
Magritte Tutorial ∗

Lukas Renggli
renggli@iam.unibe.ch
www.lukas-renggli.ch

Software Composition Group
Institut für Informatik und angewandte Mathematik

University of Bern, Switzerland

December 1, 2006

1 Getting Started

Fire up the prepared image and get yourself ready for the exercises. Make
sure your Seaside server is running within the image by browsing the counter
application at http://localhost:8080/seaside/counter.

The image you are using has been created from a fresh Squeak 3.9 image,
by loading the following packages from SqueakMap: Shout, eCompletion and
Magritte. Also a package called Magritte-Tutorial has been added, where you
can put your code.

You can easily create your own development image by taking a fresh 3.7,
3.8 or 3.9 image and loading Magritte from SqueakMap yourself, note that
your computer will be busy for a while because this will pull in a few other
prerequisites (such as a Web server and Seaside).

The exercises start simple and with detailled instructions on how to perform
the given tasks. Exercises marked with a star are a bit trickier, you might want
to solve them later on. Sometimes you will probably not exactly know what
class to use, what method to call or what parameters to pass, use the power of
Smalltalk (senders, implementers, references, ...) to browse the source-code of
Magritte, you might even discover some other features that were not presented
during the lecture.

2 Juggle with Descriptions

Have a look at the source-code of the classes MAPersonModel, MAAddressModel,
and MAPhoneModel, that have been presented during the lecture and that are

∗The solutions are kindly provided by Damien Cassou, damien.cassou@laposte.net

1

2 JUGGLE WITH DESCRIPTIONS 2

pre-installed in your image. Browse to http://localhost:8080/seaside/person-
editor and check if you can see all the features presented during the lecture. All
the following exercises will be built upon this simple model.

Exercise 1 Add a new field that holds a Comment about the person, display
it as a text-area field as the last element. Test it in the Web browser by starting
a new session on the same application. If you are required to add more than
one new method by hand you did something wrong.

Solution 1 In the MADescription hierarchy there is a class MAStringDescription
which is used to describe a string. You can try to use it like this:
MAPersonModel class>>descriptionComment

^ MAStringDescription auto: ’comment’ label: ’Comment’ priority: 100

The form input rendered is a text-input whereas the subject asks you for a text-
area (a text-input on more than one line). Have a look at MAStringDescription

subclasses. You will see a MAMemoDescription class with a #lineCount: method.
Use this class:
MAPersonModel class>>descriptionComment

^ MAMemoDescription auto: ’comment’ label: ’Comment’ priority: 100

A text-area is then displayed.

Exercise 2 Add a new field that holds the Nationality of the person, display
it as a sorted drop-down box with a few selectable countries. Put it right after
the Address field. The default choice for new objects should be Switzerland.

Solution 2 When you want to ask the user to choose one element in a list
of multiple, you should use the MASingleOptionDescription class. This class
is a subclass of MAOptionDescription which accepts an #options: method to
specify the different choices. The default choice (displayed by magritte if no
other choices have been selected) is chosen with the #default: method:
MAPersonModel class>>descriptionNationality

^ (MASingleOptionDescription auto: ’nationality’ label: ’Nationality’ priority: 55)
options: #(’Switzerland’ ’France’ ’Germany’);
default: ’Switzerland’;
beRequired;
yourself

You can use the #beSorted method to sort values in the list.

Exercise 3 Add a new field that holds the E-Mail of the person, display
it as a required text-field. Add custom conditions to force the user to give a
valid e-mail address. Don’t allow addresses from the providers hotmail.com and
gmx.com, gmx.de, gmx.it, etc. Test your code in the Web browser.

Solution 3 An E-Mail is basically a string. So, to start, you can just ask for
a string:
MAPersonModel class>>descriptionEmail

^ (MAStringDescription auto: ’email’ label: ’Email’ priority: 95)
beRequired;
yourself

If you open a browser on MADescription class (protocol validation), you will see
a #addCondition:labelled: method.

