
The Fortress Language Specification
Version 1.0α

Eric Allen
David Chase
Joe Hallett

Victor Luchangco
Jan-Willem Maessen

Sukyoung Ryu
Guy L. Steele Jr.

Sam Tobin-Hochstadt

Additional contributors:
Joao Dias

Carl Eastlund
Christine Flood

Yossi Lev
Cheryl McCosh

c© Sun Microsystems, Inc.

September 19, 2006



Contents

I Preliminaries 12

1 Introduction 13

1.1 Fortress in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 13

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 14

2 Overview 16

2.1 The Fortress Programming Environment . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 16

2.2 Exports, Imports, and Linking Components . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 18

2.3 Automatic Generation of APIs . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 21

2.4 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 21

2.5 Some Common Types in Fortress . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 22

2.6 Functions in Fortress . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 23

2.7 Some Common Expressions in Fortress . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 24

2.8 For Loops Are Parallel by Default . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 25

2.9 Atomic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 25

2.10 Dimensions and Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 26

2.11 Aggregate Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 27

2.12 Comprehensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 28

2.13 Summations and Products . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 28

2.14 Tests and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 29

2.15 Objects and Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 29

2.16 Features for Library Development . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 32

II Fortress for Application Programmers 34

3 Programs 35

2



4 Evaluation 36

4.1 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 36

4.2 Normal and Abrupt Completion of Evaluation . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 37

4.3 Memory and Memory Operations . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 37

4.4 Threads and Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 37

4.5 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 39

4.6 Input and Output Actions . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 40

5 Lexical Structure 41

5.1 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 41

5.2 Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 44

5.3 Lines, Pages and Position . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 44

5.4 ASCII Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 45

5.5 Input Elements and Scanning . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 45

5.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 46

5.7 Whitespace Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 46

5.8 Special Reserved Words . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 46

5.9 Character Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 47

5.10 String Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 48

5.11 Boolean Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 49

5.12 The Void Literal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 49

5.13 Numerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 49

5.14 Operator Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 50

5.15 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 51

5.16 Special Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 52

5.17 Rendering of Fortress Programs . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 52

6 Declarations 54

6.1 Kinds of Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 54

6.2 Top-Level Variable Declarations . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 56

6.3 Local Variable Declarations . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 58

6.4 Local Function Declarations . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 58

6.5 Matrix Unpasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 58

3



7 Names 61

7.1 Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 61

7.2 Reach and Scope of a Declaration . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 61

7.3 Qualified Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 63

8 Types 64

8.1 Relationships between Types . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 64

8.2 Trait Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 65

8.3 Object Trait Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 65

8.4 Tuple Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 65

8.5 Arrow Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 66

8.6 Bottom Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 67

8.7 Types in the Fortress Standard Libraries . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 67

8.8 Intersection and Union Types . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 68

8.9 Type Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 68

9 Traits 70

9.1 Trait Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 70

9.2 Method Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 72

9.3 Abstract Field Declarations . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 74

9.4 Method Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 75

9.5 Value Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 75

10 Objects 77

10.1 Object Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 77

10.2 Field Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 78

10.3 Value Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 79

10.4 Object Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 80

11 Static Parameters 81

11.1 Type Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 81

11.2 Nat and Int Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 82

11.3 Bool Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 82

11.4 Dimension and Unit Parameters . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 82

11.5 Operator and Identifier Parameters . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 83

11.6 Where Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 83

4



12 Functions 85

12.1 Function Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 85

12.2 Function Applications . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 87

12.3 Abstract Function Declarations . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 88

12.4 Function Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 89

13 Expressions 91

13.1 Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 91

13.2 Identifier References . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 93

13.3 Dotted Field Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 93

13.4 Dotted Method Invocations . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 93

13.5 Naked Method Invocations . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 94

13.6 Function Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 94

13.7 Function Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 95

13.8 Operator Applications . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 95

13.9 Object Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 96

13.10Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 97

13.11Do Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 97

13.12Parallel Do Expressions . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 98

13.13Label and Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 99

13.14While Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 100

13.15For Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 100

13.16Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 101

13.17Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 102

13.18Summations and Other Reduction Expressions . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 103

13.19If Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 104

13.20Case Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 104

13.21Extremum Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 105

13.22Typecase Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 106

13.23Atomic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 106

13.24Spawn Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 108

13.25Throw Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 108

13.26Try Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 109

13.27Static Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 110

5



13.28Aggregate Expressions . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 111

13.29Comprehensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 114

13.30Type Ascription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 115

13.31Type Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 115

13.32Expression-like Functions . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 116

14 Exceptions 118

14.1 Causes of Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 118

14.2 Types of Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 118

14.3 Information of Exceptions . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 119

15 Overloading and Multiple Dispatch 121

15.1 Terminology and Notation . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 121

15.2 Applicability to Named Functional Calls . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 122

15.3 Applicability to Dotted Method Calls . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 122

15.4 Applicability for Functionals with Varargs and Keyword Parameters . . . . . . . . . . . . . . . . . . 122

15.5 Overloading Resolution . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 123

16 Operators 125

16.1 Operator Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 125

16.2 Operator Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 126

16.3 Operator Fixity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 128

16.4 Chained and Multifix Operators . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 129

16.5 Enclosing Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 129

16.6 Conditional Operators . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 130

16.7 Juxtaposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 130

16.8 Overview of Operators in the Fortress Standard Libraries . . . . . . . . . . . . . . . . . . . . . . . . 132

17 Conversions and Coercions 137

17.1 Principles of Coercion . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 137

17.2 Coercion Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 138

17.3 Coercion Invocations . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 139

17.4 Applicability with Coercion . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 140

17.5 Coercion Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 141

17.6 Restrictions on Coercion Declarations . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 142

6



17.7 Coercions for Tuple and Arrow Types . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 143

17.8 Automatic Widening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 144

18 Dimensions and Units 146

19 Tests and Properties 149

19.1 The Purpose of Tests and Properties . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 149

19.2 Test Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 149

19.3 Other Test Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 150

19.4 Running Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 150

19.5 Test Suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 151

19.6 Property Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 151

20 Type Inference 153

20.1 What Is Inferred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 153

20.2 Type Inference Procedure . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 153

20.3 Finding “Closest Expressible Types” for Inferred Types . . . . . . . . . . . . . . . . . . . . . . . . . 155

21 Memory Model 156

21.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 156

21.2 Programming Discipline . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 157

21.3 Read and Write Atomicity . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 159

21.4 Ordering Dependencies among Operations . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 159

22 Components and APIs 162

22.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 162

22.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 163

22.3 APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 165

22.4 Tests in Components and APIs . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 166

22.5 Type Inference for Components . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 167

22.6 Initialization Order for Components . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 167

22.7 Basic Fortress Operations . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 167

22.8 Advanced Features of Fortress Operations . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 175

7



III Fortress APIs and Documentation for Application Progra mmers 179

23 Objects 180

23.1 The Trait Fortress.Core.Object . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 180

24 Booleans and Boolean Intervals 182

24.1 The Trait Fortress.Core.Boolean . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 182

24.2 The Trait Fortress.Standard.BooleanInterval . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 185

24.3 Top-level BooleanInterval Values . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 192

25 Numbers 193

25.1 Rational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 193

26 Negated Relational Operators 201

26.1 Negated Relational Operators . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 201

27 Exceptions 204

27.1 The Trait Fortress.Standard.Exception . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 204

27.2 The Trait Fortress.Standard.CheckedException . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 204

27.3 The Trait Fortress.Standard.UncheckedException . . .. . . . . . . . . . . . . . . . . . . . . . . . . 205

28 Threads 206

28.1 The Trait Fortress.Standard.Thread . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 206

29 Dimensions and Units 207

29.1 Fortress.SIUnits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 207

29.2 Fortress.EnglishUnits . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 209

29.3 Fortress.InformationUnits . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 210

30 Tests 211

30.1 The Object Fortress.Standard.TestSuite . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 211

30.2 Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 211

31 Convenience Functions and Types 212

31.1 Convenience Functions . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 212

31.2 Convenience Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 213

8



IV Fortress for Library Writers 214

32 Parallelism and Locality 215

32.1 Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 215

32.2 Distributed Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 216

32.3 Abortable Atomicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 216

32.4 Shared and Local Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 217

32.5 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 218

32.6 Early Termination of Threads . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 219

32.7 Placing Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 220

32.8 Use and Definition of Generators . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 221

33 Overloaded Functional Declarations 227

33.1 Principles of Overloading . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 227

33.2 Subtype Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 228

33.3 Incompatibility Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 228

33.4 More Specific Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 229

33.5 Coercion and Overloading Resolution . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 231

34 Operator Declarations 232

34.1 Infix/Multifix Operator Declarations . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 232

34.2 Prefix Operator Declarations . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 233

34.3 Postfix Operator Declarations . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 233

34.4 Nofix Operator Declarations . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 233

34.5 Bracketing Operator Declarations . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 234

34.6 Subscripting Operator Method Declarations . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 234

34.7 Subscripted Assignment Operator Method Declarations. . . . . . . . . . . . . . . . . . . . . . . . . 234

34.8 Conditional Operator Declarations . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 235

34.9 Big Operator Declarations . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 235

35 Dimensions and Units Declarations 236

35.1 Dimensions Declarations . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 236

35.2 Units Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 237

35.3 Abbreviating Dimension and Unit Declarations . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 238

35.4 Absorbing Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 239

9



36 Support for Domain-Specific Languages 241

36.1 Definitions of Syntax Expanders . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 241

36.2 Declarations of Syntax Expanders . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 242

36.3 Restrictions on Delimiters . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 242

36.4 Processing Syntax Expanders . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 242

36.5 Expanders for Fortress . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 244

V Fortress APIs and Documentation for Library Writers 245

37 Algebraic Constraints 246

37.1 Predicates and Equivalence Relations . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 246

37.2 Partial and Total Orders . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 248

37.3 Operators and Their Properties . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 252

37.4 Monoids, Groups, Rings, and Fields . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 256

37.5 Boolean Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 259

38 Numbers 262

38.1 The Trait Fortress.Standard.RationalQuantity . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 262

38.2 The Trait Fortress.Standard.TotalComparison . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 266

38.3 Top-level Total Comparison Values . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 267

38.4 The Trait Fortress.Standard.Comparison . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 267

38.5 Top-level Comparison Value . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 268

39 Components and APIs 269

40 Memory Sequences and Binary Words 271

40.1 The Trait Fortress.Core.LinearSequence . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 272

40.2 Constructing Linear Sequences . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 276

40.3 The Trait Fortress.Core.HeapSequence . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 276

40.4 Constructing Heap Sequences . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 278

40.5 The Trait Fortress.Core.BinaryWord . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 279

40.6 The Trait Fortress.Core.BinaryEndianWord . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 283

40.7 The Trait Fortress.Core.BasicBinaryOperations . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 288

40.8 The Trait Fortress.Core.BasicBinaryWordOperations. . . . . . . . . . . . . . . . . . . . . . . . . . 292

40.9 The Trait Fortress.Core.BinaryLinearEndianSequence . . . . . . . . . . . . . . . . . . . . . . . . . . 294

10



40.10The Trait Fortress.Core.BinaryEndianLinearEndianSequence . . . . . . . . . . . . . . . . . . . . . . 298

40.11The Trait Fortress.Core.BinaryHeapEndianSequence. . . . . . . . . . . . . . . . . . . . . . . . . . 303

40.12The Trait Fortress.Core.BinaryEndianHeapEndianSequence . . . . . . . . . . . . . . . . . . . . . . . 303

40.13The Trait Fortress.Core.BasicBinaryHeapSubsequenceOperations . . . . . . . . . . . . . . . . . . . 304

VI Appendices 312

A Fortress Calculi 313

A.1 Basic Core Fortress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 313

A.2 Core Fortress with Where Clauses . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 318

A.3 Core Fortress with Overloading . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 325

A.4 Acyclic Core Fortress with Field Definitions . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 331

B Overloaded Functional Declarations 337

B.1 Proof of Coercion Resolution for Functions . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 337

B.2 Proof of Overloading Resolution for Functions . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 338

C Components and APIs 340

D Rendering of Fortress Identifiers 342

E Support for Unicode Input in ASCII 346

E.1 Word Pasting across Line Breaks . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 346

E.2 Preprocessing of Names of Unicode Characters . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 347

F Operator Precedence, Chaining, and Enclosure 351

F.1 Bracket Pairs for Enclosing Operators . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 351

F.2 Vertical-Line Operators . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 352

F.3 Arithmetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 353

F.4 Relational Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 356

F.5 Boolean Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 363

F.6 Other Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 364

G Concrete Syntax 375

H Generated Concrete Syntax 383

11



Part I

Preliminaries

12



Chapter 1

Introduction

The Fortress Programming Language is a general-purpose, statically typed, component-based programming language
designed for producing robust high-performance software with high programmability.

In many ways, Fortress is intended to be a “growable language”, i.e., a language that can be gracefully extended
and applied in new and unanticipated contexts. Fortress supports state-of-the-art compiler optimization techniques,
scaling to unprecedented levels of parallelism and of addressable memory. Fortress has an extensible component
system, allowing separate program components to be independently developed, deployed, and linked in a modular and
robust fashion. Fortress also supports modular and extensible parsing, allowing new notations and static analyses to
be added to the language.

The name “Fortress” is derived from the intent to produce a “secure Fortran”, i.e., a language for high-performance
computation that provides abstraction and type safety on par with modern programming language principles. Despite
this etymology, the language is a new language with little relation to Fortran other than its intended domain of ap-
plication. No attempt has been made to support backward compatibility with existing versions of Fortran; indeed,
many new language features were invented during the design of Fortress. Many aspects of Fortress were inspired
by other object-oriented and functional programming languages, including The JavaTM Programming Language [5],
NextGen [6], Scala [21], Eiffel [16], Self [1], Standard ML [18], Objective Caml [14], Haskell [23], and Scheme [13].
The result is a language that employs cutting-edge featuresfrom the programming-language research community to
achieve an unprecedented combination of performance and programmability.

1.1 Fortress in a Nutshell

Two basic concepts in Fortress are that ofobjectand oftrait. An object consists offieldsandmethods. The fields of
an object are specified in its definition. An object definitionmay also include method definitions.

Traits are named program constructs that declare sets of methods. They were introduced in the Self programming
language, and their semantic properties (and advantages over conventional class inheritance) were analyzed by Schärli,
Ducasse, Nierstrasz, and Black [8]. In Fortress, a method declared by a trait may be eitherabstractor concrete:
abstract methods have onlyheaders; concrete methods also havedefinitions. A trait mayextendother traits: itinherits
the methods provided by the traits it extends. A trait provides the methods that it inherits as well as those explicitly
declared in its declaration.

Every object extends a set of traits (its “supertraits”). Anobject inherits the concrete methods of its supertraits and
must include a definition for every method declared but not defined by its supertraits.

object SolarSystem extends { StarSystem,OrbitingObject }
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sun = Sol
planets = {Mercury,Venus,Earth,Mars, Jupiter, Saturn,Uranus,Neptune,Pluto }
position = Polar(25000 lightYears, 0 radians)
ω : R64 AngularVelocity = 2π radians / 226 million years in seconds

variation(ω∆) =
ω += ω∆

end

In this example, the objectSolarSystem extends the traitsStarSystem and OrbitingObject . The fieldsω and
position are defined with appropriate quantities. The fieldsun is defined to be another object namedSol, and the
field planets is defined to be a set of objects. The methodvariation is defined to take a single parameterω∆, and
update theω field of the object. As this example illustrates, Fortress provides static checking of physical units and
dimensions on quantities.

Note that the identifiers used in this example are not restricted to ASCII character sequences. Fortress allows the use
of Unicode characters in program identifiers, as well as subscripts and superscripts. (See Appendix E for a discussion
of Unicode and support for entering programs in ASCII.) Fortress also allows multiplication to be expressed by simple
juxtaposition, as can be seen in the definitions ofω and position . Fortress also allows for operator overloading, as
well as a facility for extending the syntax with domain-specific languages.

Although Fortress is statically and nominally typed, typesare not specified for all fields, nor for all method parameters
and return values. Instead, wherever possible,type inferenceis used to reconstruct types. In the examples throughout
this specification, we often omit the types when they are clear from context. Additionally, types can be parametric
with respect to other types and values (most notably naturalnumbers).

These design decisions are motivated in part by our goal of making the scientist/programmer’s life as easy as possible
without compromising good software engineering. In particular, they allow us to write Fortress programs that preserve
the look of standard mathematical notation.

In addition to objects and traits, Fortress allows the programmer to define top-level functions. Functions are first-class
values: They can be passed to and returned from functions, and assigned as values to fields and variables. Functions
and methods can be overloaded, with calls to overloading methods resolved by multiple dynamic dispatch similarly to
the manner described in [17]. Keyword parameters and variable size argument lists are also supported.

Fortress programs are organized intocomponents, which export and import APIs and can be linked together. APIs
describe the “shape” of a component, specifying the types intraits, objects and functions provided by a component.
All external references within a component (i.e., references to traits, objects and functions implemented by other
components) are to APIs imported by the component. We discuss components and APIs in detail in Chapter 22.

To address the needs of modern high-performance computation, Fortress also supports a rich set of operations for
defining parallel execution and distribution of large data structures. This support is built into the core of the language.
For example,for loops in Fortress are parallel by default.

1.2 Organization

This language specification is organized as follows. In PartII, the Fortress language features for application program-
mers are explained, including objects, types, and functions. Relevant parts of the concrete syntax are provided with
many examples. The full concrete syntax of Fortress is described in Appendix G. In Part III, APIs and documenta-
tion of some of the Fortress standard libraries for application programmers are presented. Part IV describes advanced
Fortress language features for library writers and Part V presents APIs and documentation for some of the Fortress
standard libraries for library writers. Finally, in Part VI, the Fortress calculi, support for Unicode characters, andthe
Fortress grammars are described.
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A note on the presented libraries in Parts III and V: The Fortress standard libraries presented in this draft specification
should not be construed as exhaustive or complete. Presentation of additional libraries is planned for future drafts, as
are modifications to the libraries included here.
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Chapter 2

Overview

In this chapter, we provide a high-level overview of the entire Fortress language. We present most features in this
chapter through the use of examples, which should be accessible to programmers of other languages. In this chapter,
unlike the rest of the specification, no attempt is made to provide complete descriptions of the various language features
presented. Instead, we intend this overview to provide useful context for reading other sections of this specification,
which provide rigorous definitions for what is merely introduced here.

2.1 The Fortress Programming Environment

Although Fortress is independent of the properties of a particular platform on which it is implemented, it is helpful
to describe a programming model for it that we intend to provide on modern operating systems. In this programming
model, Fortress source code is stored in files and organized in directories, and there is a text-based shell from which
we can store environment variables and issue commands to execute and compile programs.

There are two ways in which to run a Fortress program:

• As a script. The Fortress program is stored in a file with the suffix “.fsx ” and executed directly from an
underlying operating system shell by calling the command “fortress script ” on it. For example, suppose
we write the following “Hello, world! ” program to a file “HelloWorld.fsx ”:

export Executable
run(args) = print “Hello, world! ”

The first line is anexport statement; we ignore it for the moment. The second line defines a function run , which
takes a parameter namedargs and prints the string “Hello, world! ”. Note that the parameterargs does
not include a declaration of its type. In many cases, types can be elided in Fortress and inferred from context.
(In this case, the type ofargs is inferred based on the program’s export statement, explained in Section 2.2.)

We can execute this program by issuing the following commandto the shell:

fortress script HelloWorld.fsx

• As acompiledfile. In this case, the Fortress program is stored in a file withthe suffix “.fss ” and compiled into
one or morecomponents, which are stored in a persistent database called afortress. Typically, a single fortress
holds all the components of a user, or group of users sharing programs and libraries. In our examples, we often
refer to the fortress we are issuing commands to asthe resident fortress.

For example, we could have written our “Hello, world! ” program in a compiled file “HelloWorld.fss ”:

16



component HelloWorld
export Executable
run(args) = print “Hello, world! ”

end

We can compile this program, by issuing the command “fortress compile ” on it:

fortress compile HelloWorld.fss

As a result of this command, a component named “HelloWorld” is stored in the resident fortress. The name
of this component is provided by the enclosing component declaration surrounding the code. If there is no
enclosing component declaration, then the contents of the file are understood to belong to a single component
whose name is that of the file it is stored in, minus its suffix. For example, suppose we write the following
program in a source file named “HelloWorld2.fss ”:

export Executable
run(args) = print “Hi, it’s me again! ”

When we compile this file:

fortress compile HelloWorld2.fss

the result is that a new component with the nameHelloWorld2 is stored in the resident fortress. Once this
component is compiled, we can execute it by issuing the following command:

fortress run HelloWorld2

In a script file, there must be at most one component declaration. In a compiled file, multiple component declarations
may be included. For example, we could write the following file HelloWorld3.fss :

component HelloWorld
export Executable
run(args) = print “Hello, world! ”

end

component HelloWorld2
export Executable
run(args) = print “Hi, it’s me again! ”

end

When we compile this file, the result is that both the components HelloWorld and HelloWorld2 are stored in the
resident fortress.

If a fortress already contains a component with the same nameas a newly installed component, the new component
shadows the old one. For example, if we first compile the source file HelloWorld3.fss above and then compile the
following file HelloWorld4.fss :

component HelloWorld
export Executable
run(args) = print “ I didn’t expect that! ”

end

then executing the componentHelloWorld on our fortress will result in printing of the following text:

I didn’t expect that!
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We can also “remove” a component from a fortress. For example:

fortress remove HelloWorld

After issuing this command, we can no longer refer toHelloWorld component when issuing commands to the
fortress. (However, a removed component might still exist as a constituent of other,linked, components; see Sec-
tion 2.2.)

2.2 Exports, Imports, and Linking Components

When a component is defined, it can includeexport statements. For example, all of the components we have defined
thus far have included the export statement “export Executable ”. Export statements list variousAPIs that a com-
ponent implements. Unlike in other languages, APIs in Fortress are themselves program constructs; programmers
can rely on standard APIs, and declare new ones. API declarations are sequences of declarations of variables, func-
tions, and other program constructs, along with their typesand other supporting declarations. For example, here is the
definition of API Executable:

api Executable
run: String . . .→ ()

end

This API contains the declaration of a single functionrun , whose type isString . . .→ () . This type is anarrow type;
it declares the type of a function’s parameter, and its return type. The functionrun includes a single parameter; the
notion String . . . indicates that it is avarargsparameter; the functionrun can be called with an arbitrary number of
string arguments. For example, here are valid calls to this function:

run(“a simple ” , “ example ”)
run(“ run(...) ”)
run(“Nobody ” , “expects ” , “ that ”)

The return type ofrun is () , pronounced “void”. Type() may be used in Fortress as a return type for functions
that have no meaningful return value. There is a single valuewith type () : the value() , also pronounced “void”.
References to value() as opposed to type() are resolved by context.

As with components, APIs can be defined in files and compiled. APIs must be defined in files with the suffix.fsi .
An .fsi file contains source code for one or more APIs. If there are no explicit “ api ” headers, the file is understood
to define a single API, whose name is the name of the containingfile, minus its suffix.

An API is compiled with the shell command “fortress compile ”. When an API is compiled, it is installed in the
resident fortress.

For example, if we store the following API in a file named “Blarf.fsi ”:

api Zeepf
foo: String→ ()
baz : String→ String

end

then we can compile this API with the following shell command:

fortress compile Blarf.fsi

This command compiles the APIZeepf and installs it in the resident fortress. If we omit the enclosing API declaration,
so that the fileBlarf.fsi consists solely of the following code:
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foo: String→ ()
baz : String→ String

then the file is assumed to consist of the declaration of a single API namedBlarf .

Unlike component compilation, API compilation does not shadow existing elements of a fortress. If we attempt to
compile an API with the same name as an API already defined in the resident fortress, an error is signaled and the
fortress is left unchanged. To remove an API, we must first remove all components referring to the API, and then issue
the shell command:

fortress removeApi name

A component that exports an API must provide a definition for every program construct declared in the API. For
example, because our componentHelloWorld:

component HelloWorld
export Executable
run(args) = print “Hello, world! ”

end

exports the APIExecutable, it must include a definition for the functionrun . The definition ofrun in HelloWorld
need not include declarations of the parameter type or return type ofrun , as these can be inferred from the definition
of API Executable.

Components are also allowed toimport APIs. A component that imports an API is allowed to use any of the program
constructs declared in that API. For example, the followingcomponent imports APIZeepf and calls the functionfoo
declared inZeepf :

component Blargh
import Zeepf
export Executable

run(args) = Zeepf.foo(“whatever ”)
end

ComponentBlargh imports the APIZeepf and exports the APIExecutable. Its run function is defined by calling
function foo , defined inZeepf . Note thatfoo must be referred to by thequalified nameZeepf.foo , to distinguish it
from other declarations offoo that are imported by or defined inBlargh. To call foo as an unqualified name, we can
write the following form of import statement:

component Blargh
import {foo} from Zeepf
export Executable

run(args) = Zeepf.foo(“whatever ”)
end

In an import statement of the form:

import S from A

all names in the set of namesS are imported from APIA, and can be referred to as unqualified names within the
importing component. In the example above, the set of names we have imported consists of a single name:foo . If we
had instead written:

import {foo, baz} from Zeepf
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then we would have been able to refer to bothfoo andbaz as unqualified names inBlargh.

Note that no component refers directly to another component, or to constructs defined in another component. Instead,
all external references go through APIs. This level of indirection provides us with significant power. As we will see, it
is possible to link together arbitrary components, so long as their APIs match. Programmers are able to link together
components from separate programming teams, swap in revised components into deployed applications, and even test
components that rely on expensive libraries by wiring them up to specialmock componentsthat provide just enough
functionality to allow for testing.

Components that contain no import statements and export theAPI Executable are referred to asexecutable compo-
nents. They can be compiled and executed directly as stand-alone components. All of ourHelloWorld components
are executable components. However, if a component importsone or more APIs, it cannot be executed as a stand-alone
program. Instead, the component must be compiled and then linked with other components that export all of the APIs
it imports, to form a newcompoundcomponent. For example, we define the following component ina file named
Ralph.fss :

export Zeepf
foo(s) = ()
baz (s) = s

We can now issue the following shell commands:

fortress compile Ralph.fss

fortress compile Blargh.fss

fortress link Gary from Ralph with Blargh

The first two commands compile filesRalph.fss andBlargh.fss , respectively, and install them in the resident
fortress. The third command tells the resident fortress to link componentsRalph and Blargh together into a com-
pound component, namedGary . Gary is an executable component; we can execute it directly with the command:

fortress run Gary

All references to APIZeepf in Gary are resolved to the declarations provided inRalph .

Note that forming the compound componentGary has no effect on the componentsRalph and Blargh. These
components remain in the resident fortress, and they can be linked together with other components to form yet more
compound components. Conversely, ifBlargh or Ralph is recompiled, deleted, or otherwise updated, there is no
effect on Gary . Conceptually,Gary contains its own copies of the componentsBlargh and Ralph, and these
copies are not corrupted by actions on other components. Forthis reason, we say that components in Fortress are
encapsulated. (Of course, there are optimization tricks that a fortress can use to maintain the illusion of encapsulation
without actually copying. But these tricks are beyond the scope of this specification.)

Compound components areupgradable: They can be upgraded with new components that export some ofthe APIs
used by their constituents. For example, if a new version ofRalph is compiled and installed in the resident fortress,
we can manuallyupgradeGary with the new version by performing the following shell command:

fortress upgrade NewGary from Gary with Ralph

This command produces a new component, namedNewGary, resulting from an upgrade ofGary with Ralph . The
components referred to asGary and Ralph are unaffected. An important property of fortress components is that
they arestateless; once constructed, they are never modified. Even if a component is “removed” from a fortress, the
components it is a constituent of are unaffected.

However, we can rebindthe nameGary in the resident fortress to our new component with the following command:

fortress upgrade Gary from Gary with Ralph

or simply:
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fortress upgrade Gary with Ralph

Now, the original component referred to byGary is shadowed; it cannot be referred to directly from the shell. However,
it might still exist in the fortress as a constituent of othercomponents, which are unmodified by the upgrade. To
upgrade all components in a fortress at once with a new version of Ralph (rebinding all names to the resulting
upgrades), we can issue the command:

fortress upgradeAll Ralph

2.3 Automatic Generation of APIs

Note that the component namedZeepf exports the APIZeepf . Components and APIs exist in separate namespaces,
and therefore it is allowed for a component to have the same name as an API. In fact, if we hadn’t already defined and
compiled APIZeepf , we could generate it automatically from the definition of componentZeepf with the following
shell command:

fortress api Zeepf.fss

This command generates a new source file,Zeepf.fsi , in the same directory asZeepf.fss , which includes decla-
rations for all program constructs defined inZeepf.fss .

In general, if a componentC exports an APIA with the same name asC, it is possible to automatically generate a
source file for the APIA fromC by issuing the shell commandfortress api on the file containing the definition of
C. This API contains declarations for all definitions inC that are not declared in other APIs exported byC, and that
do not include the modifierprivate . If a source file with the name ofA already exists in the same directory as the
source file ofC, an error is signaled, and no file is created.

If there is more than one component defined in a file, APIs are generated for all components defined in the file that
export APIs with the same name as the respective component. Each generated API is placed in a separate source file
whose name corresponds to the name of the API it defines.

Note that the API corresponding to an automatically generated source file is not automatically added to the resident
fortress; the source file must still be compiled via a separate action. Often, programmers may want to edit the auto-
generated file before compiling it to the fortress.

It is not always desirable for a component to export an API of the same name. Many components will export only
publicly defined standard APIs. However, automatic generation of APIs from components may be useful, particu-
larly for components defined internally by a development team. Large projects may contain many internally defined
components that are never released externally, except as constituents of compound components.

2.4 Rendering

One aspect of Fortress that is quite different from other languages is that various program constructs are rendered in
particular fonts, so as to emulate mathematical notation. In the examples above, this was evident by the use of italics
when rendering variable names. Many other program constructs have their own rendering rules. For example, the
operator̂ indicates superscripting in Fortress. A function definition consisting of the following ASCII characters:

f(x) = xˆ2 + sin x - cos 2 x

is rendered as follows:

f(x) = x2 + sin x− cos 2x
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Array indexing, written with brackets:

a[i]

is rendered as follows:

ai

There are many other examples of special rendering conventions.

Fortress also supports the use of Unicode characters in identifiers. In order to make it easy to enter such characters
with today’s input devices, Fortress defines a convention for keyboard entry: ASCII names (and abbreviations) of
Unicode characters can be written in a program in all caps (with spaces replaced by underscores). Such identifiers are
converted to Unicode characters. For example, the identifier:

GREEK_CAPITAL_LETTER_LAMBDA

is automatically converted into the identifier:

Λ

There are also ASCII abbreviations for writing down commonly used Fortress characters. For example, ASCII iden-
tifiers for all Greek letters are converted to Greek characters (e.g., “lambda ” becomesλ and “LAMBDA” becomesΛ).
Here are some other common ASCII shorthands:

BY becomes × TIMES becomes ×
DOT becomes · CROSS becomes ×
CUP becomes ∪ CAP becomes ∩

BOTTOM becomes ⊥ TOP becomes ⊤
SUM becomes

∑

PRODUCT becomes
∏

INTEGRAL becomes
∫

EMPTYSET becomes ∅
SUBSET becomes ⊂ NOTSUBSET becomes 6⊂

SUBSETEQ becomes ⊆ NOTSUBSETEQ becomes 6⊆
EQUIV becomes ≡ NOTEQUIV becomes 6≡

IN becomes ∈ NOTIN becomes 6∈
LT becomes < LE becomes ≤
GT becomes > GE becomes ≥
EQ becomes = NE becomes 6=

AND becomes ∧ OR becomes ∨
NOT becomes ¬ XOR becomes ⊕
INF becomes ∞ SQRT becomes

√

A comprehensive description of ASCII conversion is provided in Appendix E.

2.5 Some Common Types in Fortress

Fortress provides a wide variety of standard types, including String , Boolean, and various numeric types. The
floating-point typeR (written in ASCII asRR) denotes 64-bit precision floating-point numbers. For example, the
following function takes a 64-bit float and returns a 64-bit float:

halve(x : R) : R = x/2

The typeR is also writtenR64 . The following definition ofhalve is semantically equivalent to the one above:
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halve(x : R64) : R64 = x/2

Predictably, 32-bit precision floats are writtenR32 .

64-bit integers are denoted by the typeZ64 . 32-bit integers by the typeZ32 , and infinite precision integers by the
type Z .

2.6 Functions in Fortress

Fortress allows recursive, and mutually recursive function definitions. Here is a simple definition of afactorial
function in Fortress:

factorial(n) =
if n = 0 then 1
else n factorial(n− 1) end

Note the juxtaposition of parametern with the recursive callfactorial(n− 1) . In Fortress, as in mathematics, multi-
plication is represented through juxtaposition. By default, two expressions of numeric type that are juxtaposed repre-
sent a multiplication. On the other hand, juxtaposition of an expression with a function type with another expression
to its right represents function application, as in the following example:

sin x

2.6.1 Keyword Parameters

Functions in Fortress can be defined to take keyword arguments by providing default values for parameters. In the
following example:

makeColor(red : Z64 = 0, green : Z64 = 0, blue : Z64 = 0) =
if 0 ≤ red ≤ 255 ∧ 0 ≤ green ≤ 255 ∧ 0 ≤ blue ≤ 255
then Color(red , green, blue)
else throw Error end

the functionmakeColor takes three keyword arguments, all of which default to0 . If we call it as follows:

makeColor(green = 255)

the argumentsred andblue are both given the value0 .

There are some other aspects of this example worth mentioning. For example, the body of this function consists of an
if expression. The test of theif expression checks that all three parameters have values between 0 and 255 . The
boolean operator≤ is chained: An expression of the formx ≤ y ≤ z is equivalent to the expressionx ≤ y ∧ y ≤ z ,
just as in mathematical notation. Thethen clause provides an example of a constructor call in Fortress, and theelse
clause shows us an example of athrow expression in Fortress.

2.6.2 Varargs Parameters

It is also possible to define functions that take a variable number of arguments. We have already seen such a function:
Executable.run . Here is another:
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printFirst(xs : R . . .) =
if |xs| > 0 then print xs0

else throw Error end

This function takes an arbitrary number of floats and prints the first one (unless it is given zero arguments; then it
throws an exception).

2.6.3 Function Overloading

Functions can be overloaded in Fortress by the types of theirparameters. Calls to overloaded functions are resolved
based on the runtime types of the arguments. For example, thefollowing function is overloaded based on parameter
type:

size(x : Tree) = 1 + size(leftBranch(x)) + size(rightBranch(x))
size(x : List) = 1 + size(rest(x))

Suppose we callsize on an object with runtime typeList , the second definition ofsize will be invokedregardless of
the static type of the argument. Of course, function applications are statically checked to ensure thatsomedefinition
will be applicable at run time, and that the definition to apply will be unambiguous.

