
S.Ducasse 

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.listic.univ-savoie.fr/~ducasse/

Some Design Points

Stéphane Ducasse --- 2005

1



S.Ducasse LSE

License: CC-Attribution-ShareAlike 2.0
http://creativecommons.org/licenses/by-sa/2.0/

2



S.Ducasse

The Design in Question
• The Basic Idea behind Frameworks
• Subclassing vs SubTyping
• Coupling
• Design Heuristics
• Design Symptoms

3



S.Ducasse

Frameworks
• What is it?
• Principles
• vs. Libraries

4



S.Ducasse

Inheritance as Parameterization
• Subclass customizes hook methods by implementing 

(abstract) operations in the context of template 
method

• Any method acts as a parameter of the context

• Methods are unit of reuse

• Abstract class -- one that must be customized before 
it can be used

5



S.Ducasse

Methods are Unit of Reuse
self sends are plans for reuse

       can be abstract or not

6



S.Ducasse

Frameworks vs. Libraries
• Libraries

• You call them

• Callback to extend them

• Framework
• Hollywood principle: Don’t call me I will call you

• GreyHound principle: Let’s drive

7



S.Ducasse

Library vs. Framework

8

Classes instantiated by the client Framework instantiated classes, 
extended by inheritance

Clients invoke library functions Framework calls the client 
functions

No predefined flow, predefined 
interaction, default behavior

Predefined flow, interaction and 
default behavior



S.Ducasse

You remember self…
• self is dynamic
• self acts as a hook

A
foo
bar

^ 10

B
foo

self foo

^ 50

9



S.Ducasse

You remember super…
• super is static

• super forbid extension

A
foo
bar

^ 10

B
 x  

super X

^ 50

10



S.Ducasse

Frameworks
• A set of collaborating classes that define a context and 

are reusable by extension in different applications
• A framework is a reusable design expressed as a set of 

abstract classes and the way their instances 
collaborate.  By definition, a framework is an object-
oriented design. It doesn't have to be implemented in 
an object-oriented language, though it usually is. Large-
scale reuse of object-oriented libraries requires 
frameworks. The framework provides a context for 
the components in the library to be reused. [Johnson]

• A framework often defines the architecture of a set of 
applications

11



S.Ducasse

On Frameworks...
• Frameworks design

• Need at least 3 applications to support the 
generalization

• http://st-www.cs.uiuc.edu/users/droberts/evolve.html

• Smile if somebody tell that they start implementing a 
framework

• Framework often rely on whitebox abstractions: ie 
extended by inheritance

• Others are blackboxes framework: ie extended by 
composition

• A framework can use design patterns

12



S.Ducasse

SubTyping vs. Subclassing

13



S.Ducasse

How to Implement a Stack?
By subclassing OrderedCollection...

Stack>>pop
   ^ self removeLast
Stack>>push: anObject
   self addFirst: anObject
Stack>>top
   ^ self first

Stack>>size, Stack>>includes:
   are free, inherited from

14



S.Ducasse

BUT BUT BUT!!!
• What do we do with all the rest of the interface of 

OrderedCollection?

• a Stack IS NOT an OrderedCollection!
• We cannot substitute an OrderedCollection by a 

Stack

• Some messages do not make sense on Stack
• Stack new addLast: anObject

• Stack new last

• So we have to block a lot of methods...

15



S.Ducasse

Consequences...
Stack>>removeLast
    self shouldNotImplement

Stack>>pop
   ^ super removeLast

16



S.Ducasse

The Problem
• There is not a clean simple relationship between Stack 

and OrderedCollection

• Stack interface is not an extension or subset of 
OrderedCollection interface

• Compare with CountingStack a subclass of Stack
• CountingStack is an extension

17



S.Ducasse

Another Approach
By defining the class Stack that uses OrderedCollection

Object subclass: Stack
     iv: elements

Stack>>push: anElement
    elements addFirst: anElement
Stack>>pop
    element isEmpty ifFalse: [^ self removeFirst]

18



S.Ducasse

Inheritance and Polymorphism
• Polymorphism works best with standard interfaces

• Inheritance creates families of classes with similar 
interfaces

• Abstract class describes standard interfaces

• Inheritance helps software reuse by making 
polymorphism easier

19



S.Ducasse

Specification Inheritance 
• Subtyping
• Reuse of specification

• A program that works with Numbers will work with 
Fractions.

• A program that works with Collections will work with 
Arrays.

• A class is an abstract data type (Data + operations to 
manipulate it)

20



S.Ducasse

Inheritance for Code Reuse 
• Subclassing
• Dictionary is a subclass of Set
• Semaphore is a subclass of LinkedList
• No relationship between the interfaces of the classes

• Subclass reuses code from superclass, but has a 
different specification.  It cannot be used everywhere 
its superclass is used.  Usually overrides a lot of code.

