S.Ducasse

Syntax and Messages

Stephane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.listic.univ-savoie.fr/~ducasse/

License:; CC-Attribution-ShareAlike

http://creativecommons.org/licenses/by-sa/2.0/

S.Ducasse

@creatlve
Ecommons

S D E E D

Attribution-ShareAlike 2.0
You are free:

e to copy, distribute, display, and perform the work
e« to make derivative works
s to make commercial use of the work

Under the following conditions:

Attribution. You must give the original author credit.

Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under a license identical to this one.

« For any reuse or distribution, you must make clear to others the license terms of

this worl.
s Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

This is @ human-readable summary of the Legal Code (the full license).

&

Outline

Literals: numbers, string
Variable, assignments, retu
Pseudo-variables

Message Expressions
Block expressions

o
o
o
o
o
e Conditional and Loops

S.Ducasse 3

Originally Made for Kids

Read it as a non-computer-literate person:

| bunny |

bunny := Actor fromFile: ‘bunny.vrml’.

bunny head doEachFrame:

[bunny head
pointAt: (camera
transformScreenPointToScenePoint:
(Sensor mousePoint)
using: bunny)
duration: camera rightNow]

S.Ducasse

Numbers

- Smalllnteger, Integer,

- 4,2r100 (4 in base 2),3rl | (4 in base 3), 1232

- Automatic coercion

- | +23->33

- | class -> Smalllnteger

- | class maxVal class -> Smalllnteger

- (I class maxVal + |) class -> Largelnteger

- Fraction, Float, Double

S.Ducasse

- 3/4,2.4e7,0.75d

- (1/3) + (2/3) > |

- 1000 factorial / 999 factorial -> 1000
- 2/3+1->(5/3)

Characters

+ Characters:
- $F $Q $U $E SN $T $i $N
+ Unprintable characters:
- Character space, Character tab, Character cr

S.Ducasse

: ”1’!.\
Strings T
- Strings:
- #mac asString -> 'mac’
- 12 printString -> "2
- 'This packet travelled around to the printer' 'I"idiot'
- String with: $A
- Collection of characters
- ‘lulu’ at: | -> $
- To introduce a single quote inside a string, just double it.

N\
S.Ducasse t;-SE()

Symbols

- Symbols:
- #Hclass #mac #at:put: #+ Haccept:

+ Kinds of String
+ Unique in the system (see after)

S.Ducasse

Symbols vs. Strings

- Symbols are used as method selectors, unique keys for
dictionaries

- A symbol is a read-only object, strings are mutable objects
- A symbol is unique, strings are not

#Hcalvin == #calvin Prlt-> true

‘calvin’ == ‘calvin’ Prlt-> false

Hcalvin, #zeBest Prlt-> 'calvinzeBest'

- Symbols are good candidates for identity based dictionaries
(IdentityDictionary)

+ Hint: Comparing strings is slower then comparing symbols by a
factor of 5 to 10. However, converting a string to a symbol is
more than 100 times more expensive.

N\
S.Ducasse Q'SE()

Comments and Tips

"This is a comment"

A comment can span several lines. Moreover, avoid putting a
space between the “ and the first character.When there is

no space, the system helps you to select a commented
expression.You just go after the “ character and double click
on it: the entire commented expression is selected. After that
you can printlt or dolt, etc.

ra
*®

S.Ducasse

Arrays

#(1 2 3) #(luld’ (1 2 3)) -=> #(lulu" #(1 2 3))
+ #(mac nodel pc node2 node3 lpr) an array of symbols.
 When one prints it it shows

#(#mac #nodel #pc #node2 #node3 #lpr)

-+ Byte Array #[| 2 255]

S.Ducasse

Arrays

- Heterogenous
#(luld' (1 2 3)) Prit-> #('lulu’ #(1 2 3))
#(luld' 1.22 1) Prit-> #(luld’ 1.22 1)

+ An array of symbols:
- #(calvin hobbes suzie) Prit-> #(#calvin #hobbes #suzie)

+ An array of strings:
#('calvin' 'hobbes' 'suzie') Prit-> #('calvin' 'hobbes' 'suzie')

S.Ducasse

Syntax Summary

comment: “a comment”

character: $c $h $a $r $a $c $t $e $r $s $# @
string: ‘a nice string’ ‘lulu’ I"idiot’
symbol: #mac #+

array: #(1 2 3 (I 3) $a 4)

byte array: #[| 2 3]

integer: [,2r10]1

real: |.5,6.03e-34,4, 2.4e7

float: 1/33

boolean: true, false

point: 10@120

Note that @ is not an element of the syntax, but just a message sent to a
number. This is the same for /, bitShift, if True:, do: ...

