
Reflection & Linguistic Symbiosis
Kris Gybels

Presentation @ University of Annecy
2006-11-23

http://prog.vub.ac.be/~kgybels

http://prog.vub.ac.be/~kgybels
http://prog.vub.ac.be/~kgybels


In the Exercises ...

2

(Computational) Reflection
=

Ability for programs to reason about themselves

thisContext

SomeClass compile: ‘bla ^ 5’



Overview

3

“Computational Reflection”
Pattie Maes (1987)

http://prog.vub.ac.be/Publications/1987/vub-arti-phd-87_2.pdf

“Procedural Reflection in 
Programming Languages”

Brian C. Smith (1982)
http://hdl.handle.net/1721.1/15961

“Open Design of Object-Oriented Languages”
Patrick Steyaert (1994)

http://prog.vub.ac.be/Publications/1994/vub-prog-phd-94-01/

http://prog.vub.ac.be/Publications/1994/vub-prog-phd-94-01/
http://prog.vub.ac.be/Publications/1994/vub-prog-phd-94-01/
http://hdl.handle.net/1721.1/15961
http://hdl.handle.net/1721.1/15961
http://prog.vub.ac.be/Publications/1994/vub-prog-phd-94-01/
http://prog.vub.ac.be/Publications/1994/vub-prog-phd-94-01/


The Maes View



Reflection & Artificial Intelligence

5



LEX2

6



LEX2

6



MYCIN

7



Some Terminology

8



Programming

9

changeColor: c
  color := c
nextColor
  (color = #green) ifTrue: [ ... ]
  ...

a TrafficLight
color



Meta Programming

10

e.g. an executer 
(interpreter) (!)

a debugger



Reflective Systems

11

self representation



Causal Connection

12



Causal Connection

13

a TrafficLight
color

a String
‘red’



Causal Connection

13

a TrafficLight
color



Causal Connection

13

a TrafficLight
color

a String
‘yellow’



Causal Connection

14

Change leads to change



Self Representation?

15



The Executer & Possible Self Reps

16



Importance of CC for Reflection

17

test1
  self test2.
  Transcript show: ‘Called test2’;cr.

test2
  self test3.
  Transcript show: ‘Called test3’;cr.

test3
  thisContext sender: thisContext sender sender.



The Smith View aka 3-LISP Very Briefly



How the CC is achieved in 3-LISP

19

test3
  thisContext sender receiver

Rather, there is a tower of processors, necessary because there 
is different processor state at  each reflective level. 

Some simple examples will illustrate. Reflective 
procedures are "defined" (in the sense we described earlier) 
using the form (LAMBOA REFLECT ARGS BODY), where ARG$ 
typically the rail fAnGS ENV coNr] - -  is a pattern that should 

match a 3-element designator of, respectively, the argument 

structure at the point of call, the enviromnent, and the 

continuation. Some simple examples are given in the 
"Programming in 3-Lisp" overview in Figure 16, including a 

working definition of Scheme's CATCH. Though simple, these 

definitions would be impossible in a traditional language, since 

they make crucial access to the full processor state at point of 

call. Note also that although Tlm0w and CMC, deal explicitly 

with continuations, the code that uses them need know nothing 
about such subtleties. More complex routines, such as utilities 

to abort or redefine calls already in process, are almost ns 
simple. In addition, the reflection mechanism is so powerful 

that many traditional primitives can be defined; C^MBOA, IF, and 

QUOTE are all non-primitive (user) definitions in 3-Lisp, again 

illustrated in the insert. There is also a simplistic break 

package, to illustrate the use of the reflective machinery for 

debugging purposes. It is noteworthy that no reflective 

procedures need be primitive; even LAHBDA can bc built up from 

scratch. 
The importance of these examples comes from the fact that 

they are causally connected in the right way, and will therefore 

run in the system in which they defined, ra ther  than being 
models of another system. And, since reflective procedures are 

fully integrated into the system design (their  names  are  not 

treated as special keywords), they can he passed around in the 

normal higher-order way. There is also a sense in which 3-Lisp 

is simpler than 2-I,isp, as well as being more powerful; there 
are fewer primitives, and 3-[,isp provides much more compact 

ways of dealing with a variety of intensional issues (like 

macros). 

8. The  3-Lisp Ref lec t ive  P r o c e s s o r  

3-Lisp can be understood only with a close inspection of the 

3-l,isp reflective processor (Figure 17). the promised modification 
of the continuation-passing 2-Lisp met~lcircular processor 

mentioned above. NOnMALISE (line 7) takes an structure,  
cnviromnent,  and con t inua t i on ,  re turn ing  the s t ructure  
unchanged (i.e., sending it to the continuation) if it  is in normal 

lbrm, looking up the binding if it  in an atom, normalis ing the 
elements i f  it is a rail (NORMALISE-RAIL is 3-I,isp's tail-recursive 
continuation-passing analogue of Lisp 1.5's EVilS). and otherwise 

reducing the CAR (procedure) with the CDIt (arguments).  REOUCE 
(line 13) first aormalises the procedure, with a continuation (C- 
I'ROC!) that  checks to see whether  it is reflective (by convention, 

we use exclamation point suffixes on atom names  used as  
variables to designate normal form structures).  If it is not 
rellcctive, C.PltOC~ normalises the arguments ,  with a 

continuation tha t  ei ther expands the closure (lines 23-25) if the 

Figure 16: Programming in 3-Lisp: 

For illustration, we will look at  a handful of simple 3-Lisp 

programs. The first merely coils thc Continuation with the 

numeral  3; thus it is semantically identical to the simple 

numeral: 

(define THREE 
(lambda reflect [ [1 env cent] 

(cent '3)))  

Thus ( three)  ~ 3; (+ It ( three))  ~ 14. The next  example is an  
intensional predicate, t rue if and only if its a rgument  (which 

must  be a variable) is hound in the current  context: 

(define BOUND 
(lambda rer lect [ [var ]  one cent] 

( t f  (bound-in-env ear one) 
(cent 'ST) 
(cent 'Of))))  

or equivalently 

(define SOUND 
(lambda reflect [[var] env cent] 

(cent t(bound-in-env vat envl})) 

Thus (LET [[X 31] (BOUND X)) ~ St, whereas (Donne x) ~ SF in 

the global context. The following quits  the computation, by 
discarding the continuation and simply "returning": 

(define QUIT 
(lambda ref lect  [ [ ]  env cont] 

'QUIT!)) 

There are a variety of ways to implement  a TtlROW/CATCH p a i r ;  
the following defines the version used in Scheme: 

(define SCHEME-CATCH 
(lambda ref lect  [ [ tag body] catch-ear catch-cent] 

(normalise body 
(bind tag 

t(lambda ref lect  [[answer] throw-env throw-cent] 
(normal tso answer throw-ear catch-cent)) 

catch-earl 
catch-cent))) 

For example: 

( le t  [ ix 111 
(+ 2 (scheme-catch punt 

(* 3 ( /  4 ( i f  ( :  x I) 

(punt 15) 
(- x l ) ) ) ) ) ) )  

would designate seventeen and return the numeral 17. 

In addition, the reflection mechanism is so powerful that 

many traditional primitives can be defined; LN4BDA, If,  and QUOTE 

are all non-primitive (user) definitions in 3-Lisp, with the 

following definitions: 

(define LNdBDA 
(lambda ref lect  [ [kind pattern body] env cent] 

(cent (coons kind tony pattern body)))) 

(define I f  
(lambda rer lect [[promise then else] env cent] 

(normal tse premise env 
(lambda stmple [preml:ol ]  

(normalise (or 4premtse! then else) env cent ) l ) ) )  

(define QUOTE 
(lambda ref lect  [[arg] nay cent] (cent targ)))  

Some comments.  First., the definition of tA..OA just  given is of 
course circular; a non-circular but  effective version is given in 
Smith and des Rivi&res [1984]; the one given in the text, if 

executed in 3-Lisp, would leave the definition unchanged, except 
that  it is an innocent lie; in real 3-Lisp kind is a procedure tha t  

is called with the arguments  and environment ,  allowing the  
definition of (lambda macro . . .  ), etc. COONS is a closure 
constructor that  uses SIMPLE and nEFLECT to tag the closures for 

recognition by the reflective processor described in section 6. ZF 
is an extensional conditional, tha t  normalises all of its 
arguments:  the definition of IF defines the s tandard intensional  

version tha t  normalises only one of the second two, depending 
on the result  of normalising the first. Finally, the definition of 

QUOTE will yield (QUOTE A) ~ 'A. 
Finally, we have a trivial break package, with ENV and 

C0Nr bound in the  break environment  for the user to see, and 
nFivnn bound to a procedure tha t  will normalise its a rgument  
and pass that  out as the result  of the call to SNEAK: 

(define BREAK 
(lambda ref lect  [ [a rg ]  env cent] 

Iblock (pr int  arg primary-stream) 
(read-normallse-prlnt ">>" 

(bind' [ 'env tenv] 
[ 'cent t rent ]  
[ ' re turn t(lambda re f lec t  [ [a2]  02 c2] 

(normaltse a2 e2 cent))] 
env) 

pr Imary-stream) ) ) ) 

If viewed 'as models of control constructs in a language being 
iinplemented, these definitions will look innocuous; what is 

important to remember is that they work in the very language 

in which they are defined. 
i 

32 



3-LISP Very Briefly

20

Rather, there is a tower of processors, necessary because there 
is different processor state at  each reflective level. 

Some simple examples will illustrate. Reflective 
procedures are "defined" (in the sense we described earlier) 
using the form (LAMBOA REFLECT ARGS BODY), where ARG$ 
typically the rail fAnGS ENV coNr] - -  is a pattern that should 

match a 3-element designator of, respectively, the argument 

structure at the point of call, the enviromnent, and the 

continuation. Some simple examples are given in the 
"Programming in 3-Lisp" overview in Figure 16, including a 

working definition of Scheme's CATCH. Though simple, these 

definitions would be impossible in a traditional language, since 

they make crucial access to the full processor state at point of 

call. Note also that although Tlm0w and CMC, deal explicitly 

with continuations, the code that uses them need know nothing 
about such subtleties. More complex routines, such as utilities 

to abort or redefine calls already in process, are almost ns 
simple. In addition, the reflection mechanism is so powerful 

that many traditional primitives can be defined; C^MBOA, IF, and 

QUOTE are all non-primitive (user) definitions in 3-Lisp, again 

illustrated in the insert. There is also a simplistic break 

package, to illustrate the use of the reflective machinery for 

debugging purposes. It is noteworthy that no reflective 

procedures need be primitive; even LAHBDA can bc built up from 

scratch. 
The importance of these examples comes from the fact that 

they are causally connected in the right way, and will therefore 

run in the system in which they defined, ra ther  than being 
models of another system. And, since reflective procedures are 

fully integrated into the system design (their  names  are  not 

treated as special keywords), they can he passed around in the 

normal higher-order way. There is also a sense in which 3-Lisp 

is simpler than 2-I,isp, as well as being more powerful; there 
are fewer primitives, and 3-[,isp provides much more compact 

ways of dealing with a variety of intensional issues (like 

macros). 