• ShouldNotImplement use is a bad smell…

21



S.Ducasse

Inheritance for Code Reuse 
• Inheritance for code reuse is good for
• rapid prototyping

• getting application done quickly.

• Bad for:
• easy to understand systems

• reusable software

• application with long life-time.

22



S.Ducasse

Subtyping Essence
• You reuse specification

• You should be able to substitute an instance by one of 
its subclasses (more or less)

• There is a relationship between the interfaces of the 
class and its superclass

23



S.Ducasse

How to Choose?
• Favor subtyping

• When you are in a hurry, do what seems easiest.

• Clean up later, make sure classes use “is-a” relationship, 
not just “is-implemented-like”. 

• Is-a is a design decision, the compiler only enforces is-
implemented-like!!!

24



S.Ducasse

Quizz
– Circle subclass of Point? 
– Poem subclass of OrderedCollection? 

25



S.Ducasse

Class Design

26



S.Ducasse

Behavior Up and State Down
• Define classes by behavior, not state
• Implement behavior with abstract state: if you need 

state do it indirectly via messages. 
• Do not reference the state variables directly
• Identify message layers: implement class’s behavior 

through a small set of kernel method

27



S.Ducasse

Example
Collection>>removeAll: aCollection
	 aCollection do: [:each | self remove: each]
	 ^ aCollection

Collection>>remove: oldObject
	 self remove: oldObject ifAbsent: [self notFoundError]

Collection>>remove: anObject ifAbsent: 
anExceptionBlock
	 self subclassResponsibility

28



S.Ducasse

Behavior-Defined Class
When creating a new class, define its public protocol 
and specify its behavior without regard to data 
structure (such as instance variables, class variables, and 
so on). 

For example:  
	 	 Rectangle
Protocol: 
	 	 area
	 	 intersects:
	 	 contains:
	 	 perimeter
	 	 width
	 	 height
	 	 insetBy:

29



S.Ducasse

Implement Behavior with Abstract State

• If state is needed to complete the implementation
• Identify the state by defining a message that returns 

that state instead of defining a variable. 

For example, use 
	 Circle>>area
	 	 ^self radius squared * self pi

not 
	 Circle>>area
	 	 ^radius squared * pi.

30



S.Ducasse

Identify Message Layers
• How can methods be factored to make the class both 

efficient and simple to subclass? 
• Identify a small subset of the abstract state and 

behavior methods which all other methods can rely on 
as kernel methods.

	 Circle>>radius
	 Circle>>pi
	 Circle>>center
	 Circle>>diameter
	 	 ^self radius * 2

	 Circle>>area
	 	 ^self radius squared * self pi

31



S.Ducasse

Good Coding Practices

32

• Good Coding Practices
promote good design

• Encapsulation
• Level of decomposition
• Factoring constants



S.Ducasse

• Be lazy and be private
• Never do the job that you can delegate to another 

one
• Never let someone else plays with your private data

The Object Manifesto

33



S.Ducasse

The Programmer Manifesto
• Say something only once
• Don’t ask, tell!

34



S.Ducasse

Tell, Don’t Ask!
MyWindow>>displayObject: aGrObject
	aGrObject displayOn: self 

• And not: 

MyWindow>>displayObject: aGrObject

aGrObject isSquare ifTrue: […]
aGrObject isCircle ifTrue: […]
…

35



S.Ducasse

Good Signs of OO Thinking
• Short methods
• No dense methods
• No super-intelligent objects
• No manager objects
• Objects with clear responsibilities

• State the purpose of the class in one sentence

• Not too many instance variables

36



S.Ducasse

• How do you divide a program into methods?
• Messages take time

• Flow of control is difficult with small methods

• But: 
• Reading is improved

• Performance tuning is simpler (Cache...)

• Easier to maintain / inheritance impact

Composed Methods

37



S.Ducasse

Composed Methods
• Divide your program into methods that perform one 

identifiable task. Keep all of the operations in a 
method at the same level of abstraction.