S.Ducasse

Roadmap

Literals: numbers, strings, a
Variable, assignments, |
Pseudo-variables
Message Expressions
Block expressions
Conditional and Loops

S.Ducasse 14 t"S(E)

Variables

Maintains a reference to an object
Dynamically typed and can reference different types of objects
Shared (starting with uppercase) or local (starting with lowercase)

Variable Variable

S.Ducasse

ClassVariable = Global
SharedVariable Transcript Variable
’ Pool ‘ named H indexed ‘
Variable %y’
methodFParameter
‘ | temporary | ‘
| tmp |

Temporary Variables

- To hold temporary values during evaluation (method
execution or sequence of instructions)

+ Can be accessed by the expressions composing the
method body.

- | macl pc nodel printer mac2 packet |

S.Ducasse

A
A*®

Temporary Variable Good Style

- Avoid using the same name for a temporary variable and a
method argument, an instance variable or another temporary

variable or block temporary.Your code will be more portable.
Do not write:

aClass>>printOn: aStream
|aStream|

- Instead, write:

aClass>>printOn: aStream
|anotherStream|

- Hint: Avoid using the same temporary variable for referencing
two different objects

S.Ducasse

:E‘I_i
(L

Assighments

- An Assignment is not done by message passing. It is one
of the few syntactic elements of Smalltalk.

variable := aValue
three := 3 raisedTo: |
variable!| := variable? := aValue

- Avoid using var := var2 := var3

+ To not try to know in which order the expressions is
evaluated. You will write good code

S.Ducasse

A
A*®

Pointing to the Same Obiject

- In Smalltalk, objects are manipulated via implicit
pointers: everything is a pointer.

- Take care when different variables point to the same
object:

pl :=p2:=0@I100
pl x: 100

pl Prit-> 100@ 100
p2 Prit-> 100@ 100

S.Ducasse

Method Arguments

+ Can be accessed by the expressions composing the

method.

- Exist during the execution of the defining method.
+ Method Name Example:

accept: aPacket

+ In C++ or Java:

S.Ducasse

void Printer::accept(aPacket Packet)

Arguments are read-only

- Method arguments cannot change their value within the
method body.

- Invalid Example, assuming contents is an instance variable:

MyClass>>contents: aString
aString := aString, 'From Lpr'.

- Valid Example
MyClass>>contents: aString

| addressee |
addressee := aString , 'From Lpr’

S.Ducasse

Method Return %%’@

Use A expression to return the value of expression
from a method

Rectangle>>area

A width * height

By default self is returned

"\
S.Ducasse 22 ﬂ-SE()

. Al
Instance Variables %l&w

+ Private to a particular instance (not to all the instances

of a class like in C++).

- Can be accessed by all the methods of the defining class

and its subclasses.

- Has the same lifetime as the object.
+ Declaration

Obiject subclass: #Node

S.Ducasse

instanceVariableNames: 'name nextNode '

Instance Variables

- Scope: all the methods of the class

Node>>setName: aSymbol nextNode: aNode
name := aSymbol.
nextNode := aNode

- But preferably accessed using accessor methods

Node>>name
Apname

S.Ducasse

LA
(L.

Global Variables

- Always Capitalized (convention)

S.Ducasse

- MyGlobalPi := 3.1415

If it is unknown, Smalltalk will ask you if you want to create a
new global

- Smalltalk at: #MyGlobalPi put: 3.14

- MyGlobalPi Prit-> 3.14

- Smalltalk at: #MyGlobalPi Prit-> 3.14
Stored in the default environment: Smalltalk in Squeak, VW
has namespaces

Design Hints: Accessible from everywhere, but it is not a
good idea to use them

Roadmap

Literals: numbers, strings, a
Variable, assignments, retu
Pseudo-variables
Message Expressions
Block expressions
Conditional and Loops

S.Ducasse 26 t"S(E)

Six Pseudo-Variables

e Smalltalk expressions can contain true, false, nil, self, super

thisContext, but cannot change their values.They are
hardwired into the compiler.