3 INTEGRATION INTO SEASIDE 3

MAPersonModel class>>descriptionEmail
^ (MAStringDescription auto: ’email’ label: ’Email’ priority: 95)

addCondition: [:value | value matches: ’#*@#*.#*’]
labelled: ’Please enter a valid email’;

addCondition: [:value | (value matches: ’#*@hotmail.com’) not]
labelled: ’Hotmail users not allowed’;

addCondition: [:value | (value matches: ’#*@gmx.#*’) not]
labelled: ’GMX users not allowed’;

beRequired;
yourself

Exercise 4! Reuse the description of the Nationality from MAPersonModel in
the model of the address MAAddressModel by calling the appropriate description
of the person and changing the label to Country. Make sure not to modify the
original description by creating a copy. Test it in the Web browser.

Solution 4 Descriptions are created in methods. To reuse a description, you
can just send the method:
MAAddressModel class>>descriptionCountry

^ MAPersonModel descriptionNationality copy
label: ’Country’;
yourself

Question 5 Make a rough guess on how much code was saved by using
Magritte compared to a manual approach in Seaside. From when on does it
make sense to use a meta-model? What are the advantages? What are the
disadvantages?

3 Integration into Seaside

Up to now we have been working with descriptions only, we didn’t write any
line of Seaside code. Moreover the model was not remembered somewhere and
therefor was lost between different sessions. In this section we will concentrate
on Seaside and build a simple user-interface that allows us to manage multiple
persons. To get an idea of how the result could look like, see Figure 1.

Figure 1: Person Manager List

Exercise 6 Start by creating a new sub-class of WAComponent called MAPerson-

Manager. Add a class-instance-variable called Persons that will serve us as a
simple place to keep the model objects. Initialize it with an empty Ordered-

Collection. Register the newly created class as a new Seaside entry point.

3 INTEGRATION INTO SEASIDE 4

Create a method #renderContentOn: that displays the heading Person Manager.
Test the setup of your new application in the Web browser.

Solution 6 Create this methods:
MAPersonManager class>>persons

^ Persons

MAPersonManager class>>persons: aCollection
Persons := aCollection

MAPersonManager class>>initialize
super initialize.
self persons: OrderedCollection new.
self registerAsApplication: ’personmanager’

MAPersonManager>>renderContentOn: html
html heading: ’Person Manager’

Don’t forget to execute MAPersonManager initialize. The #rendererClass method
ask Seaside to use the new rendering technique.

Exercise 7 Create an action-method #add, that creates a new instance of
MAPersonModel, calls the default Magritte editor and adds it to our collection.
Note that Magritte will answer nil, if the user hits the cancel-button in the
editor. Create a link in your page that will execute the #add method.

Solution 7 A Seaside component is created from a model using #asComponent.
You can add buttons to save and cancel using #addValidatedForm. If you want
to use another component instead of the current one, use the method #call:.
This method returns what answered the component:
MAPersonManager>>add

| person |
person := self call: (MAPersonModel new asComponent

addValidatedForm; yourself).
person isNil

ifFalse: [self class persons add: person]

Remember we are using the new rendering technique ? Let’s see how one would
add a link to a page with this technique:
MAPersonManager>>renderContentOn: html

html heading: ’Person Manager’.
html anchor

callback: [self add];
with: [html text: ’add’]

We will see how to make this call smaller in a latter exercise.

Exercise 8 Create an accessor #persons for the class-variable Persons on the
instance-side. Render a list of all persons within MAPersonManager.

Solution 8
MAPersonManager>>persons

^ self class persons

MAPersonManager>>renderLineForPerson: aPerson on: html
html text: aPerson firstName; space; text: aPerson lastName

MAPersonManager>>renderContentOn: html
html heading: ’Person Manager’.
html anchor

callback: [self add];

4 USING MAGRITTE REPORTS 5

with: [html text: ’add’].
html break.
self persons

do: [:person | self renderLineForPerson: person on: html]
separatedBy: [html break]

Exercise 9 Render the list entries as links, so that existing persons can be
edited.

