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The Design in Question
• The Basic Idea behind Frameworks
• Subclassing vs SubTyping
• Coupling
• Design Heuristics
• Design Symptoms
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Frameworks
• What is it?
• Principles
• vs. Libraries
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Inheritance as Parameterization
• Subclass customizes hook methods by implementing 

(abstract) operations in the context of template 
method

• Any method acts as a parameter of the context

• Methods are unit of reuse

• Abstract class -- one that must be customized before 
it can be used
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Methods are Unit of Reuse
self sends are plans for reuse

       can be abstract or not
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Frameworks vs. Libraries
• Libraries

• You call them

• Callback to extend them

• Framework
• Hollywood principle: Don’t call me I will call you

• GreyHound principle: Let’s drive
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Library vs. Framework
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Classes instantiated by the client Framework instantiated classes, 
extended by inheritance

Clients invoke library functions Framework calls the client 
functions

No predefined flow, predefined 
interaction, default behavior

Predefined flow, interaction and 
default behavior
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You remember self…
• self is dynamic
• self acts as a hook

A
foo
bar

^ 10

B
foo

self foo

^ 50
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You remember super…
• super is static

• super forbid extension

A
foo
bar

^ 10

B
 x  

super X

^ 50
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Frameworks
• A set of collaborating classes that define a context and 

are reusable by extension in different applications
• A framework is a reusable design expressed as a set of 

abstract classes and the way their instances 
collaborate.  By definition, a framework is an object-
oriented design. It doesn't have to be implemented in 
an object-oriented language, though it usually is. Large-
scale reuse of object-oriented libraries requires 
frameworks. The framework provides a context for 
the components in the library to be reused. [Johnson]

• A framework often defines the architecture of a set of 
applications
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On Frameworks...
• Frameworks design

• Need at least 3 applications to support the 
generalization

• http://st-www.cs.uiuc.edu/users/droberts/evolve.html

• Smile if somebody tell that they start implementing a 
framework

• Framework often rely on whitebox abstractions: ie 
extended by inheritance

• Others are blackboxes framework: ie extended by 
composition

• A framework can use design patterns
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SubTyping vs. Subclassing
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How to Implement a Stack?
By subclassing OrderedCollection...

Stack>>pop
   ^ self removeLast
Stack>>push: anObject
   self addFirst: anObject
Stack>>top
   ^ self first

Stack>>size, Stack>>includes:
   are free, inherited from
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BUT BUT BUT!!!
• What do we do with all the rest of the interface of 

OrderedCollection?

• a Stack IS NOT an OrderedCollection!
• We cannot substitute an OrderedCollection by a 

Stack

• Some messages do not make sense on Stack
• Stack new addLast: anObject

• Stack new last

• So we have to block a lot of methods...
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Consequences...
Stack>>removeLast
    self shouldNotImplement

Stack>>pop
   ^ super removeLast
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The Problem
• There is not a clean simple relationship between Stack 

and OrderedCollection

• Stack interface is not an extension or subset of 
OrderedCollection interface

• Compare with CountingStack a subclass of Stack
• CountingStack is an extension
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Another Approach
By defining the class Stack that uses OrderedCollection

Object subclass: Stack
     iv: elements

Stack>>push: anElement
    elements addFirst: anElement
Stack>>pop
    element isEmpty ifFalse: [^ self removeFirst]
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Inheritance and Polymorphism
• Polymorphism works best with standard interfaces

• Inheritance creates families of classes with similar 
interfaces

• Abstract class describes standard interfaces

• Inheritance helps software reuse by making 
polymorphism easier
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Specification Inheritance 
• Subtyping
• Reuse of specification

• A program that works with Numbers will work with 
Fractions.

• A program that works with Collections will work with 
Arrays.

• A class is an abstract data type (Data + operations to 
manipulate it)
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Inheritance for Code Reuse 
• Subclassing
• Dictionary is a subclass of Set
• Semaphore is a subclass of LinkedList
• No relationship between the interfaces of the classes

• Subclass reuses code from superclass, but has a 
different specification.  It cannot be used everywhere 
its superclass is used.  Usually overrides a lot of code.