2.6.4 Function Contracts

Fortress allowscontractsto be included in function declarations. Among other things, contracts allow us torequire
that the argument to a function satisfies a given set of constraints, and toensurethat the resulting value satisfies
some constraints. They provide essential documentation for the clients of a function, enabling us to express semantic
properties that cannot be expressed through the static typesystem.

Contracts are placed at the end of a function header, before the function body. For example, we can place a contract
on our factorial function requiring that its argument be nonnegative as follows:

factorial(n) requires n ≥ 0
= if n = 0 then 1

else n factorial(n− 1) end

We can also ensure that the result offactorial is itself nonnegative:

factorial(n)
requires n ≥ 0
ensures result ≥ 0
= if n = 0 then 1

else n factorial(n− 1) end

The variableresult is bound in theensures clause to the return value of the function.

2.7 Some Common Expressions in Fortress

We have already seen anif expression in Fortress. Here’s an example of awhile expression:
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while x < 10 do

print x
x += 1

end

Blocks in Fortress are delimited by the special reserved words do and end . Here is an example of a function that
prints three words:

printThreeWords() = do

print “print ”
print “ three ”
print “words ”

end

A tupleexpression contains a sequence of elements delimited by parentheses and separated by commas:

(“ this ” , “ is ” , “a” , “ tuple ” , “of ” , “mostly ” , “strings ” , 0)

When a tuple expression is evaluated, the various subexpressions are evaluatedin parallel. For example, the following
tuple expression denotes a parallel computation:

(factorial(100), factorial(500), factorial(1000))

The elements in this expression may be evaluated in parallel.

2.8 For Loops Are Parallel by Default

Here is an example of a simplefor loop in Fortress:

for i← 1 : 10 do

print(i “ ” )
end

This for loop iterates over all elementsi between1 and 10 and prints the value ofi . Expressions such as1 : 10
are referred to asrange expressions. They can be used in any context where we wish to denote all theintegers between
a given pair of integers.

A significant difference between Fortress and most other programming languages is thatfor loops are parallel by
default. Thus, printing in the various iterations of this loop can occur in an arbitrary order, such as:

5 4 6 3 7 2 9 10 1 8

2.9 Atomic Expressions

In order to control interactions of parallel executions, Fortress includes the notion ofatomic expressions, as in the
following example:

atomic do

x += 1
y += 1

end
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An atomic expression is executed in such a manner that all other threads observe either that the computation has
completed, or that it has not yet begun; no other thread observes an atomic expression to have only partially completed.
For example, in the following parallel computation:

do

x = 0
y = 0
z: Z := 0
(atomic do

x += 1
y += 1

end,
z := x+ y)
z

end

the second subexpression in the tuple expression either observes that bothx andy have been updated, or that neither
has. Thus, possible values of thedo expression are 0 and 2, but not 1.

2.10 Dimensions and Units

Numeric types in Fortress can be annotated with physical units and dimensions. For example, the following function
declares that its parameter is a tuple represented in the units kg and m/s , respectively:

kineticEnergy(m : R kg, v : R m/s) : R kg m2/s2 = (m v2)/2

A value of typeR kg is a 64-bit float representing a measurement in kilograms. When the functionkineticEnergy is
called, two values in its tuple argument are statically checked to ensure that they are in the right units.

All commonly used dimensions and units are provided in the Fortress standard libraries. Unit symbols are encoded
with trailing underscores; such identifiers are rendered inroman font. For example the unitm is represented asm_.
For each unit, both longhand and shorthand names are provided (e.g.,m , meter , and meters ). The various names
of a given unit can be used interchangeably. Also, some units(and dimensions) are defined to be synonymous with
algebraic combinations of other units (and dimensions). For example, the unitN is defined to be synonymous with
the unit kg m/s2 and the dimensionForce is defined to be synonymous withMass Acceleration . Likewise, the
dimensionAcceleration is defined to be synonymous withVelocity/Time .

Measurements in the same unit can be compared, added, subtracted, multiplied and divided. Measurements in different
units can be multiplied and divided. For example, we can write the following variable declaration:

v : R m/s = (3 meters + 4 meters)/5 seconds

However, the following variable declaration is a static error:

v : R m/s = (3 meters + 4 seconds)/5 seconds

In addition, the following variable declaration is a staticerror because the unit of the left hand side of this declaration
is m/s whereas the unit of the right hand side is simplym (or meters ):

v : R m/s = (3 meters + 4 meters)/5
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It is also possible to convert a measurement in one unit to a measurement of another unit of the same dimension, as in
the following example:

kineticEnergy(3.14 kg, 32 f/s in m/s)

The second argument tokineticEnergy is a measurement in feet per second, converted to meters per second.

2.11 Aggregate Expressions

As with mathematical notation, Fortress includes special syntactic support for writing down many common kinds of
collections, such as tuples, arrays, matrices, vectors, maps, sets, and lists simply by enumerating all of the collection’s
elements. We refer to an expression formed by enumerating the elements of a collection as anaggregate expression.
The elements of an aggregate expression are computed in parallel.

For example, we can define an arraya in Fortress by explicitly writing down its elements, enclosed in brackets and
separated by whitespaces, as follows:

a = [0 1 2 3 4]

Two-dimensional arrays can be written down by separating rows by newlines (or by semicolons). For example, we
can bindb to a two-dimensional array as follows:

b = [3 4
5 6]

There is also support for writing down arrays of dimension three and higher. We bindc to a three-dimensional array
as follows:

c = [1 2
3 4; ; 5 6

7 8; ; 9 10
11 12]

Various slices of the array along the third dimension are separated by pairs of semicolons. (Higher dimensional arrays
are also supported. When writing a four-dimensional array,slices along the fourth dimension are separating by triples
of semicolons, and so on.)

Vectors are written down just like one-dimensional arrays.Similarly, matrices are written down just like two-dimensional
arrays. Whether an array aggregate expression reduces to anarray, a vector, or a matrix is inferred from context (e.g.,
the static type of a variable that such an expression is boundto). Of course, all elements of vectors and matrices must
be numbers.

A set can be written down by enclosing its elements in braces and separating its elements by commas. Here we bind
s to the set of integers0 through4 :

s = {0, 1, 2, 3, 4}

The elements of a list are enclosed in angle brackets (written in ASCII as<| and|> ):

l = 〈0, 1, 2, 3, 4〉

The elements of a map are enclosed in curly braces, with key/value pairs joined by the arrow7→ (written in ASCII as
|-> ):
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m = {′a′ 7→ 0,′ b′ 7→ 1,′ c′ 7→ 2}

2.12 Comprehensions

Another way in which Fortress mimics mathematical notationis in its support forcomprehensions. Comprehensions
describe the elements of a collection by providing a rule that holds for all of the collection’s elements. The elements
of the collection are computed in parallel by default. For example, we define a sets that consists of all elements of
another sett divided by 2, as follows:

s = {x/2 | x← t}

The expression to the left of the vertical bar explains that elements ofs consist of every valuex/2 for every valid
value ofx (determined by the right hand side). The expression to the right of the vertical bar explains how the elements
x are to begenerated(in this case, from the sett ). The right hand side of a comprehension can consist of multiple
generators. For example, the following set consists of every element resulting from the sum of an element ofs with
an element oft :

u = {x+ y | x← s, y ← t}

The right hand side of a comprehension can also containfiltering expressionsto constrain the elements provided by
other clauses. For example, we can stipulate thatv consists of all nonnegative elements oft as follows:

v = {x | x← t, x ≥ 0}

There is a comprehension expression for every form of aggregate expression except tuple expressions. For example,
here is a list comprehension in Fortress:

〈2x|x← v〉
The elements of this list consist of all elements of the setv multiplied by 2 .

In the case of an array comprehension, the expression to the left of the bar consists of a tuple indexing the elements of
the array. For example, the following comprehension describes a3× 3 array, all of whose elements are zero.

[(x, y) = 0 | x← {0, 1, 2}, y ← {0, 1, 2}]

The collection of elements0 through2 can also be expressed via a range expression, as follows:

[(x, y) = 0 | x← 0 : 2, y ← 0 : 2]

An array comprehension can consist of multiple clauses. Theclauses are run in the order provided, with declarations
from later clauses shadowing declarations from earlier clauses. For example, the following comprehension describes
a 3× 3 identity matrix:

[(x, y) = 0 | x← 0 : 2, y ← 0 : 2
(x, x) = 1 | x← 0 : 2]

2.13 Summations and Products

As with mathematical notation, Fortress provides syntactic support for summations and productions (and other big
operations) over the elements of a collection. For example,an alternative definition offactorial is as follows:
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factorial(n) =
∏

i←1:n

i

This function definition can be written in ASCII as follows:

factorial(n) = PRODUCT[i <- 1:n] i

The character
∏

is written PRODUCT. Likewise,
∑

is written SUM. As with comprehensions, the values in the
iteration are generated from specified collections.

2.14 Tests and Properties

Fortress includes support for automated program testing. New tests in a component can be defined using thetest
modifier. For example, here is a test that calls to thefactorial function result in values greater than or equal to what
was provided:

test factorialResultLarger [x← 0 : 100] = x ≤ factorial(x)

The values forx are generated from the provided range0 : 100 .

Programs are also allowed to includepropertydeclarations, documenting boolean conditions that a program is ex-
pected to obey. Property declarations are similar syntactically to test declarations. Unlike test declarations, property
declarations do not specify explicit finite collections over which the property is expected to hold. Instead, the param-
eters in a property declaration are declared to have types, and the property is expected to hold over all values of those
types. For example, here is a property declaring thatfactorial is greater than or equal to every argument of typeZ :

property factorialResultAlwaysLarger = ∀(x : Z) (x ≤ factorial(x))

When a property declaration includes a name, the property identifier is bound to a function whose parameter and body
are that of the property, and whose return type isBoolean. A function bound in this manner is referred to as aproperty
function. A property function can be called from within tests to ensure than a property holds at least for all values in
some finite set of values.

2.15 Objects and Traits

A great deal of programming can be done simply through the useof functions, top-level variables, and standard types.
However, Fortress also includes a trait and object system for defining new types, as well as objects that belong to
them. Traits in Fortress exist in a multiple inheritance hierarchy rooted at traitObject. A trait declaration includes a
set of method declarations, some of which may be abstract. For example, here is a declaration of a simple trait named
Moving :

trait Moving extends {Tangible,Object }
position(): (R Length)3

velocity(): (R Velocity)3

end

The set of traits extended by traitMoving are listed in braces after the special reserved wordextends . Trait Moving
inherits all methods declared by each trait it extends. The two methodsposition andvelocity declared in traitMoving
areabstract; they contain no body. Their return types are vectors of length 3, whose elements are of typesR Length
and R Velocity respectively. As in mathematical notation, a vector of length n with element typeT is written Tn .
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Traits can also declare concrete methods, as in the following example:

trait Fast extends Moving
velocity() = [0 0 (299 792 458 m/s)]

end

Trait Fast extends a single trait,Moving . (Because it extends only one trait, we can elide the braces in its extends

clause.) It inherits both abstract methods defined inMoving , and it provides a concrete body for methodvelocity .

Trait declarations can be extended by other trait declarations, as well as byobject declarations. There are two kinds
of object definitions. Asingleton object declarationdefines a sole, stand-alone object. For example:

object Sol extends {Moving, Stellar }
spectralClass = G2

position() = [0 0 0]
velocity() = [0 0 0]

end

The objectSol extends two traits:Moving andStellar, and provides definitions for the abstract methods it inherits.
Objects must provide concrete definitions for all abstract methods they inherit.Sol also defines a fieldspectralClass .
For every field included in an object definition, an implicit getter is defined for that field. Calls to the getter of the field
of an object consist of an expression denoting the object followed by a dot and the name of the field. For example,
here is a call to the getterspectralClass of objectSol:

Sol.spectralClass

If a field includes modifiersettable , an implicit setter is defined for the field. Calls to setters look like assignments.
Here is an assignment to fieldspectralClass of objectSol:

Sol.spectralClass := G3

In fact, all accesses to a field from outside the object to which the field belongs must go through the getter of the field,
and all assignments to it must go through the setter. (There is simply no other way syntactically to refer to the field.)

If a field includes modifierhidden , no implicit getter is defined for the object.

Every method declared in an object or trait includes an implicit self parameter, denoting the receiver of the method
call. If desired, this parameter can be made explicit, by including it before the name of the method, along with a
trailing dot. For example, the following definition ofSol is equivalent to the one above:

object Sol extends {Moving, Stellar}
spectralClass = G2

self.position() = [0 0 0]
velocity() = [0 0 0]

end

In this definition, the self parameter ofposition is provided explicitly.

In fact, the self parameter of a method can even be given a position other than the default position. For example, here
is a definition of a type where the self parameters appear in nonstandard positions:

trait List
cons(x: Object, self) : List
append(xs: List, self) : List

end

30



In both methodscons and append , the self parameter occurs as the second parameter. Calls tothese methods look
more like function calls than method calls. For example, in the following call toappend , the receiver of the call isl2 :

append(l1, l2)

In contrast to singleton object definitions, adynamically parametric object definitionincludes aconstructor declara-
tion in its header, as in the following example:

object Particle(position : (R Length)3,
velocity : (R Velocity)3)

extends Moving
end

Every call to the constructor of dynamically parametric object Particle yields a new object. For example:

p1 = Particle([3 m 2 m 5 m], [(1 m/s) 0 0])

The parameters to the constructor of a dynamically parametric object implicitly define fields of the object, along with
their getters (by default). These parameters can include all of the modifiers that an ordinary field can. For example, a
parameter can include the modifierhidden , in which case a getter is not implicitly defined for the field.

In the definition ofParticle , it is the implicitly defined getters of fieldsposition andvelocity that provide concrete
definitions for the inherited abstract methods from traitMoving .

In both singleton and dynamically parametric objects, implicitly defined getters and setters can be overridden by
defining explicit getters and setters, using the modifiersgetter and setter . For example, we alter the definition of
Particle to include an explicit getter for fieldvelocity as follows:

object Particle(position : (R Length)3,
velocity : (R Velocity)3)

extends Moving
getter velocity() = do

print “velocity getter accessed ”
velocity

end

end

The explicitly defined getter first prints a message and then returns the value of the fieldvelocity . Note that the final
variable reference in this getter refers directly to the field velocity , not to the getter.Only within an object definition
can fields be accessed directly. In fact, even in an object definition, fields are only accessed directly when they are
referred to as simple variables. In the following definitionof Particle , the gettervelocity is recursively accessed
through the special variableself (bound to the receiver of the method call):

object Particle(position : (R Length)3,
velocity : (R Velocity)3)

extends Moving
getter velocity() = do

print “velocity getter accessed ”
self.velocity

end

end

Now, the result of a call to gettervelocity is an infinite loop (along with a lot of output).
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2.15.1 Traits, Getters, and Setters

Although traits do not include field declarations, they can include getter and setter declarations, as in the following
alternative definition of traitMoving :

trait Moving extends {Tangible,Object }
getter position(): (R Length)3

getter velocity(): (R Velocity)3

end

Now, an object with traitMoving must provide the definitions ofgetters(as opposed to ordinary methods) forposition

andvelocity . The advantage of this definition is that we can use getter notation on a variable of static typeMoving :

v : Moving = . . .
v.position

In fact, getters can be declared in a trait definition using field declaration syntax, as in the following example (which
is equivalent to the definition ofMoving above):

trait Moving extends {Tangible,Object }
position: (R Length)3

velocity : (R Velocity)3

end

Getter declarations in trait definitions must not include bodies. A getter definition can include the various modifiers
allowed on a field declaration, with similar results. For example, if the modifiersettable is used, then a setter is
implicitly declared, in addition to a getter.

2.16 Features for Library Development

The language features introduced above are sufficient for the vast majority of applications programming. However,
Fortress has also be designed to be a good language forlibrary programming. In fact, much of the Fortress language
as viewed by applications programmers actually consists ofcode defined in libraries, written in a small core language.
By defining as much of the language as possible in libraries, our aim is to allow the language to evolve gracefully
as new demands are placed on it. In this section, we briefly mention some of the features that make Fortress a good
language for library development.

2.16.1 Generic Types and Static Parameters

As in other languages, Fortress allows types to be parametric with respect to other types, as well as other “static”
parameters, including integers, booleans, dimensions, units, operators, and identifiers. We have already seen some
standard parametric types, such asArray andVector. Programmers can also define new traits, objects, and functions
that include static parameters.

2.16.2 Specification of Locality and Data Distribution

Fortress includes a facility for expressing programmer intent concerning the distribution of large data structures at
run time. This intent is expressed through special data structures calleddistributions. In fact, all arrays and ma-
trices include distributions. These distributions are defined in the Fortress standard libraries. In most cases, the
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default distributions will provide programmers with good performance over a variety of machines. However, in some
circumstances, performance can be improved by overriding the default selection of distributions. Moreover, some
programmers might wish to define these distributions, tailored for particular platforms and programs.

2.16.3 Operator Overloading

Operators in Fortress can be overloaded with new definitions. Here is an alternative definition of thefactorial func-
tion, defined as a postfix operator:

opr (n)! =
∏

i←1:n

i

As with mathematical notation, Fortress allows operators to be defined as prefix, postfix, and infix. More exotic
operators can even be defined as subscripting (i.e., applications of the operators look like subscripts), and as bracketing
(i.e., applications of the operators look like the operandshave been simply enclosed in brackets).

2.16.4 Definition of New Syntax

Fortress provides a facility for the definition of new syntaxin libraries. This facility is useful for defining librariesfor
domain-specific languages, such as SQL, XML, etc. It is also used to encode some of the language constructs seen by
applications programmers.
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Part II

Fortress for Application Programmers
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Chapter 3

Programs

A programconsists of a finite sequence of Unicode 5.0 abstract characters. (Fortress does not distinguish between
different code-point encodings of the same character.) In order to more closely approximate mathematical notation,
certain sequences of characters are rendered as subscriptsor superscripts, italicized or boldface text, or text in special
fonts, according to the rules in Appendix E. For the purposesof entering program text, ASCII encodings of Unicode
characters are also provided in Appendix E. Although much ofthe program text in this specification is rendered as
formatted Unicode, some text is presented unformatted, or in its ASCII encoding, to aid in exposition.

A program isvalid if it satisfies allstatic constraintsstipulated in this specification. Failure to satisfy a static constraint
is astatic error. Only valid programs can beexecuted; the validity of a program must be checked before it is executed.

Executing a valid Fortress program consists ofevaluating expressions. Evaluation of an expression may modify the
program stateyielding aresult. A result is either avalue, or anabrupt completion.

The characters of a valid program determine a sequence ofinput elements. In turn, the input elements of a program
determine a sequence ofprogram constructs, such astrait declarations, object declarations, function declarations,
andvariable declarations. Programs are developed, compiled, and deployed asencapsulated upgradable components
as described in Chapter 22. We explain the structure of inputelements, and of each program construct, in turn, along
with accompanying static constraints. We also explain how the outcome of a program execution is determined from
the sequence of constructs in the program.

Fortress is a block-structured language: A Fortress program consists of nestedblocksof code. The entire program
is a single block. Each component is a block. Any top-level declaration is a block, as is any function declaration.
Several expressions are also blocks, or have blocks as partsof the expression, or both (e.g., awhile expression is
a block, and its body is a different block). See Chapter 13 fora discussion of expressions in Fortress. In addition, a
local declaration begins a block that continues to the end ofthe smallest enclosing block unless it is a local function
declaration and is immediately preceded by another local function declaration. (This exception allows overloaded and
mutually recursive local function declarations.) BecauseFortress is block structured, and because the entire program
is a block, the smallest block that syntactically contains aprogram construct is always well defined.

Fortress is an expression-oriented language: In Fortress,statements are just expressions with type(). They do not
evaluate to an interesting value. Typically, they are evaluated solely for their effects.

Fortress is a whitespace-sensitive language: Fortress hasdifferent contexts influencing the whitespace-sensitivity of
expressions as described in Appendix G.
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Chapter 4

Evaluation

The state of an executing Fortress program consists of a set of threads, and amemory. Communication with the outside
world is accomplished throughinput and output actions. In this chapter, we give a general overview of the evaluation
process and introduce terminology used throughout this specification to describe the behavior of Fortress constructs.

Executing a Fortress program consists ofevaluatingthe expressions in each of its threads. Threads evaluate expres-
sions by takingsteps. We say evaluation of an expressionbeginswhen the first step is taken; each step yields a new
expression. A step maycompletethe evaluation, in which case no more steps are possible on that expression, or it may
result in anintermediate expression, which requires further evaluation. Intermediate expressions are generalizations of
ordinary Fortress expressions: some intermediate expressions cannot be written in programs. We say that one expres-
sion isdynamically containedwithin a second expression if all steps taken in evaluating the first expression are taken
between the beginning and completion of the second. A step may also have effects on the program state beyond the
thread taking the step, for example, by modifying one or morelocations in memory, creating new threads to evaluate
other expressions, or performing an input or output action.Threads are discussed further in Section 4.4. The memory
consists of a set oflocations, which can beread andwritten. New locations may also beallocated. The memory is
discussed further in Section 4.3. Finally,input actionsandoutput actionsare described in Section 4.6.

4.1 Values

A value is the result of normal completion of the evaluation of an expression. (See Section 4.2 for a discussion of
completion of evaluation.) A value has atype, anenvironment(see Section 4.5), and a finite set offields. Every value
is an object (see Chapter 10); it may be avalue object, areference object, or afunction. See Chapter 8 for a description
of the types corresponding to these different values. The type of a value specifies the names and types of its fields,
and which names must be bound in its environment (and the types of the locations they are bound to). The type also
specifies the methods (including their bodies) of the object. Only trait types have methods other than those inherited
from the typeObject.

In a value object, each field is a value. In a reference object,each field is a location. Every field has a name, which
may be an identifier or an index. Only values of typeLinearSequence (defined in Section 40.1) orHeapSequence
(defined in Section 40.3) have fields named by indices. Functions and the value() have no fields. Every field in a
value object isimmutable. Reference objects may have bothmutableand immutablefields. No two distinct values
share any mutable field.

Values are constructed by top-level function declarations(see Section 12.1) and singleton object declarations (see
Section 10.1), and by evaluating an object expression (see Section 13.9), a function expression (see Section 13.7),
a local function declaration (see Section 6.4), a call to an object constructor (declared by an object declaration; see
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Chapter 10), a literal (see Section 13.1), aspawn expression (see Section 13.24), an aggregate expression (see Sec-
tion 13.28), or a comprehension (see Section 13.29). In the latter case, the constructed value is the result of the normal
completion of such an evaluation.

4.2 Normal and Abrupt Completion of Evaluation

Conceptually, an expression is evaluated until itcompletes. Evaluation of an expression maycomplete normally,
resulting in a value, or it maycomplete abruptly. Each abrupt completion has an associated value which caused the
abrupt completion: the value is either an exception value that is thrown and uncaught or the exit value of anexit
expression (described in Section 13.13). In addition to programmer-defined exceptions thrown explicitly by athrow
expression (described in Section 13.25), there are predefined exceptions thrown by the Fortress standard libraries. For
example, dividing an integer by zero (using the/ operator) causes aDivideByZeroException to be thrown.

When an expression completes abruptly, control passes to the dynamically immediately enclosing expression. This
continues until the abrupt completion is handled either by atry expression (described in Section 13.26) if an ex-
ception is being thrown or by an appropriately taggedlabel expression (described in Section 13.13) if anexit
expression was executed. If abrupt completion is not handled within a thread and its outermost expression completes
abruptly, the thread itself completes abruptly. If the mainthread of a program completes abruptly, the program as a
whole also completes abruptly.

4.3 Memory and Memory Operations

In this specification, the termmemoryrefers to a set of abstractlocations; the memory is used to model sharing and
mutation. A location has an associated type, and a value of that type (i.e., the type of the value is a subtype of the type
of the location); we say that the locationcontainsits associated value. Unlike values, locations can have non-object
trait types.

There are three kinds of operations that can be performed on memory:allocation, reads, andwrites. Reads and writes
are collectively calledmemory accesses. Intuitively, a read operation takes a location and returnsthe value contained
in that location, and a write operation takes a location and avalue of the location’s type and changes the contents of
the location so the location contains the given value. Accesses need not take place in the order in which they occur in
the program text; a detailed account of memory behavior appears in Chapter 21.

Allocation creates a new location of a given type. Allocation occurs when a mutable variable is declared, or when a
reference object is constructed. In the latter case, a new location is allocated for each field of the object. Abstractly,
locations are never reclaimed; in practice, memory reclamation is handled by garbage collection.

A freshly allocated location isuninitialized. The type system and memory model in Fortress guarantee thataninitializ-
ing write is performed to every location, and that this write occurs before any read of the location. Any location whose
value can be written after initialization ismutable. Any location whose value cannot be written after initialization
is immutable. Mutable locations include mutable variables andsettable fields of a reference object. Immutable
locations include non-transient , non-settable fields of a reference object.

4.4 Threads and Parallelism

There are two kinds of threads in Fortress:implicit threads andspawned(or explicit) threads. Spawned threads are
objects created by thespawn construct, described in Section 13.24.
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A thread may be in one of five states:not started, executing, suspended, normally completedandabruptly completed.
We say a thread isnot startedafter it is created but before it has taken a step; it has an expression that it needs to
evaluate. This is only important for purposes of determining whether two threads are executing simultaneously; see
Section 32.4. A thread isexecutingor suspendedif it has taken a step, but has not completed; see below for the
distinction between executing and suspended threads. A thread iscompleteif its expression has completed evaluation.
If the expression completes normally, its value is the result of the thread.

Every thread has abodyand anexecution environment. The body is an intermediate expression, which the thread
evaluates in the context of the execution environment; boththe body and the execution environment may change when
the thread takes a step. This environment is used to look up names in scope but bound in a block that encloses the
construct that created the thread. The execution environment of a newly created thread is the environment of the thread
that created the new thread.

In Fortress, a number of constructs areimplicitly parallel. An implicitly parallel construct creates agroupof one or
more implicit threads. The implicitly parallel constructsare:

• Tuple expressions:Each element expression of the tuple expression is evaluated in a separate implicit thread
(see Section 13.28).

• also do blocks: each sub-block separated by analso clause is evaluated in a separate implicit thread (see
Section 13.12).

• Method invocations and function calls:The receiver or the function and each of the arguments is evaluated in
a separate implicit thread (see Section 13.4, Section 13.5,and Section 13.6).

• for loops, comprehensions, sums, generated expressions, and big operators: Parallelism in looping con-
structs is specified by the generators used (see Section 13.17). Programmers should assume that generators other
than thesequential generator can execute each iteration of the body expressionin a separate implicit thread.
Reduction variables infor loops, and results returned from comprehensions and big operators correspond to
reductions (see Section 13.15.1).

• Extremum expressions:Each guarding expression of the extremum expression is evaluated in a separate im-
plicit thread (see Section 13.21).

• Tests:Each test is evaluated in a separate implicit thread (see Chapter 19).

Implicit threads run fork-join style: all threads in a groupare created together, and they all must complete before the
group as a whole completes. There is no way for a programmer tosingle out an implicit thread and operate upon it
in any way; they are managed purely by the compiler, runtime,and libraries of the Fortress implementation. Implicit
threads need not be scheduled fairly; indeed, a Fortress implementation may choose to serialize portions of any group
of implicit threads, interleaving their operations in any way it likes. For example, the following code fragment may
loop forever:

r : Z64 := 0
(r := 1, while r = 0 do end)

If any implicit thread in a group completes abruptly, the group as a whole will complete abruptly as well. Every thread
in the group will either not run at all, complete (normally orabruptly), or may be terminated early as described in
Section 32.6. The result of the abrupt completion of the group is the result of one of the constituent threads that com-
pletes abruptly. After abrupt completion of a group of implicit threads, each reduction variable (see Section 13.15.1)
may reflect an arbitrary subset of updates performed by the threads in the group. This means in general that reduction
variables should not be accessed after abrupt completion. The exact behavior of reduction variables depends on the
supporting generator structure and is described in Section32.8.

Spawned thread objects are reference objects with four methods, val , wait , ready , and stop (described in Sec-
tion 32.6). None of these methods take arguments (other thanthe thread). Theval method waits until the thread is
complete; if the thread completes normally, the resulting value is returned. A spawned thread is not permitted to exit
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(discussed in Section 13.13) to a surrounding label (the label is considered to be out of scope), but may fail to catch an
exception and thus complete abruptly. When this happens, the exception isdeferred. Any invocation of theval method
on the spawned thread throws the deferred exception. If the spawned thread object is discarded, the exception will be
silently ignored. In particular, if the result of aspawn expression is dropped, it is impossible to detect completion of
the spawned thread or to recover from any deferred exceptions.

Thewait method waits until the thread is complete and then returns the void value. Theready method does not wait,
but instead returns a boolean value indicating whether the thread is complete. Invocations of these methods do not
cause deferred exceptions to be thrown.

We say a spawned thread has beenobserved to completeafter invoking theval or wait methods, or when an invocation
of the ready method returnstrue .

There are three ways in which a thread can be suspended. First, a thread that begins evaluating an implicitly parallel
construct is suspended until the thread group has completed. Second, a thread that invokesval or wait is suspended
until the spawned thread is complete. Finally, invoking theabort function from within anatomic expression may
cause a thread to suspend; see Section 32.3.

Threads in a Fortress program can perform operations simultaneously on shared objects. In order to synchronize data
accesses, Fortress providesatomic expressions (see Section 13.23). Chapter 21 describes the memory model which
is obeyed by Fortress programs.

Different implicit threads (even different iterations of the same loop body) may execute in very different amounts
of time. A naively parallelized loop will cause processors to idle until every iteration finishes. The simplest way to
mitigate this delay is to expose substantially more parallel work than the number of underlying processors available to
run them. Load balancing can move the resulting (smaller) units of work onto idle processors to balance load.

The ratio between available work and number of threads is called parallel slack [3, 4]. With support for very
lightweight threading and load balancing, slack in hundreds or thousands (or more) proves beneficial; very slack
computations easily adapt to differences in the number of available processors. Slack is a desirable property, and the
Fortress programmer should endeavor to expose parallelismwhere possible.

4.5 Environments

An environmentmapsnamesto values or locations. Environments are immutable, and twoenvironments that map
exactly the same names to the same values or locations are identical.

A program starts executing with an empty environment. Environments are extended with new mappings by variable,
function, and object declarations, and functional calls (including calls to object constructors). After initializing all
top-level variables and singleton objects as described in Section 22.6, thetop-level environmentfor each component is
constructed.

The environment of a value is determined by how it isconstructed. For all but object expressions, function expressions
and local function declarations, the environment of the constructed value is the top-level environment of the component
in which the expression or declaration occurs. For object and function expressions and local function declarations, the
environment of the constructed value is the lexical environment in which the expression or declaration was evaluated.

We carefully distinguish a spawned thread from its associated spawned thread object. In particular, note that the
execution environment of a spawned thread, in which the bodyexpression is evaluated, is distinct from the environment
of the associated thread object, in which calls to the threadmethods are evaluated.
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4.6 Input and Output Actions

Certain functionals in Fortress perform primitive input/output (I/O) actions. These actions have an externally visible
effect. Any functional which may perform an I/O action—either because it is a primitive action or because it invokes
other functionals which perform I/O actions—must be declared with theio modifier.

Any primitive I/O action may take many internal steps; each step may read or write any memory locations referred to
either directly or transitively by object references passed as arguments to the action. Each I/O action is free to complete
either normally or abnormally. I/O actions may block and be prevented from taking a step until any necessary external
conditions are fulfilled (input is available, data has been written to disk, and so forth).

Each I/O action taken by an expression is considered part of that expression’s effects. The steps taken by an I/O action
are considered part of the context in which an expression executes, in much the same way as effects of simultaneously-
executing threads must be considered when describing the behavior of an expression. For example, we cannot consider
two functionals to be equivalent unless the possible I/O actions they take are the same, given identical internal steps
by each I/O action.
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Chapter 5

Lexical Structure

A Fortress program consists of a finite sequence of Unicode 5.0 abstract characters. Every character in a program is
part of an input element. The partitioning of the character sequence into input elements is uniquely determined by
the characters themselves. In this chapter, we explain how the sequence of input elements of a program is determined
from a program’s character sequence.

This chapter also describes standard ways torender(that is,display) individual input elements in order to approximate
conventional mathematical notation more closely. Other rules, presented in later chapters, govern the rendering of
certainsequencesof input elements; for example, the sequence of three input elements1 , / , and 2 may be rendered
as 1

2 , and the sequence of three input elementsa , ˆ , andb may be renderedab . The rules of rendering are “merely”
a convenience intended to make programs more readable. Alternatively, the reader may prefer to think of the rendered
presentation of a program as its “true form” and to think of the underlying sequence of Unicode characters as “merely”
a convenient way of encoding mathematical notation for keyboarding purposes.

Most of the program text in this specification is shown in rendered presentation form. However, sometimes, particu-
larly in this chapter, unformatted code is presented to aid in exposition. In may cases the unformatted form is shown
alongside the rendered form in a table, or following the rendered form in parentheses; as an example, consider the
operator⊕ ( OPLUS).

5.1 Characters

A Unicode 5.0 abstract character is the smallest element of aFortress program.1 Many characters have standardglyphs,
which are how these characters are most commonly depicted. However, more than one character may be represented
by the same glyph. Thus, Unicode 5.0 specifies a representation for each character as a sequence ofcode points. Each
character used in this specification maps to a single code point, designated by a hexadecimal numeral preceded by
“U+”. Unicode also specifies a name for each character;2 when introducing a character, we specify its code point and
name, and sometimes the glyph we use to represent it in this specification. In some cases, we use such glyphs without
explicitly introducing the characters (as, for example, with the simple upper- and lowercase letters of the Latin and
Greek alphabets). When the character represented by a glyphis unclear and the distinction is important, we specify
the code point or the name (or both). The Unicode Standard specifies ageneral categoryfor each character, which we
use to describe sets of characters below.

1Note that a single Unicode abstract character may have multiple encodings. Fortress does not distinguish between different encodings of the
same character that may be used in representing source code,and it treats canonically equivalent characters as identical. See the Unicode Standard
for a full discussion of encoding and canonical equivalence.

