customized one.

Why is it useful?

6

Why is it cool?

• Describe once, get everywhere.

• Be more productive.

• Lower coupling in software components.

• Do more, with less code.

• Do more, with less hacking.

7

What is it used for? (1)

• Pier –!a meta-described collaborative web-
application framework.

• Aare –!a proprietary workflow definition
and runtime engine with integrated
document management system.

• Conrad – a conference registration and
management system.

8

What is it used for? (2)

• Seaside-Hosting –!free hosting service for
non-commercial Seaside applications.

• DigiSens –!a proprietary monitoring system
for high precision sensors.

• cmsbox – the next generation of a content
management system.

9

Pier
Content Management

10

Seaside-Hosting
Hosting Application

11

Aare
Workflow System

12

Magritte
Examples

Describe once,
Get everywhere

Address Book

title
firstName
lastName
homeAddress
officeAddress
picture
birthday
phoneNumbers

Person

street
plz
place
canton

Address

kind
number

Phone

1
*

1

1

0..1

1

14

“Describing” the Address

street
plz
place
canton

Address

street: StringDescription

plz: NumberDescription

place: StringDescription

canton: SingleOptionDescription

:Container
1000 - 9999

Solothurn,
Aargau,
Zuerich,
Schwyz,
Glarus, ...

15

Defining Descriptions

• A object is described by adding methods
named #description* (naming convention)
to the class-side answering different
description-entities.

• All descriptions will be automatically collected
and put into a container description when
sending #description to the object.

• Descriptions can be built programmatically.

16

Describing the Address

MAAddressModel class>>descriptionStreet
^ MAStringDescription auto: 'street' label: 'Street' priority: 10.

MAAddressModel class>>descriptionPlz
^ (MANumberDescription auto: 'plz' label: 'PLZ' priority: 20)

min: 1000 max: 9999;
yourself.

MAAddressModel class>>descriptionPlace
^ MAStringDescription auto: 'place' label: 'Place' priority: 30.

MAAddressModel class>>descriptionCanton
^ (MASingleOptionDescription auto: 'canton' label: 'Canton' priority: 40)

options: #('Bern' 'Solothurn' 'Aargau' 'Zuerich' 'Schwyz' 'Glarus' ...);
reference: MAStringDescription new;
beSorted;
yourself.

17

Seaside Interface
result := self call: (aModel asComponent

addValidatedForm;
yourself).

18

Morphic Interface
result := aModel asMorph

addButtons;
addWindow;
callInWorld.

19

Address Book

title
firstName
lastName
homeAddress
officeAddress
picture
birthday
phoneNumbers

Person

street
plz
place
canton

Address

kind
number

Phone

1
*

1

1

0..1

1

20

Describing the Person (1)

MAPersonModel class>>descriptionTitle
^ (MASingleOptionDescription auto: 'title' label: 'Title' priority: 10)

options: #('Mr.' 'Mrs.' 'Ms.' 'Miss.');
yourself.

MAPersonModel class>>descriptionFirstName
^ (MAStringDescription auto: 'firstName' label: 'First Name' priority: 20)

beRequired;
yourself.

MAPersonModel class>>descriptionLastName
^ (MAStringDescription auto: 'lastName' label: 'Last Name' priority: 30)

beRequired;
yourself.

21

Describing the Person (2)

MAPersonModel class>>descriptionHomeAddress

^ (MAToOneRelationDescription auto: 'homeAddress' label: 'Home Address')
classes: (Array with: MAAddressModel);
beRequired;
yourself.

MAPersonModel class>>descriptionOfficeAddress
^ (MAToOneRelationDescription auto: 'officeAddress' label: 'Office Address')

classes: (Array with: MAAddressModel);
yourself.

MAPersonModel class>>descriptionPicture
^ (MAFileDescription auto: 'picture' label: 'Picture')

addCondition: [:value | value isImage] labelled: 'Image expected';
yourself.

22

Describing the Person (3)

MAPersonModel class>>descriptionPhoneNumbers
^ (MAToManyRelationDescription auto: 'phoneNumbers' label: 'P. Numbers')

classes: (Array with: MAPhoneNumber);
default: Array new;
yourself.

MAPersonModel class>>descriptionBirthday

^ MADateDescription auto: 'birthday' label: 'Birthday'.

MAPersonModel class>>descriptionAge

^ (MANumberDescription selector: #age label: 'Age')
beReadonly;
yourself.

23

Recapitulation

• Put your descriptions on the class-side
according to the naming-convention.

• Ask your object for its description-container
by sending #description.

• Ask your object for an User-Interface by
sending #asComponent or #asMorph.