8. The  3-Lisp Ref lec t ive  P r o c e s s o r  

3-Lisp can be understood only with a close inspection of the 

3-l,isp reflective processor (Figure 17). the promised modification 
of the continuation-passing 2-Lisp met~lcircular processor 

mentioned above. NOnMALISE (line 7) takes an structure,  
cnviromnent,  and con t inua t i on ,  re turn ing  the s t ructure  
unchanged (i.e., sending it to the continuation) if it  is in normal 

lbrm, looking up the binding if it  in an atom, normalis ing the 
elements i f  it is a rail (NORMALISE-RAIL is 3-I,isp's tail-recursive 
continuation-passing analogue of Lisp 1.5's EVilS). and otherwise 

reducing the CAR (procedure) with the CDIt (arguments).  REOUCE 
(line 13) first aormalises the procedure, with a continuation (C- 
I'ROC!) that  checks to see whether  it is reflective (by convention, 

we use exclamation point suffixes on atom names  used as  
variables to designate normal form structures).  If it is not 
rellcctive, C.PltOC~ normalises the arguments ,  with a 

continuation tha t  ei ther expands the closure (lines 23-25) if the 

Figure 16: Programming in 3-Lisp: 

For illustration, we will look at  a handful of simple 3-Lisp 

programs. The first merely coils thc Continuation with the 

numeral  3; thus it is semantically identical to the simple 

numeral: 

(define THREE 
(lambda reflect [ [1 env cent] 

(cent '3)))  

Thus ( three)  ~ 3; (+ It ( three))  ~ 14. The next  example is an  
intensional predicate, t rue if and only if its a rgument  (which 

must  be a variable) is hound in the current  context: 

(define BOUND 
(lambda rer lect [ [var ]  one cent] 

( t f  (bound-in-env ear one) 
(cent 'ST) 
(cent 'Of))))  

or equivalently 

(define SOUND 
(lambda reflect [[var] env cent] 

(cent t(bound-in-env vat envl})) 

Thus (LET [[X 31] (BOUND X)) ~ St, whereas (Donne x) ~ SF in 

the global context. The following quits  the computation, by 
discarding the continuation and simply "returning": 

(define QUIT 
(lambda ref lect  [ [ ]  env cont] 

'QUIT!)) 

There are a variety of ways to implement  a TtlROW/CATCH p a i r ;  
the following defines the version used in Scheme: 

(define SCHEME-CATCH 
(lambda ref lect  [ [ tag body] catch-ear catch-cent] 

(normalise body 
(bind tag 

t(lambda ref lect  [[answer] throw-env throw-cent] 
(normal tso answer throw-ear catch-cent)) 

catch-earl 
catch-cent))) 

For example: 

( le t  [ ix 111 
(+ 2 (scheme-catch punt 

(* 3 ( /  4 ( i f  ( :  x I) 

(punt 15) 
(- x l ) ) ) ) ) ) )  

would designate seventeen and return the numeral 17. 

In addition, the reflection mechanism is so powerful that 

many traditional primitives can be defined; LN4BDA, If,  and QUOTE 

are all non-primitive (user) definitions in 3-Lisp, with the 

following definitions: 

(define LNdBDA 
(lambda ref lect  [ [kind pattern body] env cent] 

(cent (coons kind tony pattern body)))) 

(define I f  
(lambda rer lect [[promise then else] env cent] 

(normal tse premise env 
(lambda stmple [preml:ol ]  

(normalise (or 4premtse! then else) env cent ) l ) ) )  

(define QUOTE 
(lambda ref lect  [[arg] nay cent] (cent targ)))  

Some comments.  First., the definition of tA..OA just  given is of 
course circular; a non-circular but  effective version is given in 
Smith and des Rivi&res [1984]; the one given in the text, if 

executed in 3-Lisp, would leave the definition unchanged, except 
that  it is an innocent lie; in real 3-Lisp kind is a procedure tha t  

is called with the arguments  and environment ,  allowing the  
definition of (lambda macro . . .  ), etc. COONS is a closure 
constructor that  uses SIMPLE and nEFLECT to tag the closures for 

recognition by the reflective processor described in section 6. ZF 
is an extensional conditional, tha t  normalises all of its 
arguments:  the definition of IF defines the s tandard intensional  

version tha t  normalises only one of the second two, depending 
on the result  of normalising the first. Finally, the definition of 

QUOTE will yield (QUOTE A) ~ 'A. 
Finally, we have a trivial break package, with ENV and 

C0Nr bound in the  break environment  for the user to see, and 
nFivnn bound to a procedure tha t  will normalise its a rgument  
and pass that  out as the result  of the call to SNEAK: 

(define BREAK 
(lambda ref lect  [ [a rg ]  env cent] 

Iblock (pr int  arg primary-stream) 
(read-normallse-prlnt ">>" 

(bind' [ 'env tenv] 
[ 'cent t rent ]  
[ ' re turn t(lambda re f lec t  [ [a2]  02 c2] 

(normaltse a2 e2 cent))] 
env) 

pr Imary-stream) ) ) ) 

If viewed 'as models of control constructs in a language being 
iinplemented, these definitions will look innocuous; what is 

important to remember is that they work in the very language 

in which they are defined. 
i 

32 

Rather, there is a tower of processors, necessary because there 
is different processor state at  each reflective level. 

Some simple examples will illustrate. Reflective 
procedures are "defined" (in the sense we described earlier) 
using the form (LAMBOA REFLECT ARGS BODY), where ARG$ 
typically the rail fAnGS ENV coNr] - -  is a pattern that should 

match a 3-element designator of, respectively, the argument 

structure at the point of call, the enviromnent, and the 

continuation. Some simple examples are given in the 
"Programming in 3-Lisp" overview in Figure 16, including a 

working definition of Scheme's CATCH. Though simple, these 

definitions would be impossible in a traditional language, since 

they make crucial access to the full processor state at point of 

call. Note also that although Tlm0w and CMC, deal explicitly 

with continuations, the code that uses them need know nothing 
about such subtleties. More complex routines, such as utilities 

to abort or redefine calls already in process, are almost ns 
simple. In addition, the reflection mechanism is so powerful 

that many traditional primitives can be defined; C^MBOA, IF, and 

QUOTE are all non-primitive (user) definitions in 3-Lisp, again 

illustrated in the insert. There is also a simplistic break 

package, to illustrate the use of the reflective machinery for 

debugging purposes. It is noteworthy that no reflective 

procedures need be primitive; even LAHBDA can bc built up from 

scratch. 
The importance of these examples comes from the fact that 

they are causally connected in the right way, and will therefore 

run in the system in which they defined, ra ther  than being 
models of another system. And, since reflective procedures are 

fully integrated into the system design (their  names  are  not 

treated as special keywords), they can he passed around in the 

normal higher-order way. There is also a sense in which 3-Lisp 

is simpler than 2-I,isp, as well as being more powerful; there 
are fewer primitives, and 3-[,isp provides much more compact 

ways of dealing with a variety of intensional issues (like 

macros). 

8. The  3-Lisp Ref lec t ive  P r o c e s s o r  

3-Lisp can be understood only with a close inspection of the 

3-l,isp reflective processor (Figure 17). the promised modification 
of the continuation-passing 2-Lisp met~lcircular processor 

mentioned above. NOnMALISE (line 7) takes an structure,  
cnviromnent,  and con t inua t i on ,  re turn ing  the s t ructure  
unchanged (i.e., sending it to the continuation) if it  is in normal 

lbrm, looking up the binding if it  in an atom, normalis ing the 
elements i f  it is a rail (NORMALISE-RAIL is 3-I,isp's tail-recursive 
continuation-passing analogue of Lisp 1.5's EVilS). and otherwise 

reducing the CAR (procedure) with the CDIt (arguments).  REOUCE 
(line 13) first aormalises the procedure, with a continuation (C- 
I'ROC!) that  checks to see whether  it is reflective (by convention, 

we use exclamation point suffixes on atom names  used as  
variables to designate normal form structures).  If it is not 
rellcctive, C.PltOC~ normalises the arguments ,  with a 

continuation tha t  ei ther expands the closure (lines 23-25) if the 

Figure 16: Programming in 3-Lisp: 

For illustration, we will look at  a handful of simple 3-Lisp 

programs. The first merely coils thc Continuation with the 

numeral  3; thus it is semantically identical to the simple 

numeral: 

(define THREE 
(lambda reflect [ [1 env cent] 

(cent '3)))  

Thus ( three)  ~ 3; (+ It ( three))  ~ 14. The next  example is an  
intensional predicate, t rue if and only if its a rgument  (which 

must  be a variable) is hound in the current  context: 

(define BOUND 
(lambda rer lect [ [var ]  one cent] 

( t f  (bound-in-env ear one) 
(cent 'ST) 
(cent 'Of))))  

or equivalently 

(define SOUND 
(lambda reflect [[var] env cent] 

(cent t(bound-in-env vat envl})) 

Thus (LET [[X 31] (BOUND X)) ~ St, whereas (Donne x) ~ SF in 

the global context. The following quits  the computation, by 
discarding the continuation and simply "returning": 

(define QUIT 
(lambda ref lect  [ [ ]  env cont] 

'QUIT!)) 

There are a variety of ways to implement  a TtlROW/CATCH p a i r ;  
the following defines the version used in Scheme: 

(define SCHEME-CATCH 
(lambda ref lect  [ [ tag body] catch-ear catch-cent] 

(normalise body 
(bind tag 

t(lambda ref lect  [[answer] throw-env throw-cent] 
(normal tso answer throw-ear catch-cent)) 

catch-earl 
catch-cent))) 

For example: 

( le t  [ ix 111 
(+ 2 (scheme-catch punt 

(* 3 ( /  4 ( i f  ( :  x I) 

(punt 15) 
(- x l ) ) ) ) ) ) )  

would designate seventeen and return the numeral 17. 

In addition, the reflection mechanism is so powerful that 

many traditional primitives can be defined; LN4BDA, If,  and QUOTE 

are all non-primitive (user) definitions in 3-Lisp, with the 

following definitions: 

(define LNdBDA 
(lambda ref lect  [ [kind pattern body] env cent] 

(cent (coons kind tony pattern body)))) 

(define I f  
(lambda rer lect [[promise then else] env cent] 

(normal tse premise env 
(lambda stmple [preml:ol ]  

(normalise (or 4premtse! then else) env cent ) l ) ) )  

(define QUOTE 
(lambda ref lect  [[arg] nay cent] (cent targ)))  

Some comments.  First., the definition of tA..OA just  given is of 
course circular; a non-circular but  effective version is given in 
Smith and des Rivi&res [1984]; the one given in the text, if 

executed in 3-Lisp, would leave the definition unchanged, except 
that  it is an innocent lie; in real 3-Lisp kind is a procedure tha t  

is called with the arguments  and environment ,  allowing the  
definition of (lambda macro . . .  ), etc. COONS is a closure 
constructor that  uses SIMPLE and nEFLECT to tag the closures for 

recognition by the reflective processor described in section 6. ZF 
is an extensional conditional, tha t  normalises all of its 
arguments:  the definition of IF defines the s tandard intensional  

version tha t  normalises only one of the second two, depending 
on the result  of normalising the first. Finally, the definition of 

QUOTE will yield (QUOTE A) ~ 'A. 
Finally, we have a trivial break package, with ENV and 

C0Nr bound in the  break environment  for the user to see, and 
nFivnn bound to a procedure tha t  will normalise its a rgument  
and pass that  out as the result  of the call to SNEAK: 

(define BREAK 
(lambda ref lect  [ [a rg ]  env cent] 

Iblock (pr int  arg primary-stream) 
(read-normallse-prlnt ">>" 

(bind' [ 'env tenv] 
[ 'cent t rent ]  
[ ' re turn t(lambda re f lec t  [ [a2]  02 c2] 

(normaltse a2 e2 cent))] 

env) 
pr Imary-stream) ) ) ) 

If viewed 'as models of control constructs in a language being 
iinplemented, these definitions will look innocuous; what is 

important to remember is that they work in the very language 

in which they are defined. 
i 

32 

Rather, there is a tower of processors, necessary because there 
is different processor state at  each reflective level. 