2There are sixty-five “control characters”, which do not haveproper names. However, many of them haveUnicode 1.0 names, or other standard
names specified in the Unicode Character Database, which we use instead.
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We partition the Unicode 5.0 character set into the following (disjoint) classes:

• special non-operator characters, which are:

U+0026 AMPERSAND & U+0027 APOSTROPHE ’

U+0028 LEFT PARENTHESIS ( U+0029 RIGHT PARENTHESIS )
U+002C COMMA , U+002E FULL STOP .
U+0038 SEMICOLON ; U+005C REVERSE SOLIDUS \
U+2026 HORIZONTAL ELLIPSIS . . . U+21A6 RIGHTWARDS ARROW FROM BAR7→
U+2200 FOR ALL ∀ U+2203 THERE EXISTS ∃
U+27E6 MATHEMATICAL LEFT WHITE SQUARE BRACKET[[
U+27E7 MATHEMATICAL RIGHT WHITE SQUARE BRACKET]]

• special operator characters, which are

U+003A COLON : U+003D EQUALS SIGN =
U+005B LEFT SQUARE BRACKET [ U+005D RIGHT SQUARE BRACKET ]
U+005E CIRCUMFLEX ACCENT ˆ U+007B LEFT CURLY BRACKET {
U+007C VERTICAL LINE | U+007D RIGHT CURLY BRACKET }
U+2192 RIGHTWARDS ARROW → U+21D2 RIGHTWARDS DOUBLE ARROW⇒

• letters, which are characters with Unicode general category Lu, Ll,Lt, Lm or Lo—those with Unicode general
category Lu areuppercase letters—and the followingspecial letters:

U+221E INFINITY ∞ U+22A4 DOWN TACK ⊤ U+22A5 UP TACK ⊥

• connecting punctuation(Unicode general category Pc);

• digits (Unicode general category Nd);

• prime characters, which are:

U+2032 PRIME U+2033 DOUBLE PRIME

U+2034 TRIPLE PRIME U+2035 REVERSED PRIME

U+2036 REVERSED DOUBLE PRIME U+2037 REVERSED TRIPLE PRIME

• whitespace characters, which arespaces(Unicode general category Zs) and the following characters:

U+0009 CHARACTER TABULATION U+000A LINE FEED

U+000C LINE TABULATION U+000C FORM FEED

U+000D CARRIAGE RETURN

U+001C INFORMATION SEPARATOR FOUR U+001D INFORMATION SEPARATOR THREE

U+001E INFORMATION SEPARATOR TWO U+001F INFORMATION SEPARATOR ONE

U+2028 LINE SEPARATOR U+2029 PARAGRAPH SEPARATOR

• character literal delimiters, which are:

U+0060 GRAVE ACCENT ‘

U+2018 LEFT SINGLE QUOTATION MARK ‘
U+2019 RIGHT SINGLE QUOTATION MARK ’

• string literal delimiters, which are:

U+0022 QUOTATION MARK "

U+201C LEFT DOUBLE QUOTATION MARK “
U+201D RIGHT DOUBLE QUOTATION MARK”

• ordinary operator characters, enumerated (along with the special operator characters) in Appendix F, which
include the following characters with code points less thanU+007F:
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U+0021 EXCLAMATION MARK ! U+0023 NUMBER SIGN #
U+0024 DOLLAR SIGN $ U+0025 PERCENT SIGN %
U+002B PLUS SIGN + U+002D HYPHEN-MINUS −
U+003F QUESTION MARK ? U+0040 COMMERCIAL AT @
U+002A ASTERISK * U+002F SOLIDUS /
U+003C LESS-THAN SIGN < U+003E GREATER-THAN SIGN >
U+007E TILDE ˜

and most (but not all) Unicode characters specified to bemathematical operators(i.e., characters with code
points in the range 2200-22FF) are operators in Fortress.

• other characters

Some other classes of characters, which overlap with the ones above, are useful to distinguish:

• control charactersare those with Unicode general category Cc;

• ASCII charactersare those with code points U+007F and below;

• printable ASCII charactersare ASCII characters that are not control characters (i.e.,with code points from
U+0020 to U+007E);

• word charactersare letters, digits, connecting punctuation, prime characters, and apostrophe;

• restricted-word charactersare ASCII letters, ASCII digits, and the underscore character (i.e., ASCII word
characters other than apostrophe);

• hexadecimal digitsare the digits and the lettersA, B, C, D, E andF;

• operator charactersare special operator characters and ordinary operator characters;

• special charactersare special non-operator characters and special operator characters;

• enclosing charactersare the enclosing operator characters enumerated in Section F.1, left and right parenthesis
characters, and mathematical left and right white square brackets;

• operator combining characters, which combine to form multicharacter enclosing operator tokens, are the fol-
lowing:

U+0028 LEFT PARENTHESIS ( U+0029 RIGHT PARENTHESIS )
U+002A ASTERISK * U+002E FULL STOP .
U+002F SOLIDUS / U+003C LESS-THAN SIGN <
U+003E GREATER-THAN SIGN > U+005B LEFT SQUARE BRACKET [
U+005C REVERSE SOLIDUS \ U+005D RIGHT SQUARE BRACKET]
U+007B LEFT CURLY BRACKET { U+007C VERTICAL LINE |
U+007D RIGHT CURLY BRACKET }

Forbidden Characters

It is a static error for a Fortress program to contain any control character other than the above-listed whitespace
characters, except that the characterSUBSTITUTE(U+001A; also known as “control-Z”) is allowed and ignored if it
is the last character of the program.

It is a static error for the following characters to occur outside a comment:

U+0009 CHARACTER TABULATION U+000C LINE TABULATION

U+001C INFORMATION SEPARATOR FOUR U+001D INFORMATION SEPARATOR THREE

U+001E INFORMATION SEPARATOR TWO U+001F INFORMATION SEPARATOR ONE
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Thus,LINE FEED, FORM FEEDandCARRIAGE RETURNare the only control characters—and the only whitespace
characters other than spaces,LINE SEPARATOR, and PARAGRAPH SEPARATOR—outside of comments in a valid
Fortress program.

It is a static error forREVERSE SOLIDUS(i.e., U+005C), any connecting punctuation other thanLOW LINE(i.e., ‘ ’;
U+005F, also known asSPACING UNDERSCORE), any character in the “other characters” class above, or the following
whitespace characters to appear outside of comments and string and character literals:

U+2000 EN QUAD U+2003 EM SPACE U+2006 SIX-PER-EM SPACE

U+2001 EM QUAD U+2004 THREE-PER-EM SPACE U+2007 FIGURE SPACE

U+2002 EN SPACE U+2005 FOUR-PER-EM SPACE U+2008 PUNCTUATION SPACE

5.2 Words

A word of a Fortress program is a maximal contiguous nonempty subsequence of word characters; that is, a word is
one or more consecutive word characters delimited by characters other than word characters (or the beginning or end
of the program). Recall that a word character is a letter, digit, connecting punctuation, prime character or apostrophe.
Note that words partition the word characters in a program: every word character belongs to exactly one word; words
do not overlap.

A restricted wordis a maximal contiguous fragment of a word that has only restricted-word characters (i.e., ASCII
letters, ASCII digits and underscore characters). Note that a restricted word might not be a word (i.e., if it is not
delimited by non-word characters) and that the restricted words partition the restricted-word characters of a program.

5.3 Lines, Pages and Position

The sequence of characters in a Fortress program is partitioned into lines and pages, which are delimited byline
terminatorsandpage terminatorsrespectively. Apage terminatoris an occurrence of the characterFORM_FEED. A
line terminatoris an occurrence of any of the following:

• a CARRIAGE RETURNimmediately followed by aLINE FEED,

• a CARRIAGE RETURNnot immediately followed byLINE FEED,

• a LINE FEED not immediately preceded byCARRIAGE RETURN,

• a LINE SEPARATOR, or

• a PARAGRAPH SEPARATOR.

A character in a program is on pagen (respectively linen) if there aren − 1 page terminators (respectively line
terminators) preceding that character in the program. A character is on linek of pagen if it is on pagen and there are
k − 1 line terminators preceding the character after the last preceding page terminator (or from the beginning of the
program, if the character is on page 1).

A character is at line positionk if there arek − 1 characters preceding it and after the last preceding line terminator
(or from the beginning of the program, if the character is on line 1). Note that a page terminator doesnot terminate a
line, and hence the character immediately following a page terminator need not be at line position 1.

As discussed in Section 5.4, before any other processing, a Fortress program undergoes a process calledASCII conver-
sion, which may replace sequences of ASCII characters with single (non-ASCII) characters. We expect that IDEs will
typically display a program by rendering the converted sequence of characters rather than the actual input sequence.
Thus, a program may appear to have fewer characters than it actually does. Nonetheless, the page, line and position of
a character is based on the program before conversion.
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If a character (or any other syntactic entity)x precedes another charactery in the program, we say thatx is to the left
of y and thaty is to the right ofx, regardless of how they may appear in a typical rendered display of the program.
Thus, it is always meaningful to speak, for example, of the left-hand and right-hand operands of a binary operator, or
the left-hand side of an assignment expression.

5.4 ASCII Conversion

To facilitate interaction with legacy tools and particularly to aid in program entry, Fortress specifies an ASCII encoding
for programs. For every valid Fortress program, there is an equivalent program that contains only ASCII characters.3

To support this encoding, a Fortress program undergoesASCII conversion, which produces an equivalent Fortress
program. ASCII conversion is idempotent: converting a program that resulted from conversion results in the same
program. Unless otherwise specified, all constraints and properties of Fortress programs stipulated in this specification
apply to the programs after they have been converted. This section gives a high-level overview of ASCII conversion.

ASCII conversion consists of two steps. The first step consists of “pasting” words across line breaks, so that long
identifiers and numerals can be split across lines. Identifiers may be very long in ASCII because many Unicode
characters are encoded with long sequences of ASCII characters (the actual conversion to Unicode characters is done
in the next step). Roughly speaking, in this step, two consecutive lines are pasted together if the first ends with
an ampersand that is immediately preceded by a word character, and the second begins with an ampersand that is
immediately followed by a word character.

The second step replaces certain restricted words, and sequences of operator and special characters, with single Uni-
code characters. Roughly speaking, if a restricted word is either the official Unicode 5.0 name with underscores in
place of spaces and hyphens, or a specified alternative name,of some character that is not a printable ASCII character,
then the restricted word is replaced by that character. In some cases, even a fragment of a restricted name may be
replaced by a single character (most commonly a Greek letter). Some multicharacter sequences of ASCII operator and
special characters are also replaced by non-ASCII operatoror special characters; we call such a sequenceASCII short-
hand. However, this replacement isnot generally done within string literals, which instead provideescape sequences
to get non-ASCII characters (see Section 5.10).

Precise descriptions of both these steps are given in Appendix E, including the rules for replacing fragments of re-
stricted words and the specification of alternative names for non-operator characters. Alternative names for operator
characters are given in Appendix F.

5.5 Input Elements and Scanning

After ASCII conversion, a Fortress program is broken up intoinput elementsby a process calledscanning.4 That is,
scanning transforms a Fortress program from a sequence of Unicode characters to a sequence of input elements. The
characters that comprise an input element always appear contiguously in the input sequence. Every input element is
a whitespace element(commentsare whitespace elements) or atoken. Every token is areserved word, a literal, an
identifier, anoperator token, or aspecial token. There are five kinds of literals: boolean literals, character literals,
string literals, the void literal, and numerals (i.e., numeric literals).

Conceptually, we can think of scanning as follows: First, the comments, character literals and string literals are
identified. Then the remaining characters are divided intowords (i.e., contiguous sequences of word characters:
letters, digits, connecting punctuation, primes and apostrophes), whitespace characters, and other characters. In some
cases, words separated by a single ‘. ’ or whitespace character (and no other characters) are joined to form a single

3See Appendix E for the precise notion of equivalence guaranteed by ASCII conversion.
4Fortress has a facility for defining new syntax, discussed inChapter 36. However, except for that chapter, this specification generally ignores

this facility, and describes the Fortress language only forprograms that use the standard Fortress syntax.
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numeral (see Section 5.13). Words that are not so joined are classified as reserved words, boolean literals, numerals,
identifiers, or operator tokens, as described in later sections in this chapter. It is a static error if any word in a Fortress
program cannot be classified as one of these. All remaining whitespace characters, together with the comments, form
whitespace elements, which may beline-breaking. Finally, contiguous sequences of symbols (and a few other special
cases) are checked to see whether they form multicharacter operator tokens, as described in Section 5.14, or the void
literal (see Section 5.12). Every other character is a tokenby itself, either a special token (if it is a special character)
or an operator token.

5.6 Comments

The character sequences “(∗ ” and “ ∗) ” are referred to ascomment delimiters. In a valid program, every occurrence
of (∗ (outside of string literals) is balanced by a subsequent occurrence of∗) ; it is a static error if comment delimiters
are not properly balanced. All the characters between a balanced pair of comment delimiters, including the comment
delimiters themselves, comprise a single input element, called acomment. Because comment delimiters are required
to be balanced, comments may be nested: only comments definedby outermost balanced pairs of comment delimiters
are considered input elements.

5.7 Whitespace Elements

Whitespace elements consist of comments, whitespace characters and ampersands. However, some whitespace char-
acters and ampersands might not be part of whitespace elements. In particular, whitespace characters may occur within
string literals, character literals and numerals, and ampersands may occur within string literals and character literals.

We need to distinguishline-breaking whitespacefrom non-line-breaking whitespace. We adopt the following termi-
nology:

• A line-terminating commentis a comment that encloses one or more line terminators. All other comments are
calledspacing comments.

• Spacingrefers to any nonempty contiguous sequence of spaces,FORM FEEDcharacters and spacing comments.

• A line breakis a line terminator or line-terminating comment that is notimmediately preceded by an ampersand
(U+0026), possibly with intervening spacing.

• Whitespacerefers to any nonempty sequence of spacing, ampersands, line terminators, and line-terminating
comments.

• Line-breaking whitespaceis whitespace that contains at least one line break.

It is a static error if an ampersand occurs in a program (afterASCII conversion) unless it is within a character or string
literal or a comment, or it is immediately followed by a line terminator or line-terminating comment (possibly with
intervening spacing).

5.8 Special Reserved Words

The following tokens arespecial reserved words:
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BIG SI unit absorbs abstract also api as

asif at atomic bool case catch coerces

coercion component comprises default dim do elif

else end ensures except excludes exit export

extends finally fn for forbid from getter

hidden ident idiom if import in int

invariant io juxtaposition label largest nat object

of or opr private property provided requires

self settable setter smallest spawn syntax test

then throw throws trait transient try tryatomic

type typecase unit value var where while

widening widens with wrapped

The operators on units, namelycubed, cubic , inverse , per, square , andsquared , are also special reserved words.

To avoid confusion, Fortress reserves the following tokens:

goto idiom public pure reciprocal static

They do not have any special meanings but they cannot be used as identifiers.

5.9 Character Literals

A character literal consists of a sequence of characters enclosed in single quotation marks. The character that begins
a character literal is called the literal’sopening mark; the character that ends it is itsclosing mark. For convenience,
the marks may be true typographical “curly” single quotation marks (U+2018 and U+2019), a pair of apostrophe
characters (U+0027), or a “backquote” character (U+0060) and an apostrophe character. As discussed in Section 13.1,
a character literal evaluates to a value of typeCharacter (see Section 8.7), which represents an abstract Unicode
character.

A left single quotation mark (U+2018) or a backquote begins acharacter literal unless it is within a comment, another
character literal, or a string literal. An apostrophe (U+2018) begins a character literal unless it is within a comment,
another character literal, or a string literal, or it is immediately preceded by a word character (i.e.., a letter, digit,
connecting punctuation, prime, or apostrophe). In either case, the character literal ends with the nearest apostropheor
right single quotation markafter the first character following the opening mark. In particular, an apostrophe or right
single quotation mark immediately following the opening mark of a character literal isnot a closing mark. Thus, for
example, the sequence’’’ is a single character literal with one enclosed character’ .

It is a static error if any of the enclosed characters of a character literal is a line feed, form feed, carriage return, or
any character forbidden outside comments in a Fortress program (see Section 5.1), or if there is exactly one enclosed
character and it is a backslash (U+005C). It is also a static error if any of the enclosed characters is a string literal de-
limiter that is not immediately preceded by a backslash (i.e., anunescapedstring literal delimiter). This last restriction
is necessary to prevent ASCII conversion from changing the boundaries of string literals (see Appendix E).

The sequence of enclosed characters may be a single character (e.g., ‘a’, ’$’ , ‘α’, ‘ ⊕’ ), a sequence of four or more
hexadecimal digits identifying the code point of a Unicode character (e.g., ‘001C’, ‘FBAB’ , ‘1D11E’), the official Uni-
code 5.0 name or an alternative name of a Unicode character with spaces and hyphens intact (e.g., ‘PLUS-MINUS SIGN’),
or acharacter-literal escape sequence. The character-literal escape sequences, and the characters such character liter-
als evaluate to, are:
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\b U+0008 BACKSPACE

\t U+0009 CHARACTER TABULATION

\n U+000A LINE FEED

\f U+000C FORM FEED

\r U+000D CARRIAGE RETURN

\" U+0022 QUOTATION MARK

\\ U+005C REVERSE SOLIDUS

\ “ U+201C LEFT DOUBLE QUOTATION MARK

\ ” U+201D RIGHT DOUBLE QUOTATION MARK

It is a static error if the sequence of enclosed characters isnot one of the kinds listed above. In particular, it is a static
error if the hexadecimal digits enclosed do not correspond to the code point of a Unicode 5.0 abstract character.

Note that ASCII conversion is performed within character literals. Thus a character literal written as

’GREEK CAPITAL LETTERLAMBDA’

is equivalent to a character literal written as

’ Λ’

Note also that names for control characters arenot converted during ASCII conversion, but theyare permitted within
character literals. Both the standard form of such names (i.e., with spaces and hyphens) and the form with spaces and
hyphens replaced by underscore characters are permitted.

5.10 String Literals

A string literal is a sequence of characters enclosed in double quotation marks (for example, “π r 2” or "Hello, world!" ).
The character that begins a string literal is the literal’sopening mark; the character that ends it is itsclosing mark. For
convenience, the opening and closing marks of a string literal may be either true typographical “curly” double quo-
tation marks (U+201C and U+201D) or a pair of “neutral” double-quote characters. It is a static error if the opening
and closing marks of a string literal do not “match”, that is,if one is “curly” and the other “neutral”. As discussed in
Section 13.1, a string literal evaluates to a value of typeString (see Section 8.7), which represents a finite sequence
of abstract Unicode characters.

A left double quotation mark (U+201C) or “neutral” quotation mark (U+0022) begins a string literal unless it is
within a comment, a character literal, or another string literal. It ends with the nearest following unescaped (i.e.,
not immediately preceded by backslash) right double quotation mark or “neutral” quotation mark. Therefore, it is
not possible for a string literal to include an unescaped right double quotation mark or “neutral” quotation mark as
an enclosed character. In addition, it is a static error for an unescaped left double quotation mark to be an enclosed
character of a string literal.

Within a string literal, a backslash introduces anescape sequence, unless it is immediately preceded by an odd number
of backslashes, in which case the backslash is itself escaped. There are three kinds of escape sequences recognized
within a string literal: the character-literal escape sequences (see Section 5.9),restricted-word escape sequences, and
quoted-character escape sequences.

A restricted-word escape sequence consists of an unescapedbackslash immediately followed by a restricted word
not beginning with a lowercase letter. After ASCII conversion, it is a static error for a string literal to contain any
restricted-word escape sequence other than “\BACKSPACE”, “ \TAB ”, “ \NEWLINE”, “ \FORMFEED”, or “ \RETURN”.

A quoted-character escape sequence consists of an unescaped backslash immediately followed by an apostrophe and
the sequence of characters immediately following the apostrophe up to and including the next apostrophe. Note that
this kind of escape sequence looks just like a backslash followed by a character literal. It is a static error if such a
sequence with the initial backslash removed would not be a valid character literal (see Section 5.9). Quoted-character
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escape sequences are useful for ASCII “shorthands” that begin with a lowercase letter or are not restricted words,
and when the escape sequence is immediately followed in the string by a letter, digit, or underscore. For example,
"\beta" evaluates to a string containing a backspace character (indicated by\b ) followed by the letterse, t , anda,
but "\’beta’" evaluates to a string containing the single letterβ.5 As another example,"x\AND\’NOT’y" becomes
"x ∧¬y" , but "x\AND\NOTy" is a static error, because the name “NOTy” does not correspond to a Unicode character.
Also, the string"Foo\’[\’T\’\]’" becomes"Foo JTK" .

It is a static error if an unescaped backslash is immediatelyfollowed by a character other than another backslash, an
apostrophe, a string literal delimiter, or a restricted-word character. In addition, it is also a static error if an unescaped
backslash within a string literal is followed by any lowercase letter other than ‘b’, ‘ t ’, ‘ n’, ‘ f ’ or ‘ r ’. This rule
preserves a certain level of compatibility with the C and Java programming languages.

Unlike elsewhere in a program, the enclosed characters of a string literal arenot generally subject to the second
phase of ASCII conversion (word pasting across line terminators still occurs within string literals). However, ASCII
conversion may affect (and often replace) restricted-wordand quoted-character escape sequences. Specifically, the
restricted word of a restricted-word escape sequence and the sequence of characters between the apostrophes of a
quoted-character escape sequence are subject to ASCII conversion. If that sequence of characters would be replaced
by a single Unicode character, then the entire escape sequence is replaced by that character, unless the replacement
character is a string literal delimiter, in which case the escape sequence is replaced by a backslash followed by the
replacement character. For example, the string literal"GAMMA"is unchanged by ASCII conversion, but"\GAMMA" and
"\’GAMMA’" are both changed to" Γ" . The string literal"\\GAMMA" is also unchanged by ASCII conversion, because
the sequence\\ is an escaped backslash; this string literal evaluates to a string value consisting of the six characters:
\ , G, A, M, M, andA. See Appendix E for a detailed discussion of the ASCII conversion process.

The formatting of identifiers and numerals described in Section 5.17 is not performed within string literals.

5.11 Boolean Literals

The boolean literals arefalse and true .

5.12 The Void Literal

The void literal is() (pronounced “void”).

5.13 Numerals

Numeric literals in Fortress are referred to asnumerals. Numerals may be eithersimpleor compound.

A numeral may consist of several words separated by spaces ora ‘ . ’ character. We adopt the following terminology:

• A simple numeral fragmentis a word that begins with a digit. and consists of only letters and digits.

• A compound numeral fragmentis a simple numeral fragment immediately followed by a ‘. ’ character immedi-
ately followed by a word that consists of only letters and digits.

• A sequence of characters is anumeral prefixif it is either a numeral fragment (simple or compound) or a numeral
prefix immediately followed by a space immediately followedby a numeral fragment (simple or compound).

5Actually, the escape sequence\’beta’ is replaced byβ during ASCII conversion.
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• A radix specifierconsists of an underscore immediately followed either by a sequence of one or more digits or
by the English name in all uppercase ASCII letters of an integer from 2 to 16.

• A simple numeral baseis a word that consists only of letters and digits immediately followed by a radix specifier.
The radix of a simple numeral base is the value corresponding to the sequence of digits in radix specifier
interpreted in base ten, or the value of the integer whose English name is spelled out by the radix specifier. It is
a static error if the radix is 0 or 1.

• A compound numeral baseis a word that consists only of letters and digits immediately followed by a ‘. ’
character immediately followed by a simple numeral base.

• A numeralin a Fortress program is a maximal contiguous subsequence that is either a numeral base (simple or
compound), a numeral prefix or a numeral prefix immediately followed by a space immediately followed by a
numeral base (simple or compound).

A numeral issimpleif it does not contain a ‘.’ character; otherwise, the numberis compound. It is a static error if a
numeral contains more than one ‘.’ character.

Here are some examples of numerals, shown in unformatted form:

17 7fff_16 0fff_SIXTEEN 1fab 10101101_2 3.14159265
0.a FF_EIGHT k12.52_24 P_50 DEAD.BEEF_16 PI_FIFTEEN

5.14 Operator Tokens

In this section, we describe how to determine the operator tokens of a program. Because operator tokens do not occur
within comments, string literals and character literals, we henceforth in this section consider only characters that are
outside these constructs.

An operator wordof a program is a word that is not reserved, consists only of uppercase letters and underscores (no
digits or non-uppercase letters), does not begin or end withan underscore, and has at least two different letters.

A base operatoris an ordinary operator character,6 the two-character sequence “** ”, an operator word, a (contiguous)
sequence of two or more vertical-line characters (U+007C),or a multicharacter enclosing operator, as defined in
Section 5.14.1. A base operator ismaximalof a program if it is not contained within any other base operator of that
program. It is a static error if two maximal base operators overlap (which is only possible if both are multicharacter
enclosing operators). Asimple operatoris a maximal base operator that is an operator character, thetwo-character
sequence “** ”, or an operator word.

A maximal base operator is an operator token unless it is a simple operator other than an enclosing or vertical-line
operator character, and it is immediately preceded by ‘ˆ’ orimmediately followed by ‘=’. Such an operator is an
enclosing operatorif it is an enclosing operator character (see Section F.1) ora multicharacter enclosing operator; it
is avertical-line operatorif it has only vertical-line operator characters (see Section F.2); otherwise, it is anordinary
operator.

If a simple operator is immediately preceded by ‘ˆ’ then the ‘ˆ’ followed by the simple operator is an operator token;
such an operator token is called asuperscripted postfix operator. In addition, “ˆ T ” is also a superscripted postfix
operator provided that it is not immediately followed by a word character. It is a static error for a superscripted postfix
operator to be immediately followed by a word character other than apostrophe.

Finally, if a simple operator is not immediately preceded by‘ˆ’ and is immediately followed by ‘=’ then the simple
operator followed by the ‘=’ is an operator token; such an operator token is called acompound assignment operator.

6The operator characters are enumerated in Appendix F, less the special operator characters listed in Section 5.1.
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5.14.1 Multicharacter Enclosing Operators

The following multicharacter sequences (in which there must be no other characters, and particularly no whitespace)
can be used as brackets as described below:

1. Any contiguous nonempty sequence of vertical-line characters is a vertical-line operator. Such an operator can
be used in an enclosing pair matching itself.

2. Any of ‘(’ or ‘[’ or ‘ {’ may be immediately followed by any number of ‘/ ’ characters or by any number of ‘\ ’
characters. Such a token is a left bracket, and it is matched by the multicharacter token consisting of the same
number and kind of ‘/ ’ or ‘ \ ’ characters followed immediately by a matching ‘)’ or ‘]’ or‘}’, as appropriate.
Thus, for example, “(//// ” and “////) ” are matching left and right brackets respectively. (In thefuture,
we may allow tokens with mixtures of ‘/ ’ and ‘\ ’, in which case the left and right brackets should match from
outside in. But for now, such tokens are simply illegal.)

3. One or more ‘<’ characters may be followed immediately by one or more ‘| ’ characters. Such a token is a left
bracket, and it is matched by the multicharacter token consisting of the same number of ‘| ’ characters followed
by as many ‘>’ characters as there are ‘<’ characters in the left bracket.

4. One or more ‘<’ characters, or one or more ‘| ’ characters may be followed immediately by one or more ‘/ ’
characters or by one or more ‘\ ’ characters. Such a token is a left bracket, and it is matchedby the multicharacter
token consisting of the same number andoppositekind of ‘/ ’ or ‘ \ ’ characters followed immediately by as
many matching ‘>’ or ‘ | ’ characters as appropriate. Thus, for example, “<<// ” matches “\\>> ’, and “|\\\ ”
matches “///| ”. (As in case 2 above, we may allow tokens with mixtures of ‘/ ’ and ‘\ ’ in the future.)

5. Finally, any number of ‘* ’ (U+002A) or ‘. ’ (U+002E) characters may be placed within any of the above
multicharacter sequences, except those that contain ‘(’ or‘)’, as long as no ‘* ’ or ‘ . ’ is the first or last character
in the sequence, and no ‘* ’ or ‘ . ’ characters are adjacent. The rule for matching is as above,except that in
addition, the positions of the ‘* ’ and the ‘. ’ characters must match from the outside in.

Note that some of the character sequences described above cannot occur in programs after ASCII conversion. For
example, “|| ” is converted to ‘‖’ (U+2016). Note also that[\ \] (which are converted toJ K) are not operators;
they play a special role in the syntax of Fortress, and their behavior cannot be redefined by a library.

5.14.2 Special Operators

Note that in the preceding discussion, a single operator character can be an operator token only if it is an ordinary oper-
ator character. In some cases, some of the special operator characters (and even some special non-operator characters)
form part of an operator token. However, most of the special operator characters cannot be determined to be operators
before parsing the program because they are also used for various parts of Fortress syntax. The one exception is ‘ˆ’:
if an occurence of this character is not part of a superscripted postfix operator, then it is an operator token by itself:
the specialsuperscripting operator. This operator is always an infix operator, and it is a static error if it appears in a
context in which a prefix or postfix operator is expected.

Every other special operator character, when not part of an operator token, is a special token that may be used as an
operator. There is also a specialjuxtaposition operator (described in Section 16.7), which is also always infix, but
this operator is a special reserved word rather than an operator token. Occurrences of this operator are determined by
the Fortress grammar. The special reserved wordsin , cubed, cubic , inverse , per, square , andsquared , are used
as operators on units.

5.15 Identifiers

A word is an identifier if it begins with a letter and is not a reserved word, an operator, or all or part of a numeral.
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5.16 Special Tokens

Every special character (operator or non-operator) that isnot part of a token (or within a comment) as described above
is aspecial tokenby itself. The special operator characters may be operatorsin the appropriate context.

5.17 Rendering of Fortress Programs

In order to more closely approximate mathematical notation, Fortress mandates standard rendering for various input
elements, particularly for numerals and identifiers, as specified in this section. In the remainder of this specification,
programs are presented formatted unless stated otherwise.

5.17.1 Fonts

Throughout this section, we refer to different fonts or styles in which certain characters are rendered, with names
suggestive of their appearance.

• roman

• italic

• math (often identical to italic)

• script

• fraktur

• sans-serif

• italic sans-serif

• monospace

• double-struck

Additionally, the following fonts may be specified to be bold: roman, italic, script, fraktur, sans-serif, italic sans-serif.

However, a particular environment may substitute different fonts either because of local practice or because the desired
fonts are not available.

5.17.2 Numerals

A numeral is rendered in roman type, with the radix, if present, as a subscript.

27 is rendered as 27
7FFF 16 is rendered as 7FFF16

10101101 TWO is rendered as 10101101TWO
37X8E2 12 is rendered as 37X8E212

deadbeef SIXTEEN is rendered as deadbeefSIXTEEN
dead.beef 16 is rendered as dead.beef16
3.143159265 is rendered as 3.143159265

3.11037552 8 is rendered as 3.11375528

3.243f6b 16 is rendered as 3.243f6b16
11.001001000011111101101010 2 is rendered as 11.0010010000111111011010102
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Note: the elegant way to write Avogadro’s number is6.02 TIMES 10ˆ23 , which is not a single token but is a
constant expression; its rendered form is6.02× 1023 .

5.17.3 Identifiers

Fortress has rather complicated rules for rendering an identifier; as in other parts of Fortress, the rules are complicated
so that the simple cases will be very simple, but also so that difficult cases of interest will be possible.

It is conventional in mathematical notation to make use of variables, particularly single-letter variables, in a number
of different fonts or styles, with italic being the most common, then boldface, and roman:a , b , c . Frequently such
variables are also decorated with accents and subscripts:p̄ , q′ , r̂ , Tmax , ~u , vx , w17 , z̄ ′17 . Fortress provides
conventions for typing such variables using plain ASCII characters: for example, the unformatted presentations of
these same variables area , _b , c_ , p_bar , q’ or q_prime , r_hat , T_max , _u_vec , _v_x , w17 ,
and z17_bar’ . The rules are also intended to accommodate the typical use of multicharacter variable names for
computer programming, such ascount , isUpperCase , andBoolean.

The most important rules of thumb are that simple variables are usually italicz ( z ), a leading underscore usually
means boldface fontz ( _z ), a trailing underscore usually means roman fontz ( z_ ), and a doubled capital letter
means double-struck (or “blackboard bold”) fontZ ( ZZ ). However, mixed-case variable names that begin with
a capital letter, which are usually used as names of types, are rendered in roman font even if there is no trailing
underscore.

The detailed rules are described in Appendix D.

5.17.4 Other Formatting Rules

Special reserved words are rendered in monospace, except that the special reserved words that are used as operators
on units, namelycubed, cubic , inverse , per, square , and squared, are rendered in roman type. Operator words
are rendered in monospace. Comments are rendered in roman font. Any character within a character literal or string
literal is rendered in monospace if possible. Delimiters ofsyntax expanders (described in Section 36.1) are rendered
in monospace.
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Chapter 6

Declarations

Declarationsintroducenamed entities; we say that a declarationdeclaresan entity and a name by which that entity
can be referred to, and that the declared namerefers tothe declared entity. As discussed later, there is not a one-one
correspondence between declarations and named entities: some declarations declare multiple named entities, some
declare multiple names, and some named entities are declared by multiple declarations.

Some declarations contain other declarations. For example, a trait declaration may contain method declarations, and a
function declaration may contain parameter declarations.

Syntactically, the positions in which a declaration may legally appear is determined by the nonterminalDecl in the
Fortress grammar, defined in Appendix G.

6.1 Kinds of Declarations

Syntax:
Decl ::= TraitDecl

| ObjectDecl
| FnDecl
| VarDecl
| DimUnitDecl
| TypeAlias
| TestDecl
| PropertyDecl

There are two kinds of declarations:top-level declarationsandlocal declarations.

Top-level declarations occur at the top level of a program (or component), not within any other declaration or expres-
sion. A top-level declaration is one of the following:1

• trait declarations (see Chapter 9)

• object declarations (see Chapter 10), which may be parameterized or nonparameterized

• top-level function declarations (see Chapter 12), including top-level operator declarations (see Chapter 16)

1The Fortress component system, defined in Chapter 22, includes declarations ofcomponentsandAPIs. Because component names are not used
in a Fortress program and API names are used only in qualified names and declarations ofimport and export , we do not discuss them in this
chapter.
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• top-level variable declarations (see Section 6.2)

• dimension declarations (see Chapter 18)

• unit declarations (see Chapter 18)

• top-level type aliases (see Section 8.9)

• test declarations (see Chapter 19)

• top-level property declarations (see Chapter 19)

Local declarations occur in another declaration or in some expression (or both). These may be one of the following:

• method declarations (see Section 9.2): these occur in traitand object declarations and object expressions

• field declarations (see Section 10.2): these occur in objectdeclarations and object expressions, and include field
declarations in the parameter list of an object declaration

• local function declarations (see Section 6.4): these occurin block expressions

• local variable declarations (see Section 6.3): these occurin block expressions

• local property declarations (see Chapter 19): these occur in trait and object declarations and object expressions

• labeled blocks (see Section 13.13)

• static-parameter declarations, which may declare type parameters,nat parameters,int parameters,bool
parameters,dim parameters,unit parameters,opr parameters, orident parameters (see Chapter 11): these
occur in static-parameter lists of trait and parameterizedobject declarations, top-level type aliases, top-level
function declarations, and method declarations

• hidden-type-variable declarations: these occur inwhere clauses of trait and object declarations, top-level func-
tion declarations, and method declarations

• type aliases inwhere clauses: these occur inwhere clauses of trait and object declarations, top-level function
declarations, and method declarations

• (value) parameter declarations, which may be keyword-parameter declarations: these occur in parameter lists of
parameterized object declarations, top-level function declarations, method declarations, local function declara-
tions, and function expressions (but do not include nontransient parameter declarations in the parameter list of
an object declaration, which are field declarations)

Some declarations are syntactic sugar for other declarations. Throughout this chapter, we consider declarations after
they have been desugared. Thus, apparent field declarationsin trait declarations are actually method declarations (as
described in Section 9.2), and a dimension and unit declaration may desugar into several separate declarations (as
described in Section 35.3). After desugaring, the kinds of declarations listed above are disjoint.