• Controller>>controlActivity
	  self controlInitialize.	
	  self controlLoop.
	  self controlTerminate

38



S.Ducasse

Do you See the Problem?
initializeToStandAlone
	
	super initializeToStandAlone.
	self borderWidth: 2.
	self borderColor: Color black.
	self color: Color blue muchLighter.
	self extent: self class defaultTileSize * (self columnNumber @ self rowNumber).
	self initializeBots.
	self running.
	area := Matrix rows: self rowNumber columns: self columnNumber.
	area indicesDo: [:row :column | area at: row at: column

                 	 	 put: OrderedCollection new].
	self fillWorldWithGround.
	self firstArea.
	self installCurrentArea

39



S.Ducasse

Do you See the Problem?
initializeToStandAlone

super initializeToStandAlone.
self initializeBoardLayout.
self initializeBots.
self running.
self initializeArea.
self fillWorldWithGround.
self firstArea. 
self installCurrentArea

40



S.Ducasse

With code reuse…
initializeArea
	
	area := self matrixClass
               rows: self rowNumber 
               columns: self columnNumber.
	area indicesDo: [:row :column | area
		 	 	 at: row
		 	 	 at: column
		 	 	 put: OrderedCollection new]

initializeArea can be invoke several times

41



S.Ducasse

About Methods
• Avoid long methods
• A method: one task
• Avoid duplicated code
• Reuse Logic

42



S.Ducasse

About Coupling
• Why coupled classes is fragile design?
• Law of Demeter
• Thoughts about accessor use

43



S.Ducasse

The Core of the Problem

44



S.Ducasse

The Law of Demeter
You should only send messages to:

an argument passed to you 
an object you create
self, super
your class

Avoid global variables
Avoid objects returned from message sends other than 
self

45



S.Ducasse

Correct Messages
someMethod: aParameter
	 self foo.
	 super someMethod: aParameter.
	 self class foo.
	 self instVarOne foo.
	 instVarOne foo.
	 self classVarOne foo.
	 classVarOne foo.
	 aParameter foo.
	 thing := Thing new.
	 thing foo

46



S.Ducasse

Law of Demeter by Example

NodeManager>>declareNewNode: aNode
	|nodeDescription|

(aNode isValid)  “Ok passed as an 
argument to me”
	ifTrue: [ aNode certified].

	nodeDescription := NodeDescription for: aNode.
nodeDescription localTime.   “I created it”

self addNodeDescription: nodeDescription. 
                            
“I can talk to myself“

nodeDescription data  “Wrong I should not know”

at: self creatorKey  “that data is a dictionary”
	put: self creator

47



S.Ducasse

In other words
• Only talk to your immediate friends. 
• In other words:

• You can play with yourself. (this.method())

• You can play with your own toys (but you can't take 
them apart). (field.method(), field.getX())

• You can play with toys that were given to you. 
(arg.method())

• And you can play with toys you've made yourself.  (A a = 
new A(); a.method())

48



S.Ducasse

Halt!

49



S.Ducasse

To not skip your intermediate

50



S.Ducasse

Solution

51



S.Ducasse

Transformation
Engine

+ carburator

engine.carburetor.fuelValveOpen = true

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

carburetor.fuelValveOpen = true

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
- fuelValveOpen

+ openFuelValve

carburetor.openFuelValve() fuelValveOpen = true

Step 1

Step 2

52



S.Ducasse

Law of Demeter’s Dark Side
Class A
	   instVar: myCollection

A>>do: aBlock
	      myCollection do: aBlock
A>>collect: aBlock
	      ^ myCollection collect: aBlock
A>>select: aBlock
	      ^ myCollection select: aBlock
A>>detect: aBlock
	      ^ myCollection detect: aBlock
A>>isEmpty
	      ^ myCollection isEmpty
…………………

53



S.Ducasse

About the Use of Accessors
Some schools say: “Access instance variables using 
methods”

But 
Be consistent inside a class, do not mix direct access and 
accessor use
First think accessors as private methods that should not 
be invoked by clients
Only when necessary put accessors in accessing protocol
	

54



S.Ducasse

Example
Scheduler>>initialize
	 self tasks: OrderedCollection new. 

	 Scheduler>>tasks
	 ^ tasks

But now everybody can tweak the tasks!

55



S.Ducasse

Accessors
Accessors are good for lazy initialization

	 	 Scheduler>>tasks
	 	    tasks isNil ifTrue: [task := ...].
	 	    ^ tasks

BUT accessors methods should be PRIVATE by default 
at least at the beginning

56



S.Ducasse

Accessors open Encapsulation
The fact that accessors are methods doesn’t support a 
good data encapsulation. 
You could be tempted to write in a client: 

	 	 ScheduledView>>addTaskButton
	 	 	 ...
	 	 	 model tasks add: newTask

What’s happen if we change the representation of 
tasks? 

57



S.Ducasse

Tasks
If tasks is now an array it will break

Take care about the coupling between your objects and 
provide a good interface!
	 Schedule>>addTask: aTask
	 	 	 tasks add: aTask
	
ScheduledView>>addTaskButton
	 	 	 ...
	 	 	 model addTask: newTask

58



S.Ducasse

About Copy Accessor
Should I copy the structure?