Some simple examples will illustrate. Reflective 
procedures are "defined" (in the sense we described earlier) 
using the form (LAMBOA REFLECT ARGS BODY), where ARG$ 
typically the rail fAnGS ENV coNr] - -  is a pattern that should 

match a 3-element designator of, respectively, the argument 

structure at the point of call, the enviromnent, and the 

continuation. Some simple examples are given in the 
"Programming in 3-Lisp" overview in Figure 16, including a 

working definition of Scheme's CATCH. Though simple, these 

definitions would be impossible in a traditional language, since 

they make crucial access to the full processor state at point of 

call. Note also that although Tlm0w and CMC, deal explicitly 

with continuations, the code that uses them need know nothing 
about such subtleties. More complex routines, such as utilities 

to abort or redefine calls already in process, are almost ns 
simple. In addition, the reflection mechanism is so powerful 

that many traditional primitives can be defined; C^MBOA, IF, and 

QUOTE are all non-primitive (user) definitions in 3-Lisp, again 

illustrated in the insert. There is also a simplistic break 

package, to illustrate the use of the reflective machinery for 

debugging purposes. It is noteworthy that no reflective 

procedures need be primitive; even LAHBDA can bc built up from 

scratch. 
The importance of these examples comes from the fact that 

they are causally connected in the right way, and will therefore 

run in the system in which they defined, ra ther  than being 
models of another system. And, since reflective procedures are 

fully integrated into the system design (their  names  are  not 

treated as special keywords), they can he passed around in the 

normal higher-order way. There is also a sense in which 3-Lisp 

is simpler than 2-I,isp, as well as being more powerful; there 
are fewer primitives, and 3-[,isp provides much more compact 

ways of dealing with a variety of intensional issues (like 

macros). 

8. The  3-Lisp Ref lec t ive  P r o c e s s o r  

3-Lisp can be understood only with a close inspection of the 

3-l,isp reflective processor (Figure 17). the promised modification 
of the continuation-passing 2-Lisp met~lcircular processor 

mentioned above. NOnMALISE (line 7) takes an structure,  
cnviromnent,  and con t inua t i on ,  re turn ing  the s t ructure  
unchanged (i.e., sending it to the continuation) if it  is in normal 

lbrm, looking up the binding if it  in an atom, normalis ing the 
elements i f  it is a rail (NORMALISE-RAIL is 3-I,isp's tail-recursive 
continuation-passing analogue of Lisp 1.5's EVilS). and otherwise 

reducing the CAR (procedure) with the CDIt (arguments).  REOUCE 
(line 13) first aormalises the procedure, with a continuation (C- 
I'ROC!) that  checks to see whether  it is reflective (by convention, 

we use exclamation point suffixes on atom names  used as  
variables to designate normal form structures).  If it is not 
rellcctive, C.PltOC~ normalises the arguments ,  with a 

continuation tha t  ei ther expands the closure (lines 23-25) if the 

Figure 16: Programming in 3-Lisp: 

For illustration, we will look at  a handful of simple 3-Lisp 

programs. The first merely coils thc Continuation with the 

numeral  3; thus it is semantically identical to the simple 

numeral: 

(define THREE 
(lambda reflect [ [1 env cent] 

(cent '3)))  

Thus ( three)  ~ 3; (+ It ( three))  ~ 14. The next  example is an  
intensional predicate, t rue if and only if its a rgument  (which 

must  be a variable) is hound in the current  context: 

(define BOUND 
(lambda rer lect [ [var ]  one cent] 

( t f  (bound-in-env ear one) 
(cent 'ST) 
(cent 'Of))))  

or equivalently 

(define SOUND 
(lambda reflect [[var] env cent] 

(cent t(bound-in-env vat envl})) 

Thus (LET [[X 31] (BOUND X)) ~ St, whereas (Donne x) ~ SF in 

the global context. The following quits  the computation, by 
discarding the continuation and simply "returning": 

(define QUIT 
(lambda ref lect  [ [ ]  env cont] 

'QUIT!)) 

There are a variety of ways to implement  a TtlROW/CATCH p a i r ;  
the following defines the version used in Scheme: 

(define SCHEME-CATCH 
(lambda ref lect  [ [ tag body] catch-ear catch-cent] 

(normalise body 
(bind tag 

t(lambda ref lect  [[answer] throw-env throw-cent] 
(normal tso answer throw-ear catch-cent)) 

catch-earl 
catch-cent))) 

For example: 

( le t  [ ix 111 
(+ 2 (scheme-catch punt 

(* 3 ( /  4 ( i f  ( :  x I) 

(punt 15) 
(- x l ) ) ) ) ) ) )  

would designate seventeen and return the numeral 17. 

In addition, the reflection mechanism is so powerful that 

many traditional primitives can be defined; LN4BDA, If,  and QUOTE 

are all non-primitive (user) definitions in 3-Lisp, with the 

following definitions: 

(define LNdBDA 
(lambda ref lect  [ [kind pattern body] env cent] 

(cent (coons kind tony pattern body)))) 

(define I f  
(lambda rer lect [[promise then else] env cent] 

(normal tse premise env 
(lambda stmple [preml:ol ]  

(normalise (or 4premtse! then else) env cent ) l ) ) )  

(define QUOTE 
(lambda ref lect  [[arg] nay cent] (cent targ)))  

Some comments.  First., the definition of tA..OA just  given is of 
course circular; a non-circular but  effective version is given in 
Smith and des Rivi&res [1984]; the one given in the text, if 

executed in 3-Lisp, would leave the definition unchanged, except 
that  it is an innocent lie; in real 3-Lisp kind is a procedure tha t  

is called with the arguments  and environment ,  allowing the  
definition of (lambda macro . . .  ), etc. COONS is a closure 
constructor that  uses SIMPLE and nEFLECT to tag the closures for 

recognition by the reflective processor described in section 6. ZF 
is an extensional conditional, tha t  normalises all of its 
arguments:  the definition of IF defines the s tandard intensional  

version tha t  normalises only one of the second two, depending 
on the result  of normalising the first. Finally, the definition of 

QUOTE will yield (QUOTE A) ~ 'A. 
Finally, we have a trivial break package, with ENV and 

C0Nr bound in the  break environment  for the user to see, and 
nFivnn bound to a procedure tha t  will normalise its a rgument  
and pass that  out as the result  of the call to SNEAK: 

(define BREAK 
(lambda ref lect  [ [a rg ]  env cent] 

Iblock (pr int  arg primary-stream) 
(read-normallse-prlnt ">>" 

(bind' [ 'env tenv] 
[ 'cent t rent ]  
[ ' re turn t(lambda re f lec t  [ [a2]  02 c2] 

(normaltse a2 e2 cent))] 

env) 
pr Imary-stream) ) ) ) 

If viewed 'as models of control constructs in a language being 
iinplemented, these definitions will look innocuous; what is 

important to remember is that they work in the very language 

in which they are defined. 
i 

32 



3-LISP Reflective Tower

21



Finite Realization of 3-LISP Tower

22



Steyaert: Agora & Linguistic Symbiosis



Agora vs. 3-LISP

24

Code written in the object-system can 
be executed in the meta-system

Language real interpreter != Language object-system

3-LISP Solution:

Insert meta-circular 
3-LISP

Agora Solution:

Define linguistic 
symbiosis



Agora

25

!! Implementation language must be object-oriented !!

Implementations with Linguistic Symbiosis of Agora
in Smalltalk, C++ & Java

Framework for Object-Oriented Language
+

Symbiosis Ability
=

Language with Support for Reflection



Agora Example (1)

26

Principles of Object Oriented Languages Theo D’Hondt

 p.  16Lecture 5: Prototype-based inheritance

Agora: an example
[ Self makeComplex
         µmethod:
              [ realP µvar: 0.0;
                imagP µvar: 0.0;
                self real: realA imag: imagA
                       µmethod: 
                          [ ((self µclone) real: realA) imag: imagA ];
                self real: arg
                       µmethod: 
                          [ realP µ<- arg;
                            self ];
                self imag: arg
                       µmethod: 
                          [ imagP µ<- arg;
                            self ];
                self real
                       µmethod: 
                          [ realP ];
                self imag
                       µmethod: 
                          [ imagP ];

a Complex mixin

instance variables

instance methods



Agora Example (2)

27

Principles of Object Oriented Languages Theo D’Hondt

 p.  17Lecture 5: Prototype-based inheritance

Agora: an example
                self mod 
                       µmethod: 
                          [ (realP sqr + imagP sqr) sqrt ];
                self + arg 
                       µmethod: 
                          [ self real: (arg real + realP) 
                                 imag: (arg imag + imagP) ];
                µself];
                           
  Complex µvar: Object makeComplex;
                 
  c1 µvar: Complex real: 1.5 imag: 2.0;
  c2 µvar: Complex real:-2.0 imag: 1.5;
  c3 µvar: c1 + c2;
  "real part = " display;
  (c3 real) display;   
  eoln display;
  "imag part = " display;
  (c3 imag) display; 
  eoln display] µvalue

instance methods

instantiation



Linguistic Symbiosis Concept

28

A Reflective Framework

167

Implementation Language Agora

m
n

m

Implementation Object

Agora Object

Implementation Object

Representant for
Implementation Object

Agora Object
Representant for

Agora Object

Implementation Message Agora Messagem

n

m

n Resulting, Mixed Message

Figure 5.1

Before plunging into the technical details of the symbiosis of Agora and its
implementation language, we will need some terminology. The distinction
between Agora objects and implementation level objects will be blurred because
after the symbiosis, objects will be able to travel between Agora and its
implementation language. The simple terminological difference between Agora
objects and implementation level objects is not good enough anymore. Therefor we
will need a new terminology. The point is that we will need to make a distinction
between the language in which an object is expressed and the language from
which messages can be sent to an object. First of all we can make a distinction
between implicit messages — messages expressed in the implementation language
— and explicit messages — messages expressed in Agora. Secondly we will talk
about an explicitly encoded object when this object is expressed in Agora, and
about an implicitly encoded object when this object is expressed in the
implementation language. Not every explicitly encoded object need to be
referenced from within an Agora program. An object that can be sent implicit
messages is called an implicitly referable object, an object that can be sent
explicit messages is called an explicitly referable object. Finally we will simply
talk about an implicit (explicit) object when this object is both implicitly
(explicitly) encoded and referable. The following table summarises our
terminology.