In addition to these explicit declarations, there are two cases in which names are declared implicitly: The special name
self is implicitly declared as a parameter by some method declarations. See Section 9.2 for details about whenself

is implicitly declared. The nameresult is implicitly declared by the ensures clause of a contract. See Section 12.4
for a discussion of contracts.

Trait declarations, object declarations, top-level type aliases, type-parameter declarations, and hidden-type-variable
declarations are collectively calledtype declarations; they declare names that refer totypes(see Chapter 8). Dimension
declarations anddim -parameter declarations aredimension declarations, and unit declarations andunit -parameter
declarations areunit declarations. Parameterized object declarations, top-level function declarations, method declara-
tions, and local function declarations are collectively called functional declarations. Nonparameterized object declara-
tions, top-level variable declarations, field declarations, local variable declarations, and (value) parameter declarations
(including implicit declarations ofself ) are collectively calledvariable declarations. Nonparameterized object
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declarations are also calledsingleton object declarations. Static-parameter declarations and hidden-type-variable dec-
larations are collectively calledstatic-variable declarations. Note that static-variable declarations are disjoint from
variable declarations.

The groups of declarations defined in the previous paragraphare neither disjoint nor exhaustive. For example, labeled
blocks are not included in any of these groups, and an object declaration is both a type declaration and either a function
or variable declaration, depending on whether it is parameterized.

Most declarations declare a single name given explicitly inthe declaration (though, as discussed in Section 7.1, they
may declare this name in multiple namespaces). There is one exception: wrapped field declarations (described in
Section 10.2) in object declarations and object expressions declare both the field name and names for methods provided
by the declared type of the field.

Method declarations in a trait may be eitherabstractor concrete. Abstract declarations do not have bodies; concrete
declarations, sometimes calleddefinitions, do.

6.2 Top-Level Variable Declarations

Syntax:
VarDecl ::= Vars( = | := ) Expr

| VarWTypes
| VarWoTypes: TypeRef... [( = | := ) Expr]
| VarWoTypes: SimpleTupleType[( = | := ) Expr]

Vars ::= Var
| ( Var ( , Var)+ )

Var ::= VarMod∗ Id [IsType]
VarWTypes ::= VarWType

| ( VarWType( , VarWType)+ )
VarWType ::= VarMod∗ Id IsType
VarWoTypes ::= VarWoType

| ( VarWoType( , VarWoType)+ )
VarWoType ::= VarMod∗ Id
SimpleTupleType ::= ( TypeRef, TypeRefList)
TypeRefList ::= TypeRef( , TypeRef)∗

VarMod ::= var | UniversalMod
IsType ::= : TypeRef

A variable’s name can be any valid Fortress identifier. There are four forms of variable declarations. The first form:

id : Type = expr

declaresid to be an immutable variable with static typeType whose value is computed to be the value of the
expressionexpr . The static type ofexpr must be a subtype ofType.

The second (and most convenient) form:

id = expr

declaresid to be an immutable variable whose value is computed to be the value of the expressionexpr ; the static
type of the variable is the static type ofexpr .

The third form:

var id : Type = expr
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declaresid to be a mutable variable of typeType whose initial value is computed to be the value of the expression
expr . As before, the static type ofexpr must be a subtype ofType. The modifiervar is optional when ‘:= ’ is used
instead of ‘= ’ as follows:

[var] id : Type := expr

The first three forms are referred to asvariable definitions. The fourth form:

[var] id : Type

declares a variable without giving it an initial value (where mutability is determined by the presence of thevar
modifier). It is a static error if a variable is referred to before it has been given a value; an immutable variable is
initialized by another variable declaration and a mutable variable is initialized by assignment. It is also a static error
if an immutable variable is initialized more than once. Whenever a variable bound in this manner is assigned a value,
the type of that value must be a subtype of its declared type. This form allows declaration of the types of variables
to be separated from definitions, and it allows programmers to delay assigning to a variable before a sensible value is
known.

In short, immutable variables are declared and initializedby ‘ = ’ and mutable variables are declared and initialized by
‘ := ’ except when they are declared as the third form above with the modifiervar .

All forms can be used withtuple notationto declare multiple variables together. Variables to declare are enclosed in
parentheses and separated by commas, as are the types declared for them:

(id [, id ]+) : (Type[,Type]+)

Alternatively, the types can be included alongside the respective variables, optionally eliding types that can be inferred
from context (see Chapter 20 for a discussion of type inference in Fortress):

(id [: Type][, id [: Type]]+)

Alternatively, a single type followed by ‘. . . ’ can be declared for all of the variables:

(id [, id ]+): Type . . .

This notation is especially helpful when a function application returns a tuple of values.

Here are some simple examples of variable declarations:

π = 3.141592653589793238462643383279502884197169399375108209749445923078

declares the variableπ to be an approximate representation of the mathematical object π . It is also legal to write:

π : R64 = 3.141592653589793238462643383279502884197169399375108209749445923078

This definition enforces thatπ has static typeR64 .

In the following example, the declaration of the type of a variable and its definition are separated:

π : Float
π = 3.141592653589793238462643383279502884197169399375108209749445923078

The following example declares multiple variables using tuple notation:

var (x, y) :Z64 . . . = (5, 6)

The following three declarations are equivalent:

(x, y, z) : (Z64,Z64,Z64) = (0, 1, 2)
(x: Z64, y: Z64, z: Z64) = (0, 1, 2)
(x, y, z) : Z64 . . . = (0, 1, 2)

Special syntax is provided for declaring variables to be parts of a matrix, as described in Section 6.5.
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6.3 Local Variable Declarations

Syntax:
LocalVarDecl ::= LocalVars( = | := ) Expr

| LocalVarWTypes
| LocalVarWoTypes: TypeRef... [( = | := ) Expr]
| LocalVarWoTypes: SimpleTupleType[( = | := ) Expr]

LocalVars ::= LocalVar
| ( LocalVar ( , LocalVar)+ )

LocalVar ::= LocalVarWType
| LocalVarWoType

LocalVarWTypes ::= LocalVarWType
| ( LocalVarWType( , LocalVarWType)+ )

LocalVarWType ::= [ var ] Id IsType
LocalVarWoTypes ::= LocalVarWoType

| ( LocalVarWoType( , LocalVarWoType)+ )
LocalVarWoType ::= [ var ] Id

| Unpasting

Variables can be declared within block expressions (described in Section 13.11) via the same syntax as is used for
top-level variable declarations (described in Section 6.2). A local variable declaration must not appear as the last of
the block expression.

6.4 Local Function Declarations

Syntax:
LocalVarFnDecl ::= Id ValParam[IsType] [Throws] = Expr

Functions can be declared within block expressions (described in Section 13.11) via the same syntax as is used for top-
level function declarations (described in Chapter 12) except that locally declared functions must not include modifiers,
contracts, static parameters, orwhere clauses (described in Chapter 11). As with top-level function declarations,
locally declared functions in a single scope are allowed to be overloaded and mutually recursive. A local function
declaration must not appear as the last of the block expression.

6.5 Matrix Unpasting

Syntax:
Unpasting ::= [ L-Elt (Paste L-Elt)∗ ]
L-Elt ::= Id [[ L-ArraySize] ]

| Unpasting
L-ArraySize ::= L-Extent(×L-Extent)∗

L-Extent ::= Expr
| Expr: Expr
| Expr# Expr

Paste ::= (Whitespace| ; )+

Matrix unpasting is an extension of variable declaration syntax as a shorthand for breaking a matrix into parts. On
the left-hand side of a declaration, what looks like a matrixpasting of unbound variables is actually a declaration of
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several new variables. This syntax serves to break the right-hand side into pieces and bind the pieces to the variables.
Matrix unpastings are concise, eliminate several opportunities for fencepost errors, guarantee unaliased parts, and
avoid overspecification of how the matrix should be taken apart.

The motivating example for matrix unpasting is cache-oblivious matrix multiplication. The general plan in a cache
oblivious algorithm is to break the input apart on its largest dimension, and recursively attack the resulting smaller and
more compact problems.

mmJnat m, nat n, nat pK(left : Rm×n, right : Rn×p, result : Rm×p) : () = do

case largest of

1⇒ result0,0 += (left0,0right0,0)
m⇒ [ lefttop

leftbottom ] = left

[ resulttop

resultbottom ] = result

t1 = spawn do mm(lefttop, right , resulttop) end
mm(leftbottom, right , resultbottom)
t1.wait()

p⇒ [ rightleft rightright ] = right

[ resultleft resultright ] = result

t1 = spawn do mm(left , rightleft , resultleft) end
mm(left , rightright , resultright)
t1.wait()

n⇒ [ leftleft leftright ] = left

[ righttop
rightbottom ] = right

mm(leftleft , righttop, result)
mm(leftright , rightbottom, result)

end

end

In unpasting, the element syntax is slightly enhanced both to permit some specification of the split location and to
receive information about the split that was performed. Forexample, perhaps only the upper left square of a matrix is
interesting. The programmer can annotate bounds to the square unpasted element:

fooJnat m, nat nK(A : Rm×n) : () = do

if m < n then

[ squarem×mrest ] = A
. . .

elif m > n then

[ squaren×n

rest ] = A
. . .

else (∗ A already square∗)
square = A
. . .

end

end

The types of the elements of the newly declared matrix variables on the left-hand side of an unpasting are inferred
(trivially) to be the type of the elements on the right-hand side.

If an unpasting into explicitly sized pieces does not exactly cover the right-hand-side matrix, anUnpastingException
is thrown.
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Each element of the left-hand-side of unpasting includes anoptional extent specification. An extent specification
low # num describes the indexing and the size of the given part of the matrix. The lower extent must be bound, either
before the unpasting, or earlier (left-or-above) in the unpasting. For example, suppose that an algorithm chooses to
break a matrix into 4 pieces, but retain the original indicesfor each piece:

barJnat p, nat qK(X : Rr0#p×c0#q) : () = do

[ Ar0#m ×c0#n Br0#m ×c0+n#q−n

Cr0+m#p−m×c0#n Dr0+m#p−m×c0+n#q−n ] = X

. . .
end

Unpasting does not directly support non-uniform decomposition, and does not provide any sort of constraint satisfac-
tion between the extents of the parts. For example, the following decomposition is not legal because it constrains the
split sizes to be equal with respect to unboundnat parameters:

(∗ Not allowed!∗)
fubarJnat m, nat nK(X : Rm×n) : () = do

(∗ p and q unbound∗)
[ Ap×q Bp×q

Cp×q Dp×q ] = X
. . .

end

To get this effect, the programmer should compute the constrained values:

fubarJnat m, nat nK(X : R2m×2n) : () = do

[ Am×n Bm×n

Cm×n Dm×n ] = X
. . .

end

Some non-uniform unpastings can be obtained with composition, which can be expressed either by repeated unpasting:

unequalRowsJnat m, nat nK(X :R4m×2n) = do

[ c14m×n c24m×n ] = X
[ Am×n

C3m×n ] = c1
[ B3m×n

Dm×n ] = c2
. . .

end

or simply by nesting matrices in the unpasting:

unequalRowsJnat m, nat nK(X :R2m×4n) = do

[ [ Am×nBm×3n]
[ Cm×3nDm×n ] ] = X
. . .

end
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Chapter 7

Names

Names are used to refer to certain kinds of entities in a Fortress program. Names may be simple or qualified. A simple
name is either an identifier or an operator. An operator may bean operator token, a special token corresponding to
a special operator character. A qualified name consists of anAPI name followed by “. ”, followed by an identifier,
where an API name consists of a sequence of identifiers separated by “. ” tokens. Note that operators may not be
qualified. Except in Section 7.3, we consider only simple names in this chapter.

Simple names are typically introduced by declarations, which bind the name to an entity. In some cases, the declaration
is implicit. Every declaration has a scope, in which the declared name can be used to refer to the declared entity.

7.1 Namespaces

Fortress supports three namespaces, one for types, one for values, and one for labels. (If we consider the Fortress
component system, there is another namespace for APIs.) These namespaces are logically disjoint: names in one
namespace do not conflict with names in another.

Type declarations, of course, declare names in the type namespace. Function and variable declarations declare names
in the value namespace. (This implies that object names are declared in both the type and value namespaces.) Labeled
blocks declare names in the label namespace. Although they are not all type declarations, all the static-variable
declarations declare names in the type namespace, as do dimension declarations. In addition,unit parameters,nat
parameters,int parameters andbool parameters are also declared in the value namespace.

A reference to a name is resolved to the entity that the name refers to the namespace appropriate to the context in
which the reference occurs. For example, a name refers to a label if and only if it occurs immediately following the
special reserved wordexit . It refers to a type if and only if it appears in a type context (described in Chapter 8).
Otherwise, it refers to a value.

7.2 Reach and Scope of a Declaration

In this section, we define thereachandscopeof a declaration, which determine where a declared name may be used
to refer to the entity declared by the declaration. It is a static error for a reference to a name to occur at any point in
a program at which the name is not in scope in the appropriate namespace (as defined below) unless the context is a
value context and the name is the name of a field or method of a trait or object whose name is in scope in the type
namespace.
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We first define a declaration’sreach. The reach of a labeled block is the block itself. A method declaration not in
an object expression or declaration must be in the declaration of some traitT , and its reach is the declaration ofT
and any trait or object declarations or object expressions that extendT ; that is, if the declaration of traitT contains a
method declaration, and traitS extends traitT , then the reach of that method declaration includes the declaration of
trait S. The reach of any other declaration is the smallest block strictly containing that declaration (i.e., not just the
declaration itself). For example, the reach of a top-level declaration is the component containing that declaration, the
reach of a field declaration is the enclosing object declaration or expression, the reach of a parameter declaration is
the functional declaration or function expression in whoseparameter list it occurs, and the reach of a local variable
declaration is the smallest block in which that declarationoccurs. We say that a declarationreachesany point within
its reach.

It is a static error for two declarations with overlapping reaches to declare the same name other thanself (even if the
name is declared in different namespaces) unless one of the following conditions holds:

• both declarations are functional declarations with the same reach,

• both declarations are method declarations that occur in different trait declarations,

• one declaration is a field or keyword-parameter declarationwhose reach is strictly contained in the reach of the
other declaration, or

• one declaration is a method declaration that is provided by (i.e., occurs in or is inherited by) some trait or object
declaration or object expression that is strictly contained in the reach of the other declaration.

If either of the first two conditions holds, or if one declaration is a field or method declaration that occurs in an object
declaration or expression that inherits the other declaration (which therefore must be a method declaration), then the
two declarations areoverloaded, and subject to the restrictions on overloading (see Chapter 33).

If two declarations with overlapping reaches declare the same name in the same namespace, and the declarations are
not overloaded, then at any point that their reaches overlap, one declarationshadowsthe other for that name in that
namespace; we may omit the name and namespace when it is clearfrom context. Shadowing is permitted only in the
following cases:

• In a trait or object declaration, any declaration in a block enclosing the declaration is shadowed if it declares a
name of a field or method provided (declared or inherited) by the trait or object being declared.

• In a method declaration that does not give an explicit name other thanself for the self parameter, any declara-
tion of self (including implicit declarations) in a block enclosing thefield or method declaration is shadowed.

• In the ensures clause of a contract, any declaration ofresult in a block enclosing theensures clause is
shadowed.

• In a function or method declaration with keyword parameters, any declaration in a block enclosing the declara-
tion is shadowed if it declares the name of any of the keyword parameters.

We say that a name isin scopein a namespace at any point in the program within the reach of adeclaration that
declares that name in that namespace unless one of the following conditions holds:

• the declaration is shadowed for the name in that namespace,

• the declaration is a variable declaration, the namespace isthe value namespace, and the program point is in
the initial-value expression of the declaration or an initial-value expression of another declaration that is in the
smallest lexical block enclosing the declaration and lexically precedes the declaration in that block.

Note that the last condition applies to the method names declared by a wrapped field declaration.

We say that thescopeof a declaration for a name in a namespace consists of those points at which the name is in scope
for the namespace and the declaration is not shadowed for that name and that namespace. Again, when it is clear from
context, we may omit the name and namespace.
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7.3 Qualified Names

Fortress provides a component system in which the entities declared in a component are described by an API. A
component mayimport APIs, allowing it to refer to these entities declared by the imported APIs. In some cases,
references to these entities must bequalifiedby the API name. These qualified names can be used in any place that a
simple name would be used had the entity been declared directly in the component rather than being imported. Note
that qualified names are distinguished from simple names by the inclusion of a “. ” token, so they never shadow, nor
are they shadowed by, simple names. For further discussion on APIs and the component system, see Chapter 22.
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Chapter 8

Types

Fortress provides several kinds of types: trait types, tuple types, arrow types,BottomType, and other types provided
in the Fortress standard libraries. Some types have names. Some types may be parameterized by types and values;
we call these typesgeneric types. Two types are identical if and only if they are the same kind and their names and
arguments (if any) are identical. Types are related by several relationships as described in Section 8.1.

Syntactically, the positions in which a type may legally appear (type context) is determined by the nonterminalTypeRef
in the Fortress grammar, defined in Appendix G.

8.1 Relationships between Types

Types in Fortress may be related by a subtyping relation, an exclusion relation, or a coercion.

A subtypingrelation is reflexive, transitive, and antisymmetric, and is defined by theextends clause of trait decla-
rations. Every expression has astatic type. Every value has aruntime type(dynamic type). Fortress programs are
checked before they are executed to ensure that if an expression e evaluates to a valuev, the runtime type ofv is a
subtype of the static type ofe. Sometimes we abuse terminology by saying that an expression has the runtime type of
the value it evaluates to (see Section 4.2 for a discussion about evaluation of expressions). Thus, in the execution of a
valid Fortress program, an expression’s runtime type is always a subtype of its static type. We say that a value isan
instance ofits runtime type and of every supertype of its runtime type. Every type is a subtype ofObject . For types
T andU , we writeT � U whenT is a subtype ofU , andT ≺ U whenT � U andT 6= U .

Fortress defines anexclusionrelation between types, which relates two disjoint types: no value can have a type that is
a subtype of two types that exclude each other. The exclusionrelation is irreflexive and symmetric, and is defined by
the excludes and comprises clauses of trait declarations, and what is implied from these by the subtyping relation
(including the fact that object trait types have no strict subtypes, and so exclude all types other than its supertypes).
For example, suppose the following:

trait S comprises {U, V } end
trait T comprises {V,W} end
object U extends S end

object V extends {S, T} end
objectW extends T end

Because of thecomprises clauses ofS andT and the fact thatU , V , andW are objects,S andT exclude each
other. We writeT ♦ U if T excludesU . If a type excludes another type, it excludes all its subtypes as well:
T ♦ U =⇒ ∀T ′ � T : T ′ ♦ U .

64



Fortress also allowscoercionbetween types (see Chapter 17). A coercion fromT toU is defined in the declaration of
U . We writeT→U if U defines a coercion fromT . We say thatT can be coerced toU , and writeT U , if U defines
a coercion fromT or any supertype ofT : T U ⇐⇒ ∃T ′ : T � T ′ ∧ T ′→U .

The Fortress type hierarchy is acyclic with respect to both subtyping and coercion relations except for the following:

• The traitObject is a single root of the type hierarchy and it forms a cycle as described in Chapter 23.

• There exists a bidirectional coercion between two tuple types if and only if they have the same sorted form.

8.2 Trait Types

Syntax:
TypeRef ::= TraitType

Traits are declared by trait declarations (described in Chapter 9). A trait has atrait typeof the same name. A significant
portion of Fortress types are trait types.

8.3 Object Trait Types

Named objects are declared by object declarations (described in Chapter 10) and anonymous objects are described
by object expressions (described in Section 13.9). A named object has anobject trait typeof the same name and an
anonymous object has an anonymous object trait type. An object trait type is a special kind of trait type. An object
trait type extends all of the declared supertraits of the object. No other objects can have the object trait type and no
trait type can extend an object trait type (i.e., an object trait type implicitly has an emptycomprises clause).

8.4 Tuple Types

Syntax:
TypeRef ::= TupleType
TupleType ::= ( TypeRef( ,TypeRef)+)

| ( [TypeRef( ,TypeRef)∗ , ] TypeRef... )
| ( [TypeRef( ,TypeRef)∗ , ] [TypeRef... , ] Id = TypeRef( , Id = TypeRef)∗)

A tuple is an ordered sequence of keyword-value pairs. See Section 13.28 for a discussion of tuple expressions. A
tuple type consists of a parenthesized, comma-separated list of element types where each element type is one of the
following kinds:

• A plain type “T ”

• A varargs type “T . . . ”

• A keyword-type pair “identifier = T ”

The following restrictions apply: No two keyword-type pairs may have the same keyword. No keyword-type pair may
precede a plain type. No varargs type may follow a keyword-type pair or precede a plain type. There must be at least
one element type. If there is exactly one element type, it must be a varargs type or a keyword-type pair (because “(T ) ”
is simply a type in parentheses, not a tuple type). Also, there can be at most one element type with varargs type.

An element type in tuple typeX correspondsto one in tuple typeY if and only if:
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• both are plain types in the same position,

• both are varargs types, or

• both are keyword-type pairs with the same keyword.

Every tuple type is a subtype ofObject, and no other nontuple type. There is no other type that encompasses all
tuples. Tuple types are covariant; a tuple typeX is a subtype of tuple typeY if and only if:

• the correspondence between their element types is bijective;

• for each element type inX , the type in the element type is a subtype of the type in the corresponding element
type in Y ; and

• the keyword-type pairs inX andY appear in the same order.

Note that, unlike record types in some other programming languages, the tuple type(foo = P, bar = Q, baz = R)
is not a subtype of(foo = P, bar = Q) , nor is (P,Q,R) a subtype of(P,Q) . While (Z,Z) is not a subtype of
(Z . . .) , there exists a coercion from the former to the latter (as described in Section 17.7).

For every tuple typeX there is a tuple typeX ′ that is the “sorted form” of the type, created by simply reordering the
keyword-type pairs so that their keywords are in lexicographically ascending order.X ′ may be the same asX (as,
for example, ifX contains fewer than two keyword-type pairs). There is a coercion from tuple typeX to tuple type
Y if and only if X andY have the same sorted form.

A tuple type excludes any nontuple type other thanObject . Two tuple types exclude each other unless the correspon-
dence between their element types is bijective. Two tuple types with a bijective correspondence between their element
types exclude each other if either any type in an element typein one excludes the type in the corresponding element
type in the other, or their keyword-type pairs do not appear in the same order.

Intersection of nonexclusive tuple types are defined elementwise; the intersection of nonexclusive tuple typeX and
Y is a tuple type with exactly corresponding elements, where the type in each element type is the intersection of the
types in the corresponding element types ofX andY . Note that intersection of any exclusive types isBottomType
as described in Section 8.6.

8.5 Arrow Types

Syntax:
TypeRef ::= ArrowType
ArrowType ::= ArrowTypeRef→ ArrowTypeRef[Throws]
ArrowTypeRef ::= TypeRef(× TypeRef)∗

| TypeRef̂ Number

Functions can be passed as arguments and returned as values.See Chapter 12 for a discussion of functions. The types
of function values are calledarrow types. Every arrow type is a subtype ofObject. Arrow types are not trait types.
They cannot be extended by other trait types. Syntactically, an arrow type consists of the type of a parameter to the
function followed by the token→ , followed by the type of a return value, and optionally athrows clause which
specifies thrown checked exceptions. Here are some examples:

(R64,R64)→ R64
N→ (N,N) throws IOException
(String,N . . . , p = Printer)→ N

Fortress supports alternative mathematical notations forarrow types whose parameter types or return types are tuple
types:
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• element types of a tuple type can be separated by the token× instead of by commas, with enclosing parentheses
elided and

• element types of a tuple type that have the same type can be abbreviated using superscripts.

Here are some examples:

R64× R64→ R64
N→ N× N throws IOException
(N,N)→ N× N
Z3 → Z

Parameter types are contravariant but return types are covariant; arrow type “A→ B throws C ” is a subtype of
arrow type “D → E throws F ” if and only if:

• D is a subtype ofA and

• B is a subtype ofE and

• for all X in C, there existsY in F such thatX is a subtype ofY .

Coercion between arrow types are described in Section 17.7.

An arrow type excludes any nonarrow type other thanObject . However, arrow types do not exclude other arrow types
because of overloading as described in Chapter 33.

8.6 Bottom Type

Syntax:
TypeRef ::= BottomType

Fortress provides a specialbottom type, BottomType, which is an uninhabited type. No value in Fortress has the
bottom type; throw and exit expressions have the bottom type. The bottom type is a subtype of every type.
Intersection of any exclusive types is the bottom type.

8.7 Types in the Fortress Standard Libraries

The Fortress standard libraries define simple standard types for literals such asBooleanLiteralJbK , () (pronounced
“void”), Character , String , andNumeralJn,m, r, vK for appropriate values ofb , n , m , r , andv (See Section 13.1
for a discussion of Fortress literals). Moreover, there areseveral simple standard numeric types. These types are
mutually exclusive; no value has more than one of them. Values of these types are immutable.

The numeric types share the common supertypeNumber . Fortress includes types for arbitrary-precision integers (of
typeZ), their unsigned equivalents (of typeN), rational numbers (of typeQ), fixed-size representations for integers
including the typesZ8, Z16, Z32, Z64, Z128, their unsigned equivalentsN8, N16, N32, N64, N128, floating-point
numbers (described below), intervals (of typeIntervalJXK , abbreviated as〈|X|〉 , whereX can be instantiated with
any number type), and imaginary and complex numbers of fixed size (in rectangular form with typesCn for n =
16, 32, 64, 128, 256 and polar form with typePolarJXK whereX can be instantiated with any real number type).

For floating-point numbers, Fortress supports typesR32 andR64 to be 32 and 64-bit IEEE 754 floating-point numbers
respectively, and defines two functions on types:DoubleJF K is a floating-point type twice the size of the floating-
point typeF , andExtendedJF K is a floating-point type sufficiently larger than the floating-point typeF to perform
summations of “reasonable” size.1

1 This formulation of floating-point types follows a proposalunder consideration by the IEEE 754 committee.
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The Fortress standard libraries also define other simple standard types such asObject, Exception, Boolean, and
BooleanInterval as well as low-level binary data types such asLinearSequence , HeapSequence, andBinaryWord.
See Parts III and V for discussions of the Fortress standard libraries.

8.8 Intersection and Union Types

For every finite set of types, there is a type denoting a uniqueintersectionof those types. The intersection of a set of
typesS is a subtype of every typeT ∈ S and of the intersection of every subset ofS. There is also a type denoting a
uniqueunionof those types. The union of a set of typesS is a supertype of every typeT ∈ S and of the union of every
subset ofS. Neither intersection types nor union types are first-classtypes; they are used solely for type inference (as
described in Chapter 20) and they cannot be expressed directly in programs.

The intersection of a set of typesS is equal to a named typeU when any subtype of every typeT ∈ S and of the
intersection of every subset ofS is a subtype ofU . Similarly, the union of a set of typesS is equal to a named typeU
when any supertype of every typeT ∈ S and of the union of every subset ofS is a supertype ofU . For example:

trait S comprises {U, V } end
trait T comprises {V,W} end
trait U extends S excludes W end

trait V extends {S, T} end
traitW extends T end

because of thecomprises clauses ofS andT and theexcludes clause ofU , any subtype of bothS andT must be
a subtype ofV . Thus,V = S ∩ T .

Intersection types (denoted by∩) possess the following properties:

• Commutativity:T ∩ U = U ∩ T .

• Associativity:S ∩ (T ∩ U) = (S ∩ T ) ∩ U .

• Subsumption: IfS � T thenS ∩ T = S.

• Preservation of shared subtypes: IfT � S andT � U thenT � S ∩ U .

• Preservation of supertype: IfS � T then∀U. S ∩ U � T .

• Distribution over union types:S ∩ (T ∪ U) = (S ∩ T ) ∪ (S ∩ U).

Union types (denoted by∪) possess the following properties:

• Commutativity:T ∪ U = U ∪ T .

• Associativity:S ∪ (T ∪ U) = (S ∪ T ) ∪ U .

• Subsumption: IfS � T thenS ∪ T = T .

• Preservation of shared supertypes: IfS � T andU � T thenS ∪ U � T .

• Preservation of subtype: IfT � S then∀U. T � S ∪ U .

• Distribution over intersection types:S ∪ (T ∩ U) = (S ∪ T ) ∩ (S ∪ U).

8.9 Type Aliases

Syntax:
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TypeAlias ::= type Id [StaticParams] = TypeRef

Fortress allows names to serve as aliases for more complex type instantiations. Atype aliasbegins with the special
reserved wordtype followed by the name of the alias type, followed by optional static parameters, followed by= ,
followed by the type it stands for. Parameterized type aliases are allowed but recursively defined type aliases are not.
Here are some examples:

type IntList = ListJZ64K
type BinOp = Float× Float→ Float
type SimpleFloatJnat e, nat sK = DetailedFloatJUnity, e, s, false, false, false, false, trueK

All uses of type aliases are expanded before type checking. Type aliases do not define new types nor nominal equiva-
lence relations among types.
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Chapter 9

Traits

Traits are declared by trait declarations. Traits define new named types. A trait specifies a collection ofmethods
(described in Section 9.2). One trait can extend others, which means that it inherits the methods from those traits, and
that the type defined by that trait is a subtype of the types of traits it extends.

9.1 Trait Declarations

Syntax:
TraitDecl ::= TraitHeader(MdDecl| AbsFldDecl| PropertyDecl)∗ end

TraitHeader ::= TraitMod∗ trait Id [StaticParams] [Extends] [Excludes] [Comprises] [Where]
Extends ::= extends TraitTypes
Excludes ::= excludes TraitTypes
Comprises ::= comprises MayTraitTypes
TraitTypes ::= TraitType

| { TraitTypeList}
TraitTypeList ::= TraitType( , TraitType)∗

MayTraitTypes ::= {}
| TraitTypes

TraitType ::= DottedId[JStaticArgListK]
| { TypeRef7→ TypeRef}
| 〈 TypeRef〉
| TypeRef[ [ArraySize] ]
| TypeRef[ MatrixSize]

ArraySize ::= Extent(, Extent)∗

Extent ::= NatRef
| NatRef# NatRef

MatrixSize ::= NatRef(× NatRef)+

Syntactically, a trait declaration starts with an optionalsequence of modifiers followed by the special reserved word
trait , followed by the name of the trait, an optional sequence of static parameters (described in Chapter 11), an
optional set ofextendedtraits, an optional set ofexcludedtraits, an optional set ofcompriseson the trait, an optional
where clause (described in Section 11.6), a list of method declarations, abstract field declarations, and property
declarations (described in Section 19.6), and finally the special reserved wordend .

Each ofextends , excludes , and comprises clauses consist of the special reserved wordextends , excludes ,
and comprises respectively followed by a set of trait references separated by commas and enclosed in braces ‘{’ and
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‘}’. If such a clause contains only one trait, the enclosing braces may be elided. A trait reference is either a declared
trait identifier or an abbreviated type for aggregate expressions (discussed in Section 13.28).

Every trait extends the traitObject. A trait with an extends clause extends every trait listed in itsextends clause.
If a trait T extends traitU , we callT a subtrait ofU andU a supertrait ofT . Extension is transitive; ifT extends
U it also extends all supertraits ofU . Extension is also reflexive:T extends itself. The extension relation induced
by a program is the smallest relation satisfying these conditions. This relation must form an acyclic hierarchy rooted
at trait Object .

We say that traitT strictly extendstrait U if and only if (i) T extendsU and (ii ) T is not U . We say that traitT
immediately extendstrait U if and only if (i) T strictly extendsU and (ii ) there is no traitV such thatT strictly
extendsV andV strictly extendsU . We callU an immediate supertraitof T andT an immediate subtraitof U .

A trait with an excludes clause excludes every trait listed in itsexcludes clause. If a traitT excludes a traitU ,
the two traits are mutually exclusive. No third trait can extend them both and neither can extend the other. A traitU

can optionally have anexcludes clause.

If a trait declaration ofT includes acomprises clause, the trait must not be extended with immediate subtraits other
than those that listed in itscomprises clause. If a traitT has an emptycomprises clause, no other traits can
extendT .

For example, the following trait declaration:

trait Catalyst extends Object
self.catalyze(reaction: Reaction): ()

end

declares a traitCatalyst with no modifiers, no static parameters, noexcludes clauses, nocomprises clauses, and
no where clauses. TraitCatalyst extends a trait namedObject. A single method (namedcatalyze ) is declared,
which has a parameter of typeReaction and the return type(). The special nameself is explicitly declared as a
parameter. See Section 9.2 for details about whenself is implicitly declared, and to which entity it refers.

The following example trait:

trait Molecule comprises {OrganicMolecule, InorganicMolecule }
mass():Mass

end

comprises of two traits:OrganicMolecule and InorganicMolecule . Therefore, the following trait declaration is not
allowed:

(∗ Not allowed!∗)
trait ExclusiveMolecule extends Molecule end

Traits OrganicMolecule andInorganicMolecule may be exclusive:

trait OrganicMolecule extends Molecule excludes InorganicMolecule end

trait InorganicMolecule extends Molecule end

OrganicMolecule andInorganicMolecule exclude each other, even though onlyOrganicMolecule has anexcludes
clause. For example, the following trait declaration is notallowed:

(∗ Not allowed!∗)
trait InclusiveMolecule extends { InorganicMolecule,OrganicMolecule } end

A trait is allowed to have multiple immediate supertraits. The following trait has two immediate supertraits:

trait Enzyme extends {OrganicMolecule,Catalyst } end
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9.2 Method Declarations

Syntax:
MdDecl ::= AbsMdDecl

| MdDef
AbsMdDecl ::= [ abstract ] MdMod∗ MdHeader
MdDef ::= MdMod∗ MdHeader= Expr

| Coercion
MdMod ::= getter | setter | FnMod
MdHeader ::= [(Id | self ) . ]Id [StaticParams]( [MdParams]) [IsType] FnClauses
MdParams ::= MdParam( ,MdParam)∗

| [MdParam( ,MdParam)∗ , ] Id : TypeRef...
| [MdParam( ,MdParam)∗ , ] [ Id : TypeRef... , ] MdParam= Expr ( ,MdParam= Expr)∗

MdParam ::= ParamId[IsType]
| self

| TypeRef
ParamId ::= Id

|
IsType ::= : TypeRef
FnClauses ::= [Throws] [Where] [Contract]
Throws ::= throws MayTraitTypes

A trait declaration contains a set of method declarations. Syntactically, a method declaration begins with an optional
sequence of modifiers followed by the method’s name optionally prefixed by aself parameter, optional static param-
eters (described in Chapter 11), the value parameter with its (optionally) declared type, an optional type of a return
value, an optional declaration of thrown checked exceptions (discussed in Chapter 14), an optionalwhere clause (dis-
cussed in Section 11.6), an optional contract for the method(discussed in Section 9.4), and finally an optional body
expression preceded by the token= . A throws clause does not include naked type variables. Every elementin a
throws clause is a subtype ofCheckedException. A trait declaration may containcoercionsdiscussed in Chapter 17.