Scheduler>>tasks
    ^ tasks copy

But then the clients can get confused...

Scheduler uniqueInstance tasks removeFirst
and nothing happens!
  

59



S.Ducasse

Use intention revealing names
Better

Scheduler>>taskCopy
    “returns a copy of the pending tasks”

     ^ task copy

60



S.Ducasse

Provide a Complete Interface
Workstation>>accept: aPacket
	 	 aPacket addressee = self name
   …

It is the responsibility of an object to propose a 
complete interface that protects itself from client 
intrusion.
Shift the responsibility to the Packet object

Packet>>isAddressedTo: aNode
	 ^ addressee = aNode name

Workstation>>accept: aPacket
	 (aPacket isAddressedTo: self)
	 ifTrue:[ Transcript show: 'A packet  is accepted by 
the Workstation ', self name asString]
	 ifFalse: [super accept: aPacket]

61



S.Ducasse

Open-Close

• Software entities (classes, 
modules, functions, etc.) should 
be open for extension, but closed
 for modification. 

62



S.Ducasse

The open-closed principle
• Software entities (classes, modules, functions, etc.) 

should be open for extension, but closed for 
modification. 

• Existing code should not be changed – new features 
can be added using inheritance or composition.

63



S.Ducasse

One kind of application
enum ShapeType {circle, 
square};

struct Shape {
  ShapeType _type;
};
struct Circle {
ShapeType _type;
double _radius;
Point _center;

};

64

struct Square {
 ShapeType _type;
 double _side;
 Point _topLeft;
};
void DrawSquare
(struct Square*)

void DrawCircle
(struct Circle*);



S.Ducasse

Example (II)
void DrawAllShapes(struct Shape* list[], int n) {

int i;
for (i=0; i<n; i++) {

struct Shape* s = list[i];
switch (s->_type) {
case square: DrawSquare((struct Square*)s); break;
case circle: DrawCircle((struct Circle*)s); break;

    }
    }
}
Adding a new shape requires adding new code to this 
method.

65



S.Ducasse

Correct Form
class Shape {
    public: virtual void Draw() const = 0;
};
class Square : public Shape {
    public: virtual void Draw() const;
};
class Circle : public Shape {
    public: virtual void Draw() const;
};
void DrawAllShapes(Set<Shape*>& list) {

for (Iterator<Shape*>i(list); i; i++)
(*i)->Draw();

66



S.Ducasse

Some Principles

• Dependency Inversion Principle
• Interface Segregation Principle
• The Acyclic Dependencies Principle

67



S.Ducasse

Dependency Inversion Principle

• High level modules should not depend upon low level 
modules. Both should depend upon abstractions. 

• Abstractions should not depend upon details. Details 
should depend upon abstractions. 

68



S.Ducasse

Example
void Copy() {

int c;
while ((c = ReadKeyboard()) != EOF)
WritePrinter(c);

}

69



S.Ducasse

Cont...
Now we have a second writing device – disk

enum OutputDevice {printer, disk};

void Copy(outputDevice dev) {
int c;
while ((c = ReadKeyboard()) != EOF)
if (dev == printer)
WritePrinter(c);

else
WriteDisk(c);

}

70



S.Ducasse

Solution
class Reader {
  public:
  virtual int Read() = 0;
};
class Writer {
  public:
    virtual void Write(char)=0;
};
void Copy(Reader& r, 
          Writer& w) {
  int c;
  while((c=r.Read()) != EOF)
    w.Write(c);
}

71



S.Ducasse

Some Principle
•
•
•
•
•
•
•
•

72



S.Ducasse

Interface Segregation Principle
• The dependency of one class to another one should 

depend on the smallest possible interface. 

• Avoid “fat” interfaces

73



S.Ducasse

Examples

74



S.Ducasse

Solutions
• One class one responsibility
• Composition?

• Design is not simple

75



S.Ducasse

The Acyclic Dependency Principle
• The dependency structure between packages must not 

contain cyclic dependencies. 

76



S.Ducasse

Example...Ez

77



S.Ducasse

Solutions
• Layering?
• Separation of domain/applicatin/UI

78



S.Ducasse

Packages, Modules and other
• The Common Closure Principle

• Classes within a released component should share 
common closure. That is, if one needs to be changed, 
they all are likely to need to be changed. 

• The Common Reuse Principle
• The classes in a package are reused together. If you 

reuse one of the classes in a package, you reuse them all.

79



S.Ducasse

Summary
Build your own taste
Analyze what you write and how?

80