Non-Reflective Example

29

frame µVARIABLE: ("java.awt.Frame" µJAVA) new;

ok µVARIABLE: ("java.awt.Button" µJAVA) newString: "OK";

frame addComponent: ok;

okListener µVARIABLE: [
  implements µMETHOD:
     (1 µARRAY: ("java.awt.event.ActionListener" µJAVA));
  replaces µMETHOD:
     ("java.lang.Object" µJAVA);
  actionPerformedActionEvent: e µMETHOD: {
    ("java.lang.System" µJAVA) out printlnString: "Button Pressed!";
    frame setVisibleboolean: false
    }
  ];

ok addActionListenerActionListener: okListener



Non-Reflective Example

29

frame µVARIABLE: ("java.awt.Frame" µJAVA) new;

ok µVARIABLE: ("java.awt.Button" µJAVA) newString: "OK";

frame addComponent: ok;

okListener µVARIABLE: [
  implements µMETHOD:
     (1 µARRAY: ("java.awt.event.ActionListener" µJAVA));
  replaces µMETHOD:
     ("java.lang.Object" µJAVA);
  actionPerformedActionEvent: e µMETHOD: {
    ("java.lang.System" µJAVA) out printlnString: "Button Pressed!";
    frame setVisibleboolean: false
    }
  ];

ok addActionListenerActionListener: okListener



Non-Reflective Example

29

frame µVARIABLE: ("java.awt.Frame" µJAVA) new;

ok µVARIABLE: ("java.awt.Button" µJAVA) newString: "OK";

frame addComponent: ok;

okListener µVARIABLE: [
  implements µMETHOD:
     (1 µARRAY: ("java.awt.event.ActionListener" µJAVA));
  replaces µMETHOD:
     ("java.lang.Object" µJAVA);
  actionPerformedActionEvent: e µMETHOD: {
    ("java.lang.System" µJAVA) out printlnString: "Button Pressed!";
    frame setVisibleboolean: false
    }
  ];

ok addActionListenerActionListener: okListener



Non-Reflective Example

29

frame µVARIABLE: ("java.awt.Frame" µJAVA) new;

ok µVARIABLE: ("java.awt.Button" µJAVA) newString: "OK";

frame addComponent: ok;

okListener µVARIABLE: [
  implements µMETHOD:
     (1 µARRAY: ("java.awt.event.ActionListener" µJAVA));
  replaces µMETHOD:
     ("java.lang.Object" µJAVA);
  actionPerformedActionEvent: e µMETHOD: {
    ("java.lang.System" µJAVA) out printlnString: "Button Pressed!";
    frame setVisibleboolean: false
    }
  ];

ok addActionListenerActionListener: okListener



Non-Reflective Example

29

frame µVARIABLE: ("java.awt.Frame" µJAVA) new;

ok µVARIABLE: ("java.awt.Button" µJAVA) newString: "OK";

frame addComponent: ok;

okListener µVARIABLE: [
  implements µMETHOD:
     (1 µARRAY: ("java.awt.event.ActionListener" µJAVA));
  replaces µMETHOD:
     ("java.lang.Object" µJAVA);
  actionPerformedActionEvent: e µMETHOD: {
    ("java.lang.System" µJAVA) out printlnString: "Button Pressed!";
    frame setVisibleboolean: false
    }
  ];

ok addActionListenerActionListener: okListener



Non-Reflective Example

29

frame µVARIABLE: ("java.awt.Frame" µJAVA) new;

ok µVARIABLE: ("java.awt.Button" µJAVA) newString: "OK";

frame addComponent: ok;

okListener µVARIABLE: [
  implements µMETHOD:
     (1 µARRAY: ("java.awt.event.ActionListener" µJAVA));
  replaces µMETHOD:
     ("java.lang.Object" µJAVA);
  actionPerformedActionEvent: e µMETHOD: {
    ("java.lang.System" µJAVA) out printlnString: "Button Pressed!";
    frame setVisibleboolean: false
    }
  ];

ok addActionListenerActionListener: okListener



The Agora Framework: Objects

30

Chapter 3

86

AbstractMetaObject

send:Pattern client:Client -> AbstractMetaObject

Figure 3.8

Internally, objects can be implemented as, for example, sets of slots, that can be
searched. This implementation remains hidden for the user of an object. If this is
respected, then objects are represented fully abstract. Stated otherwise, even at
the implementation level it is not possible to directly access the private
attributes of an object: encapsulation of objects is preserved at the implementation
level. This will be called a fully encapsulated implementation of objects.

The class “AbstractMetaObject” of which all meta-object classes are to be
derived has one abstract method.

Abstract Class for Meta-Objects
c

 

l

 

a

 

s

 

s

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

m

 

e

 

t

 

h

 

o

 

d

 

s

 

a

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

 

 

s

 

e

 

n

 

d

 

:

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

c

 

l

 

i

 

e

 

n

 

t

 

 

 

r

 

e

 

s

 

u

 

l

 

t

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

e

 

n

 

d

 

c

 

l

 

a

 

s

 

s

 

3.5.3 Message Passing

Given the two abstract classes above, it is possible to express how message
passing proceeds. This is encoded in the class “UnaryMessageExpression” as found
below (we presume the existence of an empty client object "E

 

m

 

p

 

t

 

y

 

C

 

l

 

i

 

e

 

n

 

t

 

" ) .

Template Class for Message Passing
c

 

l

 

a

 

s

 

s

 

 

 

U

 

n

 

a

 

r

 

y

 

M

 

e

 

s

 

s

 

a

 

g

 

e

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

 

 

e

 

x

 

t

 

e

 

n

 

d

 

s

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

i

 

n

 

s

 

t

 

a

 

n

 

c

 

e

 

 

 

v

 

a

 

r

 

i

 

a

 

b

 

l

 

e

 

s

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

m

 

e

 

t

 

h

 

o

 

d

 

s

 

c

 

o

 

n

 

c

 

r

 

e

 

t

 

e

 

 

 

e

 

v

 

a

 

l

 

:

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

 

 

r

 

e

 

s

 

u

 

l

 

t

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

^

 

(

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

 

 

e

 

v

 

a

 

l

 

:

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

)

 

 

 

s

 

e

 

n

 

d

 

:

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

E

 

m

 

p

 

t

 

y

 

C

 

l

 

i

 

e

 

n

 

t

 

e

 

n

 

d

 

c

 

l

 

a

 

s

 

s

 

This class ties together evaluation of expressions and sending messages to objects.
Especially because message passing plays such an important role, and because
this concrete class ties together two important abstract classes, the expression
class for message passing will play an important role in the definition of the
framework and it is the intention to be able to inherit it in all extensions to the
framework.

Furthermore the above message passing class must be complemented with an
abstract class for patterns. Patterns are used as unique identifiers in the
implementation of message passing. They essentially implement an equality test.

Chapter 5

168

Implementation Language Agora

referable

encoded Explicitly Encoded ObjectImplicitly Encoded Object

Explicit ObjectImplicit Object

Explicitly Referable ObjectImplicitly Referable Object

referable & 
encoded

Figure 5.2

For one particular kind of objects this terminology can be interpreted in an
ambiguous way. This is the source of much terminological confusion in object-
oriented reflective programming languages. A meta-object is an object that is both
implicitly and explicitly referable, albeit with two different protocols. To
illustrate this, let us have a look at how explicit objects are represented in the
implementation language. Each explicit object is represented at the
implementation level by an implicitly referable meta-object. The latter will be
called the representation of the former, the former will be called the referent of
the latter. An explicit message to an explicit object is represented (or
implemented) by an implicit message to the implicitly referable representation
of that object, albeit a message with a different signature.

Implementation Language Agora

has as Referent (reF)

msend:#m

has as Representation (reP)

m
Implicit Message

Explicit Messagem
Meta-Object

Figure 5.3

If the relation 'r

 

e

 

P

 

'

 

 associates each explicit object with its representation object,
and the relation 'reF' associates each meta-object with its referent object, then
the following holds for message passing between objects (depicted in the next
table). Pattern objects are conveniently represented as '#x:y:z:', and argument
lists as '{a1, … an}'.

meta-system object-system



What’s in a Meta-Object?

31

[
  x µvar: 3;
  y µvar: [ z µvar: 5 ]
]



What’s in a Meta-Object?

32

a MetaObject
variables

a Dictionary
x → 
y →

a AgoraNumber
stNumber

meta-system object-system

a MetaObject
variables

x
y

5

z

3



Agora Expressions

33

Chapter 3

84

Simple Expression Class Hierarchy (second try)
A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

i

 

o

 

n

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

C

 

o

 

m

 

p

 

o

 

u

 

n

 

d

 

O

 

b

 

j

 

e

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

 

 

(

 

p

 

u

 

b

 

l

 

i

 

c

 

P

 

a

 

r

 

t

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

r

 

i

 

v

 

a

 

t

 

e

 

P

 

a

 

r

 

t

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

)

 

B

 

a

 

s

 

e

 

O

 

b

 

j

 

e

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

 

 

(

 

a

 

s

 

s

 

o

 

c

 

i

 

a

 

t

 

i

 

o

 

n

 

s

 

:

 

S

 

e

 

q

 

u

 

e

 

n

 

c

 

e

 

(

 

A

 

s

 

s

 

o

 

c

 

i

 

a

 

t

 

i

 

o

 

n

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

)

 

)

 

U

 

n

 

a

 

r

 

y

 

M

 

e

 

s

 

s

 

a

 

g

 

e

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

 

 

(

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

,

 

 

 

 

 

 

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

)

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

 

 

(

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

)

 

A

 

s

 

s

 

o

 

c

 

i

 

a

 

t

 

i

 

o

 

n

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

 

 

(

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

,

 

 

 

v

 

a

 

l

 

u

 

e

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

)

 

V

 

a

 

r

 

i

 

a

 

b

 

l

 

e

 

A

 

s

 

s

 

o

 

c

 

i

 

a

 

t

 

i

 

o

 

n

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

M

 

e

 

t

 

h

 

o

 

d

 

A

 

s

 

s

 

o

 

c

 

i

 

a

 

t

 

i

 

o

 

n

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

(

 

n

 

a

 

m

 

e

 

:

 

S

 

t

 

r

 

i

 

n

 

g

 

)

 

Remark also that association expressions are not part of the expression class
hierarchy. The association expansion set is not a subset of the expression set. At
first sight this could easily be amended. The syntax could be extended to allow
expressions such as x

 

.

 

3

 

, which would be a syntactically simpler construct equal to
[

 

x

 

.

 

3

 

]

 

. This would unnecessarily complicate the explanation of the
implementation of Simple.

In general, an uncoupling of classes that have the same aggregation structure, but
play different roles in the evaluation process suffices in order to create a “good”
class hierarchy. Further examples will be given in the remainder of the text.

Evaluation is expressed as a method that is defined on expression objects.
Evaluation is done in a context (which for Simple is an object again). The result of
evaluating an expression is an object. Compositionality is achieved by
encapsulating the compositional structure of each expression, such that a
composite expression can only rely on the evaluation methods of its
subexpressions to express its own evaluation.

AbstractExpression

eval:Context -> AbstractMetaObject

Figure 3.7

The abstract class "AbstractExpression" of which all expression classes will be
derived contains one abstract method.