Method declarations can include the following special modifiers:

getter : A method declaration with the modifiergetter explicitly declares a getter method for a field, even in the
absence of an actual field. If such a field exists, there is no implicit getter for the field. An explicitly declared getter
method must take no arguments and return an appropriately typed result. A getter method must not throw any checked
exception. Getter names may not overlap ordinary method names. A getter method must be invoked with the field
access syntax:

expr .id

whereid is the name of the getter method.

setter : A method declaration with the modifiersetter explicitly declares a setter method for a field, even in
the absence of an actual field. If such a field exists, there is no implicit setter for the field. An explicitly declared
setter method must take a single argument—the value being set—and return() . A setter method must not throw any
checked exception. Setter names may not overlap ordinary method names. A setter method must be invoked with the
assignment syntax:

expr1.id := expr2

We say that a method declarationoccursin a trait declaration. A trait declarationdeclaresa method declaration that
occurs in that trait declaration. A trait declarationinheritsmethod declarations from the declarations of its supertraits.
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Note that a trait declaration inherits all method declarations declared by all of its supertraits–there’s no real notion of
overriding, just overloading (as discussed in Chapter 15).A trait declarationprovidesthe method declarations that it
declares or inherits.

There are two sorts of method declarations:dotted methoddeclarations andfunctional methoddeclarations. Syntacti-
cally, a dotted method declaration is identical to a function declaration, except that a special self parameter is provided
immediately before the name of the method. When a method is invoked, the self parameter is bound to the object
on which it is invoked. If no self parameter is provided explicitly, it is implicitly a parameter with nameself . An
explicit self parameter may be an identifier other thanself , in which caseself is not necessarily declared within
that method.

A functional method declaration does not have a self parameter before the method name. Instead, it has a parameter
namedself at an arbitrary position in its parameter list. This parameter is not given a type and implicitly has the
type of the enclosing declaration. Semantically, functional method declarations can be viewed as top-level functions.
For example, the following overloaded functional methodsf declared within a trait declarationA:

trait A
f(self, t :T ) = e1
f(s :S, self) = e2

end

f(a, t)

may be rewritten as top-level functions as follows:

trait A
internalF (t :T ) = e1
internalF (s :S) = e2

end

f1(a :A, t :T ) = a.internalF (t)
f2(s :S, a :A) = a.internalF (s)

f1(a, t)

where internalF is a freshly generated name. Functional method declarations may be overloaded with top-level
function declarations. An abstract function declaration (described in Section 12.3) can be provided also for overloaded
functional method declarations. See Chapter 15 for a discussion of overloaded functionals in Fortress.

A non-self self parameter can be used within nested object expressions(described in Section 13.9) to name the outer
object in methods of the inner:

object

m() = object

notSelf .getOuterSelf () = self(∗ “self” declared in outer scope∗)
getInnerSelf () = self(∗ regular inner “self”∗)

end

end

When a method declaration includes a body expression, it is called amethod definition. A method declaration that
does not have its body expression is referred to as anabstract method declaration. An abstract method declaration
may include the modifierabstract . An abstract method declaration may elide parameter names but parameter types
cannot be omitted except for the self parameter.

Here is an example traitEnzyme which provides methodsmass , catalyze , andreactionSpeed :

trait Enzyme extends {OrganicMolecule,Catalyst }
reactionSpeed(): Speed
catalyze(reaction) = reaction.accelerate(reactionSpeed())
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end

Enzyme inherits the abstract methodmass from OrganicMolecule , declares the abstract methodreactionSpeed ,
and declares the concrete methodcatalyze which is inherited as an abstract method from its supertraitCatalyst.

9.3 Abstract Field Declarations

Syntax:
AbsFldDecl ::= AbsFldMod∗ Id IsType
AbsFldMod ::= hidden | settable | wrapped | UniversalMod
UniversalMod ::= private | test

Traits may also include abstract field declarations that areimplicit declarations of abstract getter methods. Syntacti-
cally, an abstract field declaration consists of an optionalsequence of modifiers followed by the field name, followed
by the token: , and the type of the field.

By default, a field declaration implicitly declares a gettermethod for the field unless there is an explicit getter declared
in the enclosing trait. An implicit getter method takes no arguments, has the same name as the field, and has a return
type equal to the field type. When called, the implicit getterreturns the value of the field when called.

Abstract field declarations can include the following special modifiers:

hidden : A field declaration with the modifierhidden has no implicit getter method.

settable : A field declaration with the modifiersettable has an implicit setter method unless there is an explicit
setter declared in the enclosing trait. An implicit setter method takes a parameter (with no default expression) whose
type is the type of the field, and returns() . When called, the implicit setter rebinds the corresponding field to its
argument. If a field declaration includes the modifiersettable and hidden , only an abstract setter is declared. If a
field declaration includes the modifierhidden without settable , it is a static error.

wrapped : If a field declaration off has the modifierwrapped and the type off is trait typeT , andT is not a naked
type variable, then the enclosing traitS implicitly includes “forwarding methods” for all methods in T that are also
inherited from any supertrait ofS. Each of these methods simply calls the corresponding method on the trait referred to
by fieldf . If the trait declaration enclosingf explicitly declares a methodm that conflicts with an implicitly declared
forwarding methodm′, then the enclosing trait contains only methodm, notm′. If the trait declaration enclosingf
inherits a concrete methodm that conflicts with an implicitly declared forwarding methodm′, then the enclosing trait
contains only methodm, notm′. Because wrapped fields do not change declarations of methods but change definitions
of methods, they only affect implementations; APIs do not include wrapped fields.

For example, in the following declarations:

trait DictionaryJT K
put(T ): ()
get():T

end

trait WrappedDictionaryJT K extends DictionaryJT K
wrapped val : DictionaryJT K
get():T

end
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the parametric traitWrappedDictionary implicitly includes the following forwarding method:

put(x) = val .put(x)

If get were not explicitly declared inWrappedDictionary , thenWrappedDictionary would also include the for-
warding method:

get() = val .get()

9.4 Method Contracts

Syntax:
Contract ::= [Requires] [Ensures] [ Invariant]
Requires ::= requires Expr+

Ensures ::= ensures (Expr+ [ provided Expr])+

Invariant ::= invariant Expr+

Method contracts consist of three optional clauses: arequires clause, anensures clause, and aninvariant
clause. All three clauses are evaluated in the scope of the method body. See Section 12.4 for a discussion of each
clause.

Method contracts are handled similarly to the manner described in [10]. In particular, substitutability under subtyping
is preserved. For a call to a methodm with receivere , we use the termstatic contractof m to refer to a contract
declared in the statically most applicable method declaration provided by the static type ofe and the termdynamic
contractof m to refer to a contract declared in the dynamically most applicable method declaration provided by the
runtime type ofe. Three exceptions may be thrown due to a method contract violation: CallerViolation is thrown
when therequires clause of the static contract fails,CalleeViolation is thrown when theensures or invariant
clause of the dynamic contract fails, andContractHierarchyViolation is thrown when therequires clause of the
dynamic contract or theensures or invariant clause of the static contract fails.

Evaluation of a call to a methodm with receivere proceeds as follows. First,e is evaluated to a valuev with runtime
type U . LetC andC ′ be the static and dynamic contracts ofm, respectively. If therequires clause ofC fails, a
CallerViolation exception is thrown. Otherwise, if therequires clause ofC ′ fails, aContractHierarchyViolation
exception is thrown. Otherwise, theprovided subclauses ofC andC ′ are evaluated. For everyprovided subclause
that evaluates totrue , the correspondingensures subclause is recorded in a tableE for later comparison. Simi-
larly, the invariant clauses ofC andC ′ are evaluated and the results are stored inE for later comparison. Then
the body ofm provided byU is evaluated. After evaluation of the body, allensures subclauses of the dynamic
contract recorded inE are checked to ensure that they evaluate totrue , and all invariant clauses of the dy-
namic contract recorded inE are checked to ensure that they evaluate to values equal to the values they evaluated
to before evaluation of the body. If any such check fails, aCalleeViolation exception is thrown. Otherwise, all
ensures subclauses andinvariant clauses of the static contract inE are checked. If any of these checks fails, a
ContractHierarchyViolation exception is thrown.

9.5 Value Traits

Syntax:
TraitMod ::= value | UniversalMod

If a trait declaration has the modifiervalue , all subtraits of that trait must also have the modifiervalue , and all
objects extending that trait are required to be value objects (described in Section 10.3). If a field declaration of a value
trait has the modifiersettable , the return type of its implicit setter method is the value trait type. If a value trait has
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an explicit setter method, the setter must be an abstract method and its return type must be the value trait type. See
Section 10.3 for a discussion of updating fields of value objects.
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Chapter 10

Objects

An object is avalue object, a reference object, or a function object: It is a function object if it has an arrow type, a
reference object if it has an object trait type that is not declared with thevalue modifier (see Section 10.3), and a
value object otherwise (i.e., if it has a tuple type, the type(), or an object trait type declared with thevalue modifier).

Value objects cannot have mutable fields, and they are completely determined by their type, environment and their
fields: Value objects with the same type, environment and fields are indistinguishable. Thus, an implementation may
freely copy value objects. Most objects with simple standard types, such as booleans, numeric literals, IEEE floating-
point numbers, and integers are value objects. In contrast,reference objects are thought to “reside in memory”, and are
identified by anobject reference. A new object reference is created whenever a reference object is constructed, so that
reference objects constructed separately are always distinct. Reference objects include arbitrary-precision numbers
and aggregates such as arrays, lists and sets. Function objects are immutable and have no fields. Identity is not well-
defined for function objects, and attempting to check whether two functions are equivalent returns an approximate
result. Section 10.4 describes object equivalence in further detail.

10.1 Object Declarations

Syntax:
ObjectDecl ::= ObjectHeader(MdDef | FldDef | PropertyDecl)∗ end

ObjectHeader ::= ObjectMod∗ object Id [StaticParams] [ ( [ObjectParams]) ] [Extends] FnClauses
ObjectMod ::= TraitMod
ObjectParams ::= ObjectParam( ,ObjectParam)∗

| [ObjectParam( ,ObjectParam)∗ , ] ObjectVarargs
| [ObjectParam( ,ObjectParam)∗ , ] [ObjectVarargs, ] ObjectKeyword( ,ObjectKeyword)∗

ObjectVarargs ::= transient Id : TypeRef...
ObjectKeyword ::= ObjectParam= Expr
ObjectParam ::= FldMod∗ PlainParam

| transient PlainParam
FnClauses ::= [Throws] [Where] [Contract]
Throws ::= throws MayTraitTypes

Object declarations declare both object values and object trait types. Object declarations extend a set of traits from
which they inherit methods. An object declaration inheritsthe concrete methods of its supertraits and must include
a definition for every method declared but not defined by its supertraits. Especially, an object declaration must not
include abstract methods (discussed in Section 22.3); it must define allabstract methods inherited from its
supertraits. It is also allowed to define overloaded declarations of concrete methods inherited from its supertraits.
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Syntactically, an object declaration begins with an optional sequence of modifiers followed by the special reserved
word object , followed by the identifier of the object, optional static parameters (described in Chapter 11), optional
value parameters, optional traits the object extends, an optional declaration of thrown checked exceptions (discussed
in Chapter 14), an optionalwhere clause (discussed in Section 11.6), an optional contract for the object (discussed in
Section 12.4), a list of method declarations, field declarations, and property declarations (described in Section 19.6),
and finally the special reserved wordend . If an object declaration has noextends clause, the object implicitly
extends only traitObject. A throws clause does not include naked type variables. Every elementin a throws

clause is a subtype ofCheckedException. If an object declaration has a contract, the contract is evaluated as function
contracts (described in Section 12.4) when the object is created.

There are two kinds of object declarations: singleton object declarations and parametric object declarations. A single-
ton object declaration does not have any static or value parameter; it declares a sole, stand-alone object. There are two
kinds of parametric object declarations: statically parametric objects and dynamically parametric objects. Statically
parametric objects are parameterized by static parametersand dynamically parametric objects are parameterized by
value parameters (possibly with static parameters). A dynamically parametric object declaration includes a constructor
declaration and every call to the constructor of such an object with the same argument yields a new object. A statically
parametric object declaration does not include a constructor declaration and every instantiation of such an object with
the same argument yields the same singleton object. Initialization of parametric objects is entirely demand-driven as
described in Section 22.6.

Each value parameter of a parameterized object declarationmay be preceded by a sequence of field modifiers or the
special modifiertransient : A value parameter preceded by the modifiertransient doesn’t correspond to a field
in an instantiation of the object.transient parameters are not in scope of the object’s method declarations.

Fields can be also explicitly defined within a parameterizedobject declaration as within a singleton object declaration.
All fields of an object are initialized before that object is made available to subsequent computations. Syntactically,
method declarations in object declarations are identical to method declarations in trait declarations.

For example, the following empty list object extending trait List :

object Empty extends {List }
first() = throw Error
rest() = throw Error
cons(x) = Cons(x, self)
append(xs) = xs

end

has no fields and four methods.

Here is an example of a parameterizedCons object extending traitListJT K :

object ConsJT K(first :T, rest : ListJT K)
extends ListJT K
cons(x) = Cons(x, self)
append(xs) = Cons(first , rest .append(xs))

end

Note that this declaration implicitly introduces the “factory” function ConsJT K(first :T, rest : ListJT K) :ConsJT K
which is used in the body of the object declaration to define the cons andappend methods. Multiple factory functions
can be defined by overloading a parametric object with functions. For example:Cons(first :T ) = Cons(first ,Empty) .

10.2 Field Declarations

Syntax:
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FldDef ::= FldMod∗ Id [IsType] ( = | := ) Expr
FldMod ::= var | AbsFldMod

Fields are variables local to an object. They must not be referred to outside their enclosing object declarations.
Field declarations in an object declaration are syntactically identical to top-level variable declarations (described in
Section 6.2), with the same meanings attached to the form of variable declarations except that they have a different set
of modifiers.

10.3 Value Objects

An object declaration with the modifiervalue declares a value object that is called in many languages aprimitive
value. The object trait type declared by a value object implicitly has the modifiervalue .

The fields of avalue object are immutable; they cannot be changed directly or it is a static error. However, Fortress
allows value objects to have settable fields as an abbreviation for constructing a new value object with a different
value for one field. If a value object has a setter method or a subscripted assignment operator method (described in
Section 34.7), then the return type of the method must be the value object trait type instead of() . When such a method
is invoked, the receiver must itself be assignable, and the value returned by the method is assigned to the receiver.

For example, here is a value objectComplex number:

value object Complex(settable real : Double, settable imaginary : Double = 0)
opr +(self, other : Complex) = Complex(real + other .real , imaginary + other .imaginary)

end

When a mutable variablez :

var z : Complex = Complex(0)

updates itsimaginary field, the following syntax:

z.imaginary := v

can be used as an abbreviation for:

z := Complex(z.real , v)

So the setter for the fieldimaginary in Complex would do the work of constructing and returningComplex(z.real , v) ,
and the assignment:

z.imaginary := v

would be construed to mean:

z := z.imaginary(v)

Note that modifying a settable field directly within the value object is not allowed. For example, the following:

imaginary := 3

within the Complex object means:

self.imaginary := 3

and becauseself is not mutable, the assignment is disallowed.
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10.4 Object Equivalence

The trait Object defines the object equivalence operator== . This operator is automatically defined for all objects;
it is a static error for the programmer to override it. The== operator is used to decide whether its two arguments
refer to “the same object” in the strictest sense possible. If the arguments have different dynamic types—including the
instantiations of all static parameters—the result is always false . If both arguments are value objects with the same
type, then the result istrue if and only if corresponding fields of the objects are themselves equivalent as defined by
this operator; in particular, two binary words are strictlyequivalent if and only if they contain the same bit pattern. If
both arguments are object references, then the result istrue if and only if the two object references refer to the identical
reference object (in implementation terms, occupying the same memory locations in the heap). If both arguments are
functions, the result istrue only if the functions behave identically for any choice of type-correct arguments. Even if
two functions behave identically, the fortress implementation is free to returnfalse when they are compared for object
equivalence.
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Chapter 11

Static Parameters

Trait, object, and functional declarations may be parameterized with static parameters. Static parameters arestatic
variables listed in white square bracketsJ and K immediately after the name of a trait, object, or functionaland
they are in scope of the entire body of the declaration. Static parameters may be instantiated with static expressions
discussed in Section 13.27. In this chapter, we describe theforms that these static parameters can take.

Syntax:
StaticParams ::= JStaticParamListK
StaticParamList ::= StaticParam( , StaticParam)∗

11.1 Type Parameters

Syntax:
StaticParam ::= Id [Extends] [ absorbs unit ]

Static parameters may include one or more type parameters. Syntactically, a type parameter consists of an identifier fol-
lowed by an optionalextends clause, followed by an optional “absorbs unit ” clause (described in Section 35.4).
If a type parameter does not have anextends clause, it has an implicit “extends Object ” clause.

Type parameters are instantiated with types such as traits,tuple types, and arrow types (See Chapter 8 for a discussion
of Fortress types). We use the termnaked type variableto refer to an occurrence of a type variable as a stand-alone
type (rather than as a parameter to another type). Type parameters can appear in any context that an ordinary type can
appear, except that a naked type variable must not appear in the extends clause of a trait or object declaration nor as
the type of awrapped field (discussed in Section 10.2).

Here is a parameterized traitList :

trait ListJT K
first():T
rest(): ListJT K
cons(T ): ListJT K
append(ListJT K): ListJT K

end
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11.2 Nat and Int Parameters

Syntax:
StaticParam ::= nat Id

| int Id

Static parameters may include one or morenat and int parameters. Syntactically, anat parameter consists of the
special reserved wordnat followed by an identifier. Anint parameter consists of the special reserved wordint

followed by an identifier. These parameters are instantiated at runtime with numeric values. Anat parameter may
be used to instantiate othernat parameters, or to appear in any context that a variable of type N can appear, except
that it cannot be assigned to. Anint parameter may be used to instantiate otherint parameters, or to appear in any
context that a variable of typeZ can appear, except that it cannot be assigned to.

For example, the following functionf :

fJnat nK(x : Length2n) : Lengthn = sqrt(x)

declares anat parametern , which appears in both the parameter type and return type off .

11.3 Bool Parameters

Syntax:
StaticParam ::= bool Id

Static parameters may include one or morebool parameters. Syntactically, abool parameter consists of the special
reserved wordbool followed by an identifier. These parameters are instantiated at runtime with boolean values. They
may be used to instantiate otherbool parameters, or to appear in any context that a variable of type Boolean can
appear, except that they cannot be assigned to.

For example, the followingcoercion declared in the traitBoolean:

trait Boolean
coercion Jbool bK(x: BooleanLiteralJbK)

end

declares abool parameterb , which appears in the parameter type. See Chapter 24 for a full declaration ofBoolean.

11.4 Dimension and Unit Parameters

Syntax:
StaticParam ::= dim Id

| unit Id [ : DimRef] [ absorbs unit ]

Static parameters may include one or moredim and unit parameters. Syntactically, adim parameter begins with
the special reserved worddim followed by an identifier. Aunit parameter begins with the special reserved word
unit followed by an identifier, optionally followed by the token: and a dimension, and the unit is thereby restricted
to be a unit of the specified dimension. Aunit parameter may include the clause “absorbs unit ”; the meaning of
this is described in Section 35.4. Adim parameter is allowed to appear in any context that a dimension can appear. A
unit parameter is allowed to appear in any context that a unit can appear.

For example, here is a function that is parameterized with a unit:

sqrtJunit UK(x: R64 U2): R64 U = numericalsqrt(x/U2) U
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11.5 Operator and Identifier Parameters

Syntax:
StaticParam ::= opr Op

| ident Id

Static parameters may include one or more operator symbols and identifiers denoting method names. Syntactically,
an operator parameter begins with the special reserved wordopr followed by an operator symbol. An identifier
parameter begins with the special reserved wordident followed by an identifier.

Unlike other static parameters, operator and identifier parameters may be used in both type context and value context.
The following example operator parameter⊙ :

trait UnaryOperatorJT extends UnaryOperatorJT,⊙K, opr ⊙K
opr ⊙(self):T

end

is declared as a static parameter ofUnaryOperator, instantiated as a static argument, and declared as an operator
method.

Operator and identifier parameters may be freely intermixedwith other static parameters. For example, the following
trait HasLeftZeroes:

trait HasLeftZeroesJT extends HasLeftZeroesJT,⊙, isLeftZeroK, opr ⊙, ident isLeftZeroK
extends {BinaryOperatorJT,⊙K }

isLeftZero(): Boolean
property ∀(a:T, b:T ) a.isLeftZero()→: ((a⊙ b) = a)

end

is parameterized with a type parameterT , an operator parameter⊙ , and an identifier parameterisLeftZero . Many
interesting examples are described in Section 37.3.

11.6 Where Clauses

Syntax:
Where ::= where {WhereClauseList}
WhereClauseList ::= WhereClause( , WhereClause)∗

WhereClause ::= Id Extends
| TypeAlias
| NatConstranint
| IntConstranint
| BoolConstraint
| UnitConstraint
| TypeRefcoerces TypeRef
| TypeRefwidens TypeRef

Static parameters may have constraints placed on them in awhere clause. Awhere clause begins with the special
reserved wordwhere , followed by a sequence of static parameter constraints enclosed in braces{ and } , and
separated by commas.

A where clause may introduce new static variables, i.e., identifiers for types and other static entities that may not
be static parameters. We use the termwhere -clause variablesto refer to static variables that are not also static
parameters. Thewhere -clause variables must be bound in awhere clause.

A static parameter constraint is one of the following forms:
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• a trait constraint consisting of the identifier of a naked type variable, followed by the special reserved word
extends followed by a set of trait references which may include nakedtype variables,

• a type alias (described in Section 8.9),

• an arithmetic constraint,

• a boolean constraint,

• a unit equality constraint,

• a coerces constraint (described in Section 17.2), or

• a widens constraint (described in Section 17.2).

A where clause may include mutually recursive constraints. All static variables in a trait, object, or functional
declaration must occur either as a static parameter or as awhere -clause variable. Appendix A.2 describes a Fortress
core calculus withwhere clauses.

Trait declarations are allowed to extend other instantiations of themselves. For example, we can write:

trait CJSK extends CJT K
where {S extends T, T extends Object}

end

In this declaration, for every subtypeS of T , CJSK is a subtype ofCJT K . Effectively, we have expressed the fact
that the static parameterS of C is covariant.

Trait declarations need not have any static parameters in order to have awhere clause. For example, the following
trait declaration is legal:

trait C extends DJT K
where {T extends Object}

end

In this declaration, traitC is a subtrait ofeveryinstantiation of parametric traitD . Thus, traitC has all of the methods
of every instantiation ofD . By thinking of the declaration this way, we can see what restrictions we need to impose
on the traitC in order for it to be sensible. If traitC inherits a method declaration that refers toT , it really contains
infinitely many methods (one for each instantiation ofT ). However, instantiations of thewhere -clause variables are
not explicit from the program text as static parameters are.It must be possible to infer which method is referred to
at the call site. If there is not enough information to infer which method is called, type checking rejects the program
and requires more type information from the programmer. Programmers always can provide more type information
by using type ascription as described in Section 13.30.

Object or functional declarations may includewhere clauses. Here is an example declaration of anEmpty list:

object Empty extends ListJT K where {T extends Object}
first() = throw Error
rest() = throw Error
cons(x) = Cons(x, self)
append(xs) = xs

end

whereCons is declared in Section 10.1.
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Chapter 12

Functions

Functionsare values that have arrow types described in Section 8.5. Each function takes exactly one argument, which
may be a tuple, and returns exactly one result, which may be a tuple. A function may be declared as top level or
local as described in Section 6.1. Fortress allows functions to beoverloaded(as described in Chapter 15); there may
be multiple function declarations with the same function name in a single lexical scope. Functions can be passed as
arguments and returned as values. Single variables may be bound to functions including overloaded functions.

12.1 Function Declarations

Syntax:
FnDecl ::= AbsFnDecl

| FnDef
FnDef ::= FnMod∗ FnHeader= Expr
FnMod ::= atomic | io | UniversalMod
FnHeader ::= Id [StaticParams] ValParam[IsType] FnClauses
ValParam ::= ParamId

| ( [ValParams])
ParamId ::= Id

|
ValParams ::= PlainParam( ,PlainParam)∗

| [PlainParam( ,PlainParam)∗ , ] Id : TypeRef...
| [PlainParam( ,PlainParam)∗ , ] [ Id : TypeRef... , ] PlainParam= Expr ( ,PlainParam= Expr)∗

PlainParam ::= ParamId[IsType]
| TypeRef

FnClauses ::= [Throws] [Where] [Contract]
Throws ::= throws MayTraitTypes

Syntactically, a function declaration consists of an optional sequence of modifiers followed by the name of the function,
optional static parameters (described in Chapter 11), the value parameter with its (optionally) declared type, an optional
type of a return value, an optional declaration of thrown checked exceptions (discussed in Chapter 14), an optional
where clause (discussed in Section 11.6), an optional contract for the function (discussed in Section 12.4), and finally
an optional body expression preceded by the token= . A throws clause does not include naked type variables.
Every element in athrows clause is a subtype ofCheckedException. When a function declaration includes a body
expression, it is called afunction definition. Function declarations can be mutually recursive.

Function declarations can include the following special modifiers:
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atomic : A function with the modifieratomic acts as if its entire body were surrounded in anatomic expression
discussed in Section 13.23.

io : Functions that perform externally visible input/output actions are said to beio functions. An io function
must not be invoked from a non-io function.

A function takes exactly one argument, which may be a tuple. When a function takes a tuple argument, we abuse
terminology by saying that the function takes multiple arguments. Value parameters cannot be mutated inside the
function body.

A function’s value parameter consists of a parenthesized, comma-separated list of bindings where each binding is one
of:

• A plain binding “identifier ” or “ identifier :T ”

• A varargs binding “identifier :T . . . ”

• A keyword binding “identifier = e ” or “ identifier :T = e ”

When the parameter is a single plain binding without a declared type, enclosing parentheses may be elided. The
following restrictions apply: No two bindings may have the same identifier. No keyword binding may precede a plain
binding. No varargs binding may follow a keyword binding or precede a plain binding. Note that it is permitted to
have a single plain binding, or to have no bindings. The latter case, “()”, is considered equivalent to a single plain
binding of the ignored identifier “” of type (), that is, “( : ()) ”. Also, there can be at most one varargs binding.

A parameter declared by keyword binding is called akeyword parameter; a keyword parameter must be declared with
a defaultexpression, which is used when no argument is bound to the parameter explicitly. Syntactically, the default
expression is specified after an= sign. The default expression of a parameterx of functionf is evaluated each time
the function is called without a value provided forx at the call site. All parameters occurring to the left ofx are in scope
of its default expression. All parameters followingx must include default expressions as well;x is in scope of their
default expressions and the body of the function. When an argument is passed explicitly for a keyword parameter, that
argument must be passed as akeyword argument. (See Section 12.2.) If no type is declared for a keyword parameter,
the type is inferred from the static type of its default expression.

A parameter declared by varargs binding is called avarargs parameter; it is used to pass a variable number of argu-
ments to a function as a single heap sequence. The type of a varargs parameter isHeapSequenceJT K whereT is
the type mentioned in (or inferred for) that binding. See Section 40.3 for a discussion ofHeapSequence. Note that
the type of a varargs parameter cannot be omitted. If a function does not have a varargs parameter then the number of
arguments is fixed by the function’s type. Note that a varargsparameter is not allowed to have a default expression.

For example, here is a simple polymorphic function for creating lists:

ListJT extends Object, nat lengthK(rest :T [length ]) = do

if length = 0 then Empty
else Cons(rest0,List(rest1:(length−1)))
end

end

The following function:

swap(x : Object, y : Object) : (Object,Object) = (y, x)

has no static parameters, throws no checked exceptions, andhas no contract. It takes a tuple of two elements of type
Object and returns a tuple of two values. Namely, it returns its arguments in reverse order. If the return type is elided,
it is inferred to be the static type of the body. The followingdeclaration ofswap has the same return type as the above
declaration:
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swap(x : Object, y : Object) = (y, x)

Similarly, function parameter type can often be inferred from the body of the function. When a type can be inferred
for a parameter from the body of the function, that parametertype need not be declared explicitly. Thus, the following
declaration ofswap has the same parameter type and return type as the above declarations:

swap(x, y) = (y, x)

See Chapter 20 for a discussion of type inference in Fortress.

The following functionwrap :

wrap(xs, ys = xs) = [xs ys]

returns an array containing its parameters. If a value for only the parameterxs is given towrap at a call site, the value
of xs is bound toys as well, and an array that containsxs as both of its indices is returned.

12.2 Function Applications

Fortress provides overloaded functions (as described in Chapter 15); there may be multiple function declarations with
the same function name in a single lexical scope. Thus, we need to determine which function declaration are applicable
to a function application.

If a function’s argument type is() , then function declarations with the following forms of parameter lists are consid-
ered to be applicable:

• () which means the same thing as( : ())

• (x : ()) which is something programmers don’t ordinarily write

• (x :T . . .)

In the last case,x is bound to an emptyHeapSequenceJT K .

If a function’s argument typeA is neither() nor a tuple type, then function declarations with the following forms of
parameter lists are considered to be applicable:

• (x :T ) whereA is a subtype ofT

• (x :T . . .) whereA is a subtype ofT

In the last case,x is bound to aHeapSequenceJT K of length 1 , containing the actual argument value.

If a function’s argument typeA is a tuple type, then function declarations with the following forms of parameter lists
are considered to be applicable:

• (x :T ) whereA is a subtype ofT

• (x :T . . .) whereA is a subtype ofT

• a parameter list with no varargs binding, provided that

– type A has exactly as many plain types as the parameter list has plain bindings, and

– for every keyword-type pair (described in Section 8.4) inA, the parameter list has a binding with the same
keyword, and

– for every element type inA, the type in the element type is a subtype of the type of the corresponding
binding in the parameter list.
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• a parameter list with a varargs binding, provided that

– type A has at least as many plain types as the parameter list has plain bindings, and

– for every keyword-type pair inA, the parameter list has a binding with the same keyword, and

– for every element type inA, the type in the element type is a subtype of the type of the corresponding
binding in the parameter list—but if there is no corresponding binding, then the type in the element type
must be a subtype of the type in the varargs binding.

In the latter case, the parameter named by the identifier in the varargs binding is bound to aHeapSequenceJT K that
contains, in order, all the values of the tuple that did not correspond to plain bindings, followed by all the values in the
varargsHeapSequence of the tuple, if any.

When an argument is passed explicitly for a keyword parameter, that argument must be passed as akeyword argument.
Syntactically, a keyword argument is a keyword-value pair “identifier = e ”. Keyword parameters not explicitly
bound are bound to their default values. If a parameter that has no default value is not explicitly bound to an argument,
it is a static error. Because a keyword-value pair shares a syntax with anequality expression, we provide rules for
disambiguation in Section 13.28.1.

When a function is called (See Section 13.6 for a discussion of function call expressions), explicit arguments are
evaluated in parallel, keyword parameters not explicitly bound are bound to their default values sequentially, and the
body of the function is evaluated in a new environment, extending the environment in which it is defined with all
parameters bound to their arguments.

If the application of a functionf ends by calling another functiong , tail-call optimization must be applied. Storage
used by the new environments constructed for the application of f must be reclaimed.

Here are some examples:

sqrt(x)
arctan(y, x)
makeColor(red = 5, green = 3, blue = 43)
processString(s, start = 5,finish = 43)

If the function’s argument is not a tuple, then the argument need not be parenthesized:

sqrt 2
sin x
log log n

Here are a few varargs examples:

f(x : Z, y : Z, z : Z . . .) = 〈x, y, 〈q | q ← z〉〉

f(1, 2) returns 〈1, 2, 〈〉〉
f(1, 2, 3, 4) returns 〈1, 2, 〈3, 4〉〉
f(1, 2, [3 4] . . .) returns 〈1, 2, 〈3, 4〉〉
f(1, 2, 3, 4, [5 6] . . .) returns 〈1, 2, 〈3, 4, 5, 6〉〉
f(1, 2, 3, 4, 17 # 3 . . .) returns 〈1, 2, 〈3, 4, 17, 18, 19〉〉
f(1, [3 4] . . .) declaration not applicable

12.3 Abstract Function Declarations

Syntax:
AbsFnDecl ::= FnMod∗ FnHeader

| Name: ArrowType
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A function declaration may be separated from its definition.An abstract function declarationcan be provided for
overloaded function definitions. When the parameter type ofan abstract function declaration includes a type that is
declared with acomprises clause, it is a static error if the corresponding function definitions do not cover every
immediate subtype of the type.

Syntactically, an abstract function declaration is a function declaration without a body. Parameter names may be elided
but parameter types cannot be omitted. Additionally, when afunction’s type is not parameterized, Fortress provides
an alternative mathematical notation for an abstract function declaration: function name followed by the token: ,
followed by an arrow type.

For example, after the following abstract function declaration:

printMolecule(Molecule): ()

where traitMolecule is defined as follows:

trait Molecule comprises {OrganicMolecule, InorganicMolecule} end

the programmer could write:

printMolecule(molecule:Molecule) = . . .

or could write:

printMolecule(molecule: OrganicMolecule) = . . .
printMolecule(molecule: InorganicMolecule) = . . .

For the latter, the programmer must provide a definition for every immediate subtype ofMolecule , or it is a static
error.

12.4 Function Contracts

Syntax:
Contract ::= [Requires] [Ensures] [ Invariant]
Requires ::= requires Expr+

Ensures ::= ensures (Expr+ [ provided Expr])+

Invariant ::= invariant Expr+

Function contracts consist of three optional clauses: arequires clause, anensures clause, and aninvariant
clause. All three clauses are evaluated in the scope of the function body.

The requires clause consists of a sequence of expressions of typeBoolean. The requires clause is evaluated
during a function call before the body of the function. If anyexpression in arequires clause does not evaluate to
true , a CallerViolation exception is thrown.