¢ nil nothing, the value for the uninitialized variables. Unique

instance of the class UndefinedObject

S.Ducasse

L{T_A
(L

Six Pseudo-Variables %@

- true
- unique instance of the class True

- false
- unique instance of the class False

- Hint: Don’t use False instead of false. false is the boolean
value, False the class representing it. So, the first produces an
error, the second not;

- False ifFalse: [Transcript show:‘False’] -> error

- false ifFalse: [Transcript show: ‘False’]

S.Ducasse

LA
*®

self, super, and thisContext

- Only make sense in a method body
- self refers to the receiver of a message.
- super
refers also to the receiver of the message but its
semantics affects the lookup of the method. It starts the

lookup in the superclass of the class of the method
containing the super.

- thisContext

refers to the instance of MethodContext that
represents the context of a method (receiver, sender,
method, pc, stack). Specific to VisualWorks and to Squeak

S.Ducasse

t[‘l_i

self and super examples

PrinterServer>>accept: thePacket

"If the packet is addressed to me, print it.

Otherwise behave normally.”

(thePacket isAddressedTo: self)
ifTrue: [self print: thePacket]
ifFalse: [super accept: thePacket]

S.Ducasse

Roadmap

S.Ducasse

Literals: numbers, strings, a
Variable names
Pseudo-variables
Assignments, returns
Message Expressions
Block expressions
Conditional and Loops

31

Objects and Messages

- Objects communicate by sending message
- Obijects react to messages by executing methods

Bot new go: 30 + 50

- A message is composed of:
a receiver, always evaluated (Bot new)
a selector, never evaluated #go:

and a list possibly empty of arguments that are all
evaluated (30 + 50)

The receiver is linked with self in a method body.

S.Ducasse

Three Kinds of Messages T

- Unary Messages
2.4 inspect
macNode name
- Binary Messages

| +2->3
(1 +2)* (2 + 3) Prit-> 15
3 %5 Prlt-> |5

- Keyword Messages
6 gcd: 24 Prit-> 6
pcNode nextNode: node2
Turtle new go: 30 color: Color blue

S.Ducasse Q'SE()

Unary Messages

aReceiver aSelector

node3 nextNode -> printerNode

node3 name -> #node3

| class -> Smalllnteger

false not -> true

Date today -> Date today September |9, 1997
Time now -> 1:22:20 pm

Double pi -> 3.1415926535898d

S.Ducasse

B

S.Ducasse

inary Messages

aReceiver aSelector anArgument

Used for arithmetic, comparison and logical operations
One or two characters taken from:
-t/ \F~<>=@%| &!?,

| +2

2>=3

100@ 100

'the’, 'best’
Restriction:

second character is never $-

Simplicity has a Price

+ no mathematical precedence so take care

3+2%10->50

3+ (2% 10) -> 23
(1/3) + (2/3) and not
1/3 +2/3

S.Ducasse

Keyword Messages

receiver
keywordl: argumentl
keyword2: argument2

| between:0 and: 5
dict at: #blop put: 8+3

- In C-like languages it would be:

receiver.keyword | keyword?2...(argument| typel, argument?2,
type2) : return-type

S.Ducasse

EET_L
(L

Keyword Messages

Workstation withIName: #Mac2
mac nhextNode: nodel
Packet

send: 'This packet travelled around to'
to: #lwl00

@1 setX:3

#(1 2 3) at: 2 put: 25

| to: 10 -> (I to: 10) aninterval

Browser newOnNClass: Point

Interval from:| to: 20 Prilt-> (1 to: 20)

|2 between: |0 and: 20 Prlt-> true

x > 0 ifTrue:[positive'] ifFalse:['negative']

S.Ducasse

LA
*®

i Bl
Composition Rules iR

- Unary-Msg > Binary-Msg > Keywords-Msg
- at same level, from the left to the right

2 + 3 squared -> | |
2 raisedTo:3 + 2 -> 32
#(1 23)at: 1+ put: 10+ 2 *3 -> #(I 36 3)

2 raisedTo: 3 + 2 <=> (2 raisedTo: (3+2)) -> 32

S.Ducasse t';

Composition Rules
- (Msg) > Unary-Msg > Binary-Msg > Keywords-Msg

69 class inspect
(0@0 extent: 100@ 100) bottomRight

S.Ducasse

Hints ...

- Use () when two keyword-based messages
»occur within a single expression, otherwise the
- precedence order is fine.

x isNil ifTrue: [...]
- IsNil is an unary message, so it is evaluated
- prior to ifTrue:

x includes: 3 ifTrue: [...]