Abstract Class for Expression Objects
c

 

l

 

a

 

s

 

s

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

m

 

e

 

t

 

h

 

o

 

d

 

s

 

a

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

 

 

e

 

v

 

a

 

l

 

:

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

 

 

r

 

e

 

s

 

u

 

l

 

t

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

e

 

n

 

d

 

c

 

l

 

a

 

s

 

s

 

From the viewpoint of the evaluator adding a new expression “simply” involves
extending the evaluator in a compositional way. From the viewpoint of, for
example, the parser, adding a new expression class is a more complicated matter.
For the time being however this problem will be skirted and we will presume
that expression objects can be freely added. We will come back on this issue.

“frame addComponent: ok;”

Agora Parser



eval: and send:client:

34

Chapter 4

144

class. It has an associated pattern (i.e. the name of the reifier pattern that
creates it). The associated pattern automatically contains the declaration of the
instance variables for subexpressions.

r

 

e

 

i

 

f

 

i

 

e

 

r

 

c

 

l

 

a

 

s

 

s

 

 

 

S

 

e

 

l

 

f

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

s

 

e

 

l

 

f

 

e

 

x

 

t

 

e

 

n

 

d

 

s

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

m

 

e

 

t

 

h

 

o

 

d

 

s

 

c

 

o

 

n

 

c

 

r

 

e

 

t

 

e

 

 

 

e

 

v

 

a

 

l

 

:

 

(

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

:

 

S

 

t

 

a

 

n

 

d

 

a

 

r

 

d

 

C

 

o

 

n

 

t

 

e

 

x

 

t

 

)

 

…

 

 

 

r

 

e

 

t

 

u

 

r

 

n

 

 

 

t

 

h

 

e

 

 

 

c

 

u

 

r

 

r

 

e

 

n

 

t

 

 

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

 

 

f

 

r

 

o

 

m

 

 

 

t

 

h

 

e

 

 

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

e

 

n

 

d

 

c

 

l

 

a

 

s

 

s

 

u

 

s

 

a

 

g

 

e

 

 

 

i

 

n

 

 

 

A

 

g

 

o

 

r

 

a

 

:

 

3

 

 

 

+

 

 

 

s

 

e

 

l

 

f

 

Generic aggregate expressions (i.e. generic compound expressions with a variable
number of subexpressions) are a straightforward variation of reifier classes. The
pattern of an aggregate reifier class contains the delimiters for the aggregate,
and a declaration of an “instance variable” for the sequence of subexpressions.

r

 

e

 

i

 

f

 

i

 

e

 

r

 

c

 

l

 

a

 

s

 

s

 

 

 

B

 

l

 

o

 

c

 

k

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

[

 

 

 

e

 

x

 

p

 

s

 

:

 

S

 

e

 

q

 

u

 

e

 

n

 

c

 

e

 

(

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

)

 

 

 

]

 

e

 

x

 

t

 

e

 

n

 

d

 

s

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

m

 

e

 

t

 

h

 

o

 

d

 

s

 

c

 

o

 

n

 

c

 

r

 

e

 

t

 

e

 

 

 

e

 

v

 

a

 

l

 

:

 

(

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

:

 

S

 

t

 

a

 

n

 

d

 

a

 

r

 

d

 

C

 

o

 

n

 

t

 

e

 

x

 

t

 

)

 

…

 

 

 

e

 

v

 

a

 

l

 

u

 

a

 

t

 

e

 

 

 

e

 

a

 

c

 

h

 

 

 

o

 

f

 

 

 

t

 

h

 

e

 

 

 

s

 

u

 

b

 

e

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

s

 

 

 

i

 

n

 

 

 

t

 

h

 

e

 

 

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

e

 

n

 

d

 

c

 

l

 

a

 

s

 

s

 

u

 

s

 

a

 

g

 

e

 

 

 

i

 

n

 

 

 

A

 

g

 

o

 

r

 

a

 

:

 

[

 

 

 

…

 

 

 

;

 

 

 

…

 

 

 

;

 

 

 

…

 

 

 

]

 

4.5.2 Message Passing

Like in the implementation of the calculus, the implementation of message
expressions plays an eminent role. Unlike the calculus, in the implementation of
message passing in Agora, parameter passing must be dealt with. Still, the
implementation of message expressions can be done in a way that is independent
of evaluation categories.

Agora Message Passing
c

 

l

 

a

 

s

 

s

 

 

 

M

 

e

 

s

 

s

 

a

 

g

 

e

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

 

 

e

 

x

 

t

 

e

 

n

 

d

 

s

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

i

 

n

 

s

 

t

 

a

 

n

 

c

 

e

 

 

 

v

 

a

 

r

 

i

 

a

 

b

 

l

 

e

 

s

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

,

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

m

 

e

 

t

 

h

 

o

 

d

 

s

 

c

 

o

 

n

 

c

 

r

 

e

 

t

 

e

 

 

 

e

 

v

 

a

 

l

 

:

 

(

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

:

 

S

 

t

 

a

 

n

 

d

 

a

 

r

 

C

 

o

 

n

 

t

 

e

 

x

 

t

 

+

 

)

 

r

 

e

 

s

 

u

 

l

 

t

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

l

 

o

 

c

 

a

 

l

 

 

 

v

 

a

 

r

 

i

 

a

 

b

 

l

 

e

 

s

 

 

 

a

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

s

 

:

 

A

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

L

 

i

 

s

 

t

 

f

 

o

 

r

 

 

 

e

 

a

 

c

 

h

 

 

 

a

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

 

 

i

 

n

 

 

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

d

 

o

 

 

 

 

 

 

 

a

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

s

 

 

 

a

 

d

 

d

 

:

 

(

 

a

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

 

 

e

 

v

 

a

 

l

 

:

 

(

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

 

 

a

 

s

 

F

 

u

 

n

 

c

 

t

 

i

 

o

 

n

 

a

 

l

 

C

 

o

 

n

 

t

 

e

 

x

 

t

 

)

 

)

 

^

 

(

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

 

 

e

 

v

 

a

 

l

 

:

 

(

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

 

 

a

 

s

 

F

 

u

 

n

 

c

 

t

 

i

 

o

 

n

 

a

 

l

 

C

 

o

 

n

 

t

 

e

 

x

 

t

 

)

 

)

 

s

 

e

 

n

 

d

 

:

 

(

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

a

 

s

 

C

 

a

 

t

 

e

 

g

 

o

 

r

 

y

 

:

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

)

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

(

 

S

 

t

 

a

 

n

 

d

 

a

 

r

 

d

 

C

 

l

 

i

 

e

 

n

 

t

 

 

 

a

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

s

 

:

 

a

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

s

 

)

 

e

 

n

 

d

 

c

 

l

 

a

 

s

 

s

 



Key Point in Implementing Symbiosis

35

frame µVARIABLE: ("java.awt.Frame" µJAVA) new;

ok µVARIABLE: ("java.awt.Button" µJAVA) newString: "OK";

frame addComponent: ok;

Chapter 4

144

class. It has an associated pattern (i.e. the name of the reifier pattern that
creates it). The associated pattern automatically contains the declaration of the
instance variables for subexpressions.

r

 

e

 

i

 

f

 

i

 

e

 

r

 

c

 

l

 

a

 

s

 

s

 

 

 

S

 

e

 

l

 

f

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

s

 

e

 

l

 

f

 

e

 

x

 

t

 

e

 

n

 

d

 

s

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

m

 

e

 

t

 

h

 

o

 

d

 

s

 

c

 

o

 

n

 

c

 

r

 

e

 

t

 

e

 

 

 

e

 

v

 

a

 

l

 

:

 

(

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

:

 

S

 

t

 

a

 

n

 

d

 

a

 

r

 

d

 

C

 

o

 

n

 

t

 

e

 

x

 

t

 

)

 

…

 

 

 

r

 

e

 

t

 

u

 

r

 

n

 

 

 

t

 

h

 

e

 

 

 

c

 

u

 

r

 

r

 

e

 

n

 

t

 

 

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

 

 

f

 

r

 

o

 

m

 

 

 

t

 

h

 

e

 

 

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

e

 

n

 

d

 

c

 

l

 

a

 

s

 

s

 

u

 

s

 

a

 

g

 

e

 

 

 

i

 

n

 

 

 

A

 

g

 

o

 

r

 

a

 

:

 

3

 

 

 

+

 

 

 

s

 

e

 

l

 

f

 

Generic aggregate expressions (i.e. generic compound expressions with a variable
number of subexpressions) are a straightforward variation of reifier classes. The
pattern of an aggregate reifier class contains the delimiters for the aggregate,
and a declaration of an “instance variable” for the sequence of subexpressions.

r

 

e

 

i

 

f

 

i

 

e

 

r

 

c

 

l

 

a

 

s

 

s

 

 

 

B

 

l

 

o

 

c

 

k

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

[

 

 

 

e

 

x

 

p

 

s

 

:

 

S

 

e

 

q

 

u

 

e

 

n

 

c

 

e

 

(

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

)

 

 

 

]

 

e

 

x

 

t

 

e

 

n

 

d

 

s

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

m

 

e

 

t

 

h

 

o

 

d

 

s

 

c

 

o

 

n

 

c

 

r

 

e

 

t

 

e

 

 

 

e

 

v

 

a

 

l

 

:

 

(

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

:

 

S

 

t

 

a

 

n

 

d

 

a

 

r

 

d

 

C

 

o

 

n

 

t

 

e

 

x

 

t

 

)

 

…

 

 

 

e

 

v

 

a

 

l

 

u

 

a

 

t

 

e

 

 

 

e

 

a

 

c

 

h

 

 

 

o

 

f

 

 

 

t

 

h

 

e

 

 

 

s

 

u

 

b

 

e

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

s

 

 

 

i

 

n

 

 

 

t

 

h

 

e

 

 

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

e

 

n

 

d

 

c

 

l

 

a

 

s

 

s

 

u

 

s

 

a

 

g

 

e

 

 

 

i

 

n

 

 

 

A

 

g

 

o

 

r

 

a

 

:

 

[

 

 

 

…

 

 

 

;

 

 

 

…

 

 

 

;

 

 

 

…

 

 

 

]

 

4.5.2 Message Passing

Like in the implementation of the calculus, the implementation of message
expressions plays an eminent role. Unlike the calculus, in the implementation of
message passing in Agora, parameter passing must be dealt with. Still, the
implementation of message expressions can be done in a way that is independent
of evaluation categories.