The ensures clause consists of a sequence ofensures subclauses. Each such subclause consists of a sequence
of expressions of typeBoolean, optionally followed by aprovided subclause. Aprovided subclause begins
with the special reserved wordprovided followed by an expression of typeBoolean. For each subclause in the
ensures clause of a contract, theprovided subclause is evaluated immediately after therequires clause during a
function call (before the function body is evaluated). If aprovided subclause evaluates totrue , then the expressions
preceding thisprovided subclause are evaluated after the function body is evaluated. If any expression evaluated
after function evaluation does not evaluate totrue , aCalleeViolation exception is thrown. The expressions preceding
the provided subclause can refer to the return value of the function. Aresult variable is implicitly bound to a return
value of the function and is in scope of the expressions preceding the provided subclause. The implicitly declared
result shadows any other declaration with the same name in scope.
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The invariant clause consists of a sequence of expressions ofany type. These expressions are evaluated before and
after a function call. For each expressione in this sequence, if the value ofe when evaluated before the function call
is not equal to the value ofe after the function call, aCalleeViolation exception is thrown.

Here are some examples:

factorial(n :Z64) requires n ≥ 0 =
if n = 0 then 1
else n factorial(n− 1)
end

mangle(input : List) ensures sorted(result) provided sorted(input) =
if input 6= Empty
then mangle(first(input))

mangle(rest(input))
end

Overloaded function contracts are handled similarly with method contracts described in Section 9.4. In particular,
substitutability is preserved: the statically most applicable function to a call should be substitutable with the dynam-
ically most applicable function to the call. For a call of function f , we use the termstatic contractof f to refer to a
contract declared in the statically most applicable function declaration and the termdynamic contractof f to refer to
a contract declared in the dynamically most applicable function declaration. Three exceptions may be thrown due to
an overloaded function contract violation:CallerViolation is thrown when therequires clause of the static con-
tract fails, CalleeViolation is thrown when theensures or invariant clause of the dynamic contract fails, and
ContractOverloadingViolation is thrown when therequires clause of the dynamic contract or theensures or
invariant clause of the static contract fails.

Evaluation of a call of functionf proceeds as follows. LetC andC ′ be the static and dynamic contracts off ,
respectively. If therequires clause ofC fails, aCallerViolation exception is thrown. Otherwise, if therequires
clause ofC ′ fails, aContractOverloadingViolation exception is thrown. Otherwise, theprovided subclauses ofC
andC ′ are evaluated. For everyprovided subclause that evaluates totrue , the correspondingensures subclause is
recorded in a tableE for later comparison. Similarly, theinvariant clauses ofC andC ′ are evaluated and the results
are stored inE for later comparison. Then the body of the dynamically most applicable function declaration off is
evaluated. After evaluation of the body, allensures subclauses of the dynamic contract recorded inE are checked
to ensure that they evaluate totrue , and all invariant clauses of the dynamic contract recorded inE are checked
to ensure that they evaluate to values equal to the values they evaluated to before evaluation of the body. If any such
check fails, aCalleeViolation exception is thrown. Otherwise, allensures subclauses andinvariant clauses
of the static contract inE are checked. If any of these checks fails, aContractOverloadingViolation exception is
thrown.
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Chapter 13

Expressions

Fortress is an expression-oriented language. Syntactically, the positions in which an expression may legally appear
(value context) is determined by the nonterminalExpr in the Fortress grammar, defined in Appendix G.

13.1 Literals

Syntax:
Value ::= Literal

Fortress provides boolean literals,() literal, character literals, string literals, and numericliterals. Literals are values;
they do not require evaluation.

The literal false has typeBooleanLiteralJfalseK . The literaltrue has typeBooleanLiteralJtrueK .

The literal () is the only value with type(). Whether any given occurrence of() refers to the value() or to the type
() is determined by context.

A character literal has typeCharacter. Each character literal consists of an abstract character in Unicode 5.0 [25],
enclosed in single quotation marks (for example, ‘a’, ‘ A’, ‘ $’, ‘ α’, ‘ ⊕’). For convenience, the single quotes may be
either true typographical “curly” single quotation marks or a pair of ordinary apostrophe characters (for example,’a’ ,
’A’ , ’$’ , ’ α’ , ’ ⊕’ ). See Section 5.9 for a description of how names of characters may be used rather than actual
characters within character literals, for example ‘APOSTROPHE’ and ‘GREEKCAPITAL LETTERGAMMA’.

A string literal has typeString . Each string literal is a sequence of Unicode 5.0 charactersenclosed in double quotation
marks (for example, “Hello, world! ” or “ π r

2”). For convenience, the double quotes may be either true typograph-
ical “curly” double quotation marks or a pair of “neutral” double-quote characters (for example,"Hello, world!"

or " π r
2" ). Section 5.10 also describes how names of characters may beused rather than actual characters within

string literals. One may also use the escape sequences\b and\t and\n and\f and\r as described in [5].

Numeric literals in Fortress are referred to asnumerals, corresponding to various expressible numbers. Numerals may
be eithersimpleor compound(as described in Section 5.13).

A numeral containing only digits (letn be the number of digits) has typeNaturalNumeralJn, 10, vK wherev is the
value of the numeral interpreted in radix ten. If the numeralhas no leading zeros, or is the literal0 , then it also has
type LiteralJvK .

A numeral containing only digits (letn be the number of digits) then an underscore, then a radix indicator (letr be the
radix) has typeNaturalNumeralWithExplicitRadixJn, r, vK wherev is the value of then-digit numeral interpreted
in radixr.
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A numeral containing only digits (letn be the total number of digits) and a radix point (letm be the number of digits
after the radix point) has typeRadixPointNumeralJn,m, 10, vK wherev is the value of the numeral, with the radix
point deleted, interpreted in radix ten.

A numeral containing only digits (letn be the total number of digits) and a radix point (letm be the number of digits
after the radix point), then an underscore, then a radix indicator (letr be the radix) has the following type:

RadixPointNumeralWithExplicitRadixJn,m, r, vK

wherev is the value of then-digit numeral, with the radix point deleted, interpreted in radixr.

Every numeral also has typeNumeralJn,m, r, vK for appropriate values ofn , m , r , andv .

Numerals are not directly converted to any of the number types because, as in common mathematical usage, we expect
them to be polymorphic. For example, consider the numeral3.1415926535897932384 ; converting it immediately to
a floating-point number may lose precision. If that numeral is used in an expression involving floating-point intervals,
it would be better to convert it directly to an interval. Therefore, numerals have their own types as described above.
This approach allows library designers to decide how numerals should interact with other types of objects by defining
coercion operations (see Section 17.1 for an explanation ofcoercion in Fortress). The Fortress standard libraries define
coercions from numerals to integers (for simple numerals) and rational numbers (for compound numerals).

In Fortress, dividing two integers using the/ operator produces arational number; this is true regardless of whether
the integers are of typeZ (or ZZ), Z64 (or ZZ64), N32 (or NN32), or whatever. Addition, subtraction, multiplication,
and division of rationals are always exact; thus values suchas 1/3 are represented exactly in Fortress.

Numerals containing a radix point are actually rational literals; thus3.125 has the rational value3125/1000 . The
quotient of two integer literals is a constant expression (described in Section 13.27) whose value is rational. Similarly,
a sequence of digits with a radix point followed by the symbol× and an integer literal raised to an integer literal,
such as6.0221415× 1023 is a constant expression whose value is rational. If such constants are mentioned as part
of a floating-point computation, the compiler performs the rational arithmetic exactly and then converts the result to
a floating-point value, thus incurring at most one floating-point rounding error. But in general rational computations
may also be performed at run time, not just at compile time.

A rational number can be thought of as a pair of integersp andq that have been reduced to “standard form in lowest
terms”; that is,q > 0 and there is no nonzero integerk such thatp

k
and q

k
are integers and

∣

∣
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∣ < |p|+ |q|. The
typeQ includes all such rational numbers.

The typeQ∗ relaxes the requirementq > 0 to q ≥ 0 and includes two extra values,1/0 and −1/0 (sometimes
called “the infinite rational” and “the indefinite rational”). The advantage ofQ∗ is that it is closed under the rational
operations+, −, ×, and/. If a value of typeQ∗ is assigned to a variable of typeQ, a DivideByZeroException is
thrown at run time if the value is1/0 or −1/0 . The typeQ# includes all of1/0 , −1/0 , and 0/0 . In ASCII, Q ,
Q∗ , and Q# are written asQQ, QQstar , andQQsplat , respectively. See Section 38.1 for definitions ofQ , Q∗ ,
and Q# .

13.1.1 Pi

The object namedπ (or pi ) may be used to represent the ratio of the circumference of a circle to its diameter rather
than a specific floating-point value or interval value. In Fortress,π has typeRationalValueTimesPiJfalse, 1, 1K .
When used in a floating-point computation, it becomes a floating-point value of the appropriate precision; when used
in an interval computation, it becomes an interval of the appropriate precision.

13.1.2 Infinity and Zero

The object named∞ has typeExtendedIntegerValueJtrue, 0, trueK . One can negate∞ to get a negative infinity.
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Negating the literal0 produces a special negative-zero object, which refuses to participate in compile-time constant
arithmetic (discussed in Section 13.27). It has typeNegativeZero. The main thing it is good for is coercion to a
floating-point number (discussed in Chapter 17). (Negatingany other zero-valued expression simply produces zero.)

13.2 Identifier References

Syntax:
Expr ::= DottedName[JStaticArgListK]

| self

DottedName ::= DottedId
| opr Op

A name that is not an operator appearing in an expression context is called anidentifier reference. It evaluates to the
value of the name in the enclosing scope in the value namespace. The type of an identifier reference is the declared
type of the name. See Chapter 7 for a discussion of names. An identifier reference performs a memory read operation.
Note in particular that if a name is not in scope, it is a staticerror (as described in Section 7.2).

An identifier reference which denotes a polymorphic function may include explicit type arguments (described in
Chapter 12) but most identifier references do not include them; the type arguments are statically inferred from the
context of the method invocation (as described in Chapter 20). For example,identityJStringK is an identifier reference
with an explicit type argument where the functionidentity is defined as follows:

identityJT K(x :T ) :T = x

The special nameself is declared as a parameter of a method. When the method is invocated, its receiver is bound
to the self parameter; the value ofself is the receiver. The type ofself is the type of the trait or object being
declared by the innermost enclosing trait or object declaration or object expression. See Section 9.2 for details about
self parameters.

13.3 Dotted Field Accesses

Syntax:
Expr ::= Expr. Id

An expression consisting of a single subexpression (calledthe receiver expression), followed by ‘. ’, followed by a
name, not immediately followed by a parenthesis, is afield access. If the receiver expression denotes an object (called
thereceiver), the field access is evaluated to a call to a getter mapped from that name by the receiver. The type of the
field access is the return type of its getter. The static type of the receiver indicates whether a getter mapped from that
name is provided by the denoted object. If a getter is not provided, it is a static error. See Section 9.2 for a discussion
of getters.

13.4 Dotted Method Invocations

Syntax:
Expr ::= Expr. Id[JStaticArgListK]( [ExprList])

| TraitType. coercion[JStaticArgListK]( Expr)
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A dotted method invocationconsists of a subexpression (called the receiver expression), followed by ‘. ’, followed by
an identifier, an optional list of type arguments (describedin Chapter 12) and a subexpression (called theargument
expression). Unlike in function calls (described in Section 13.6), theargument expression must be parenthesized, even
if it is not a tuple. There must be no whitespace on either sideof the ‘. ’, and there must be no whitespace on the
left-hand side of the left parenthesis of the argument expression. The receiver expression evaluates to the receiver of
the invocation (bound to the self parameter (discussed in Section 9.2) of the method). Acoercioninvocation (discussed
in Chapter 17) has a similar syntax to a dotted method invocation.

The subexpressions of a method invocation are evaluatedin parallel; evaluation steps of the subexpressions can be
interleaved, and even reordered, to form an evaluation of the method invocation. See Section 4.4 for a discussion of the
semantics of their concurrent evaluation. A method invocation may include explicit instantiations of type parameters
but most method invocations do not include them; the type arguments are statically inferred from the context of the
method invocation (as described in Chapter 20). After the subexpressions of a dotted method invocation are evaluated
to values, the body of the method is evaluated with the parameter of the method bound to the value of the argument
expression. The value and the type of a dotted method invocation are the value and the type of the method body.

We say that methods or functions (collectively called asfunctionals) may beapplied to(also “invoked on” or “ called
with”) an argument. We use “call”, “invocation”, and “application” interchangeably.

Here are some examples:

myString .toUppercase()
myString .replace(“ foo ” , “ few ”)
SolarSystem.variation((π/2 radian)/452million year)
myNum.add(otherNum) (∗ NOT myNum.add otherNum∗)

13.5 Naked Method Invocations

Syntax:
Expr ::= Id Expr

Method invocations that are not prefixed by receivers arenaked method invocations. A naked method invocation is
either a functional method call (See Section 9.2 for a discussion of functional methods) or a method invocation within
a trait or object that provides the method declaration. Syntactically, a naked method invocation is same as a function
call except that the method name is used instead of an arbitrary expression denoting the applied method. Like function
calls, an argument expression need not be parenthesized unless it is a tuple. After the argument expression is evaluated
to a value, the body of the method is evaluated with the parameter of the method bound to the value of the argument
expression. The value and the type of a naked method invocation are the value and the type of the method body.

13.6 Function Calls

Syntax:
Expr ::= Expr Expr

A function callconsists of two subexpressions: an expression denoting theapplied function and an argument expres-
sion. The argument expression and the expression denoting the applied function are evaluatedin parallel: evaluation
steps of the subexpressions can be interleaved, and even reordered when forming an evaluation of the function call.
See Section 4.4 for a description of the semantics of parallel evaluation. As with languages such as Scheme and the
Java Programming Language, function calls in Fortress are call-by-value. An argument expression is evaluated to a
value before the function is applied. After the subexpressions of a function call are evaluated to values, the body of
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the function is evaluated with the parameter of the functionbound to the value of the argument expression. The value
and the type of a function call are the value and the type of thefunction body.

Here are some examples:

sqrt(x)
arctan(y, x)

If the function’s argument is not a tuple, then the argument need not be parenthesized:

sqrt 2
sin x
log log n

13.7 Function Expressions

Syntax:
Value ::= fn ValParam[IsType] [Throws] ⇒ Expr

Function expressions denote function values; they do not require evaluation. Syntactically, they start with the special
reserved wordfn followed by a parameter, optional return type, optionalthrows clause,⇒, and finally an expres-
sion. The type of a function expression is an arrow type consisting of the function’s parameter type followed by the
token→ , followed by the function’s return type, and the function’soptional throws clause. Unlike declared func-
tions (described in Chapter 12), function expressions are not allowed to include static parameters norwhere clauses
(described in Chapter 11).

Here is a simple example:

fn (x :Double)⇒ if x < 0 then −x else x end

13.8 Operator Applications

Syntax:
Expr ::= Op Expr

| Expr Op[Expr]
Value ::= LeftEncloser ExprList RightEncloser

To support a rich mathematical notation, Fortress allows most Unicode characters that are specified to be mathematical
operators to be used as operators in Fortress expressions, as well as various tokens described in Chapter 16. Most of
the operators can be used as prefix, infix, postfix, or nofix operators as described in Section 16.3; the fixity of an
operator is determined syntactically, and the same operator may have definitions for multiple fixities.

Syntactically, an operator application consists of an operator and its argument expressions. If the operator is a prefix
operator, it is followed by its argument expression. If the operator is an infix operator, its two argument expressions
come both sides of the operator. If the operator is a postfix operator, it comes right after its argument expression. Like
function calls, argument expressions are evaluatedin parallel. After evaluating argument expressions to values, the
body of the operator definition is evaluated with the parameters of the operator bound to the values of the argument
expressions. The value and the type of an operator application are the value and the type of the operator body.

Here are some examples:

95



(−b+ sqrt(b2 − 4ac))/2a
nne(−n)sqrt(2πn)
akbn−k

x1y2 − x2y1
1/2gt2

n(n+ 1)/2
(j + k)!/(j!k!)
1/3 3/5 5/7 7/9 9/11
17.3 meter/second
17.3 m/s
u · (v × w)
(A ∪B) INTERSECT C
(A ∪B) ∩ C
i < j ≤ k ∧ p ≺ q
print(“The answers are ” (p+ q) “ and ” (p− q))
〈2, 3, 4, 5〉

13.9 Object Expressions

Syntax:
Val ::= object [Extends] (FldDef |MdDef)∗ end

Object expressions denote object values; they do not require evaluation. Syntactically, they start with the special
reserved wordobject , followed by an optionalextends clause, field declarations, method declarations, and finally
the special reserved wordend . The type of an object expression is an anonymous object trait type that extends
the traits listed in theextends clause of the object expression. The object trait type does not include the methods
introduced by the object expression (i.e., those methods not provided by any supertraits of the object expression).
Every evaluation of an object expression has the same anonymous object trait type. Each object trait type is associated
with a program location; any two object expressions with thesameextends clause have different object trait types.

Unlike object declarations (described in Chapter 10), object expressions are not allowed to include modifiers nor value
parameters nor static parameters norwhere clauses (described in Chapter 11). While object declarations must not
include any free static variable (i.e., all static variables in an object declaration must occur either as a static parameter
or as awhere -clause variable), object expressions may include free static variables.

For example, the following object expression:

fJT K(x :T ) = object f :T = x end

has a static variableT that is not its static parameter nor itswhere -clause variable.

The following example expression evaluates to a new object extending traitList:

object extends {List }
first() = throw Error
rest() = throw Error
cons(x) = Cons(x, self)
append(xs) = xs

end
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13.10 Assignments

Syntax:
Expr ::= Expr AssignOp Expr
AssignOp ::= := | Op=

An assignment expression consists of a left-hand side indicating one or more variables or a subscripted expression (as
described in Section 34.7) to be updated, an assignment token, and a right-hand-side expression.

The assignment token may be ‘:= ’, to indicate ordinary assignment; or may be any operator (other than ‘: ’ or ‘ = ’
or ‘< ’ or ‘ > ’) followed by ‘ = ’ with no intervening whitespace, to indicate compound (updating) assignment. A
compound assignment is a syntactic sugar; for example,x += e is a shorthand forx := x+ e . An assignment
expression evaluates its right-hand-side expression and binds its left-hand side to the value of the right-hand-side.An
assignment expression performs a memory write operation.

A left-hand side of an assignment expression may be a single variable, a subscripted expression, orn variables using
tuple notation. If tuple notation is used, then the right-hand side must be an expression which ultimately evaluates to a
tuple of lengthn or a function application that returns a tuple ofn values. Variables updated in assignment expressions
must be already declared. The value of an assignment expression is () .

Here are some examples:

x := f(0)
cij := cij + aikbkj

(a, b, c) := (b, c, a) (∗ Permute a, b, and c∗)
x += 1
(x, y) += (δx, δy)
myBag = myBag ∪ newItems

myBag∪ = newItems

13.10.1 Definite Assignment

References to uninitialized variables are statically forbidden. As with the Java Programming Language, this static
constraint is ensured with a specific conservative flow analysis. In essence, an initialization of a variable must occur
on every possible execution path to each reference to a variable. Variable initialization is performed in a local scope
analogously to the rules for top-level initialization of simple components, defined in Section 22.6.

13.11 Do Expressions

Syntax:
Flow ::= Do
Do ::= do BlockElem∗ end

BlockElem ::= Expr[ , GeneratorList]
| LocalVarFnDecl

A do expression consists of the special reserved worddo , a series of expressions, a generated expressions (described
in Section 13.11.1) local variable declarations, or local function declarations (block expression), and the special re-
served wordend . The last of the block expression must not be a local declaration. A do expression evaluates its
subexpressions and local declarations in order. The value and type of ado expression is the value and type of the last
expression in the block expression. Eachdo expression introduces a new scope. Some compound expressions have
clauses that are implicitly block expressions.
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Here are examples of function declarations whose bodies aredo expressions:

f(x : R64) = do

(sin(x) + 1)2

end

foo(x : R64) = do

y = x
z = 2x
y + z

end

mySum(i : Z64) :Z64 = do

acc : Z64 := 0
for j ← 0 : i do

acc := acc + j
end

acc

end

13.11.1 Generated Expressions

If a subexpression of ado expression has type(), the expression may be followed by a ‘, ’ and a generator list
(described in Section 13.17). When a generator list is provided, generators produce values and bind the values to the
identifiers that are used in the preceding expression. Most generators, unlike thesequential generator, may execute
each evaluation of the assignment in a separate implicit thread.

13.11.2 Distinguishing a Local Declaration from an Equality Expression

Because a local declaration shares a syntax with anequality expression, we provide rules for disambiguation:

• If an expression of the form “e = e ” occurs as a proper subexpression in any non-block expression, it is an
equality expression.

• If such an expression occurs as an immediate subexpression of a block expression, it is a local declaration.
Adding parentheses makes the expression an equality expression.

13.12 Parallel Do Expressions

Syntax:
Do ::= do BlockElem+ also Do

| at Expr Do

A series of blocks may be run in parallel using thealso do construct. Any number of contiguous blocks may be
joined together by the special reserved wordalso . Each block is run in a separate implicit thread; these threads
together form a group. A thread can be placed in a particular region by using anat expression as described in
Section 32.7.

For example:
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treeSum(t : TreeLeaf) = 0
treeSum(t : TreeNode) = do

var accum := 0
do

accum += treeSum(t.left)
also do

accum += treeSum(t.right)
also do

accum += t.datum

end

accum

end

13.13 Label and Exit

Syntax:
Flow ::= label Id Expr+ end Id

| exit [Id] [ with Expr]

Block expressions may be labeled with an identifier. Syntactically, a label expression begins with the special re-
served wordlabel followed by an identifier, inner expressions (label block), the special reserved wordend , and
finally the same identifier. Alabel expression evaluates its inner expressions in order and anyinner exit expres-
sion can exit the label block. Syntactically, anexit expression begins with the special reserved wordexit followed
by an optional identifier of thetargeted label blockwith an optional value (exit value), which consists of the special
reserved wordwith followed by an expression. If anexit expression does not have awith clause, it has an implicit
exit value () . If an exit expression does not exist within alabel expression, the value of thelabel expression
is the value of the last expression of the label block. If anexit expression exists, the expression completes abruptly
and attempts to transfer control to the end of the targeted label block. The targeted label block evaluates to the exit
value of theexit expression. The type of alabel expression is a union of the type of the last expression of itslabel
block and the types of anyexit values. The type of anexit expression isBottomType.

If one or moretry expressions are nested between anexit expression and the targeted label block, thefinally

clauses of these expressions are run in order, from innermost to outermost. Only when every interveningfinally
clause has completed normally does the targeted block complete normally. If anyfinally clause completes abruptly
by throwing an exception, theexit expression fails to exit, thelabel expression completes abruptly, and the
exception is propagated.

Here is a simple example:

label I95
if goingTo(Sun)
then exit I95 with x32B

else x32A

end

end I95

The expressionexit I95 with x32B completes abruptly and attempts to transfer control to the end of the targeted
label blocklabel I95 . The targeted label block completes normally with valuex32B .
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13.14 While Loops

Syntax:
Flow ::= while Expr Do

A while loop consists of acondition expressionof type Boolean followed by the special reserved worddo , a
series of expressions, local variable declarations, or local function declarations, and the special reserved wordend . It
evaluates the condition expression and the body expressions repeatedly until the value of the condition expression is
false. The value of awhile loop is () . The body expressions form a block expression and has the various properties
of block expressions (described in Section 13.11).

13.15 For Loops

Syntax:
Flow ::= for GeneratorList Do

A for loop consists of the special reserved wordfor followed by a generator list (discussed in Section 13.17),
followed by the special reserved worddo , a series of expressions, local variable declarations, or local function decla-
rations, and the special reserved wordend . for loops are implicitly parallel. Parallelism infor loops is specified by
the generators used (see Section 13.17). Most generators, unlike thesequential generator, may execute each iteration
of the loop body expression in a separate implicit thread. For each iteration, generators produce values and bind the
values to the identifiers that are used in the loop body. The value of a for loop is () . The body expressions form a
block expression and have the various properties of block expressions (described in Section 13.11).

13.15.1 Reduction Variables

To perform computations as locally as possible, and avoid the need to synchronize relatively simplefor loops,
Fortress gives special treatment toreductions. We say that an operator⊙ is a reduction operatorfor typeT with an
identity id if T is a subtype ofMonoidJT,⊙, idK, which implies that⊙ is an associative binary infix operator ofT
(see Section 37.4 for details about theMonoid trait). A loop body may contain as many of the following assignment
expressions using reduction operators as desired:

l := l ⊙ expr

l := expr ⊙ l
l ⊙= expr

Reductions restrict a set of valid executions offor loops to get additional benefits such as less synchronizations with
other threads. We say that a variablel is areduction variablereduced using the reduction operator⊙ for a particular
for loop if it satisfies the following conditions:

• Every assignment tol within the loop body uses the same reduction operator⊙, and the value ofl is not
otherwise read or written.

• The variablel is not a free variable of afn expression or a method in anobject expression which occurs in
the loop body.

• The variablel is not an object field.

Other threads which simultaneously reference a reduction variable while a loop is running will see the value of the
variable before the loop begins. At the end of the loop body, the original variable value before the loop and the final
variable values from each execution of the loop body are combined together using the reduction operator, in some
arbitrarily-determined order.
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Several common mathematical operators are defined to be reduction operators in the Fortress standard libraries. These
include + , ·, ∧ , ∨ , and∨ . If a typeT extendsGroupJT,+,−, idK (see Section 37.4 for details about theGroup
trait) then reduction expressions of the form:

x −= y

are transformed into:

x += x.id − y
Note that since there are no guarantees on the order of execution of loop iterations, there are also no guarantees on the
order of reduction.

The semantics of reductions enables implementation strategies such as OpenMP [22]: A reduction variablel is as-
signedl.id at the beginning of each iteration. The original variable value may be read ahead of time, resulting in the
loss of parallel updates to the variable which occur in otherthreads while the loop is running. Note that because this
implementation strategy does not read reduction variablesin the loop body, the actual implementation of reduction
may vary substantially from the execution.

In the following example,sum is a reduction variable:

arraySumJnat xK(a : R64[x]) : R64 = do

sum : R64 := 0
for i← a.indices do

sum := sum + ai

end

sum

end

13.16 Ranges

Syntax:
Range ::= [Expr] : [Expr][ : [Expr]]

| Expr# Expr

A range expressionis used to create a special kind ofGenerator for a set of integers, called aRange , useful for
indexing an array or controlling afor loop. Generators in general are discussed further in Section 13.17.

An explicit rangeis self-contained and completely describes a set of integers. Assume thata, b, andc are expressions
that produce integer values.

• The rangea : b is the set ofn = max(0, b − a + 1) integers{a, a + 1, a + 2, . . . , b − 2, b − 1, b}. This is a
nonstridedrange. Ifa andb are both static expressions (described in Section 13.27), then it is astatic rangeof
type StaticRangeJa, n, 1K and therefore also arange of static size) of type RangeOfStaticSizeJnK .

• The rangea : b : c is the set ofn = max
(

0,
⌊

b−a+c
c

⌋)

integers{a, a+ c, a+ 2c, . . . , a+
⌊

b−a
c

⌋

c}, unlessc is
zero, in which case it throws an exception. (Ifc is a static expression, then it is a static error ifc is zero.) This is
a stridedrange. Ifa , b , andc are all static expressions, then it is astatic rangeof type StaticRangeJa, n, cK
and therefore also arange of static size) of type RangeOfStaticSizeJnK .

• The rangea # n is the set ofn integers{a, a+1, a+2, . . . , a+n−3, a+n−2, a+n−1}, unlessn is negative,
in which case it throws an exception. (Ifn is a static expression, then it is a static error ifn is negative.) This is
anonstridedrange. Ifa andn are both static expressions, then it is astatic rangeof type StaticRangeJa, n, 1K
If b is a static expression, then it is arange of static sizeof type RangeOfStaticSizeJnK , even if a is not a
static expression.
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An implicit rangemay be used only in certain contexts, such as array subscripts, that can supply implicit information.
Suppose an implicit range is used as a subscript for an axis ofarray for which the lower bound isl and the upper bound
is u.

• The implicit range: is treated asl :u .

• The implicit range: : c is treated asl :u : c .

• The implicit range: b is treated asl : b .

• The implicit range: b : c is treated asl : b : c .

• The implicit rangea : is treated asa :u .

• The implicit rangea : : c is treated asa :u : c .

One may test whether an integer is in a range by using the operator∈:

if j ∈ a : b then print “win ” end

Ranges may be compared as if they were sets of integers by using ⊂ ( SUBSET) and⊆ ( SUBSETEQ) and = and
⊇ ( SUPSETEQ) and⊃ ( SUPSET).

Nonstrided ranges may be intersected using the operator∩ ( INTERSECTION).

The size of a range (the number of integers in the set) may be found by using the set-cardinality operator|. . .| . For
example, the value of|3 : 7| is 5 and the value of|1 : 100 : 2| is 50 .

Note that a range is very different from an interval with integer endpoints. The range3 : 5 contains only the values 3,
4, and 5, whereas the interval[3, 5] contains all real numbersx such that3 ≤ x ≤ 5 .

13.17 Generators

Syntax:
GeneratorList ::= Generator( , Generator)∗

Generator ::= Id←Expr
| ( Id , IdList ) ←Expr
| Expr

IdList ::= Id ( , Id)∗

Fortress makes extensive use of comma-separatedgenerator liststo express parallel iteration. Generator lists occur in
generated expressions (described in Section 13.11.1),for loops (described in Section 13.15), sums and big operators
(described in Section 13.18), and comprehensions (described in Section 13.29). We refer to these collectively as
expressions with generators. Every expression with generators contains abody expression(for an assignment this
expression is the assignment itself) which is evaluated foreach combination of values bound in the generator list.

An element of a generator list is either agenerator bindingor a boolean expression. A generator binding consists of
one or more comma-separated identifiers followed by the token ← , followed by a subexpression (called thegenerator
expression). A generator expression evaluates to an object whose type is Generator. For each iteration, a generator
object produces a value or a tuple of values. These values arebound to the identifiers to the left of the arrow, which
are in scope of subsequent generator list elements and of thebody of the construct containing the generator list.

A boolean expression in a generator list is interpreted as afilter. An iteration is performed only if the result of the filter
expression is true. If the filter is false, subsequent expressions in the generator list will not be evaluated. However, other
than this restriction, there is no implied order of evaluation of the generator expressions or the boolean expressions in
a generator list. Thus, for example, if a boolean expressionin the middle of the list evaluates totrue , then generator
expressions to its right in the list may be evaluated before generator expressions to its left.
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The body of each iteration is run in its own implicit thread. The expressions in the generator list can each be considered
to run in a separate implicit thread. Together these implicit threads form a thread group.

Some commonGenerators include:

l :u Any range expression
a.indices The index set of an arraya
{0, 1, 2, 3} The elements of an aggregate expression
sequential(g) A sequential version of generatorg

The generatorsequential(g) forces the iterations using distinct values fromg to be performed in order. Every
generator has an associatednatural orderwhich is the order obtained bysequential . For example, a sequentialfor
loop starting at1 and going ton can be written as follows:

for i← sequential(1 :n) do
· · ·

end

Given a multidimensional array, theindices generator returns a tuple of values, which can be bound by a tuple of
variables to the left of the arrow:

(i, j)← my2DArray .indices

The parallelism of a loop on this generator follows the spatial distribution (discussed in Section 32.5) ofmy2DArray

as closely as possible.

The order of nesting of generators need not imply anything about the relative order of nesting of iterations. In most
cases, multiple generators can be considered equivalent tomultiple nested loops. However, the compiler will make an
effort to choose the best possible iteration order it can fora multiple-generator loop; there may be no such guarantee for
nested loops. Thus loops with multiple generators are preferable in general. Note that the early termination behavior
of nested looping is subtly different from a single multi-generator loop; see Section 32.6.

13.18 Summations and Other Reduction Expressions

Syntax:
Flow ::= Accumulator[[ GeneratorList] ] Expr
Accumulator ::=

∑ |∏ | BIG Op

A reduction expressionbegins with a big operator such as
∑

or
∏

followed by an optional generator list (described
in Section 13.17), followed by a subexpression. A complete list of these operators are described in Section 16.8.1.
When a generator list is provided, generators produce values and bind the values to the identifiers that are used in the
subexpression. Most generators, unlike thesequential generator, may execute each evaluation of the subexpression
in a separate implicit thread. The value of a reduction expression is the result of the operation over the values of the
subexpressions. The type of a reduction expression is the return type of the big operator used.

A reduction expression with a generator list:
∑

[v1 ← g1, v2 ← g2, . . .]e

is equivalent to the following code:

do

result = 0
for v1 ← g1, v2 ← g2, . . . do

result += e
end
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result

end

whereresult is a fresh variable. A reduction expression without a generator list:
∑

g

is equivalent to the following:
∑

[x← g]x

Note that reduction expressions without generator lists can be used to conveniently sum any aggregate expression
(described in Section 13.28), since every aggregate expression is a generator.

13.19 If Expressions

Syntax:
Flow ::= if Expr then Expr+ ( elif Expr then Expr+)∗ [Else] end

| ( if Expr then Expr+ ( elif Expr then Expr+)∗ Else[ end ])
Else ::= else Expr+

An if expression consists of the special reserved wordif followed by a condition expression of typeBoolean,
followed by the special reserved wordthen , a sequence of expressions, an optional sequence ofelif clauses (each
consisting of the special reserved wordelif followed by a condition expression, the special reserved word then ,
and a sequence of expressions), an optionalelse clause (consisting of the special reserved wordelse followed by a
sequence of expressions), and finally the special reserved word end . Each clause forms a block expression and has the
various properties of block expressions (described in Section 13.11). Anif expression first evaluates its condition
expression. If the condition expression evaluates to true,the then clause is evaluated. Otherwise, the next to the
then clause is evaluated. Anelif clause evaluates its condition expression first and proceeds similarly to anif
expression. The type of anif expression is the union of the types of all right-hand sides of the clauses. If there is no
else clause in anif expression, then the last expression in every clause must evaluate to() . The special reserved
word end may be elided if theif expression is immediately enclosed by parentheses. In sucha case, anelse clause
is required.

For example,

if x ∈ {0, 1, 2} then 0
elif x ∈ {3, 4, 5} then 3
else 6 end

13.20 Case Expressions

Syntax:
Flow ::= case Expr [Op] of (Expr ⇒ Expr+)+ [Else] end

A case expression begins with the special reserved wordcase followed by a condition expression, followed by an
optional operator, the special reserved wordof , a sequence of case clauses (each consisting of aguarding expression
followed by the token⇒, followed by a sequence of expressions), an optionalelse clause (consisting of the special
reserved wordelse followed by a sequence of expressions), and finally the special reserved wordend .