• ShouldNotImplement use is a bad smell…
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Inheritance for Code Reuse 
• Inheritance for code reuse is good for
• rapid prototyping

• getting application done quickly.

• Bad for:
• easy to understand systems

• reusable software

• application with long life-time.
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Subtyping Essence
• You reuse specification

• You should be able to substitute an instance by one of 
its subclasses (more or less)

• There is a relationship between the interfaces of the 
class and its superclass
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How to Choose?
• Favor subtyping

• When you are in a hurry, do what seems easiest.

• Clean up later, make sure classes use “is-a” relationship, 
not just “is-implemented-like”. 

• Is-a is a design decision, the compiler only enforces is-
implemented-like!!!
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Quizz
– Circle subclass of Point? 
– Poem subclass of OrderedCollection? 
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Class Design
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Behavior Up and State Down
• Define classes by behavior, not state
• Implement behavior with abstract state: if you need 

state do it indirectly via messages. 
• Do not reference the state variables directly
• Identify message layers: implement class’s behavior 

through a small set of kernel method
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Example
Collection>>removeAll: aCollection
	 aCollection do: [:each | self remove: each]
	 ^ aCollection

Collection>>remove: oldObject
	 self remove: oldObject ifAbsent: [self notFoundError]

Collection>>remove: anObject ifAbsent: 
anExceptionBlock
	 self subclassResponsibility
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Behavior-Defined Class
When creating a new class, define its public protocol 
and specify its behavior without regard to data 
structure (such as instance variables, class variables, and 
so on). 

For example:  
	 	 Rectangle
Protocol: 
	 	 area
	 	 intersects:
	 	 contains:
	 	 perimeter
	 	 width
	 	 height
	 	 insetBy:
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Implement Behavior with Abstract State

• If state is needed to complete the implementation
• Identify the state by defining a message that returns 

that state instead of defining a variable. 

For example, use 
	 Circle>>area
	 	 ^self radius squared * self pi

not 
	 Circle>>area
	 	 ^radius squared * pi.
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Identify Message Layers
• How can methods be factored to make the class both 

efficient and simple to subclass? 
• Identify a small subset of the abstract state and 

behavior methods which all other methods can rely on 
as kernel methods.

	 Circle>>radius
	 Circle>>pi
	 Circle>>center
	 Circle>>diameter
	 	 ^self radius * 2

	 Circle>>area
	 	 ^self radius squared * self pi
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Good Coding Practices

32

• Good Coding Practices
promote good design

• Encapsulation
• Level of decomposition
• Factoring constants
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• Be lazy and be private
• Never do the job that you can delegate to another 

one
• Never let someone else plays with your private data

The Object Manifesto
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The Programmer Manifesto
• Say something only once
• Don’t ask, tell!
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Tell, Don’t Ask!
MyWindow>>displayObject: aGrObject
	aGrObject displayOn: self 

• And not: 

MyWindow>>displayObject: aGrObject

aGrObject isSquare ifTrue: […]
aGrObject isCircle ifTrue: […]
…
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Good Signs of OO Thinking
• Short methods
• No dense methods
• No super-intelligent objects
• No manager objects
• Objects with clear responsibilities

• State the purpose of the class in one sentence

• Not too many instance variables
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• How do you divide a program into methods?
• Messages take time

• Flow of control is difficult with small methods

• But: 
• Reading is improved

• Performance tuning is simpler (Cache...)

• Easier to maintain / inheritance impact

Composed Methods
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Composed Methods
• Divide your program into methods that perform one 

identifiable task. Keep all of the operations in a 
method at the same level of abstraction.