Agora Message Passing
c

 

l

 

a

 

s

 

s

 

 

 

M

 

e

 

s

 

s

 

a

 

g

 

e

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

 

 

e

 

x

 

t

 

e

 

n

 

d

 

s

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

i

 

n

 

s

 

t

 

a

 

n

 

c

 

e

 

 

 

v

 

a

 

r

 

i

 

a

 

b

 

l

 

e

 

s

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

,

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

m

 

e

 

t

 

h

 

o

 

d

 

s

 

c

 

o

 

n

 

c

 

r

 

e

 

t

 

e

 

 

 

e

 

v

 

a

 

l

 

:

 

(

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

:

 

S

 

t

 

a

 

n

 

d

 

a

 

r

 

C

 

o

 

n

 

t

 

e

 

x

 

t

 

+

 

)

 

r

 

e

 

s

 

u

 

l

 

t

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

l

 

o

 

c

 

a

 

l

 

 

 

v

 

a

 

r

 

i

 

a

 

b

 

l

 

e

 

s

 

 

 

a

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

s

 

:

 

A

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

L

 

i

 

s

 

t

 

f

 

o

 

r

 

 

 

e

 

a

 

c

 

h

 

 

 

a

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

 

 

i

 

n

 

 

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

d

 

o

 

 

 

 

 

 

 

a

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

s

 

 

 

a

 

d

 

d

 

:

 

(

 

a

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

 

 

e

 

v

 

a

 

l

 

:

 

(

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

 

 

a

 

s

 

F

 

u

 

n

 

c

 

t

 

i

 

o

 

n

 

a

 

l

 

C

 

o

 

n

 

t

 

e

 

x

 

t

 

)

 

)

 

^

 

(

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

 

 

e

 

v

 

a

 

l

 

:

 

(

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

 

 

a

 

s

 

F

 

u

 

n

 

c

 

t

 

i

 

o

 

n

 

a

 

l

 

C

 

o

 

n

 

t

 

e

 

x

 

t

 

)

 

)

 

s

 

e

 

n

 

d

 

:

 

(

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

a

 

s

 

C

 

a

 

t

 

e

 

g

 

o

 

r

 

y

 

:

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

)

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

(

 

S

 

t

 

a

 

n

 

d

 

a

 

r

 

d

 

C

 

l

 

i

 

e

 

n

 

t

 

 

 

a

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

s

 

:

 

a

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

s

 

)

 

e

 

n

 

d

 

c

 

l

 

a

 

s

 

s

 



Some Agora Terminology

36

Chapter 5

168

Implementation Language Agora

referable

encoded Explicitly Encoded ObjectImplicitly Encoded Object

Explicit ObjectImplicit Object

Explicitly Referable ObjectImplicitly Referable Object

referable & 
encoded

Figure 5.2

For one particular kind of objects this terminology can be interpreted in an
ambiguous way. This is the source of much terminological confusion in object-
oriented reflective programming languages. A meta-object is an object that is both
implicitly and explicitly referable, albeit with two different protocols. To
illustrate this, let us have a look at how explicit objects are represented in the
implementation language. Each explicit object is represented at the
implementation level by an implicitly referable meta-object. The latter will be
called the representation of the former, the former will be called the referent of
the latter. An explicit message to an explicit object is represented (or
implemented) by an implicit message to the implicitly referable representation
of that object, albeit a message with a different signature.

Implementation Language Agora

has as Referent (reF)

msend:#m

has as Representation (reP)

m
Implicit Message

Explicit Messagem
Meta-Object

Figure 5.3

If the relation 'r

 

e

 

P

 

'

 

 associates each explicit object with its representation object,
and the relation 'reF' associates each meta-object with its referent object, then
the following holds for message passing between objects (depicted in the next
table). Pattern objects are conveniently represented as '#x:y:z:', and argument
lists as '{a1, … an}'.



Making Explicitly Referable

37

Chapter 3

86

AbstractMetaObject

send:Pattern client:Client -> AbstractMetaObject

Figure 3.8

Internally, objects can be implemented as, for example, sets of slots, that can be
searched. This implementation remains hidden for the user of an object. If this is
respected, then objects are represented fully abstract. Stated otherwise, even at
the implementation level it is not possible to directly access the private
attributes of an object: encapsulation of objects is preserved at the implementation
level. This will be called a fully encapsulated implementation of objects.

The class “AbstractMetaObject” of which all meta-object classes are to be
derived has one abstract method.

Abstract Class for Meta-Objects
c

 

l

 

a

 

s

 

s

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

m

 

e

 

t

 

h

 

o

 

d

 

s

 

a

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

 

 

s

 

e

 

n

 

d

 

:

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

c

 

l

 

i

 

e

 

n

 

t

 

 

 

r

 

e

 

s

 

u

 

l

 

t

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

e

 

n

 

d

 

c

 

l

 

a

 

s

 

s

 

3.5.3 Message Passing

Given the two abstract classes above, it is possible to express how message
passing proceeds. This is encoded in the class “UnaryMessageExpression” as found
below (we presume the existence of an empty client object "E

 

m

 

p

 

t

 

y

 

C

 

l

 

i

 

e

 

n

 

t

 

" ) .

Template Class for Message Passing
c

 

l

 

a

 

s

 

s

 

 

 

U

 

n

 

a

 

r

 

y

 

M

 

e

 

s

 

s

 

a

 

g

 

e

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

 

 

e

 

x

 

t

 

e

 

n

 

d

 

s

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

i

 

n

 

s

 

t

 

a

 

n

 

c

 

e

 

 

 

v

 

a

 

r

 

i

 

a

 

b

 

l

 

e

 

s

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

m

 

e

 

t

 

h

 

o

 

d

 

s

 

c

 

o

 

n

 

c

 

r

 

e

 

t

 

e

 

 

 

e

 

v

 

a

 

l

 

:

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

 

 

r

 

e

 

s

 

u

 

l

 

t

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

^

 

(

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

 

 

e

 

v

 

a

 

l

 

:

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

)

 

 

 

s

 

e

 

n

 

d

 

:

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

E

 

m

 

p

 

t

 

y

 

C

 

l

 

i

 

e

 

n

 

t

 

e

 

n

 

d

 

c

 

l

 

a

 

s

 

s

 

This class ties together evaluation of expressions and sending messages to objects.
Especially because message passing plays such an important role, and because
this concrete class ties together two important abstract classes, the expression
class for message passing will play an important role in the definition of the
framework and it is the intention to be able to inherit it in all extensions to the
framework.

Furthermore the above message passing class must be complemented with an
abstract class for patterns. Patterns are used as unique identifiers in the
implementation of message passing. They essentially implement an equality test.

ExplicitlyReferableOrderedCollection
send: pattern client: client
  (pattern name = ‘add:’) ifTrue: [
     ^ (c add: (client arguments first asImplicit)) asExplicit
  ]
  (pattern name = ‘size’) ifTrue: [
    ^ (c size) asExplicit
  ]



Conversion Schema

38

Chapter 5

170

level. The two conversion methods are illustrated in the following figure.

Implementation Language Agora

m

Representant for
Implicitly Referable
Explicitly Encoded Object

Implicit Object Explicit Object

Implicit Message

Explicit Messagem

Representant for
Explicitly Referable
Implicitly Encoded Object

n mMaking Implicit
(result of applying 
asImplicit)

Making Explicit
(result of applying 
asExplicit)

m

n

Meta-Object

n Resulting, Mixed Message

has as Referent (reF)

has as Representation (reP)

Figure 5.4

These conversion methods are crucial in achieving a symbiosis between Agora and
its implementation language. The 'asImplicit' conversion method allows an object
to travel from an Agora program to a program expressed in the implementation
language. Conversely the 'asExplicit' conversion allows an object to travel from
the implementation level to an Agora program. The conversion methods are
defined by the following equalities :



Making Implicitly Referable

39

ImplicitlyReferableMetaObject

hash
  ^ (metaObj send: (“hash” makePattern)
             client: (EmptyClient new)) asImplicit

= otherSmalltalkObject
  ^ (metaObj send: (“=”) makePattern)
             client: (StdClient argument: otherSTObj)) asImplicit

test: obj1 with: obj2
  ^ ...

...



Smalltalk Dictionary Symbiosis Ex.

40

  x:x y:y mixin method:
 [ x µmethod: x ;
   y µmethod: y ;
   hash µmethod: x + y ;
   = p µmethod: (x = p x) & (y = p y) ;
   print µmethod:[ x print ;y print ] ] ;

  d variable: (“Dictionary” µSmalltalk) new ;
  d at:(self x:10 y:20) put:"Wim" ;
  d at:(self x:20 y:10) put:"Patrick" ;
  d at:(self x:17 y:40) put:"Koen" ;



Conversion Schema

41

Chapter 5

170

level. The two conversion methods are illustrated in the following figure.

Implementation Language Agora

m

Representant for
Implicitly Referable
Explicitly Encoded Object

Implicit Object Explicit Object

Implicit Message

Explicit Messagem

Representant for
Explicitly Referable
Implicitly Encoded Object

n mMaking Implicit
(result of applying 
asImplicit)

Making Explicit
(result of applying 
asExplicit)

m

n

Meta-Object

n Resulting, Mixed Message

has as Referent (reF)

has as Representation (reP)

Figure 5.4

These conversion methods are crucial in achieving a symbiosis between Agora and
its implementation language. The 'asImplicit' conversion method allows an object
to travel from an Agora program to a program expressed in the implementation
language. Conversely the 'asExplicit' conversion allows an object to travel from
the implementation level to an Agora program. The conversion methods are
defined by the following equalities :



Using Symbiosis For Reflection

42

A Reflective Framework

175

a

 

P

 

r

 

o

 

g

 

r

 

a

 

m

 

 

 

 

 

<

 

-

 

 

 

(

 

 

 

[

 

 

 

P

 

o

 

i

 

n

 

t

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

:

 

 

 

…

 

 

 

;

 

-

 

-

 

-

 

 

 

a

 

 

 

p

 

o

 

i

 

n

 

t

 

 

 

p

 

r

 

o

 

t

 

o

 

t

 

y

 

p

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

o

 

i

 

n

 

t

 

 

 

x

 

:

 

3

 

 

 

y

 

:

 

4

 

 

 

r

 

e

 

t

 

u

 

r

 

n

 

 

 

]

 

 

 

)

 

q

 

u

 

o

 

t

 

e

 

 

 

;

 

p

 

 

 

<

 

-

 

 

 

a

 

P

 

r

 

o

 

g

 

r

 

a

 

m

 

 

 

e

 

v

 

a

 

l

 

:

 

(

 

E

 

m

 

p

 

t

 

y

 

C

 

o

 

n

 

t

 

e

 

x

 

t

 

 

 

c

 

l

 

o

 

n

 

e

 

)

 

 

 

;

 

p

 

 

 

x

 

-

 

-

 

-

 

 

 

E

 

R

 

R

 

O

 

R

 

:

 

 

 

d

 

o

 

e

 

s

 

 

 

n

 

o

 

t

 

 

 

u

 

n

 

d

 

e

 

r

 

s

 

t

 

a

 

n

 

d

 

-

 

-

 

-

 

 

 

p

 

 

 

i

 

s

 

 

 

a

 

 

 

r

 

e

 

s

 

u

 

l

 

t

 

 

 

a

 

t

 

 

 

t

 

h

 

e

 

 

 

m

 

e

 

t

 

a

 

-

 

l

 

e

 

v

 

e

 

l

 

 

 

!