Solution 9
MAPersonManager>>editPerson: aPerson

self call: (aPerson asComponent
addValidatedForm;
yourself)

MAPersonManager>>renderLineForPerson: aPerson on: html
html anchor

callback: [self editPerson: aPerson];
with: [html text: aPerson firstName; space; text: aPerson lastName]

Exercise 10 Render an additional link called view, as seen in Figure 1, to
display the entry in a read-only view. You can turn a component into read-only
mode by sending the message #readonly:.

Solution 10
MAPersonManager>>viewPerson: aPerson

self call: (aPerson asComponent
addForm: #(cancel);
readonly: true;
yourself)

renderLineForPerson: aPerson on: html
html anchor

callback: [self editPerson: aPerson];
with: [html text: aPerson firstName; space; text: aPerson lastName].

html space.
html anchor

callback: [self viewPerson: aPerson];
with: [html text: ’view’]

4 Using Magritte Reports

Rendering a list like this is nice, but it doesn’t scale well if you have many
entries. As well it doesn’t take advantage of the nice descriptive model we have.
Luckily Magritte includes built in reporting facilities that we will be extending
our application with. In this section we make our little application look like
Figure 2.

Exercise 11 Add a new child component to MAPersonManager and initialize
it, lazily or within the method #initialize, with MAReport rows: self persons

description: MAPersonModel description. Render the report instead of the
list.

Solution 11 Create a new report instance-variable.
MAPersonManager>>report

^ report

4 USING MAGRITTE REPORTS 6

Figure 2: Person Manager Report

MAPersonManager>>report: aReport
report := aReport

MAPersonManager>>children
^ OrderedCollection with: self report

MAPersonManager>>initialize
super initialize.
self report: (MAReport rows: self persons description: MAPersonModel description)

MAPersonManager>>renderContentOn: html
html heading: ’Person Manager’.
html anchor on: #add of: self.
html render: self report

Exercise 12 Play with the report in your browser: sort the rows, add new
persons... You will probably notice that the report doesn’t update itself when
adding new persons. It’s because the report creates a copy. Call #refresh to do
so.

Solution 12
MAPersonManager>>add

| person |
person := self call: (MAPersonModel new asComponent

addValidatedForm; yourself).
person isNil ifFalse: [

self class persons add: person.
self report refresh]

Exercise 13! Right now almost all the information about a person is dis-
played within the report, if you enter much data this gives a very wide Web
page. Filter out all the descriptions except the ones for #firstName, #lastName,
#email, and #nationality.

Solution 13
MAPersonManager>>initialize

super initialize.
self report: (MAReport

rows: self persons
description: (MAPersonModel description select: [:each |

#(firstName lastName email nationality)
includes: each accessor selector]))

Exercise 14 Add a new column to the report to hold commands to view,
edit and remove entries. To get a hint on how to archive the desired behaviour,
brows the references of MACommandColumn.

5 DESCRIBED DESCRIPTIONS! 7

Solution 14
MAPersonManager>>initialize

super initialize.
self report: (MAReport

rows: self persons
description: (MAPersonModel description select: [:each |

#(firstName lastName email nationality)
includes: each accessor selector])).

self report addColumn: (MACommandColumn new
addCommandOn: self selector: #view:;
addCommandOn: self selector: #edit:;
addCommandOn: self selector: #remove:;
yourself)

Exercise 15! Implement a search functionality within your report. The user
should be asked for a filter string that will be compared to all the string-fields
within the persons. To get some pointers have a look at the implementors and
senders of #rowFilter:, #toString: and #readUsing:, and #matches:. Add a
clear link as well, to remove any filter.

Solution 15
MAPersonManager>>filter

| filter |
filter := self request: ’Enter a filter string’.
self report rowFilter: [:person |

(self report columns collect: [:col |
col description in: [:desc | desc toString: (person readUsing: desc)]])
anySatisfy: [:value | value matches: filter]]

MAPersonManager>>clear
self report rowFilter: nil

MAPersonManager>>renderContentOn: html
html heading: ’Person Manager’.
#(add filter clear)

do: [:symbol | html anchor on: symbol of: self].
separatedBy: [html space].

html render: self report

5 Described Descriptions!

As experience shows, customers are often not completely satisfied with the fea-
tures the application developers are giving to them. They want more and they
want to be able to customize everything by themselves. Thanks to the reflective
nature of Magritte – all the descriptions within Magritte are described with
Magritte descriptions itself – we can easily provide the necessary functionality.