• Controller>>controlActivity
	  self controlInitialize.	
	  self controlLoop.
	  self controlTerminate
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Do you See the Problem?
initializeToStandAlone
	
	super initializeToStandAlone.
	self borderWidth: 2.
	self borderColor: Color black.
	self color: Color blue muchLighter.
	self extent: self class defaultTileSize * (self columnNumber @ self rowNumber).
	self initializeBots.
	self running.
	area := Matrix rows: self rowNumber columns: self columnNumber.
	area indicesDo: [:row :column | area at: row at: column

                 	 	 put: OrderedCollection new].
	self fillWorldWithGround.
	self firstArea.
	self installCurrentArea
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Do you See the Problem?
initializeToStandAlone

super initializeToStandAlone.
self initializeBoardLayout.
self initializeBots.
self running.
self initializeArea.
self fillWorldWithGround.
self firstArea. 
self installCurrentArea
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With code reuse…
initializeArea
	
	area := self matrixClass
               rows: self rowNumber 
               columns: self columnNumber.
	area indicesDo: [:row :column | area
		 	 	 at: row
		 	 	 at: column
		 	 	 put: OrderedCollection new]

initializeArea can be invoke several times
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About Methods
• Avoid long methods
• A method: one task
• Avoid duplicated code
• Reuse Logic
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About Coupling
• Why coupled classes is fragile design?
• Law of Demeter
• Thoughts about accessor use
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The Core of the Problem
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The Law of Demeter
You should only send messages to:

an argument passed to you 
an object you create
self, super
your class

Avoid global variables
Avoid objects returned from message sends other than 
self
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Correct Messages
someMethod: aParameter
	 self foo.
	 super someMethod: aParameter.
	 self class foo.
	 self instVarOne foo.
	 instVarOne foo.
	 self classVarOne foo.
	 classVarOne foo.
	 aParameter foo.
	 thing := Thing new.
	 thing foo

46



S.Ducasse

Law of Demeter by Example

NodeManager>>declareNewNode: aNode
	|nodeDescription|

(aNode isValid)  “Ok passed as an 
argument to me”
	ifTrue: [ aNode certified].

	nodeDescription := NodeDescription for: aNode.
nodeDescription localTime.   “I created it”

self addNodeDescription: nodeDescription. 
                            
“I can talk to myself“

nodeDescription data  “Wrong I should not know”

at: self creatorKey  “that data is a dictionary”
	put: self creator
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In other words
• Only talk to your immediate friends. 
• In other words:

• You can play with yourself. (this.method())

• You can play with your own toys (but you can't take 
them apart). (field.method(), field.getX())

• You can play with toys that were given to you. 
(arg.method())

• And you can play with toys you've made yourself.  (A a = 
new A(); a.method())
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Halt!
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To not skip your intermediate
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Solution
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Transformation
Engine

+ carburator

engine.carburetor.fuelValveOpen = true

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

carburetor.fuelValveOpen = true

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
- fuelValveOpen

+ openFuelValve

carburetor.openFuelValve() fuelValveOpen = true

Step 1

Step 2
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Law of Demeter’s Dark Side
Class A
	   instVar: myCollection

A>>do: aBlock
	      myCollection do: aBlock
A>>collect: aBlock
	      ^ myCollection collect: aBlock
A>>select: aBlock
	      ^ myCollection select: aBlock
A>>detect: aBlock
	      ^ myCollection detect: aBlock
A>>isEmpty
	      ^ myCollection isEmpty
…………………
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About the Use of Accessors
Some schools say: “Access instance variables using 
methods”

But 
Be consistent inside a class, do not mix direct access and 
accessor use
First think accessors as private methods that should not 
be invoked by clients
Only when necessary put accessors in accessing protocol
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Example
Scheduler>>initialize
	 self tasks: OrderedCollection new. 

	 Scheduler>>tasks
	 ^ tasks

But now everybody can tweak the tasks!
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Accessors
Accessors are good for lazy initialization

	 	 Scheduler>>tasks
	 	    tasks isNil ifTrue: [task := ...].
	 	    ^ tasks

BUT accessors methods should be PRIVATE by default 
at least at the beginning
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Accessors open Encapsulation
The fact that accessors are methods doesn’t support a 
good data encapsulation. 
You could be tempted to write in a client: 

	 	 ScheduledView>>addTaskButton
	 	 	 ...
	 	 	 model tasks add: newTask

What’s happen if we change the representation of 
tasks? 
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Tasks
If tasks is now an array it will break

Take care about the coupling between your objects and 
provide a good interface!
	 Schedule>>addTask: aTask
	 	 	 tasks add: aTask
	
ScheduledView>>addTaskButton
	 	 	 ...
	 	 	 model addTask: newTask
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About Copy Accessor
Should I copy the structure?

