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Goal

® Inheritance
e Method lookup
e Self/super difference
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Inheritance
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Do not want to rewrite everything!
Often we want small changes

We would like to reuse and extend existing behavior

Rectangle

Solution: class inheritance
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Each class defines or refines the definition
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Inheritance

e New classes
e (Can add state and behavior:
e color, borderColor, borderWidth,
e totalArea

e Can specialize ancestor behavior
® intersect:

e Can use ancestor’s behavior and state

e Can redefine ancestor’s behavior
® area to return totalArea
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Inheritance in Smalltalk

e Single inheritance

e Static for the instance variables

® At class creation time the instance variables are
collected from the superclasses and the class. No
repetition of instance variables.

e Dynamic for the methods

e late binding (all virtual) methods are looked up at run-
time depending on the dynamic type of the receiver.

N\
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Message Sending

. receiver selector args

e Sending a message = looking up the method that
should be executed and executing it

¢ [ooking up a method: When a message (receiver
selector args) is sent, the method corresponding to
the message selector is looked up through the
inheritance chain.
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Method Lookup

® [wo steps process

A

® The lookup starts in the CLASS of the RECEIVER.

¢ |[f the method is defined in the method dictionary, it is
returned.

e Otherwise the search continues in the superclasses of

the receiver's class. If no method is found and there is

no superclass to explore (class Obiject), this is an
ERROR
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Lookup: class and inheritance
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Some Cases

Object

T

Node
accept:
name

i

Workstation
accept: )
send: (2
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Method Lookup starts in Receiver Class
T
aB foo R

(1) aB class => B

(2) Is foo defined in B? A .
(3) Foo is executed -> 50 e A0
bar ---___| -
B cT
aB bar
(1) aB class => B B N
(2) Is bar defined in B? foo 17T A 50
(3) Is bar defined in A? /i4nstance of

(4) bar executed
(5) Self class => B
(6) Is foo defined in B
(7) Foo is executed -> 50

aB
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self **always™** represents the receiver

- A new foo
- -=> 10
- B new foo
- > 10
+ C new foo
- ->50
- A new bar
- -=> 10
- B new bar
- > 10
- C new bar
- ->50

S.Ducasse

A —
foo ------f-——"" "~ 10
bar ---._| g
o T

B
foﬁor

C N
foo et - A 50

/rnstance of

aB

7




When message is not found

- If no method is found and there is no superclass to
explore (class Object), a new method called
#doesNotUnderstand: is sent to the receiver, with a
representation of the initial message.
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Graphically...

print; -~ v~

S.Ducasse

ra
(L.




...in Smalltalk

- nodel print: aPacket
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node is an instance of Node

print: is looked up in the class Node

print: is not defined in Node > lookup continues in Object
print: is not defined in Object => lookup stops +
exception

message: node| doesNotUnderstand: #(#print aPacket) is
executed

nodel is an instance of Node so doesNotUnderstand: is
looked up in the class Node

doesNotUnderstand: is not defined in Node => lookup
continues in Object

doesNotUnderstand: is defined in Object => lookup
stops  + method executed (open a dialog box)




Graphically...
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open debugger
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Roadmap

¢ Inheritance
e Method lookup
o Self/super difference
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How to Invoke Overridden Methods?

+ Solution: Send messages to super

* When a packet is not addressed to a workstation, we just want to
pass the packet to the next node, i.e., we want to perform the
default behavior defined by Node.

Workstation>>accept: aPacket

(aPacket isAddressedTo: self)
ifTrue:[ Transcript show: 'Packet accepted by the Workstation ',
self name asString]
ifFalse: [super accept: aPacket]

Design Hint: Do not send messages to super with different
selectors than the original one. It introduces implicit dependency
between methods with different names.
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The semantics of super

- Like self, super is a pseudo-variable that refers to the
receiver of the message.
- It is used to invoke overridden methods.

- When using self, the lookup of the method begins in the
class of the receiver.

- When using super, the lookup of the method begins in the
superclass of the class of the method containing the
super expression

ra
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super changes lookup starting class

+ A new bar
- -> 10

- B new bar
- ->10+ 10
- C new bar
- ->50+50
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super is NOT the superclass of the receiver

class

Suppose the WRONG hypothesis: “The semantics of
super is to start the lookup of a method in the
superclass of the receiver class”

| Node

|acc§§t

Workstation {
accept:

™ T
i supEraccepﬂifl

Colored
Workstation

mac
.

accept: ...
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super is NOT the superclass of the receiver
class

mac is instance of ColoredWorkStation " Node
Lookup starts in ColoredVVorkStation "accept:
Not found so goes up... x$

Workstation {
accept: is defined in Workstation accept:
lookup stops f;uper acceptﬂ
method accept: is executed
Workstation>>accept: does a super Colored ‘
send Workstation
Our hypothesis: start in the super of the X
class of the receiver mac
=> superclass of class of a ColoredWorkstation .-\ .7
is ... Workstation ! accept: ...

Therefore we look in workstation again!!!

N\
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What you should know

Inheritance of instance variables is made at class
definition time.
Inheritance of behavior is dynamic.

- self **always** represents the receiver.
Method lookup starts in the class of the receiver.

- super represents the receiver but method lookup
starts in the superclass of the class using it.

- Self is dynamic vs. super is static.
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