S.Ducasse

Inheritance Semantics
and Method Lookup

Stephane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.listic.univ-savoie.fr/~ducasse/

License:; CC-Attribution-ShareAlike

http://creativecommons.org/licenses/by-sa/2.0/

S.Ducasse

@creatlve
Ecommons

S D E E D

Attribution-ShareAlike 2.0
You are free:

e to copy, distribute, display, and perform the work
e« to make derivative works
s to make commercial use of the work

Under the following conditions:

Attribution. You must give the original author credit.

Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under a license identical to this one.

« For any reuse or distribution, you must make clear to others the license terms of

this worl.
s Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

This is @ human-readable summary of the Legal Code (the full license).

&

Goal

® Inheritance
e Method lookup
e Self/super difference

S.Ducasse 3 tLS(E)

Inheritance

S.Ducasse

Do not want to rewrite everything!
Often we want small changes

We would like to reuse and extend existing behavior

Rectangle

Solution: class inheritance

width
height

drea

Each class defines or refines the definition

of its ancestors

N

Colored
Rectangle

color
borderColor

Inheritance

e New classes
e (Can add state and behavior:
e color, borderColor, borderWidth,
e totalArea

e Can specialize ancestor behavior
® intersect:

e Can use ancestor’s behavior and state

e Can redefine ancestor’s behavior
® area to return totalArea

S.Ducasse 5

Inheritance in Smalltalk

e Single inheritance

e Static for the instance variables

® At class creation time the instance variables are
collected from the superclasses and the class. No
repetition of instance variables.

e Dynamic for the methods

e late binding (all virtual) methods are looked up at run-
time depending on the dynamic type of the receiver.

N\
S.Ducasse 6 ﬂ-SE()

Message Sending

. receiver selector args

e Sending a message = looking up the method that
should be executed and executing it

¢ [ooking up a method: When a message (receiver
selector args) is sent, the method corresponding to
the message selector is looked up through the
inheritance chain.

S.Ducasse 7

Method Lookup

® [wo steps process

A

® The lookup starts in the CLASS of the RECEIVER.

¢ |[f the method is defined in the method dictionary, it is
returned.

e Otherwise the search continues in the superclasses of

the receiver's class. If no method is found and there is

no superclass to explore (class Obiject), this is an
ERROR

"\
S.Ducasse 8 ﬂ-SE()

Lookup: class and inheritance

Object

==

Node

accept:
name

sendt:

s =<
/ \\\
/ -
/
/

node1 1
go to the class

/’\ i
e

msg

S.Ducasse

\\

/
/
/
/
\
\
\
\
2

00K in

“the classes

R

Some Cases

Object

T

Node
accept:
name

i

Workstation
accept:)
send: (2

S.Ducasse

Object

T

Node
accept:
nName «-i----

\
\
’2
/
/
/
I
\

Workstation | ©
accept: \
send: \

Method Lookup starts in Receiver Class
T
aB foo R

(1) aB class => B

(2) Is foo defined in B? A .
(3) Foo is executed -> 50 e A0
bar ---___| -
B cT
aB bar
(1) aB class => B B N
(2) Is bar defined in B? foo 17T A 50
(3) Is bar defined in A? /i4nstance of

(4) bar executed
(5) Self class => B
(6) Is foo defined in B
(7) Foo is executed -> 50

aB

S.Ducasse t-«LS(E)

self **always™** represents the receiver

- A new foo
- -=> 10
- B new foo
- > 10
+ C new foo
- ->50
- A new bar
- -=> 10
- B new bar
- > 10
- C new bar
- ->50

S.Ducasse

A —
foo ------f-——"" "~ 10
bar ---._| g
o T

B
foﬁor

C N
foo et - A 50

/rnstance of

aB

7

When message is not found

- If no method is found and there is no superclass to
explore (class Object), a new method called
#doesNotUnderstand: is sent to the receiver, with a
representation of the initial message.

S.Ducasse t‘;SE()

Graphically...

print; -~ v~

S.Ducasse

ra
(L.

...in Smalltalk

- nodel print: aPacket

S.Ducasse

node is an instance of Node

print: is looked up in the class Node

print: is not defined in Node > lookup continues in Object
print: is not defined in Object => lookup stops +
exception

message: node| doesNotUnderstand: #(#print aPacket) is
executed

nodel is an instance of Node so doesNotUnderstand: is
looked up in the class Node

doesNotUnderstand: is not defined in Node => lookup
continues in Object

doesNotUnderstand: is defined in Object => lookup
stops + method executed (open a dialog box)

Graphically...

S.Ducasse

open debugger

________ Object v v

| Node |/ ¢

| accep® | . § .

| name

| sendt: VY

af‘l_i
(L

Roadmap

¢ Inheritance
e Method lookup
o Self/super difference

S.Ducasse 17 tLS(E)

How to Invoke Overridden Methods?

+ Solution: Send messages to super

* When a packet is not addressed to a workstation, we just want to
pass the packet to the next node, i.e., we want to perform the
default behavior defined by Node.

Workstation>>accept: aPacket

(aPacket isAddressedTo: self)
ifTrue:[Transcript show: 'Packet accepted by the Workstation ',
self name asString]
ifFalse: [super accept: aPacket]

Design Hint: Do not send messages to super with different
selectors than the original one. It introduces implicit dependency
between methods with different names.

S.Ducasse

A
*®

The semantics of super

- Like self, super is a pseudo-variable that refers to the
receiver of the message.
- It is used to invoke overridden methods.

- When using self, the lookup of the method begins in the
class of the receiver.

- When using super, the lookup of the method begins in the
superclass of the class of the method containing the
super expression

ra
A*®

S.Ducasse

super changes lookup starting class

+ A new bar
- -> 10

- B new bar
- ->10+ 10
- C new bar
- ->50+50

S.Ducasse

- - - _

AN

{710

foo

/i4nstance of

aB

bar --___ i
~==|N super bar
+ self foo

i

super is NOT the superclass of the receiver

class

Suppose the WRONG hypothesis: “The semantics of
super is to start the lookup of a method in the
superclass of the receiver class”

| Node

|acc§§t

Workstation {
accept:

™ T
i supEraccepﬂifl

Colored
Workstation

mac
.

accept: ...

S.Ducasse 21 t"S(E)

super is NOT the superclass of the receiver
class

mac is instance of ColoredWorkStation " Node
Lookup starts in ColoredVVorkStation "accept:
Not found so goes up... x$

Workstation {
accept: is defined in Workstation accept:
lookup stops f;uper acceptﬂ
method accept: is executed
Workstation>>accept: does a super Colored ‘
send Workstation
Our hypothesis: start in the super of the X
class of the receiver mac
=> superclass of class of a ColoredWorkstation .-\ .7
is ... Workstation ! accept: ...

Therefore we look in workstation again!!!

N\
S.Ducasse 22 ﬂ-SE()

What you should know

Inheritance of instance variables is made at class
definition time.
Inheritance of behavior is dynamic.

- self **always** represents the receiver.
Method lookup starts in the class of the receiver.

- super represents the receiver but method lookup
starts in the superclass of the class using it.

- Self is dynamic vs. super is static.

S.Ducasse

23