A case expression evaluates its condition expression and checks each case clause to determine which case clause
matches. To find a matched case clause, the guarding expression of each case clause is evaluated in order and compared

104



to the value of the condition expression. The two values are compared according to an optional operator specified.
If the operator is omitted, it defaults to= or ∈. If the condition expression has type Generator or if the guarding
expression does not, then the default operator is= ; otherwise, it is∈. It is a static error if the specified operator is not
defined for these types or if the operator’s return type is notBoolean.

The right-hand side of the first matched clause (and only thatclause) is evaluated. If no matched clause is found, a
MatchFailure exception is thrown. The right-hand side of each clause forms a block expression and has the various
properties of block expressions (described in Section 13.11). The optionalelse clause always matches. The value
of a case expression is the value of the right-hand side of the matchedclause. The type of acase expression is the
union type of the types of all right-hand sides of the case clauses.

For example, the followingcase expression specifies the operator∈:

case planet ∈ of

{Mercury,Venus,Earth,Mars } ⇒ “ inner ”
{ Jupiter, Saturn,Uranus,Neptune,Pluto } ⇒ “outer ”
else⇒ “ remote ”

end

but the following does not:

case 2 + 2 of

4⇒ “ it really is 4 ”
5 : 7⇒ “we were wrong again ”

end

13.21 Extremum Expressions

Syntax:
Flow ::= case ( largest | smallest ) [Op] of (Expr ⇒ Expr+)+ end

An extremum expression uses the same syntax as acase expression (described in Section 13.20) except that the
special reserved wordlargest or smallest is used where acase expression would have a condition expression
and an extremum expression does not have an optionalelse clause.

All guarding expressions of an extremum expression is evaluated in parallel. See Section 4.4 for a discussion of
parallel evaluation. To find the largest (or smallest) quantity, the values of the guarding expressions are compared in
parallel according to an optional operator specified. If theoperator is omitted, it defaults toCMP . The union of the
types of all the candidate expressions must be a subtype ofTotalOrderOperatorsJT,<,≤,≥, >, CMPK for someT ,
< , ≤ , ≥ , and> , if a default operator is used (see Section 37.2 for details about theTotalOrderOperators trait).
If an explicit operator is used, the explicit operator replacesCMP in TotalOrderOperatorsJT,<,≤,≥, >, CMPK .

The right-hand side of the clause with the largest (smallest) guarding expression (and only that clause) is evaluated.
If more than one guarding expressions are tied for largest (smallest), the leftmost clause is evaluated. The right-
hand side of each clause forms a block expression and has the various properties of block expressions (described in
Section 13.11). The value of an extremum expression is the value of the right-hand side of the matched clause. The
type of an extremum expression is the union type of the types of all right-hand sides of the clauses.

For example, the following code:

case largest of

1 mile⇒ “miles are larger ”
1 kilometer⇒ “we were wrong again ”

end
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evaluates to “miles are larger ” . A more interesting example is described in Section 6.5.

13.22 Typecase Expressions

Syntax:
Flow ::= typecase TypecaseBindingsin (TypecaseTypeRefs⇒ Expr+)+ [Else] end

TypecaseBindings ::= Id
| Binding
| ( BindingList)

Binding ::= Id = Expr
BindingList ::= Binding( , Binding)∗

TypecaseTypeRefs::= TypeRef
| ( TypeRefList)

A typecase expression begins with the special reserved wordtypecase followed by a sequence of bindings (either
an identifier or a sequence of an identifier followed by the token = , followed by an expression), followed by the
special reserved wordin , a sequence of typecase clauses (each consisting of a sequence ofguarding typesfollowed
by the token⇒ , followed by a sequence of expressions), an optionalelse clause (consisting of the special reserved
word else followed by a sequence of expressions), and finally the special reserved wordend .

A typecase expression evaluates its bindings and checks each typecaseclause to determine which typecase clause
matches. A single identifierx (where x is a valid local identifier) as the binding of atypecase expression is a
shorthand forx = x . Each subexpression in the bindings is evaluated and its value is bound to the corresponding
identifier. To find a matched typecase clause, the guarding types of each typecase clause are compared to the types of
the identifiers bound in the bindings in order. The right-hand side of the first matched clause (and only that clause) is
evaluated. If no matched clause is found, aMatchFailure exception is thrown. The right-hand side of each clause
forms a block expression and has the various properties of block expressions (described in Section 13.11). The optional
else clause always matches. The value of atypecase expression is the value of the right-hand side of the matched
clause. The type of atypecase expression is the union type of the types of all right-hand sides of the typecase
clauses.

For example:

typecase x = myLoser .myField in

String⇒ x.append(“ foo ”)
Number⇒ x+ 3
Object⇒ yogiBerraAutograph

end

Note that “x ” has a different type in each clause.

13.23 Atomic Expressions

Syntax:
Flow ::= atomic Expr

| tryatomic Expr

As Fortress is a parallel language, an executing Fortress program consists of a set of threads (See Section 4.4 for a
discussion of parallelism in Fortress). In multithreaded programs, it is often convenient for a thread to evaluate some
expressionsatomically. For this purpose, Fortress providesatomic expressions.
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An atomic expression consists of the special reserved wordatomic followed by abody expression. Evaluating
an atomic expression is simply evaluating the body expression. All reads and all writes which occur as part of this
evaluation will appear to occur simultaneously in a single atomic step with respect toany action performed by any
thread which is dynamically outside. This is specified in detail in Chapter 21. The value and type of anatomic
expression are the value and type of its body expression.

A tryatomic expression consists of the special reserved wordtryatomic followed by an expression. See Sec-
tion 32.3 for a discussion oftryatomic expressions.

A function or method with the modifieratomic acts as if its entire body were surrounded in anatomic expression.
However, it is a static error if an API declares a functionalf with the modifieratomic but a component implementing
the API definesf whose body is anatomic expression without the modifier. Input and output (including functionals
with the modifier io ) cannot be performed within anatomic expression. Thus, a functional must not have both
atomic and io modifiers.

When the body of anatomic expression completes abruptly, theatomic expression completes abruptly in the same
way. If it completes abruptly by exiting to an enclosinglabel expression, writes within the block are retained
and become visible to other threads. If it completes abruptly by throwing an uncaught exception, all writes to objects
allocated before theatomic expression began evaluation are discarded. Writes to newlyallocated objects are retained.
Any variable reverts to the value it held before evaluation of the atomic expression began. Thus, the only values
retained from the abruptly completedatomic expression will be reachable from the exception object through a chain
of newly allocated objects.

Atomic expressions may be nested arbitrarily; the above semantics imply that an inneratomic expression is atomic
with respect to evaluations which occur dynamically outside the inneratomic expression but dynamically inside an
enclosingatomic .

Implicit threads may be created dynamically within anatomic expression. These implicit threads will complete
before theatomic expression itself does so. The implicit threads may run in parallel, and will see one another’s
writes; they may synchronize with one another using nestedatomic expressions.

A spawned thread created in anatomic expression conceptually begins execution after theatomic expression, so
long as an exception is not thrown by theatomic expression. Thus the body of the spawned thread is dynamically
outside theatomic expression in which it was created. It is legal to either spawn a thread (discussed in Section 13.24)
or to synchronize with it using theval or wait methods during the course of anatomic expression, but it is illegal
to do both to the same thread. Doing so will cause the method call to throw the AtomicSpawnSynchronization
exception.

Note that atomic expressions may be evaluated in parallel with other expressions. An atomic expression expe-
riencesconflict when another thread attempts to read or write a memory location which is accessed by theatomic
expression. The evaluation of such an expression must be partially serialized with the conflicting memory operation
(which might be anotheratomic expression). The exact mechanism by which this occurs will vary; the necessary
serialization is provided by the implementation. In general, the evaluation of a conflictingatomic expression may
be abandoned, forcing the effects of execution to be discarded and execution to be retried. The longer anatomic

expression evaluates and the more memory it touches the greater the chance of conflict and the larger the bottleneck a
conflict may impose.

For example, the following code uses a shared counter atomically:

arraySumJN extends Additive, nat xK(a :N [x]) :N = do

sum :N := 0
for i← a.indices do

atomic sum += ai

end

sum

end
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The loop body readsai and sum , then adds them and writes the result back tosum ; this will appear to occur
atomically with respect to all other threads (including theother iterations of the loop body). Note in particular that the
atomic expression will appear atomic with respect to reads and writes not inatomic expressions ofai andsum .

13.24 Spawn Expressions

Syntax:
Flow ::= spawn Expr

A thread can be created by aspawn expression. Aspawn expression consists of the special reserved wordspawn

followed by an expression. Aspawn expression spawns a thread which evaluates its subexpression in parallel with
any succeeding evaluation. The value of aspawn expression is the spawned thread and the type of the expression is
the Thread trait.

The Thread trait has the following methods:

• The val method returns the value computed by the subexpression of the spawn expression. If the thread has
not yet completed execution, the invocation ofval blocks until it has done so.

• The wait method waits for a thread to complete, but does not return a value.

• The ready method returnstrue if a thread has completed, and returnsfalse otherwise.

• The stop method attempts to terminate a thread as described in Section 32.6.

In the absence of sufficient parallel resources, an attempt is made to run the subexpression of thespawn expression
before continuing succeeding evaluation (so long as we havenot specified a region for evaluation as described in
Section 32.7, and we are not currently evaluating anatomic expression as described in Section 13.23). We can
imagine that it is actually therest of the evaluationafter the parallel block which is spawned off in parallel. This is
a subtle technical point, but makes the sequential execution of parallel code simpler to understand, and avoids subtle
problems with the asymptotic stack usage of parallel code [19, 11].

13.25 Throw Expressions

Syntax:
Flow ::= throw Expr

A throw expression consists of the special reserved wordthrow followed by a subexpression. The subexpression
must have the typeException (see Chapter 14). Athrow expression evaluates its subexpression to an exception
value and throws the exception value; the expression completes abruptly and hasBottomType.

The typeException has exactly two direct mutually exclusive subtypes,CheckedException andUncheckedException.
Every CheckedException that is thrown must be caught or forbidden by an enclosingtry expression (see Sec-
tion 13.26), or it must be declared in thethrows clause of an enclosing functional declaration (see Section12.1).
Similarly, everyCheckedException declared to be thrown in the static type of a functional called must be either
caught or forbidden by an enclosingtry expression, or declared in thethrows clause of an enclosing functional
declaration.
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13.26 Try Expressions

Syntax:
Flow ::= try Expr+ [ catch Id (TraitType⇒ Expr+)+] [ forbid TraitTypes] [ finally Expr+] end

A try expression starts with the special reserved wordtry followed by a sequence of expressions (thetry block),
followed by an optionalcatch clause, an optionalforbid clause, an optionalfinally clause, and finally the
special reserved wordend . A catch clause consists of the special reserved wordcatch followed by an identifier,
followed by a sequence of subclauses (each consisting of an exception type followed by the token⇒ followed by
a sequence of expressions). Aforbid clause consists of the special reserved wordforbid followed by a set of
exception types. Afinally clause consists of the special reserved wordfinally followed by a sequence of
expressions. Note that thetry block and the clauses form block expressions and have the various properties of block
expressions (described in Section 13.11).

The expressions in thetry block are first evaluated in order until they have all completed normally, or until one of
them completes abruptly. If thetry block completes normally, theprovisionalvalue of thetry expression is the
value of the last expression in thetry block. In this case, and in case of exiting to an enclosinglabel expression,
the catch and forbid clauses are ignored.

If an expression in thetry block completes abruptly by throwing an exception, the exception value is bound to the
identifier specified in thecatch clause, and the type of the exception is matched against the subclauses of thecatch
clause in turn, exactly as in atypecase expression (Section 13.22). The right-hand-side sequenceof expressions
of the first matching subclause is evaluated. If it completesnormally, its value is the provisional value of thetry
expression. If thecatch clause completes abruptly, thetry expression completes abruptly. If a thrown exception
is not matched by thecatch clause (or this clause is omitted), but it is a subtype of the exception type listed in a
forbid clause, a newForbiddenException is created with the thrown exception as its argument and thrown. The
exception thrown by thetry block ischainedto theForbiddenException as described in Section 14.3.

If an exception thrown from atry block is matched by bothcatch and forbid clauses, the exception is caught by
the catch clause. If an exception thrown from atry block is not matched by anycatch or forbid clause, the
try expression completes abruptly.

The finally clause is evaluated after completion of thetry block and anycatch or forbid clause. The ex-
pressions in thefinally clause are evaluated in order until they have all completed normally, or until one of them
completes abruptly. In the latter case, thetry expression completes abruptly exactly as the subexpression in the
finally clause does.

If the finally clause completes normally, and thetry block or the catch clause completes normally, then the
try expression completes normally with the provisional value of the try expression. Otherwise, thetry expression
completes abruptly as specified above.

For example, the followingtry expression:

try

inp = read(file)
write(inp,newFile)

forbid IOException
end

is equivalent to:

try

inp = read(file)
write(inp,newFile)

catch e
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IOException⇒ throw ForbiddenException(e)
end

The following example ensures thatfile is closed properly even if an IO error occurs:

try

open(file)
inp = read(file)
write(inp,newFile)

catch e
IOException⇒ throw ForbiddenException(e)

finally

close(file)
end

13.27 Static Expressions

Static expressionsdenotestatic values. Given instantiations of all static parameters (describedin Chapter 11) in
scope of a static expression, the value of the static expression can be determined statically. Static expressions can be
used as instantiations of static parameters. We define the set of static expressions by first defining the types of static
expressions, and distinguishing static values from the closely related literal values. We then describe the expressions
that evaluate to the various kinds of static values.

13.27.1 Types of Static Expressions

There are three groups of traits that describe literals and static expressions:

1. Theliteral traits, which describe boolean, character, string, and numerals. For example, the literaltrue has trait
BooleanLiteralJtrueK and a character literal has traitCharacter. See Section 13.1 for a discussion of Fortress
literals.

2. Theconstanttraits, which describe values denoted by expressions composed from literals and operators; the type
of a constant expression encodes the value of the expression. For example, the type of a constant expression
3 + 5 , IntegerConstantJfalse, 3 + 5K , encodes the value of the expression.

3. Thestatic traits, which describe values denoted by expressions composed from literals, operators, andbool ,
nat , and int parameters; here the type does not encode the value of the expression, but the value of the
expression can nevertheless be known statically if specificvalues are specified for the static parameters. Also,
in situations where the type of an expression composed solely from literals and operators nevertheless cannot
be described by a constant trait, then a static trait may be used to describe it instead. For example, a static
expression2(3 +m) wherem is a nat parameter has traitNaturalStatic.

The only operation on literals that produces a new literal (as opposed to a constant) is concatenation by using the opera-
tor ‖ . One may concatenate mixed string and character literals, producing a string literal. For example, “foo ” ‖ ”bar ”
yields “foobar ”. One may also concatenate two natural numerals of the same radix, producing a new natural numeral
of that radix. For example,deadc16‖0de16 yields deadc0de16 .

Every literal trait extends an appropriate constant trait,and every constant trait extends an appropriate static trait. So
every literal is also a constant expression, and every constant expression is a static expression.
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13.27.2 Static Expressions and Values

Static parameters are static expressions. Anat parameter denotes a value that has typeNaturalStatic (which extends
IntegerStatic). An int parameter denotes a value that has typeIntegerStatic. A bool parameter denotes a value
that has typeBooleanStatic.

Boolean static expressions may be combined using the operators ∧ , ∨ , ⊕ , ≡ , ↔ , NAND , NOR , = , 6= , and→
(See Appendix F for a discussion of Fortress operators.) to produce other static expressions denoting boolean static
expressions. If both operands are boolean constant expressions, then the result is also a boolean constant expression.

Character static expressions may be compared using the operators< , ≤ , ≥ , > , = , and 6= to produce boolean static
expressions. If both operands are character constant expressions, then the result is a boolean constant expression.

Numeric static expressions may be compared using the operators < , ≤ , ≥ , > , = , and 6= to produce boolean static
expressions. If both operands are numeric constant expressions, then the result is a boolean constant expression.

Numeric static expressions may be combined using the operators and functions+ , − , × , · , / , ! , MIN , MAX ,√
, floor , ceiling , hyperfloor , hyperceiling , gcd , lcm, sin , cos , tan , arcsin , arccos , and arctan to produce

new numeric static expressions. If the result is indeed a numeric static expression, and both operands are numeric
constant expressions, then the result is also a numeric constant expression (except under certain circumstances—for
example,sqrt 5 denotes a numeric constant expression, and so does(1 + sqrt 5)/2 , but sqrt((1 + sqrt 5)/2) does
not, because it is too complicated).

Where things get too complicated, a static expression evaluation backs off, widest-need processing steps in at a later
stage and chooses an appropriate precision of floating-point arithmetic.

13.28 Aggregate Expressions

Syntax:
Value ::= Aggregate

Aggregate expressionsevaluate to values that are themselves homogeneous collections of values. Evaluation of the
subexpressions of an aggregate expression is performedin parallel. Evaluation steps of the subexpressions can be
interleaved and even reordered to form an evaluation of the aggregates expression. See Section 4.4 for a discussion of
parallel evaluation.

Syntax for aggregate expressions are provided in the Fortress standard libraries for sets, maps, lists, tuples, matrices,
vectors, and arrays.

Set Expressions:

Syntax:
Aggregate ::= { [ExprList] }
ExprList ::= Expr ( , Expr)∗

Set element expressions are enclosed in braces and separated by commas. The type of a set expression isSetJT K ,
whereT is the union type of the types of all element expressions of the set expression.

Set containment is checked with the operator∈ and the subset relationship is checked with the operator⊆ . For
example:

3 ∈ {0, 1, 2, 3, 4, 5}
evaluates totrue and
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{0, 1, 2} ⊆ {0, 3, 2}

evaluates tofalse .

Map Expressions:

Syntax:
Aggregate ::= { [EntryList] }
EntryList ::= Entry ( , Entry)∗

Entry ::= Expr 7→ Expr

Map entries are enclosed in curly braces, separated by commas, and matching pairs are separated by7→. The type of
a map expression isMapJS, T K whereS is the union type of the types of all left-hand-side expressions of the map
entries, andT is the union type of the types of all right-hand-side expressions of the map entries. This type can be
abbreviated as{S 7→ T} .

A map m is indexed by placing an element in the domain ofm enclosed in brackets immediately after an expression
evaluating tom . Thus, the index is rendered as a subscript. For example, if:

m = {’a’ 7→ 0, ’b’ 7→ 1, ’c’ 7→ 2}

thenm’b’ evaluates to1 . In contrast,m’x’ throws aNotFound exception, as’x’ is not an index ofm .

List Expressions:

Syntax:
Aggregate ::= 〈 [ExprList] 〉

List element expressions are enclosed in angle brackets〈 and 〉 and are separated by commas. The type of a list
expression isListJT K whereT is the union type of the types of all element expressions. This type can be abbreviated
as 〈T 〉 .

A list l is indexed by placing an index enclosed in square brackets immediately after an expression evaluating tol .
Thus, the index is rendered as a subscript. Lists are always indexed from0 . For example:

〈3, 2, 1, 0〉2
evaluates to1 .

Array Expressions

Syntax:
Aggregate ::= [ (Expr | ; )∗ ]

Array element expressions are enclosed in brackets. Element expressions along a row are separated only by whites-
pace. Two dimensional array expressions are written by separating rows with newlines or semicolons. If a semicolon
appears, whitespace before and after the semicolon is ignored. The parts of higher-dimensional array expressions are
separated by repeated-semicolons, where the dimensionality of the result is equal to one plus the number of repeated
semicolons. The type of ak-dimensional array expression isArrayJT K[n0, · · · , nk−1] , whereT is the union type of
the types of the element expressions andn0, ..., nk−1 are the sizes of the array in each dimension. This type can be
abbreviated asT [n0, · · · , nk−1] .

A k-dimensional arrayA is indexed by placing a sequence ofk indices enclosed in brackets, and separated by commas,
after an expression evaluating toA. Thus, the index is rendered as a subscript. By default arrays are indexed from 0.
The horizontal dimension of an array is the last dimension mentioned in the array index. For example:
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A = [1 2 3; 4 5 6; 7 8 9]

thenA1,0 evaluates to4 .

An array of two dimensions whose elements are a subtype ofNumber can be coerced to a matrix. Matrix types
are writtenMatrixJT K[n0 × . . .× nk−1] , wherek > 1. A type of this form can be abbreviated asTn0×...×nk−1 .
Matrices are indexed in the same manner as arrays.

A one-dimensional array whose elements are a subtype ofNumber can be coerced to a vector. Vector types are written
VectorJT K[n] . A type of this form can be abbreviated asTn , unlessT is declared in the enclosing scope to be a
physical dimension or unit.

The element expressions in an array expression may be eitherscalars or array expressions themselves. If an element is
an array expression, it is “flattened” (pasted) into the enclosing expression. This pasting works because arrays never
contain other arrays as elements. The elements along a row (or column) must have the same number of columns
(or rows), though two elements in different rows (columns) need not have the same number of columns (rows). See
Section 6.5 for a discussion of matrix unpasting.

The following four examples are all equivalent:

[3 4
5 6]

[3 4 ;
5 6 ]

[ 3 4

; 5 6 ]
[3 4 ; 5 6]

Here is a3× 3× 3× 2 matrix example:

[1 0 0
0 1 0
0 0 1 ; ; 0 1 0

1 0 1
0 1 0 ; ; 1 0 1

0 1 0
1 0 1

; ; ;

1 0 0
0 1 0
0 0 1 ; ; 0 1 0

1 0 1
0 1 0 ; ; 1 0 1

0 1 0
1 0 1 ]

Tuple Expressions:

Syntax:
Aggregate ::= ( Expr( ,Expr)+)

| ( [Expr( ,Expr)∗ , ] Expr... )
| ( [Expr( ,Expr)∗ , ] [Expr... , ] Id = Expr ( , Id = Expr)∗)

Tuple element expressions are enclosed in parentheses and separated by commas. Each element is one of:

• A plain expression “e ”

• A varargs expression “e . . . ”

• A keyword-value pair “identifier = e ”
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The following restrictions apply: No two keyword-value pairs may have the same keyword. No keyword-value pair
may precede a plain expression. No varargs expression may follow a keyword-value pair or precede a plain expression.
There must be at least one item. If there is exactly one item, it must be a varargs expression or a keyword-value pair
(because an expression “(e) ” is simply a parenthesized expression, not a tuple.) Also, there can be at most one item
with a varargs expression. In a varargs expression, the expression “e ” must be of typeOrderedGeneratorJT K for
someT .

The type of a tuple expression is a tuple type (as discussed inSection 8.4), which may be described by taking the
tuple expression and replacing each element expression with its type, except that a varargs expression having type
OrderedGeneratorJT K is replaced byT . . . (for the most specificT possible). The element expressions are all
evaluated before the tuple is constructed, and if there is a varargs expression then the generator is used to construct a
HeapSequence (described in Section 40.3) containing all the generated values; thisHeapSequence then becomes an
element of the tuple. Tuples are value objects. There are no explicit deconstructors for tuples except multiple variable
declarations as discussed in Section 6.3.

13.28.1 Distinguishing a Keyword-Value Pair from an Equality Expression

Because a keyword-value pair shares a syntax with anequality expression, we provide rules for disambiguation:

• If an expression “identifier = e ” has no parentheses around it, then it is an equality expression unless it is part
of a tuple expression with more than one element expression.

• If the expression is in immediately surrounding parentheses with no other expression in the parentheses, then
it is an equality expression unless the parenthesized expression is part of a juxtaposition sequence and is to be
used as an argument to a function, in which case the parenthesized expression is a tuple expression.

• Adding parentheses makes the expression an equality expression.

• In the rare situations where “(identifier = e) ” is treated as an equality expression and it must be a tuple
expression, “tuple(identifier = e) ” makes it a tuple expression where “tuple ” is an identity function defined
in the Fortress standard libraries (as described in Section13.32.4).

13.29 Comprehensions

Syntax:
Comprehension ::= { Expr | GeneratorList}

| { Expr 7→ Expr | GeneratorList}
| 〈 Expr | GeneratorList〉
| [ (ArrayComprehensionLeft| GeneratorList)+ ]

ArrayComprehensionLeft ::= Id 7→ Expr
| ( Id , IdList ) 7→ Expr

Fortress providescomprehensionsyntax for several aggregate expressions (described in Section 13.28). Generators
(described in Section 13.17) produce values and bind the values to the identifiers that are used in the left-hand side of
the token| (left-hand body). Most generators, unlike thesequential generator, may execute each evaluation of the
left-hand body in a separate implicit thread. Comprehensions evaluate to aggregate values and have corresponding
aggregate types.

A set comprehension is enclosed in braces, with a left-hand body separated by the token| from a generator list. For
example, the comprehension:

{x2 | x← {0, 1, 2, 3, 4, 5}, x MOD 2 = 0 }
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evaluates to the set

{0, 4, 16}
Map comprehensions are like set comprehensions, except that the left-hand body must be of the forme1 7→ e2 . An
exception is thrown ife1 produces the same value bute2 a different value on more than one iteration of the generator
list. For example:

{x2 7→ x3 | x← {0, 1, 2, 3, 4, 5}, x MOD 2 = 0 }
evaluates to the map

{0 7→ 0, 4 7→ 8, 16 7→ 64}
List comprehensions are like set comprehensions, except that they are syntactically enclosed in angle brackets. For
example:

〈x2 | x← {0, 1, 2, 3, 4, 5}, x MOD 2 = 0〉
evaluates to the list

〈0, 4, 16〉
Array comprehensions are like set comprehensions, except that they are syntactically enclosed in brackets, and the
left-hand body must be of the form( index1, index2, ..., indexn) 7→ e. Moreover an array comprehension may
have multiple clauses separated by semicolons or line breaks. Each clause conceptually corresponds to an independent
loop. Clauses are run in order. The result is ann-dimensional array. For example:

a = [(x, y, 1) 7→ 0.0 | x← 1 : xSize, y ← 1 : ySize

(1, y, z) 7→ 0.0 | y ← 1 : ySize, z ← 2 : zSize

(x, 1, z) 7→ 0.0 | x← 2 : xSize, z ← 2 : zSize

(x, y, z) 7→ x+ y · z | x← 2 : xSize, y ← 2 : ySize, z ← 2 : zSize ]

13.30 Type Ascription

Syntax:
Expr ::= Expr as TypeRef

An expression consisting of a single subexpression, followed by the special reserved wordas , followed by a type, is
a type ascription. The value of the expression is the value of the subexpression. The static type of the expression is
the ascripted type. The type of the subexpression must be a subtype of the ascripted type. A type ascription does not
affect the dynamic type of the value the expression evaluates to (unlike a type assumption described in Section 13.31).
It is usually for type inference discussed in Chapter 20; when it is impossible to infer a type for an expression, the
programmer can provide type information for the expressionusing a type ascription.

13.31 Type Assumption

Syntax:
Expr ::= Expr asif TypeRef

An expression consisting of a single subexpression, followed by the special reserved wordasif , followed by a type,
is a type assumption. The value of the expression is the value of the subexpression. The static type of the expression
is the given type. The type of the subexpression must be a subtype of the given type. A type assumption converts
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the dynamic type of the value the expression evaluates to (unlike a type ascription described in Section 13.30). It is
usually for accessing methods provided by supertraits. When multiple supertraits provide different methods with the
same name, a subtrait may access a particular method from oneof the supertraits using a type assumption. The static
type of the supertrait indicates whether a definition of the method is provided by the supertrait. If the concrete method
is not provided exist, it is a static error. The keywordsuper in the Java Programming Language is an example of a
type assumption.

13.32 Expression-like Functions

For convenience, the Fortress standard libraries provide functions such ascast andinstanceOf that are often provided
by other programming languages.

13.32.1 Casting

Although there is no “casting” operator (equivalent to casts in the Java Programming Language) built into Fortress,
the effect of a cast can be provided by the following function:

castJT K(x) :T =
typecase x in

T ⇒ x
else⇒ throw CastException

end

The function converts the type of its argument to a given type. If the static type of the argument is not a subtype of
the given type, aCastException is thrown. For convenience, the functioncast is included in the Fortress standard
libraries.

13.32.2 Instanceof Testing

Although there is no “instanceof” operator (equivalent to instanceof testing in the Java Programming Language) built
into Fortress, the effect of an instanceof testing can be provided by the following function:

instanceOf JT K(x) : Boolean =
typecase x in

T ⇒ true

else⇒ false

end

The function tests whether its argument has a given type and returns a boolean value. For convenience, the function
instanceOf is included in the Fortress standard libraries.

13.32.3 Ignoring Values

For convenience, the functionignore (equivalent to theignore function in the Objective Caml programming lan-
guage) is included in the Fortress standard libraries:

ignore(x) = ()

The function discards the value of its argument and returns() . For example, the following:
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ignore(f x)

is equivalent to:

f x; ()

13.32.4 Enforcing Tuples

An identity functiontuple is defined in the Fortress standard libraries to make “(identifier = e) ” a tuple expression
(as discussed in Section 13.28.1):

tuple(x) = x

The function returns its argument as a tuple expression.
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Chapter 14

Exceptions

Exceptions are values that can be thrown and caught, viathrow expressions (described in Section 13.25) andcatch

clauses oftry expressions (described in Section 13.26). When athrow expression “throw e ” is evaluated, the
subexpressione is evaluated to an exception. The static type ofe must be a subtype ofException. Then thethrow
expression tries to transfer control to itsdynamically containing block(described in Chapter 4), from the innermost
outward, until either (i) an enclosingtry expression is reached, with acatch clause matching a type of the thrown
exception, or (ii ) the outermost dynamically containing block is reached.

If a matchingcatch clause is reached, the right-hand side of the first matching subclause is evaluated. If no matching
catch clause is found before the outermost dynamically containing block is reached, the outermost dynamically
containing block completes abruptly whose cause is the thrown exception.

If an enclosingtry expression of athrow expression includes afinally clause, and thetry expression completes
abruptly, thefinally clause is evaluated before control is transferred to the dynamically containing block.

14.1 Causes of Exceptions

Every exception is thrown for one of the following reasons:

1. A throw expression is evaluated.

2. An implementation resource is exceeded (e.g., an attemptis made to allocate beyond the set of available loca-
tions).

14.2 Types of Exceptions

All exceptions have typeException declared as follows:

trait Exception comprises {CheckedException,UncheckedException }
settable message: MaybeJStringK
settable chain: MaybeJExceptionK
printStackTrace(): ()

end

Every exception has either typeCheckedException or UncheckedException:
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trait CheckedException
extends {Exception }
excludes {UncheckedException }

end

trait UncheckedException
extends {Exception }
excludes {CheckedException }

end

A functional declaration (described in Section 9.2 and Section 12.1) includes an optionalthrows clause in its header
listing theCheckedExceptions (also writtenchecked exceptions) that can be thrown by invocation of the functional.
If a throws clause is not explicitly provided, thethrows clause of the functional declaration is empty. The body
of a functional is statically checked to ensure that no checked exceptions are thrown by any subexpression of the
functional body other than those listed in thethrows clause. This static check is performed by examining eachthrow

expression and functional invocationI, determining the static type of the functionalf invoked inI, and determining
the throws clause off . (If f is polymorphic, or occurs in a polymorphic context, instantiations of type variables
free in thethrows clause off are substituted for formal type variables). For each checked exception thrown inI,
the enclosing expressions ofI are checked for a matchingcatch clause. The setA of all checked exceptions thrown
by all invocations without a matchingcatch clause in the functional body is accumulated and compared against the
throws clause of the enclosing functional declaration. If an exception that is not a subtype of an exception listed in
the throws clause occurs inA, it is a static error.

A similar analysis is performed on top-level variable declarations. If it is determined that their initialization expressions
can throw a checked exception, it is a static error.

14.3 Information of Exceptions

Every exception has optional fields: a message and a chained exception. These fields are default toNothing as
follows:

trait Exception comprises {CheckedException,UncheckedException }
getter message():MaybeJStringK = Nothing
setter message(String) : ()
getter chain():MaybeJExceptionK = Nothing
setter chain(Exception) : ()
printStackTrace(): ()

end

where an optional valuev is eitherNothing or Just(v) as declared in Section 31.2. Thechain field can be set at
most once. If it is set more than once, anInvalidChainException is thrown. It is generally set when the exception is
created.

When an exception is created, the execution stack of its thread at the time of the exception creation is captured in the
exception. The invocation ofprintStackTrace prints the captured stack trace. There is no way to update thecaptured
stack trace. If a programmer wants to catch a thrown exception and rethrow it, and capture the stack trace at the time
of the second throwing of the exception, the programmer has to create a new exception (perhaps with the original
exception as itschain field).

When an exception is thrown, itsmessage and chain fields may be set. For example, if a checked exception is
caught in acatch clause, and thecatch clause in turn throws an unchecked exception, the uncheckedexception can
be chained so that an examination of the unchecked exceptionreveals information about the original exception. For
example:
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read(fileName) =
try

readFile(fileName)
catch e

IOException⇒ throw Error(“This code can’t handle IOExceptions ”, e)
end

where themessage andchain fields of Error are set to “This code can’t handle IOExceptions ” and
IOException respectively.

By default, aforbid clause in atry expression throws a newForbiddenException by chaining the exception
thrown by thetry block in the try expression that is a subtype of the exception type listed in the forbid clause.
For example, the followingread function:

read(fileName) =
try

readFile(fileName)
forbid IOException
end

is equivalent to:

read(fileName) =
try

readFile(fileName)
catch e

IOException⇒throw ForbiddenException(e)
end

where thechain of ForbiddenException is set toIOException.
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Chapter 15

Overloading and Multiple Dispatch

Fortress allows functions and methods (collectively called as functionals) to be overloaded; that is, there may be
multiple declarations for the same functional name visiblein a single scope (which may include inherited method
declarations), and several of them may be applicable to any particular functional call.

Calls to overloaded functionals are checked via a preliminary static dispatch on the static type of the argument, fol-
lowed by dynamic dispatch on the runtime type of the argument. Fortress imposes restrictions (described in Chap-
ter 33) on overloaded functional declarations that ensure there exists a unique most specific declaration for every call.
Thus, it is unambiguous at run time which declaration shouldbe applied at run time.

In this chapter, we describe how to determine which declarations areapplicableto a particular functional call, and
when several are applicable, how to select among them. Section 15.1 introduces some terminology and notation. In
Section 15.2, we show how to determine which declarations are applicable to anamed functional call(a function
call described in Section 13.6 or a naked method invocation described in Section 13.5) when all declarations have
only ordinary parameters (without varargs or keyword parameters). We discuss how to handle dotted method calls
(described in Section 13.4) in Section 15.3, and declarations with varargs and keyword parameters in Section 15.4.
Determining which declaration is applied, if several are applicable, is discussed in Section 15.5.

15.1 Terminology and Notation

When there are two or more function declarations of the same name within a single lexical scope, we say that the
function name isoverloadedwithin that lexical scope; we also say that each of the function declarations is overloaded,
and that any pair of the function declarations aremutually overloaded. Top-level function declarations in a component
are permitted to be overloaded with function declarations imported from APIs (usingimport functionNames from

apiName ). Likewise, it is permitted to have two or more method declarations (declared or inherited) of the same
method name within a single trait or object declaration; we say that the method name isoverloadedwithin that trait or
object declaration, and we also say that each of the method declarations is overloaded, and that any pair of the method
declarations aremutually overloaded.