 

-

 

-

 

-

 

 

 

t

 

h

 

e

 

r

 

e

 

f

 

o

 

r

 

e

 

 

 

p

 

 

 

i

 

s

 

 

 

a

 

 

 

m

 

e

 

t

 

a

 

-

 

o

 

b

 

j

 

e

 

c

 

t

 

The first remark is that due to the fact that the evaluation is done in an
explicitly given context the object-level program in the example can not refer to
any of the prototypes defined in the meta-level program. Object-level programs
must be 'self-contained' with respect to the referenced objects. Secondly, and more
importantly, it must be noted that the result of an explicit evaluation is a meta-
object. This is not only a direct result from the definition of our conversion
methods, but it is also what we want. Whereas an object-level program deals
with referents directly, the meta-program deals with the representations (meta-
objects) of the objects of its object-level program. An evaluator (or a meta-system
in general) that does not respect this is said to be a level-crossing evaluator
[Smith82].

The implementation of the quoting operator is straightforward, and relies on the
symbiosis of Agora and its implementation language. A quote reifier returns, upon
evaluation, its receiver as an explicitly referable Agora object.

Quoting Expressions (without precautions to avoid reflective overlap)
c

 

l

 

a

 

s

 

s

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

m

 

e

 

t

 

h

 

o

 

d

 

s

 

r

 

e

 

i

 

f

 

i

 

e

 

r

 

 

 

q

 

u

 

o

 

t

 

e

 

 

 

r

 

e

 

s

 

u

 

l

 

t

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

u

 

s

 

i

 

n

 

g

 

 

 

(

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

:

 

S

 

t

 

a

 

n

 

d

 

a

 

r

 

d

 

C

 

o

 

n

 

t

 

e

 

x

 

t

 

)

 

^

 

(

 

s

 

e

 

l

 

f

 

 

 

a

 

s

 

E

 

x

 

p

 

l

 

i

 

c

 

i

 

t

 

)

 

e

 

n

 

d

 

c

 

l

 

a

 

s

 

s

 

Explicit meta-objects can be obtained in a way that is similar to the way
expression objects are obtained. Similar to the quoting operator we introduce a
reifier (form: '

 

e

 

 

 

a

 

s

 

M

 

e

 

t

 

a

 

') that transforms the representation of its evaluated
receiver into an explicitly referable meta-object. Here again a typical example of
a meta-program can be given. A meta-program that sends an explicit message to a
meta-object. We presume that somewhere appropriate prototypes 'UnaryPattern'
and 'EmptyClient' have been defined. These prototypes should conform to the
protocols of respectively standard patterns and standard clients.

U

 

n

 

a

 

r

 

y

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

:

 

 

 

…

 

 

 

;

 

-

 

-

 

-

 

 

 

a

 

 

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

p

 

r

 

o

 

t

 

o

 

t

 

y

 

p

 

e

 

E

 

m

 

p

 

t

 

y

 

C

 

l

 

i

 

e

 

n

 

t

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

:

 

 

 

…

 

 

 

;

 

-

 

-

 

-

 

 

 

a

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

 

 

p

 

r

 

o

 

t

 

o

 

t

 

y

 

p

 

e

 

P

 

o

 

i

 

n

 

t

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

:

 

 

 

…

 

 

 

;

 

-

 

-

 

-

 

 

 

a

 

 

 

p

 

o

 

i

 

n

 

t

 

 

 

p

 

r

 

o

 

t

 

o

 

t

 

y

 

p

 

e

 

m

 

e

 

t

 

a

 

O

 

f

 

P

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

 

 

;

 

p

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

:

 

 

 

P

 

o

 

i

 

n

 

t

 

 

 

x

 

:

 

3

 

 

 

y

 

:

 

4

 

;

 

m

 

e

 

t

 

a

 

O

 

f

 

P

 

 

 

 

 

<

 

-

 

 

 

(

 

p

 

 

 

a

 

s

 

M

 

e

 

t

 

a

 

)

 

 

 

;

 

r

 

e

 

s

 

u

 

l

 

t

 

 

 

<

 

-

 

 

 

m

 

e

 

t

 

a

 

O

 

f

 

P

 

 

 

s

 

e

 

n

 

d

 

:

 

(

 

U

 

n

 

a

 

r

 

y

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

n

 

a

 

m

 

e

 

:

 

"

 

x

 

"

 

)

 

 

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

(

 

E

 

m

 

p

 

t

 

y

 

C

 

l

 

i

 

e

 

n

 

t

 

 

 

c

 

l

 

o

 

n

 

e

 

)

 

Similarly to the above example, and for the same reasons, the result of an
explicit message to a explicitly referable meta-object is a meta-object.

The definition of this new operator is as straightforward as the definition of the
quote operator. It also relies on the symbiosis of Agora and its implementation
language.



Making Meta Objects Explicitly Ref.

43

Chapter 5

174

The according conversion class can be found below. It encodes meta-objects to
which explicit 'send:client:' messages can be sent. Remark that, on meta-objects,
the 'asExplicit' conversion can be applied an infinite number of times.

Explicitly Referable Meta-objects
c

 

l

 

a

 

s

 

s

 

 

 

E

 

x

 

p

 

l

 

i

 

c

 

i

 

t

 

l

 

y

 

R

 

e

 

f

 

e

 

r

 

a

 

b

 

l

 

e

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

 

 

e

 

x

 

t

 

e

 

n

 

d

 

s

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

c

 

o

 

n

 

s

 

t

 

a

 

n

 

t

 

s

 

S

 

e

 

n

 

d

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

=

 

 

 

K

 

e

 

y

 

w

 

o

 

r

 

d

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

n

 

a

 

m

 

e

 

:

 

"

 

s

 

e

 

n

 

d

 

:

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

"

 

i

 

n

 

s

 

t

 

a

 

n

 

c

 

e

 

 

 

v

 

a

 

r

 

i

 

a

 

b

 

l

 

e

 

s

 

a

 

M

 

e

 

t

 

a

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

m

 

e

 

t

 

h

 

o

 

d

 

s

 

c

 

o

 

n

 

c

 

r

 

e

 

t

 

e

 

 

 

s

 

e

 

n

 

d

 

:

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

c

 

l

 

i

 

e

 

n

 

t

 

 

 

r

 

e

 

s

 

u

 

l

 

t

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

i

 

f

 

 

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

=

 

 

 

S

 

e

 

n

 

d

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

t

 

h

 

e

 

n

 

^

 

(

 

a

 

M

 

e

 

t

 

a

 

 

 

 

 

s

 

e

 

n

 

d

 

:

 

(

 

c

 

l

 

i

 

e

 

n

 

t

 

 

 

f

 

i

 

r

 

s

 

t

 

A

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

 

 

a

 

s

 

I

 

m

 

p

 

l

 

i

 

c

 

i

 

t

 

)

 

 

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

(

 

c

 

l

 

i

 

e

 

n

 

t

 

 

 

s

 

c

 

n

 

d

 

A

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

 

 

a

 

s

 

I

 

m

 

p

 

l

 

i

 

c

 

i

 

t

 

)

 

)

 

a

 

s

 

E

 

x

 

p

 

l

 

i

 

c

 

i

 

t

 

e

 

l

 

s

 

e

 

…

 

 

 

r

 

a

 

i

 

s

 

e

 

 

 

a

 

n

 

 

 

e

 

r

 

r

 

o

 

r

 

e

 

n

 

d

 

c

 

l

 

a

 

s

 

s

 

5.2.2 Simple Meta-Programming Operators for Agora

To illustrate the linguistic symbiosis we will discuss a set of reflection operators
that is directly inspired by the above conversion methods. As we saw in the
previous section the 'asImplicit' method can be used for example to convert an
implicitly referable expression object into an explicitly referable expression
object. This is called a quoting operator when provided as a language construct.
Similarly, meta-objects can be converted into explicitly referable meta-objects.
We will also illustrate how the inverse operations — that of converting an
explicitly encoded expression or meta-object into an implicitly referable object —
can be made useful.

The quoting reifier (form: 'e

 

 

 

q

 

u

 

o

 

t

 

e

 

') allows us to get hold on expressions as
Agora objects in what is usually called a meta-program. A quoted expression is an
object that can be sent an explicit evaluation message, given a context as
argument. The following meta-program evaluates the object-level program
'"hello world" print' in an initially empty context. We presume that somewhere
an appropriate prototype 'EmptyContext' has been defined. This prototype
should conform to the protocol of standard contexts.

E

 

m

 

p

 

t

 

y

 

C

 

o

 

n

 

t

 

e

 

x

 

t

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

:

 

 

 

…

 

 

 

;

 

-

 

-

 

-

 

 

 

a

 

n

 

 

 

i

 

n

 

i

 

t

 

i

 

a

 

l

 

l

 

y

 

 

 

e

 

m

 

p

 

t

 

y

 

 

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

a

 

P

 

r

 

o

 

g

 

r

 

a

 

m

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

 

 

;

 

a

 

P

 

r

 

o

 

g

 

r

 

a

 

m

 

 

 

 

 

<

 

-

 

 

 

(

 

"

 

h

 

e

 

l

 

l

 

o

 

 

 

w

 

o

 

r

 

l

 

d

 

"

 

 

 

p

 

r

 

i

 

n

 

t

 

)

 

q

 

u

 

o

 

t

 

e

 

 

 

;

 

a

 

P

 

r

 

o

 

g

 

r

 

a

 

m

 

 

 

e

 

v

 

a

 

l

 

:

 

(

 

E

 

m

 

p

 

t

 

y

 

C

 

o

 

n

 

t

 

e

 

x

 

t

 

 

 

c

 

l

 

o

 

n

 

e

 

)

 

 

 

 

 

-

 

-

 

-

 

 

 

p

 

r

 

i

 

n

 

t

 

s

 

 

 

"

 

h

 

e

 

l

 

l

 

o

 

 

 

w

 

o

 

r

 

l

 

d

 

"

 

This is a typical example of meta-programming: allowing us to manipulate
programs as first-class objects, but on the other hand absorbing (leaving implicit)
the evaluator for these programs. Some remarks must be made. Consider the
following example. The object-level program creates a point object that is
returned as result1.

1 Note that in Agora block expressions do not evaluate to something like closures (such as is
the case in Smalltalk) but rather all component expressions are evaluated. The return reifier
indicates what result must be returned.