24

Magritte
Implementation

Describe once,
Get everywhere

Descriptions

• Problem

– Smalltalk classes are all very different and require
different configuration possibilities.

• Example

– Boolean and String are not polymorphic, therefor
different code for printing, parsing, serializing, editing,
comparing, querying, etc. is necessary.

• Solution

– Introduce a descriptive hierarchy that can be
instantiated, configured and composed.

26

Descriptions

a composite pattern
to describe model-classes/-instances

27

Description

Container ElementDesc.
children

StringDesc. BooleanDesc.

Accessor Condition

Descriptions

28

Description

Container ElementDesc.

ColorDesc. MagnitudeDesc. StringDesc. ReferenceDesc.

DateDesc. NumberDesc. OptionDesc. RelationDesc.

ToOneDesc. ToManyDesc.SingleDesc. MultipleDesc.

children

BooleanDesc.

reference

Accessors

• Problem

– In Smalltalk data can be stored and accessed in very
different ways.

• Examples

– Accessor methods, chains of accessor methods,
instance-variables, dictionaries, blocks, etc.

• Solution

– Provide a strategy pattern to be able to access the
data trough a common interface.

29

Accessor

Cascade Selector Dictionary

Auto

Block Null

next, accessor

a strategy pattern
to access model-entities

Accessors

30

31

o: Object d: Description a: Accessor

readUsing: d

accessor

read: o

write: v using: d

accessor

write: v to: o

<strategy a>

<strategy a>

Conditions

• Problems

– End users want to visually compose conditions.

– Instances of BlockContext can be hardly serialized.

• Solution

– Introduce condition objects that can be composed
to describe constraints on objects and data.

32

Condition

Composed Constant

Any

Selector

All None FalseTrue

BlockContext

conditions

a composite pattern
to model constraints

Conditions

33

Exceptions

• Problems

– Actions on the meta-model can fail.

– Objects might not match a given meta-model.

– Software would like to avoid errors.

– End users want readable error messages.

• Solution

– Introduce an exception hierarchy knowing about the
description, the failure and a human-readable error
message.

34

a composite pattern
of smalltalk exceptions

Exceptions

35

Exception

ValidationError

MultipleErrors KindError ConflictErrorRequiredError RangeError

Mementos

• Problems

– Editing might turn a model (temporarily) invalid.

– Canceling an edit shouldn’t change the model.

– Concurrent edits of the same model should be
detected and (manually) merged.

• Solution

– Introduce mementos that behave like the original
model and that delay modifications until they are
proven to be valid.

36

a proxy pattern
to cache model-entities

Memento

Strait Cached

Checked

ObjectDescription
description model

Dictionary

Dictionary

cache

original

Mementos

37

Magritte
Customization

Describe once,
Get everywhere

Dynamic Descriptions

• Problem

– Instances might want to dynamically filter, add or
modify their descriptions.

– Users of a described object often don’t need all the
available descriptions.

• Solution

– Override #description on the instance-side to
modify the default description-container.

– Add other methods returning different filtered or
modified sets of your descriptions.

39

Building Descriptions
Dynamically

“ select descriptions “
MAPersonModel>>descriptionPrivateData

^ self description select: [:each |
#(title firstName lastName homeAddress)

includes: each accessor selector].

“ add another description “
MAPersonModel>>descriptionWithEmail

^ self description copy
add: (MAStringDescription auto: ‘email’ label: ‘E-Mail’ priority: 35);
yourself.

“ modify existing description “
MAPersonModel>>descriptionWithRequiredImage

^ self description collect: [:each |
each accessor selector = #picture

ifTrue: [each copy beRequired]
ifFalse: [each]].

40

Using Dynamic
Descriptions

model := MAPersonModel new.

“ get a morph “
morph := model descriptionPrivateData

asMorphOn: model.

“ get a component “
component := model descriptionPrivateData

asComponentOn: model.

41

Custom Validation

• Problem

– A lot of slightly different validation strategies leads to
an explosion of the description class-hierarchy.

• Example

– A number must be in a certain range.

– An e-mail address must match a regular-expression.

• Solution

– Additional validation rules can be added to all
descriptions.

42

Validation Rules

• Use #addCondition:labelled: to add additional
conditions to descriptions that will be automatically
checked before committing to the model.

• The first argument is a block taking one argument, that
should return true if the argument validates.

• Using a block-closure is possible, but you will loose the
possibility to serialize the containing description. Send
it the message #asCondition before adding to parse it
and keep it as serialize-able AST within the description.

43

Validation Examples

(MANumberDescription selector: #age label: ‘Age’)
addCondition: [:value | value isInteger and: [value between: 0 and: 100]]
labelled: ‘invalid age’;
...