- is read as the message includes:ifTrue:
(x includes: 3) ifTrue: [...]
- We use () to disambiguate them

S.Ducasse

Sequence

messagel .
message? .
message3

.is a separator, not a terminator

| macNode pcNode nodel printerNode |

macNode := Workstation withName: #mac.

Transcript cr.
Transcript show: | printString.
Transcript cr.
Transcript show: 2 printString

S.Ducasse

For the Lazy: the Cascade

receiver
selector|;
selector?; ...
+ To send multiple messages to the same object

Transcript show: | printString.
Transcript show: cr

+ is equivalent to:

Transcript show: | printString ; cr

S.Ducasse

Syntax Summary

assigment: var := aValue

unary message: receiver selector

binary message: receiver selector argument
keyword based: receiver keyword|:argl keyword2:
arg?...

cascade: message ; selector ...

separator: message . message

result: A

parenthesis: (-..)

S.Ducasse

44

Roadmap

Literals: numbers, strings, a
Variable, assignments, retu
Pseudo-variables

Message Expressions
Block expressions
Conditional and Loops

S.Ducasse 45 t"S(E)

A
Blocks R
e anonymous methods
e deferred block of code
fct(x) =x M2 + x
fct (2) =6
fct (20) = 420

|fct|

fct=[x | x * x + x]J.

fct value: 2 Prit-> 6

fct value: 20 Prit-> 420

fct Prit-> aBlockClosure

S.Ducasse t_:;

Blocks Continued

[:variable| :variable? |
| blockTemporaryl blockTemporary?2 |
expression|.
..variablel ...]

+ Two blocks without arguments and temporary variables
PrinterServer>>accept: thePacket
(thePacket isAddressedTo: self)

ifTrue: [self print: thePacket]
ifFalse: [super accept: thePacket]

S.Ducasse

Block Evaluation

[....] value
or value: (for one arg)
or value:value: (for two args)

or value:value:value: ..
or valueWithArguments: anArray

2 + 3 + 4 + 5] value

x| x+3+4+5]value:2

:x:y | x +y+ 4+ 5] value: 2 value: 3

:x:y:z | x+y+z+ 5] value: 2 value: 3 value: 4

Xy :z:w | x+y+z+ w] value: 2 value: 3 value: 4 value: 5

S.Ducasse

LA
A*®

Block

- The value of a block is the value of its last statement,
except if there is an explicit return #

Blocks are first class objects.

+ They are created, passed as argument, stored into
variables...

S.Ducasse

£
(L.

Blocks - Continued

lindex bloc |

index := 0.

bloc := [index := index +1].
index := 3.

bloc value -> 4

Integer>>factorial
"Answer the factorial of the receiver. Fail if the receiver is

less than 0."
| tmp |

tmp = |.

2 to: self do: [:i | tmp := tmp * i].
AMtmp

S.Ducasse

LA
(L.

S.Ducasse

Literals: numbers, strings, a
Variable, assignments, retu
Pseudo-variables

Message Expressions
Block expressions
Conditional and Loops

5 (s

: : L
Yes if True: is sent to a boolean

Weather isRaining
ifTrue: [self takeMyUmbrella]
ifFalse: [self takeMySunglasses]

if True:ifFalse is sent to an object: a boolean!

N\
S.Ducasse 52 ﬂ-SE()

Conditional: messages to booleans

- aBoolean ifTrue: aTrueBlock ifFalse: aFalseBlock
- aBoolean ifFalse: aFalseBlock ifTrue: aTrueBlock
- aBoolean ifTrue: aTrueBlock

- aBoolean ifFalse: aFalseBlock

(thePacket isAddressedTo: self)
ifTrue: [self print: thePacket]
ifFalse: [super accept: thePacket]

- Hint: Take care — true is the boolean value and True is
the class of true, its unique instance!

N\
S.Ducasse QSE()

Boolean Messages

+ Logical Comparisons: &, |, xor:, not

aBooleanExpr comparison aBooleanExpr

- (I isZero) & false
- Date today isRaining not

- Uniform, but optimized and inlined (macro expansion

at compile time)

- aBooleanExpression or: orBlock

S.Ducasse

orBlock will only be evaluated if aBooleanExpression is

false
false and: [| error:'crazy']

Prilt -> false and not an error

54

Yes a collection is iterating on itself

S.Ducasse

#(l 2 -4 -86)
do: [:each | Transcript show: each abs
printString ;cr]

> |
> 2
> 4
> 86

=T
TR

Yes we ask the collection object to perform the

loop on itself

55

&

Some Basic Loops

S.Ducasse

aBlockTest whileTrue

aBlockTest whileFalse

aBlockTest whileTrue: aBlockBody
aBlockTest whileFalse: aBlockBody
aninteger timesRepeat: aBlockBody

[x<y] whileTrue: [x := x + 3]

|0 timesRepeat: [Transcript show: 'hello’; cr]

56

For the Curious...