The Causal Connection

44

A Reflective Framework

173

asImplicit Conversion Method
c

 

l

 

a

 

s

 

s

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

a

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

 

 

c

 

l

 

a

 

s

 

s

 

 

 

a

 

t

 

t

 

r

 

i

 

b

 

u

 

t

 

e

 

s

 

E

 

x

 

p

 

l

 

i

 

c

 

i

 

t

 

l

 

y

 

E

 

n

 

c

 

o

 

d

 

e

 

d

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

m

 

e

 

t

 

h

 

o

 

d

 

s

 

c

 

o

 

n

 

c

 

r

 

e

 

t

 

e

 

 

 

a

 

s

 

I

 

m

 

p

 

l

 

i

 

c

 

i

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

 

 

r

 

e

 

s

 

u

 

l

 

t

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

^

 

E

 

x

 

p

 

l

 

i

 

c

 

i

 

t

 

l

 

y

 

E

 

n

 

c

 

o

 

d

 

e

 

d

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

 

 

o

 

b

 

j

 

e

 

c

 

t

 

:

 

s

 

e

 

l

 

f

 

e

 

n

 

d

 

c

 

l

 

a

 

s

 

s

 

Explicitly Encoded Expressions
c

 

l

 

a

 

s

 

s

 

 

 

E

 

x

 

p

 

l

 

i

 

c

 

i

 

t

 

l

 

y

 

E

 

n

 

c

 

o

 

d

 

e

 

d

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

 

 

e

 

x

 

t

 

e

 

n

 

d

 

s

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

E

 

x

 

p

 

r

 

e

 

s

 

s

 

i

 

o

 

n

 

c

 

o

 

n

 

s

 

t

 

a

 

n

 

t

 

s

 

E

 

v

 

a

 

l

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

=

 

 

 

K

 

e

 

y

 

w

 

o

 

r

 

d

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

n

 

a

 

m

 

e

 

:

 

"

 

e

 

v

 

a

 

l

 

:

 

"

 

i

 

n

 

s

 

t

 

a

 

n

 

c

 

e

 

 

 

v

 

a

 

r

 

i

 

a

 

b

 

l

 

e

 

s

 

o

 

b

 

j

 

e

 

c

 

t

 

:

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

m

 

e

 

t

 

h

 

o

 

d

 

s

 

c

 

o

 

n

 

c

 

r

 

e

 

t

 

e

 

 

 

e

 

v

 

a

 

l

 

:

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

 

 

r

 

e

 

s

 

u

 

l

 

t

 

 

 

A

 

b

 

s

 

t

 

r

 

a

 

c

 

t

 

M

 

e

 

t

 

a

 

O

 

b

 

j

 

e

 

c

 

t

 

^

 

(

 

o

 

b

 

j

 

e

 

c

 

t

 

s

 

e

 

n

 

d

 

:

 

E

 

v

 

a

 

l

 

P

 

a

 

t

 

t

 

e

 

r

 

n

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

(

 

S

 

t

 

a

 

n

 

d

 

a

 

r

 

d

 

C

 

l

 

i

 

e

 

n

 

t

 

 

 

a

 

r

 

g

 

u

 

m

 

e

 

n

 

t

 

s

 

:

 

(

 

c

 

o

 

n

 

t

 

e

 

x

 

t

 

 

 

a

 

s

 

E

 

x

 

p

 

l

 

i

 

c

 

i

 

t

 

)

 

)

 

 

 

 

 

)

 

 

 

a

 

s

 

I

 

m

 

p

 

l

 

i

 

c

 

i

 

t

 

e

 

n

 

d

 

c

 

l

 

a

 

s

 

s

 

Finally, note that because meta-objects (not their referents) are implicitly
referable objects, the 'asExplicit' conversion method should be defined for them.

Making
Explicit

Implementation Language Agora

has as Referent (reF)

m

send:#m

m
Implicit Message

Explicit Message
m

Meta-Object

has as Referent (reF)

send:#send

send:#m

Referent of 
ExplicitlyReferableMetaObject

Figure 5.5

Self-Representation



Defining Meta-Objects from Agora

45

Chapter 5

178

This example features two different forms of reflective overlap. Firstly, the
context that is reified by the 'currentContextExp' expression, is both reified and
left implicit. This is apparent in the fact that the variable that points to the
reified context also is part of this reified context. Secondly, and more
importantly, the evaluation method of the explicit expression object is evaluated
in the same context that it reifies. This evaluation method has, for example,
access to the point prototype, both directly and via its context argument.
Whereas the first kind of reflective overlap is the result of how the above
program is formulated, the second kind is a direct result of the definition of the
'asExpression' reifier. We will see in the next section how an alternative set of
reflection operators that avoid reflective overlap can be defined.

Explicitly encoded meta-objects can also be made implicitly referable. The
reifier 'asObject' allows the absorption of explicitly encoded meta-objects. In the
following example meta-objects are constructed that reply lazily to messages.
The result of a message sent to a lazy object is computed only if a message is sent to
this result. Therefore two different sorts of meta-objects are defined. The first
kind ('Lazy' objects) that contains a reference to the object that is made lazy. The
second kind ('ResultHolder' objects) that act as representants for the results of
the messages sent to a lazy object. Notice that in the example, the first kind of
meta-objects is put to use by an explicit application of the 'asObject' reifier.
Whereas the second kind is created in the execution of an explicitly encoded
'send:client:' message. Since this latter is executed at the meta-level the so
created meta-object is automatically absorbed.

M

 

a

 

k

 

e

 

R

 

e

 

s

 

u

 

l

 

t

 

H

 

o

 

l

 

d

 

e

 

r

 

 

 

M

 

i

 

x

 

i

 

n

 

:

 

[

 

 

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

 

 

;

 

 

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

 

 

;

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

 

 

;

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

:

 

r

 

 

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

:

 

p

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

c

 

 

 

C

 

l

 

o

 

n

 

i

 

n

 

g

 

M

 

e

 

t

 

h

 

o

 

d

 

:

 

[

 

 

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

 

 

<

 

-

 

 

 

r

 

 

 

;

 

 

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

<

 

-

 

 

 

p

 

 

 

;

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

 

 

<

 

-

 

 

 

c

 

 

 

]

 

 

 

;

 

s

 

e

 

n

 

d

 

:

 

p

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

c

 

 

 

M

 

e

 

t

 

h

 

o

 

d

 

:

 

[

 

 

 

(

 

R

 

e

 

s

 

u

 

l

 

t

 

H

 

o

 

l

 

d

 

e

 

r

 

 

 

 

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

:

 

 

 

(

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

 

 

s

 

e

 

n

 

d

 

:

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

c

 

l

 

i

 

e

 

n

 

t

 

)

 

 

 

 

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

:

 

p

 

 

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

c

 

)

 

 

 

r

 

e

 

t

 

u

 

r

 

n

 

 

 

]

 

]

 

 

 

;

 

R

 

e

 

s

 

u

 

l

 

t

 

H

 

o

 

l

 

d

 

e

 

r

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

:

 

 

 

O

 

b

 

j

 

e

 

c

 

t

 

 

 

M

 

a

 

k

 

e

 

R

 

e

 

s

 

u

 

l

 

t

 

H

 

o

 

l

 

d

 

e

 

r

 

 

 

;

 

M

 

a

 

k

 

e

 

L

 

a

 

z

 

y

 

 

 

M

 

i

 

x

 

i

 

n

 

:

 

[

 

 

 

w

 

h

 

o

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

 

 

;

 

w

 

h

 

o

 

:

 

w

 

 

 

C

 

l

 

o

 

n

 

i

 

n

 

g

 

M

 

e

 

t

 

h

 

o

 

d

 

:

 

 

 

[

 

 

 

w

 

h

 

o

 

 

 

<

 

-

 

 

 

w

 

 

 

]

 

 

 

;

 

s

 

e

 

n

 

d

 

:

 

p

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

c

 

 

 

M

 

e

 

t

 

h

 

o

 

d

 

:

 

[

 

 

 

(

 

R

 

e

 

s

 

u

 

l

 

t

 

H

 

o

 

l

 

d

 

e

 

r

 

 

 

r

 

e

 

c

 

e

 

i

 

v

 

e

 

r

 

:

 

w

 

h

 

o

 

 

 

p

 

a

 

t

 

t

 

e

 

r

 

n

 

:

 

p

 

 

 

c

 

l

 

i

 

e

 

n

 

t

 

:

 

c

 

)

 

 

 

r

 

e

 

t

 

u

 

r

 

n

 

 

 

]

 

]

 

 

 

;

 

L

 

a

 

z

 

y

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

:

 

 

 

O

 

b

 

j

 

e

 

c

 

t

 

 

 

M

 

a

 

k

 

e

 

L

 

a

 

z

 

y

 

 

 

;

 

P

 

o

 

i

 

n

 

t

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

:

 

 

 

…

 

 

 

;

 

p

 

 

 

d

 

e

 

f

 

i

 

n

 

e

 

:

 

 

 

(

 

L

 

a

 

z

 

y

 

 

 

w

 

h

 

o

 

:

 

(

 

(

 

P

 

o

 

i

 

n

 

t

 

 

 

x

 

:

 

3

 

 

 

y

 

:

 

4

 

)

 

 

 

a

 

s

 

M

 

e

 

t

 

a

 

)

 

)

 

 

 

a

 

s

 

O

 

b

 

j

 

e

 

c

 

t

 

 

 

;

 

-

 

-

 

-

 

 

 

p

 

 

 

c

 

o

 

n

 

t

 

a

 

i

 

n

 

s

 

 

 

a

 

 

 

l

 

a

 

z

 

y

 

 

 

p

 

o

 

i

 

n

 

t

 

 

 

n

 

o

 

w

 

The definitions of both the 'asObject' and 'asExpression' operators are
straightforward.



Issues in Symbiosis for Agora

46

Paradigm Differences
Agora vs. Implementation Language

- Prototype-Based
- Dynamically Typed

- Class-Based
- Dynamically Typed

Smalltalk

- Class-Based
- Statically Typed

Java/C++

Agora



Agora vs. Java

47

class MyCollection {
  /* ... */
  public void add(ClassA x) { ... }
  public void add(ClassB x) { ... }
  public void add(ClassC x) { ... }
}

someAgoraObject µvariable: ...
aJavaCollection µvariable: (“MyCollection” µJAVA) new

aJavaCollection add: someAgoraObject



Agora in Symbiosis with Java

48

x addComponent: y string: z
Explicitly Referable Implicitly Encoded Objects

invokes method “add” which takes a 
Component and a String as argument

Making Explicit Objects Implicit
okListener µVARIABLE: [
  implements µMETHOD:
     (1 µARRAY: ("java.awt.event.ActionListener" µJAVA));
  replaces µMETHOD:
     ("java.lang.Object" µJAVA);
  ...
]



SOUL



Symbiosis of SOUL and Smalltalk

50

! Even Bigger Paradigm Differences !

Logic Programming vs Object-Oriented Programming

- Logic rules can ‘return’ multiple results
- Logic rules can be called ‘unbound’ parameters



51

New Interpretation Process

?list containsSomethingRed if
  ?list contains: ?x &
  ?x isRed



51

New Interpretation Process

?list containsSomethingRed if
  ?list contains: ?x &
  ?x isRed

No rule for isRed, 
so send as 
message to object 
in ?x



51

New Interpretation Process

?list containsSomethingRed if
  ?list contains: ?x &
  ?x isRed

isRed

No rule for isRed, 
so send as 
message to object 
in ?x



51

New Interpretation Process

?list containsSomethingRed if
  ?list contains: ?x &
  ?x isRed

isRed

No rule for isRed, 
so send as 
message to object 
in ?x

true/false

success/
failure



51

New Interpretation Process

?list containsSomethingRed if
  ?list contains: ?x &
  ?x isRed

isRed

No rule for isRed, 
so send as 
message to object 
in ?x

true/false

success/
failure

containsSomethingRed(?list) if
  member(?x, ?list)
  [ ?x isRed ]

isRed

Smalltalk term, send 
message isRed to 
object in ?x

Old Soul



51

New Interpretation Process

?list containsSomethingRed if
  ?list contains: ?x &
  ?x isRed

isRed

No rule for isRed, 
so send as 
message to object 
in ?x

true/false

success/
failure

containsSomethingRed(?list) if
  member(?x, ?list)
  [ ?x isRed ]

isRed

Smalltalk term, send 
message isRed to 
object in ?x

Old Soul

Note: defining a rule for isRed 
would override message sending


