
S.Ducasse

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.listic.univ-savoie.fr/~ducasse/

Unit Testing

1

S.Ducasse LSE

License: CC-Attribution-ShareAlike 2.0
http://creativecommons.org/licenses/by-sa/2.0/

2

S.Ducasse

Goal
• How can I trust that the

changes did not destroy
something?

• What is my confidence in
the system?

• How do I write tests?
• What is unit testing?
• What is SUnit?

3

S.Ducasse

Tests
• Tests represent your trust in the system

• Build them incrementally
• Do not need to focus on everything

• When a new bug shows up, write a test

• Even better write them before the code
• Act as your first client, better interface

• Active documentation always in sync

4

S.Ducasse

Testing Style
“The style here is to write a few lines of code, then a test that
should run, or even better, to write a test that won't run, then
write the code that will make it run.”

• write unit tests that thoroughly test a single class

• write tests as you develop (even before you implement)

• write tests for every new piece of functionality

“Developers should spend 25-50% of their time developing
tests.”

5

S.Ducasse

But I can’t cover everything!
• Sure! Nobody can but
• When someone discovers a defect in your code, first

write a test that demonstrates the defect.
• Then debug until the test succeeds.

	
“Whenever you are tempted to type something into a
print statement or a
 debugger expression, write it as
a test instead.” Martin Fowler

6

S.Ducasse

Unit Testing
• Ensure that you get the specified behavior of the

public interface of a class
• Normally tests a single class

• A test
• Create a context,

• Send a stimulus,

• Check the results

7

S.Ducasse

SetTestCase
Class: SetTestCase
 superclass: TestCase

SetTestCase>>testAdd

 | empty |
 empty := Set new. “Context”
 empty add: 5. “Stimulus”
 self assert: (empty includes: 5). “Check”

SetTestCase run: #testAdd

8

S.Ducasse

In a subclass of TestCase
Each method starting with test*
Represents a test
Is automatically executed
The results of the test are collected in a TestResult
object

9

S.Ducasse

Examples
testExampleRunArray3
 "this demonstrates that adjancent runs with equal
attributes are merged. "

 | runArray |
 runArray := RunArray new.
 runArray
 addLast: TextEmphasis normal times: 5;
 addLast: TextEmphasis bold times: 5;
 addLast: TextEmphasis bold times: 5.
 self assert: (runArray runs size = 2).

10

S.Ducasse

Failures and Errors
• A failure is a failed assertion, i.e., an anticipated

problem that you test.

• An error is a condition you didn’t check for.

SetTestCase>>removeElementNotInSet

 self should: [Set new remove: 1]
 raise: Error

11

S.Ducasse

Good Tests
• Repeatable
• No human intervention
• “self-described”
• Change less often than the system
• Tells a story

12

S.Ducasse

_Unit Frameworks
• _Unit is a simple “testing framework” that provides:

• classes for writing Test Cases and Test Suites

• methods for setting up and cleaning up test data
(“fixtures”)

• methods for making assertions

• textual and graphical tools for running tests

• _Unit distinguishes between failures and errors:
• A failure is a failed assertion, i.e., an anticipated problem

that you test.

• An error is a condition you didn’t check for.

13

S.Ducasse

JUnit

14

S.Ducasse

JUnit
• Junit (inspired by SUnit) is a simple “testing

framework” that provides:
• classes for writing Test Cases and Test Suites

• methods for setting up and cleaning up test data
(“fixtures”)

• methods for making assertions

• textual and graphical tools for running tests

15

S.Ducasse

The JUnit Framework

16

S.Ducasse

A Testing Scenario

The framework calls the test methods that you define for your test cases.