BlockClosure>>whileTrue: aBlock
A self value
if True:[aBlock value.
self whileTrue: aBlock]

BlockClosure>>whileTrue
A [self value] whileTrue:[]

S.Ducasse 57

For the Curious...

Integer>>timesRepeat: aBlock
"Evaluate the argument, aBlock, the number of
times represented by the receiver.”

| count |
count := |.
[count <= self] whileTrue:
[aBlock value.
count := count + |]

S.Ducasse 58

Choose your Camp!

S.Ducasse

To get all the absolute values of numbers you could
write:

|result]
aCol:= (2-34-354-11).
result := aCol species new: aCol size.
| to:aCollection size do:
[:each | result
at: each put: (aCol at: each) abs].
result

59

Choose your Camp (ll)

+ You could also write:
(2-34-354-11) collect: [:each | each abs]

- Really important: Contrary to the first solution, the
second solution works well for indexable collections
and also for sets.

S.Ducasse t'(;SE()

|teration Abstraction: do:/collect:

aCollection do: aOneParameterBlock @Vl@
aCollection collect: aOneParameterBlock ﬁ

aCollection with: anotherCollection do:
aBinaryBlock

(15 10 19 68) do:
[:i | Transcript show: i printString ; cr]

(1510 19 68) collect: [:i | i odd]
Prit-> (true false true false)

(I 2 3) with: (1020 30)
do: [:x :y| Transcript show: (y ** x) printString ; cr]

N\
S.Ducasse Q'SE()

Opening the Box

S.Ducasse

Iterators are messages sent to collection objects
Collection is responsible of its traversal

SequenceableCollection>>do: aBlock

"Evaluate aBlock with each of the receiver's elements

as the argument.”

| to: self size do: [:i | aBlock value: (self at: i)]

62

select:/reject:/detect:

aCollection select: aPredicateBlock
aCollection reject: aPredicateBlock

aCollection detect:
aOneParameterPredicateBlock

aCollection
detect: aOneParameterPredicateBlock
ifNone: aNoneBlock

(15 10 19 68) select: [:i|]i odd] -> (15 19)

(15 10 19 68) reject: [:i|i odd] -> (10 68)

(12 10 19 68 21) detect: [:i|i odd] Prit-> 19

(12 10 12 68) detect: [:i|i odd] ifNone:[I] Prit-> |

S.Ducasse

Inject:into:

aCollection inject: aStartValue into: aBinaryBlock

| acc |
acc := 0.
(I 23 45) do: [:element | acc := acc + element].

acCcC
-> |5

Is equivalent to
(1 2345)
inject: 0
into: [:acc :element| acc + element]
> |5
Do not use it if the resulting code is not crystal clear!

S.Ducasse

£
(L.

Other Collection Methods

aCollection includes: anElement
aCollection size

aCollection isEmpty

aCollection contains: aBooleanBlock

(I 23 45) includes: 4 -> true

(1 2345)size->5

(I 2 345) isEmpty -> false

(I 2 3 45) contains: [:each | each isOdd] -> true

S.Ducasse Q;sf)

What we saw

- Numbers (integer, real, float...), Character $a, String
‘abc’, Symbols (unique Strings) #jkk,
- Arrays (potentially not homogenous) #(a #(| 2 3), Array
with: 2+3
+ Variables:
- Lowercase => private
- Instance variables (visible in by all methods), method
arguments (read-only), local variable |a]
- Uppercase => global

- 'Pseudo Var: true, false, nil, self, super
- self = **always™* represents the msg receiver

- nil = undefined value

S.Ducasse

66

What we saw

- Three kinds of messages
- Unary: Node new
- Binary: | +2,3@4
- Keywords:aTomagoshi eat: #cooky furiously: true
(Msg) > unary > binary > keywords
Same Level from left to right

Block
- Functions
fet(x)= x*x+3, fct(2).
fct :=[:x| x * x + 3]. fct value: 2
- Anonymous method
- Passed as method argument:
factorial
tmp:= |.
2 to: self do: [:i| tmp := tmp * i]

S.Ducasse

67