(MAStringDescription selector: #email label: ‘E-Mail’)
addCondition: [:value | value matches: ‘#*@#*.#*’]
labelled: ‘invalid e-mail’;
...

(MADateDescription selector: #party label: ‘Party’)
addCondition: [:value | self possiblePartyDates includes: value]
labelled: ‘party hard’;
...

44

Custom Description

• Problem

– In some cases it might happen that there is no
description provided to use with a model class.

• Example

– Money: amount and currency.

– Url: scheme, domain, port, path, parameters, etc.

• Solution

– Create your own description.

45

Your own Description

• Create a subclass of MAElementDescription.

• On the class-side override:

– #isAbstract to return false.

– #label to return the name of the description.

• On the instance-side override:

– #kind to return the base-class.

– #acceptMagritte: to enable visiting.

– #validateSpecific: to validate.

• Create a view, if you want to use it for UI building.
46

Tips for Builders

• Have a look at existing descriptions.

• Carefully choose the right superclass.

• Reuse the behaviour from the superclass.

• Parsing, printing and (de)serialization is
implemented in vistiors:

– MAStringReader, MAStringWriter

– MABinaryReader, MABinaryWriter

47

Custom View

• Problems

– Custom descriptions mostly need a new view.

– Applications might need a special view for existing
descriptions to adapt a better user experience.

• Example

– Money: an input-field for the amount and a drop-
down box to select the currency.

• Solution

– Choose a different view or create your own.
48

Different Views
Single Option Multiple Option

aDescription componentClass: aClass

MASelectListComponent

MARadioGroupComponent

MAMultiselectListComponent

MACheckboxGroupComponent

MAListCompositonComponent

49

Your own View

• Create a subclass of MADescriptionComponent.

• Override #renderEditorOn: and/or
#renderViewerOn: as necessary.

• Use your custom view together with your description
by using the accessor #componentClass:.

• Possibly add your custom view to its description into
#defaultComponentClasses (there is no clean way
to do that right now, Pragmas would help).

50

Custom Rendering

• Problem

– Automatic built UIs are often not that user-friendly,
and they all look more or less the same.

• Example

• Solution

– Use CSS and customize the rendering of your UI.
51

Possibility 1

• Create a subclass of WAComponent.

• Create an i-var holding onto the automatically built
component:
 dialog := aModel asComponent

• Don’t forget to return it as a child!

• Implement your own rendering code, accessing the
magritte sub-views by calling:
 dialog childAt: aModel class descriptionFoo

• Commit your model by sending:
 dialog commit

52

Possibility 2

• Create a new subclass of MAComponentRenderer.

• Implement the new visitor to get the layout you need.

• Override the method #descriptionContainer in your
model like this:

MyModel class>>descriptionContainer
^ super descriptionContainer

 componentRenderer: MyRendererClass;
 yourself.

53

Possibility 3

• Create a new subclass of MAContainerComponent.

• Override the method #renderContentOn: to get the
layout you need (avoiding the vistor).

• Override the method #descriptionContainer in your
model like this:

MyModel class>>descriptionContainer
^ super descriptionContainer

 componentClass: MyComponentClass;
 yourself.

54

Adaptive Model

• Problem

– End users require quick changes in their software.

– End users want to customize and build their own
meta-models on the fly.

• Example

– Add additional fields to an address database.

• Solution

– Magritte is self described.

55 56

Adaptive
Model

Description

Object

+ copy()

Copies the values, but

not necessarily associated

descriptions.

57

Adaptive Model 1

• Create a subclass of MAAdaptiveModel

• Create an editor for the adaptive descriptions:
anAdaptiveModel description asComponent

Adaptive Model 2

• Add an instance-variable description to your object
and override #description.

• Add an instance-variable values to your object that is
initialized with a Dictionary.

• Override two methods with something like:
AdaptiveModel>>readUsing: aDescription
! ^ values at: aDescription ifAbsent: [aDescription default]

AdaptiveModel>>rwrite: anObject using: aDescription
! values at: aDescription put: anObject

58

59

Component
Type

Component

Property
Type

Property

1 *

1

*
*1

*

1

Type
Object

Type
Object

(a) Type-Square

Object

Description

T
y
p
e

O
b
je

c
t

*

*

d
e
s
c
ri
p
ti
o
n

attributes

1 *

(b) Magritte

Type-Square Conclusion

• Describe once, get everywhere.

• Ensure extensibility and maintainability.

• Automate boring tasks, like building and
validating GUIs.

• Be adaptive.

60

Magritte

Meta Described Web Application Development

61

http://www.iam.unibe.ch/~scg/Archive/Diploma/
Reng06a.pdf