17

S.Ducasse

SUnit
• Original framework

18

S.Ducasse

SetTestCase
Class: SetTestCase
 superclass: TestCase

SetTestCase>>testAddition
| s |
s := Set new.
s add: 5; add: 3.
self assert: s size = 2.
s add: 5.
self assert: s size = 2

19

S.Ducasse

Duplicating the Context
SetTestCase>>testOccurrences

 | empty |
 empty := Set new.
 self assert: (empty occurrencesOf: 0) = 0.
 empty add: 5; add:5.
 self assert: (empty occurrencesOf: 5) = 1

20

S.Ducasse

Testing Remove
SetTestCase>>testAddition

| s |
s := Set new.
s add: 6.
self assert: s size = 1.
s remove: 6.
self assert: s size = 0.
self should: [s remove: 1000] raise: Error.
res := s remove: 5 ifAbsent: [33].
self assert: (res = 33)

21

S.Ducasse

setUp and TearDown
• Executed before and after each test
• setUp allows us to specify and reuse the context
• tearDown to clean after.

22

S.Ducasse

Example: Testing Set
• Class: SetTestCase

 superclass: TestCase
 instance variable: ‘empty full’

• SetTestCase>>setUp
 empty := Set new.
 full := Set with: 6 with: 5

• The setUp is the context in which each test is run.

23

S.Ducasse

Tests…
SetTestCase>>testAdd

empty add: 5.
self assert: (empty includes: 5).

SetTestCase>>testOccurrences
self assert: (empty occurrenceOf: 0) = 0.

 self assert: (full occurrencesOf: 5) = 1.
full add: 5.
self assert: (full occurrencesOf: 5) = 1

SetTestCase>>testRemove
full remove: 5.
self assert: (full includes: 6).
self deny: (full includes: 5)

24

S.Ducasse

SUnit Core

25

S.Ducasse

TestSuite, TestCase and TestResult
a TestCase represents one test

SetTestCase>>testOccurenceOf

A testSuite is a group of tests
SUnit automatically builds a suite from the methods
starting with ‘test*’

TestResult represents a test execution results

26

S.Ducasse

Test Ressources
• A Test Resource is an object which is needed by a

number of Test Cases, and whose instantiation is so
costly in terms of time or resources that it becomes
advantageous to only initialize it once for a Test Suite
run.

27

S.Ducasse

TestResources
A TestResources is invoked once before any test is run.

Does not work if you have mutually exclusive
TestResources.

28

S.Ducasse

Refactorings and Tests

29

S.Ducasse

What is Refactoring?
• The process of changing a software system in such a

way that it does not alter the external behaviour of
the code, yet improves its internal structure [Fowl99a]

• A behaviour-preserving source-to-source program
transformation [Robe98a]

• A change to the system that leaves its behaviour
unchanged, but enhances some non-functional quality -
simplicity, flexibility, understandability, ... [Beck99a]

30

S.Ducasse

Typical Refactorings

Class
Refactorings

Method Refactorings Attribute Refactorings

add (sub)class to
hierarchy

add method to class add variable to class

rename class rename method rename variable

remove class remove method remove variable

push method down push variable down

push method up pull variable up

add parameter to method create accessors

move method to component abstract variable

extract code in new method

List of refactorings provided by the refactoring browser

31

S.Ducasse

Why Refactoring?
“Grow, don’t build software” Fred Brooks

• Some argue that good design does not lead to code needing
refactoring,

• But in reality
– Extremely difficult to get the design right the first time
– You cannot fully understand the problem domain
– You cannot understand user requirements, if he does!
– You cannot really plan how the system will evolve in five years
– Original design is often inadequate
– System becomes brittle, difficult to change

• Refactoring helps you to
– Manipulate code in a safe environment (behavior preserving)
– Create an environment a situation where evolution is possible
– Understand existing code

32

S.Ducasse

Refactor To Understand
Obvious

• Programs hard to read => Programs hard to understand =>
Programs hard to modify

• Programs with duplicated logic are hard to understand
• Programs with complex conditionals are hard to understand
• Programs hard to modify

Refactoring code creates and supports the understanding
• Renaming instance variables helps understanding

methods
• Renaming methods helps understanding responsibility
• Iterations are necessary

The refactored code does not have to be used!

33

S.Ducasse

Test and Refactorings
• Tests can cover places where you have to manually

change the code
• Changing 3 by 33, nil but NewObject new

• Tests let you been more aggressive to change and
improve your code

34

S.Ducasse

Summary
If you are serious about programming
If you do not have time to lose
If you want to have synchronized documentations

Write unit tests...

35