Question 16 Point your browser to http://localhost:8080/seaside/example-
browser and select MADescriptionEditor in the first drop-down box. What is
this? What could it be useful for?

Question 17 Browse the source code of MADescriptionEditor. As you can see
for the preview and instance of MAScaffolder is created. This is a class that has
only two instance-variables: one references a description-container, the other a
dictionary mapping description-elements to actual values. Have a look at the
methods #readUsing: and #write:using:, and their default implementations in
Object. Why are those methods overridden in MAScaffolder?

5 DESCRIBED DESCRIPTIONS! 8

Exercise 18 Add a class-instance-variable to MAPersonModel called Custom-

Description. Initialize it with an empty instance of MAContainer. Create an
accessor method. Override #description on the instance-side, call super and
compose it with the CustomDescription. So far, you should see no difference in
the behaviour of the application when testing it.

Solution 18

MAPersonModel class>>customDescription
^ CustomDescription

MAPersonModel class>>customDescription: aContainer
CustomDescription := aContainer

MAPersonModel class>>initialize
super initialize.
self customDescription: MAContainer new

MAPersonModel>>customDescription
^ self class customDescription

MAPersonModel>>description
^ super description copy

addAll: self customDescription;
yourself

Execute MAPersonModel initialize and MACachedBuilder default flush to for-
get about the cached values.

Exercise 19 Add another link above your report to let the user edit the cus-
tom description. Unfortunately the default implementation of MADescription-

Editor has no way to go back to the caller. The simplest solution is to subclass
MADescriptionEditor and render an additional button by overriding #render-

ButtonsOn: that answers the modified description.

Solution 19

MAPersonManager>>modifyPersonModel
description := self call: (MADescriptionPersonEditor new

description: MAPersonModel customDescription).
description isNil

ifFalse: [MAPersonModel customDescription: description]

MAPersonManager>>renderContentOn: html
html heading: ’Person Manager’.
#(modifyPersonModel add filter clear)

do: [:symbol | html anchor on: symbol of: self]
separatedBy: [html space].

html render: self report

MADescriptionEditor subclass: #MADescriptionEditorWithSave
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Magritte-Tutorial-View’

MADescriptionEditorWithSave>>renderButtonsOn: html
super renderButtonsOn: html.
html submitButtonOn: #save of: self

The method #save is already defined in MAExampleEditor.

Exercise 20 Now you are able to add additional fields to your MAPersonModel

class, unfortunately the editor doesn’t work anymore. If you try to add or edit
a person you get the error-message: This message is not appropriate for this

5 DESCRIBED DESCRIPTIONS! 9

object.. Obviously the custom-descriptions that have been added through the
web do not have an accessor and you probably don’t want to let your customers
care about those low-level things anyway. To solve the problem you need to
override the methods #readUsing: and #write:using: similar to the way it is
done in MAScaffolder.

Solution 20 Add an instance variable values into MAPersonModel.
MAPersonModel>>values

^ values ifNil: [values := Dictionary new]

MAPersonModel>>readUsing: aDescription
^ (MAPersonModel customDescription includes: aDescription)

ifTrue: [self values at: aDescription ifAbsent: [nil]]
ifFalse: [super readUsing: aDescription]

MAPersonModel>>write: anObject using: aDescription
(MAPersonModel customDescription includes: aDescription)

ifTrue: [self values at: aDescription put: anObject]
ifFalse: [super write: anObject using: aDescription]

Question 21 Test your application toughly. How does it behave if you add,
remove or change fields within living instances of MAPersonModel?

5 DESCRIBED DESCRIPTIONS! 10

Figure 3: Person Editor Customized