Scheduler>>tasks
    ^ tasks copy

But then the clients can get confused...

Scheduler uniqueInstance tasks removeFirst
and nothing happens!
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Use intention revealing names
Better

Scheduler>>taskCopy
    “returns a copy of the pending tasks”

     ^ task copy
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Provide a Complete Interface
Workstation>>accept: aPacket
	 	 aPacket addressee = self name
   …

It is the responsibility of an object to propose a 
complete interface that protects itself from client 
intrusion.
Shift the responsibility to the Packet object

Packet>>isAddressedTo: aNode
	 ^ addressee = aNode name

Workstation>>accept: aPacket
	 (aPacket isAddressedTo: self)
	 ifTrue:[ Transcript show: 'A packet  is accepted by 
the Workstation ', self name asString]
	 ifFalse: [super accept: aPacket]
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Open-Close

• Software entities (classes, 
modules, functions, etc.) should 
be open for extension, but closed
 for modification. 
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The open-closed principle
• Software entities (classes, modules, functions, etc.) 

should be open for extension, but closed for 
modification. 

• Existing code should not be changed – new features 
can be added using inheritance or composition.
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One kind of application
enum ShapeType {circle, 
square};

struct Shape {
  ShapeType _type;
};
struct Circle {
ShapeType _type;
double _radius;
Point _center;

};

64

struct Square {
 ShapeType _type;
 double _side;
 Point _topLeft;
};
void DrawSquare
(struct Square*)

void DrawCircle
(struct Circle*);
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Example (II)
void DrawAllShapes(struct Shape* list[], int n) {

int i;
for (i=0; i<n; i++) {

struct Shape* s = list[i];
switch (s->_type) {
case square: DrawSquare((struct Square*)s); break;
case circle: DrawCircle((struct Circle*)s); break;

    }
    }
}
Adding a new shape requires adding new code to this 
method.
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Correct Form
class Shape {
    public: virtual void Draw() const = 0;
};
class Square : public Shape {
    public: virtual void Draw() const;
};
class Circle : public Shape {
    public: virtual void Draw() const;
};
void DrawAllShapes(Set<Shape*>& list) {

for (Iterator<Shape*>i(list); i; i++)
(*i)->Draw();
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Some Principles

• Dependency Inversion Principle
• Interface Segregation Principle
• The Acyclic Dependencies Principle
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Dependency Inversion Principle

• High level modules should not depend upon low level 
modules. Both should depend upon abstractions. 

• Abstractions should not depend upon details. Details 
should depend upon abstractions. 
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Example
void Copy() {

int c;
while ((c = ReadKeyboard()) != EOF)
WritePrinter(c);

}
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Cont...
Now we have a second writing device – disk

enum OutputDevice {printer, disk};

void Copy(outputDevice dev) {
int c;
while ((c = ReadKeyboard()) != EOF)
if (dev == printer)
WritePrinter(c);

else
WriteDisk(c);

}
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Solution
class Reader {
  public:
  virtual int Read() = 0;
};
class Writer {
  public:
    virtual void Write(char)=0;
};
void Copy(Reader& r, 
          Writer& w) {
  int c;
  while((c=r.Read()) != EOF)
    w.Write(c);
}
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Some Principle
•
•
•
•
•
•
•
•
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Interface Segregation Principle
• The dependency of one class to another one should 

depend on the smallest possible interface. 

• Avoid “fat” interfaces
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Examples
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Solutions
• One class one responsibility
• Composition?

• Design is not simple
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The Acyclic Dependency Principle
• The dependency structure between packages must not 

contain cyclic dependencies. 
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Example...Ez
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Solutions
• Layering?
• Separation of domain/applicatin/UI
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Packages, Modules and other
• The Common Closure Principle

• Classes within a released component should share 
common closure. That is, if one needs to be changed, 
they all are likely to need to be changed. 

• The Common Reuse Principle
• The classes in a package are reused together. If you 

reuse one of the classes in a package, you reuse them all.
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Summary
Build your own taste
Analyze what you write and how?
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