We assume throughout this chapter that all static variableshave been instantiated or inferred. Although there may
be multiple declarations with the same functional name, it is a static error for their static parameters to differ (up to
α-equivalence), or for one declaration to have static parameters and another to not have them. Hence, static parameters
do not enter into the determination of which declarations are applicable, so we ignore them for most of this chapter.

Recall from Chapter 8 that we writeT � U whenT is a subtype ofU , andT ≺ U whenT � U andT 6= U .
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15.2 Applicability to Named Functional Calls

In this section, we show how to determine which declarationsare applicable to a named functional call when all
declarations have only ordinary parameters (i.e., neithervarargs nor keyword parameters).

For the purpose of defining applicability, a named functional call can be characterized by the name of the functional
and its argument type. Recall that a functional has a single parameter, which may be a tuple (a dotted method has a
receiver as well). We abuse notation by usingstatic call f (A) to refer to a named functional call with namef and
whose argument has static typeA, anddynamic callf (X ) to refer to a named functional call with namef and whose
argument, when evaluated, has dynamic typeX . (Note that if the type system is sound—and we certainly hopethat it
is!—thenX � A for any call tof .) We use the termcall f (C ) to refer to static and dynamic calls collectively.

We also usefunction declarationf (P) : U to refer to a function declaration with function namef and whose parameter
type isP and return type isU .

For method declarations, we must take into account the self parameter, which we do as follows:

A dotted method declarationP0.f (P) : U is a dotted method declaration with namef , whereP0 is the trait or
object type in which the declaration appears,P is the parameter type, andU is the return type. (Note that despite the
suggestive notation, a dotted method declaration need not explicitly list its self parameter.)

A functional method declarationf (P) : U with self parameter ati is a functional method declaration with namef ,
with a parameter that hasself in the ith position, parameter typeP , and return typeU . Note that the static type of
the self parameter is the trait or object trait type in which the declarationf (P) : U occurs. In the following, we will
usePi to refer to theith element ofP .

We elide the return type of a declaration, writingf (P) andP0.f (P), when the return type is not relevant to the
discussion.

A declarationf (P) is applicableto a callf (C ) if the call is in the scope of the declaration andC � P . (See Chapter 7
for the definition of scope.)

Note that a named functional callf (C ) may invoke a dotted method declaration if the declaration isprovided by the
trait or object enclosing the call. To account for this we rewrite a named functional callf (C ) to C0.f (C ) where
the typeC0 is declared by the trait or object declaration immediately enclosing the call if there are no declarations
applicable tof (C ). We then use the rule for applicability to dotted method calls (described in Section 15.3) to
determine which declarations are applicable toC0.f (C ).

15.3 Applicability to Dotted Method Calls

Dotted method applications can be characterized similarlyto named functional applications, except that, analogously
to dotted method declarations, we useA0 to denote the static type of the receiver object, and, as for named functional
calls,A to denote the static type of the argument of a static dotted method call; we useX0 andX similarly for dynamic
dotted method calls. We writeA0.f (A) andX0.f (X ) to refer to the static and dynamic calls respectively. A dotted
method callC0.f (C ) refers to static and dynamic calls collectively.

A dotted method declarationP0.f (P) is applicableto a dotted method callC0.f (C ) if C0 � P0 andC � P .

15.4 Applicability for Functionals with Varargs and Keywor d Parameters

The basic idea for handling varargs and keyword parameters is that we can think of a functional declaration that
has such parameters as though it were (possibly infinitely) many declarations, one for each set of arguments it may
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be called with. In other words, we expand these declarationsso that there exists a declaration for each number of
arguments that can be passed to it.

A declaration withk keyword parameters corresponds to2k declarations which cannot be called with elided arguments,
one for each subset of the keyword parameters. For example, the following declaration:

f(x = 5, y = 6, z = 7) : Z

would be expanded into:

f(x = 5, y = 6, z = 7) : Z
f(x = 5, y = 6) : Z
f(x = 5, z = 7) : Z
f(y = 6, z = 7) : Z
f(x = 5) : Z
f(y = 6) : Z
f(z = 7) : Z
f() : Z

Note that even though expanded declarations still have keyword parameters, they cannot be called with elided argu-
ments any more. A declaration with keyword parameters is applicable to a call if any one of the expanded declarations
is applicable.

A declaration with a varargs parameter corresponds to an infinite number of declarations, one for every number of
arguments that may be passed to the varargs parameter. In practice, we can bound that number by the maximum
number of arguments that the functional is called with anywhere in the program (in other words, a given program
will contain only a finite number of calls with different numbers of arguments). The expansion described here is a
conceptual one to simplify the description of the semantics; we do not expect any real implementation to actually
expand these declarations at compile time. For example, thefollowing declaration:

f(x : Z, y : Z, z : Z . . .) : Z

would be expanded into:

f(x : Z, y : Z, z : Z . . .) : Z
f(x : Z, y : Z) : Z
f(x : Z, y : Z, z1 : Z) : Z
f(x : Z, y : Z, z1 : Z, z2 : Z) : Z
f(x : Z, y : Z, z1 : Z, z2 : Z, z3 : Z) : Z
. . .

Notice that the expansion includes the original declaration. This declaration is retained to account for the case when a
tuple expression with a varargs expression is passed as an argument to a call; even though this declaration still has a
varargs parameter, it’s called with a fixed number of arguments. A declaration with a varargs parameter is applicable
to a call if any one of the expanded declarations is applicable.

15.5 Overloading Resolution

Several declarations may be applicable to a given functional call. Therefore, it is necessary to determine which
declaration is dispatched to. The basic principle is that, for any functional call, we wish to identify a unique declaration
that is the most specific among all declarations applicable to the call at run time. If there is no such declaration, then
the call isundefined, which is a static error. If there are two or more such declarations, no one of which is more specific
than all the others, the call is said to beambiguous, which is also a static error. As discussed in Chapter 33, it is a
static error for overloaded declarations to admit ambiguous calls at run time, whether such calls actually appear in the
program or not.
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If several declarations are applicable to a particular call, we determine which is most specific by using the subtype
relation to compare parameter types. Formally, a declaration f (P) is more specific than a declarationf (Q) if P ≺ Q .
Similarly, a declarationP0.f (P) is more specific than a declarationQ0.f (Q) if (P0,P) ≺ (Q0,Q).
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Chapter 16

Operators

Operators are like functions or methods; operator declarations are described in Chapter 34 and operator applications
are described in Section 13.8. Just as functions or methods may be overloaded (see Chapter 15 for a discussion of
overloading), so operators may have overloaded declarations, of the same or differing fixities. Calls to overloaded
operators are resolved first via the fixity of the operators based on the context of the calls. Then, among the applicable
declarations with that fixity, the most specific declarationis chosen.

Most operators can be used as prefix, infix, postfix, or nofix operators as described in Section 16.3; the fixity of an
operator is determined syntactically, and the same operator may have declarations for multiple fixities. A simple
example is that ‘− ’ may be either infix or prefix, as is conventional. As another example, the Fortress standard
libraries define ‘! ’ to be a postfix operator that computes factorial when applied to integers. These operators may not
be used as enclosing operators.

Several pairs of operators can be used as enclosing operators. Any number of ‘| ’ (vertical line) can be used as both
infix operators and enclosing operators.

Some operators are always postfix: a ‘ˆ ’ followed by any ordinary operator (with no intervening whitespace) is
considered to be a superscripted postfix operator. For example, ‘ ˆ ∗ ’ and ‘ ˆ + ’ and ‘ ˆ ? ’ are available for use as part
of the syntax of extended regular expressions. As a very special case, ‘̂ T ’ is also considered to be a superscripted
postfix operator, typically used to signify matrix transposition.

Finally, there are special operators such as juxtapositionand operators on dimensions and units. Juxtaposition may be
a function application, a numeral concatenation, or an infixoperator in Fortress. When the left-hand-side expression is
a function, juxtaposition performs function application;when the left-hand-side expression is a number, juxtaposition
conventionally performs multiplication; when the left-hand-side expression is a string, juxtaposition conventionally
performs string concatenation. Fortress provides severaloperators on dimensions and units as described in Chapter 18.

16.1 Operator Names

To support a rich mathematical notation, Fortress allows most Unicode characters that are specified to be mathematical
operators to be used as operators in Fortress expressions, as well as these characters and character combinations:

! @ # $ % * + - = | : < > / ? ˆ ˜
-> --> => ==> <= >= =/= ** !! || |||
<< <<< >> >>> <-> <-/- -/-> <=> ===

In addition, a token that is made up of a mixture of uppercase letters and underscores (but no digits), does not begin or
end with an underscore, and contains at least two different letters is also considered to be an operator:

125



MAX MIN SQRT TIMES

The above operators are rendered as:MAX MIN
√ × . Some of these uppercase tokens are considered to be

equivalent to single Unicode characters, but even those that are not can still be used as operators. (See Appendix F for
a detailed description of operator names in Fortress.)

16.2 Operator Precedence

Fortress specifies that certain operators have higher precedence than certain other operators, so that one need not use
parentheses in all cases where operators are mixed in an expression. (See Appendix F for a detailed description of
operator precedence in Fortress.) However, Fortress does not follow the practice of other programming languages in
simply assigning an integer to each operator and then sayingthat the precedence of any two operators can be compared
by comparing their assigned integers. Instead, Fortress relies on defining traditional groups of operators based on their
meaning and shape, and specifies specific precedence relationships between some of these groups. If there is no
specific precedence relationship between two operators, then parentheses must be used. For example, Fortress does
not accept the expressiona+ b ∪ c ; one must write either(a+ b) ∪ c or a+ (b ∪ c) . (Whether or not the result
then makes any sense depends on what definitions have been made for the+ and∪ operators—see Chapter 34.)

Here are the basic principles of operator precedence in Fortress:

• Member selection (. ) and method invocation (.name(. . .) ) are not operators. They have higher precedence
than any operator listed below.

• Subscripting ([ ] ), superscripting (ˆ ), and postfix operators have higher precedence than any operator listed
below; within this group, these operations are left-associative (performed left-to-right).

• Tight juxtaposition, that is, juxtaposition without intervening whitespace, has higher precedence than any oper-
ator listed below. The associativity of tight juxtaposition is type-dependent; see Section 16.7.

• Next, tight fractions, that is, the use of the operator ‘/ ’ with no whitespace on either side, have higher prece-
dence than any operator listed below. The tight-fraction operator has no precedence compared with itself, so it
is not permitted to be used more than once in a tight fraction without use of parentheses.

• Loose juxtaposition, that is, juxtaposition with intervening whitespace, has higher precedence than any operator
listed below. The associativity of loose juxtaposition is type-dependent and is different from that for tight
juxtaposition; see Section 16.7. Note thatlopsided juxtaposition(having whitespace on one side but not the
other) is a static error as described in Section 16.3.

• Prefix operators have higher precedence than any operator listed below.

• The infix operators are partitioned into certain traditional groups, as explained below. They have higher prece-
dence than any operator listed below.

• The equal symbol ‘= ’ in binding context, the assignment operator ‘:= ’, and compound assignment operators
( += , − = , ∧ = , ∨ = , ∩ = , ∪ = , and so on as described in Section 13.8) have lower precedence than any
operator listed above. Note that compound assignment operators themselves are not operator names.

The infix binary operators are divided into four general categories: arithmetic, relational, boolean, and other. The arith-
metic operators are further categorized as multiplication/division/intersection, addition/subtraction/union, and other.
The relational operators are further categorized as equivalence, inequivalence, chaining, and other. The boolean oper-
ators are further categorized as conjunctive, disjunctive, and other.

The arithmetic and relational operators are further divided into groups based on shape:
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• “ordinary” operators:+− · × /±∓⊕⊖⊙⊗⊘⊞⊟�⊠ <≤≥>≪≪≫≫≮��≯ etc.

The arithmetic operations in this group are further subdivided into “plain” (+− · × /±∓ etc.), “circled”
(⊕⊖⊙⊗⊘ etc.), “boxed” (⊞⊟�⊠ etc.), and so on; any of these groups may be used with the plainrelational
operators (<≤≥>≪≪≫≫≮��≯ etc.), but the groups may not be mixed.

• “rounded horseshoe” or “set” operators:∩ ⋓ ∪ ⋒ ⊎ ⊂⊆⊇⊃⋐⋑6⊂*+6⊃ etc.

• “square horseshoe” operators:⊓⊔ ⊏⊑⊒⊐6⊑6⊒ etc.

• “curly” operators:fg ≺��≻⊀646<⊁ etc.

• “triangular” relations:⊳ED⊲ ⋪54⋫ etc.

• “chickenfoot” relations:<--> etc.

The principles of precedence for binary operators are then as follows:

• A multiplication or division or intersection operator has higher precedence than any addition or subtraction or
union operator that is in the same shape group.

• Certain addition and subtraction operators come in pairs, such as+ and− , or ⊕ and⊖ , which are considered
to have the same precedence and so may be mixed within an expression and are grouped left-associatively.
These addition-subtraction pairs are theonly cases where two different operators are considered to have the
same precedence.

• An arithmetic operator has higher precedence than any equivalence or inequivalence operator.

• An arithmetic operator has higher precedence than any relational operator that is in the same shape group.

• A relational operator has higher precedence than any boolean operator.

• A conjunctive boolean operator has higher precedence than any disjunctive boolean operator.

While the rules of precedence are complicated, they are intended to be both unsurprising and conservative. Note
that operator precedence in Fortress is not always transitive; for example, while+ has higher precedence than
< (so you can writea + b < c without parentheses), and< has higher precedence than∨ (so you can write
a < b ∨ c < d without parentheses), it isnot true that+ has higher precedence than∨—the expressiona ∨ b + c
is not permitted, and one must instead write(a ∨ b) + c or a ∨ (b + c) .

Another point is that the various multiplication and division operators donot have “the same precedence”; they may
not be mixed freely with each other. For example, one cannot write u · v × w ; one must write(u · v) × w or
(more likely) u · (v × w) . Similarly, one cannot writea · b / c · d ; but juxtaposition does bind more tightly
than a loose (whitespace-surrounded) division slash, so one is allowed to writea b / c d , and this means the same
as (a b)/(c d) . On the other hand, loose juxtaposition binds less tightly than a tight division slash, so thata b/c d
means the same asa (b/c) d . On the other other hand, tight juxtaposition binds more tightly than tight division, so
that (n+ 1)/(n+ 2)(n+ 3) means the same as(n+ 1)/((n+ 2)(n+ 3)) .

There are two additional rules intended to catch misleadingcode: it is a static error for an operand of a tight infix or
prefix operator to be a loose juxtaposition, and it is a staticerror if the rules of precedence determine that a use of
infix operatora has higher precedence than a use of infix operatorb , but that particular use ofa is loose and that
particular use ofb is tight. Thus, for example, the expressionsin x + y is permitted, butsin x+ y is not permitted.
Similarly, the expressiona · b + c is permitted, as area·b + c and a·b+c , but a · b+c is not permitted. (The
rule detects only the presence or absence of whitespace, notthe amount of whitespace, soa · b + c is permitted.
You have to draw the line somewhere.)

When in doubt, just use parentheses. If there’s a problem, the compiler will (probably) let you know.
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16.3 Operator Fixity

Most operators in Fortress can be used variously as prefix, postfix, infix, nofix, or multifix operators. (See Section 16.4
for a discussion of how infix operators may be chained or treated as multifix operators.) Some operators can be used in
pairs as enclosing (bracketing) operators—see Section 16.5. The Fortress language dictates only the rules of syntax;
whether an operator has a meaning when used in a particular way depends only on whether there is a definition in the
program for that operator when used in that particular way (see Chapter 34).

The fixity of a non-enclosing operator is determined by context. To the left of such an operator we may find (1) a
primary expression (described below), (2) another operator, or (3)a comma, semicolon, or left encloser. To the right
we may find (1) a primary expression, (2) another operator, (3) a comma, semicolon, or right encloser, or (4) a line
break. A primary expression is an identifier, a literal, an expression enclosed by matching enclosers, a field selection,
or an expression followed by a postfix operator. Considered in all combinations, this makes twelve possibilities. In
some cases one must also consider whether or not whitespace separates the operator from what lies on either side. The
rules of operator fixity are specified by Figure 16.1, where the center column indicates the fixity that results from the
left and right context specified by the other columns.

left context whitespace operator fixity whitespace right context

primary

yes
yes
no
no

infix
error (infix)

postfix
infix

yes
no
yes
no

primary

primary

yes
yes
no
no

infix
error (infix)

postfix
infix

yes
no
yes
no

operator

primary yes
no

error (postfix)
postfix

, ; right encloser

primary yes
no

infix
postfix

line break

operator prefix primary
operator prefix operator
operator error (nofix) , ; right encloser
operator error (nofix) line break

, ; left encloser prefix primary
, ; left encloser prefix operator
, ; left encloser nofix , ; right encloser
, ; left encloser error (prefix) line break

Figure 16.1: Operator Fixity (I)

A case described in the center column of the table as anerror is a static error; for such cases, the fixity mentioned
in parentheses is the recommended treatment of the operatorfor the purpose of attempting to continuing the parse in
search of other errors.

The table may seem complicated, but it all boils down to a couple of practical rules of thumb:

1. Anyoperator can be prefix, postfix, infix, or nofix.

2. An infix operator can beloose(having whitespace on both sides) ortight (having whitespace on neither side),
but it mustn’t belopsided(having whitespace on one side but not the other).

3. A postfix operator should have no whitespace before it and should be followed (possibly after some whitespace)
by a comma, semicolon, right encloser, or line break.
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left context whitespace operator fixity whitespace right context

primary

yes
yes
no
no

infix
left encloser

right encloser
infix

yes
no
yes
no

primary

primary

yes
yes
no
no

infix
left encloser

right encloser
infix

yes
no
yes
no

operator

primary yes
no

error (right encloser)
right encloser

, ; right encloser

primary yes
no

infix
right encloser

line break

operator error (left encloser)
left encloser

yes
no

primary

operator error (left encloser)
left encloser

yes
no

operator

operator error (nofix) , ; right encloser
operator error (nofix) line break

, ; left encloser left encloser primary
, ; left encloser left encloser operator
, ; left encloser nofix , ; right encloser
, ; left encloser error (left encloser) line break

Figure 16.2: Operator Fixity (II)

16.4 Chained and Multifix Operators

Certain infix mathematical operators that are traditionally regarded asrelational operators, delivering boolean re-
sults, may bechained. For example, an expression such asA ⊆ B ⊂ C ⊆ D is treated as being equivalent to
(A ⊆ B) ∧ (B ⊂ C) ∧ (C ⊆ D) except that the expressionsB andC are evaluated only once (which matters only if
they have side effects such as writes or input/output actions). Fortress restricts such chaining to operators of the same
kind and having the same sense of monotonicity; for example,neitherA ⊆ B ≤ C nor A ⊆ B ⊃ C is permitted.
Equivalence operators may be mixed into a chain; for example, one may writeA ⊆ B = C ⊆ D . This transformation
is done before type checking. In particular, it is done even though these operators do not return boolean values, and
the resulting expression is checked for type correctness. (See Section F.4 for a detailed description of which operators
may be chained.)

Any infix operator that does not chain may be treated asmultifix. If n − 1 occurrences of the same operator separate
n operands wheren ≥ 3, then the compiler first checks to see whether there is a definition for that operator that will
acceptn arguments. If so, that definition is used; if not, then the operator is treated as left-associative and the compiler
looks for a two-argument definition for the operator to use for each occurrence. As an example, the cartesian product
S1 × S2 × · · · × Sn of n sets may usefully be defined as a multifix operator, but ordinary addition p+ q + r + s is
normally treated as((p+ q) + r) + s .

16.5 Enclosing Operators

These operators are always used in pairs as enclosing operators:

(/ /) (\ \)
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[ ] [/ /] [ * * ]
{ } {/ /} {\ \} { * * }

</ /> <\ \>
<</ />> <<\ \>>

(ASCII encodings are shown here; they all correspond to particular single Unicode characters.) There are other pairs
as well, such as⌊ ⌋ and⌈ ⌉. Note that the pairs( ) and[\ \] (also known asJ K) are not operators; they play
special roles in the syntax of Fortress, and their behavior cannot be redefined by a library. The bracket pairs that may
be used as enclosing operators are described in Section F.1.

Any number of ‘| ’ (vertical line) may also be used in pairs as enclosing operators but there is a trick to it, because on
the face of it you can’t tell whether any given occurrence is aleft encloser or a right encloser. Again, context is used
to decide, this time according to Figure 16.2.

This is very similar to Figure 16.1 in Section 16.3; a rough rule of thumb is that if an ordinary operator would be
considered a prefix operator, then one of these will be considered a left encloser; and if an ordinary operator would be
considered a postfix operator, then one of these will be considered a right encloser.

In this manner, one may use| . . .| for absolute values and|| . . .|| for matrix norms.

16.6 Conditional Operators

If a binary operator other than ‘: ’ is immediately followed by a ‘: ’ then it is conditional: evaluation of the right-
hand operand cannot begin until evaluation of the left-handoperand has completed, and whether or not the right-hand
operand is evaluated may depend on the value of the left-handoperand. If the left-hand operand throws an exception,
then the right-hand operand is not evaluated.

The Fortress standard libraries define two conditional operators on boolean values,∧ : and∨ : (see Section 16.8.15).

See Section 34.8 for a discussion of how conditional operators are implemented.

16.7 Juxtaposition

Fortress provides several kinds of juxtaposition: juxtaposition may be a function call, a numeral concatenation, or a
special infix operator. See Section 25.1 for an example declaration of ajuxtaposition operator.

When two expressions are juxtaposed, the juxtaposition is interpreted as follows: if the left-hand-side expression isa
function, juxtaposition performs function application; if the left-hand-side expression is a number and the right-hand-
side expression is also a number, juxtaposition performs numeral concatenation; otherwise, juxtaposition performs the
juxtaposition operator application.

The manner in which a juxtaposition of three or more items should be associated requires type information and aware-
ness of whitespace. (This is an inherent property of customary mathematical notation, which Fortress is designed to
emulate where feasible.) Therefore a Fortress compiler must produce a provisional parse in which such multi-element
juxtapositions are held in abeyance, then perform a type analysis on each element and use that information to rewrite
the n-ary juxtaposition into a tree of binary juxtapositions.

All we need to know is whether the static type of each element of a juxtaposition is an arrow type. There are actually
three legitimate possibilities for each element of a juxtaposition: (a) it has an arrow type, in which case it is considered
to be a function element; (b) it has a type that is not an arrow type, in which case it is considered to be a non-function
element; (c) it is an identifier that has no visible declaration, in which case it is considered to be a function element
(and everything will work out okay if it turns out to be the name of an appropriate functional method).
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The rules below are designed to forbid certain forms of notational ambiguity that can arise if the name of a functional
method happens to be used also as the name of a variable. For example, suppose that traitT has a functional method
of one parameter namedn ; then in the code

do

a:T = t
n: Z = 14
z = na

end

it might not be clear whether the intended meaning was to invoke the functional methodn on a or to multiply a by
14 . The rules specify that such a situation is a static error.

The rules for reassociating a loose juxtaposition are as follows:

• First the loose juxtaposition is broken into nonempty chunks; wherever there is a non-function element followed
by a function element, the latter begins a new chunk. Thus a chunk consists of some number (possibly zero) of
functions followed by some number (possibly zero) of non-functions.

• It is a static error if any non-function element in a chunk is an unparenthesized identifierf and is followed by
another non-function element whose type is such thatf can be applied to that latter element as a functional
method.

• The non-functions in each chunk, if any, are replaced by a single element consisting of the non-functions grouped
left-associatively into binary juxtapositions.

• What remains in each chunk is then grouped right-associatively.

• It is a static error if an element of the original juxtaposition was the last element in its chunk before reassociation,
the chunk was not the last chunk (and therefore the element inquestion is a non-function element), the element
was an unparenthesized identifierf , and the type of the following chunk after reassociation is such thatf can
be applied to that following chunk as a functional method.

• Finally, the sequence of rewritten chunks is grouped left-associatively.

(Notice that no analysis of the types of newly constructed chunks is needed during this process.)

Here is an example:n (n+ 1) sin 3 n x log log x . Assuming thatsin and log name functions in the usual man-
ner and thatn , (n+ 1) , and x are not functions, this loose juxtaposition splits into three chunks:n (n+ 1) and
sin 3 n x and log log x . The first chunk has only two elements and needs no further reassociation. In the sec-
ond chunk, the non-functions3 n x are replaced by((3 n) x) . In the third chunk, there is only one non-function,
so that remains unchanged; the chunk is the right-associated to form (log (log x)) . Finally, the three chunks are
left-associated, to produce the final interpretation((n (n+ 1)) (sin ((3 n) x))) (log (log x)) . Now the original jux-
taposition has been reduced to binary juxtaposition expressions.

The rules for reassociating a tight juxtaposition follow a different strategy:

• If the tight juxtaposition contains no function element, orif only the last element is a function, go on to the
next step. Otherwise, consider the leftmost function element and examine the element that follows it. If that
latter element is not parenthesized, it is a static error; otherwise, replace the two elements with a single element
consisting of a new juxtaposition of the two elements (in thesame order), and perform a type analysis on this new
juxtaposition. (At this point, it is a static error if this new juxtaposition is preceded in the overall juxtaposition
by a non-function element that is an unparenthesized identifier f , and the type of the new juxtaposition is such
that f can be applied to it as a functional method.) Then repeat thisstep on the original juxtaposition (which is
now one element shorter).

• The overall juxtaposition now either is a single element or consists entirely of non-function elements. It is a
static error the overall juxtaposition now contains a non-function element that is an unparenthesized identifier
f , and the type of the following element is such thatf can be applied to it as a functional method.
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• Left-associate the remaining elements of the juxtaposition.

(Note that this process requires type analysis of newly created chunks along the way.)

Here is an (admittedly contrived) example:reduce(f)(a)(x+ 1)sqrt(x+ 2) . Suppose thatreduce is a curried func-
tion that accepts a functionf and returns a function that can be applied to an arraya (the idea is to use the function
f , which ought to take two arguments, to combine the elements of the array to produce an accumulated result).

The leftmost function isreduce , and the following element(f ) is parenthesized, so the two elements are replaced with
one: (reduce(f))(a)(x+ 1)sqrt(x+ 2) . Now type analysis determines that the element(reduce(f)) is a function.

The leftmost function is(reduce(f)) , and the following element(a) is parenthesized, so the two elements are re-
placed with one:((reduce(f))(a))(x+ 1)sqrt(x+ 2) . Now type analysis determines that the element((reduce(f))(a))
is not a function.

The leftmost function is(sqrt) , and the following element(x+ 2) is parenthesized, so the two elements are replaced
with one: ((reduce(f))(a))(x+ 1)(sqrt(x+ 2)) . Now type analysis determines that the element(sqrt(x+ 2)) is
not a function.

There are no functions remaining in the juxtaposition, so the remaining elements are left-associated:

(((reduce(f))(a))(x+ 1))(sqrt(x+ 2))

Now the original juxtaposition has been reduced to binary juxtaposition expressions.

16.8 Overview of Operators in the Fortress Standard Libraries

This section provides a high-level overview of the operators in the Fortress standard libraries. See Appendix F for the
detailed rules for the operators provided by the Fortress standard libraries.

16.8.1 Prefix Operators

For all standard numeric types, the prefix operator+ simply returns its argument and the prefix operator− returns
the negative of its argument.

The operator¬ is the logicalNOT operator on boolean values and boolean intervals.

The operator¬¬ computes the bitwiseNOT of an integer.

Big operators such as
∑

begin areduction expression(Section 13.18). The big operators include
∑

(summation)
and

∏

(product), along with
⋂

,
⋃

,
∧

,
∨

,
∨

,
⊕

,
⊗

,
⊎

, ⊞ , ⊠ , MAX , MIN , and so on.

16.8.2 Postfix Operators

The operator! computes factorial; the operator!! computes double factorials. They may be applied to a value ofany
integral type and produces a result of the same type.

When applied to a floating-point valuex , x! computesΓ(1 + x) , whereΓ is the Euler gamma function.
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16.8.3 Enclosing Operators

When used as left and right enclosing operators,| | computes the absolute value or magnitude of any number, and is
also used to compute the number of elements in an aggregate, for example the cardinality of a set or the length of a
list. Similarly,‖ ‖ is used to compute the norm of a vector or matrix.

The floor operator⌊ ⌋ and ceiling operator⌈ ⌉ may be applied to any standard integer, rational, or real value (their
behavior is trivial when applied to integers, of course). The operators hyperfloor⌊⌊x⌋⌋ = 2⌊log2

x⌋, hyperceiling⌈⌈x⌉⌉ =
2⌈log2

x⌉, hyperhyperfloor⌊⌊⌊x⌋⌋⌋ = 2⌊⌊log2
x⌋⌋, and hyperhyperceiling⌈⌈⌈x⌉⌉⌉ = 2⌈⌈log2

x⌉⌉ are also available.

16.8.4 Exponentiation

Given two expressionse and e′ denoting numeric quantitiesv and v′ that are not vectors or matrices, the expression
ee′

denotes the quantity obtained by raisingv to the powerv′ . This operation is defined in the usual way on numerals.

Given an expressione denoting a vector and an expressione′ denoting a value of typeZ , the expressionee′

denotes
repeated vector multiplication ofe by itself e′ times.

Given an expressione denoting a square matrix and an expressione′ denoting a value of typeZ , the expressionee′

denotes repeated matrix multiplication ofe by itself e′ times.

16.8.5 Superscript Operators

The superscript operatorˆ T transposes a matrix. It also converts a column vector to a rowvector or a row vector to
a column vector.

16.8.6 Subscript Operators

Subscripting of arrays and other aggregates is written using square brackets:

a[i] is displayed as ai ith element of one-dimensional arraya
m[i,j] is displayed as mij i, jth element of two-dimensional matrixm
space[i,j,k] is displayed as spaceijk i, j, kth element of three-dimensional arrayspace

a[3] := 4 is displayed as a3 := 4 assign4 to the third element of mutable arraya
m["foo"] is displayed as m“ foo ” fetch the entry associated with string “foo ” from map m

16.8.7 Multiplication, Division, Modulo, and Remainder Operators

For most integer, rational, floating-point, complex, and interval expressions, multiplication can be expressed usingany
of ‘ · ’ or ‘ × ’ or simply juxtaposition. There are, however, two subtle points to watch out for. First, juxtaposition
of numerals is treated as literal concatenation rather thanmultiplication; in this way one can use spaces to separate
groups of digits, for example1 234 567.890 12 rather than123457.89012 . Second, the× operator is used to
express the shape of matrices, so if expressions using multiplication are used in expressing the shape of a matrix, it
may be necessary to avoid the use of ’× ’ to express multiplication, or to use parentheses.

For integer, rational, floating-point, complex, and interval expressions, division is expressed by/ . When the oper-
ator / is used to divide one integer by another, the result is rational. The operator÷ performs truncating integer
division: m÷ n = signum

(

m
n

) ⌊
∣

∣

m
n

∣

∣

⌋

. The operatorREM gives the remainder from such a truncating division:
m REM n = m− n(m÷ n) . The operatorMOD gives the remainder from a floor division:m MOD n = m− n

⌊

m
n

⌋

;
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whenn > 0 this is the usual modulus computation that evaluates integer m to an integerk such that0 ≤ k < n and
n evenly dividesm− k .

The special operatorsDIVREM and DIVMOD each return a pair of values, the quotient and the remainder;m DIVREM n
returns(m÷ n,m REM n) while m DIVMOD n returns(

⌊

m
n

⌋

,m MOD n) .

Multiplication of a vector or matrix by a scalar is done with juxtaposition, as is multiplication of a vector by a matrix
(on either side). Vector dot product is expressed by ‘· ’ and vector cross product by ‘× ’. Division of a matrix or
vector by a scalar may be expressed using ‘/ ’.

The syntactic interaction of juxtaposition,· , × , and / is subtle. See Section 16.2 for a discussion of the relative
precedence of these operations and how precedence may depend on the use of whitespace.

The handling of overflow depends on the type of the number produced. For integer results, overflow throws an
IntegerOverflowException. Rational computations do not overflow. For floating-point results, overflow produces
+∞ or −∞ according to the rules of IEEE 754. For intervals, overflow produces an appropriate containing interval.

Underflow is relevant only to floating-point computations and is handled according to the rules of IEEE 754.

The handling of division by zero depends on the type of the number produced. For integer results, division by zero
throws aDivideByZeroException. For rational results, division by zero produces1/0 . For floating-point results,
division by zero produces aNaN value according to the rules of IEEE 754. For intervals, division by zero produces
an appropriate containing interval (which under many circumstances will be the interval of all possible real values and
infinities).

Wraparound multiplication on fixed-size integers is expressed by×̇ . Saturating multiplication on fixed-size integers
is expressed by� or ⊠ . These operations do not overflow.

Ordinary multiplication and division of floating-point numbers always use the IEEE 754 “round to nearest” rounding
mode. This rounding mode may be emphasized by using the operators ⊗ (or ⊙ ) and⊘ . Multiplication and division
in “round toward zero” mode may be expressed with⊠ (or � ) and � . Multiplication and division in “round toward
positive infinity” mode may be expressed with

a
× (or

a
· ) and

a
� . Multiplication and division in “round toward

negative infinity” mode may be expressed with̀× (or ·̀ ) and �̀ .

16.8.8 Addition and Subtraction Operators

Addition and subtraction are expressed with+ and− on all numeric quantities, including intervals, as well as vectors
and matrices.

The handling of overflow depends on the type of the number produced. For integer results, overflow throws an
IntegerOverflowException. Rational computations do not overflow. For floating-point results, overflow produces
+∞ or −∞ according to the rules of IEEE 754. For intervals, overflow produces an appropriate containing interval.

Underflow is relevant only to floating-point computations and is handled according to the rules of IEEE 754.

Wraparound addition and subtraction on fixed-size integersare expressed by∔ and −̇ . Saturating addition and
subtraction on fixed-size integers are expressed by⊞ and⊟ . These operations do not overflow.

Ordinary addition and subtraction of floating-point numbers always use the IEEE 754 “round to nearest” rounding
mode. This rounding mode may be emphasized by using the operators ⊕ and⊖ . Addition and subtraction in “round
toward zero” mode may be expressed with⊞ and ⊟ . Addition and subtraction in “round toward positive infinity”
mode may be expressed with

a
+ and

a
− . Addition and subtraction in “round toward negative infinity” mode may be

expressed with̀+ and −̀ .

The constructionx± y produces the interval〈|x− y, x+ y|〉 .
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16.8.9 Intersection, Union, and Set Difference Operators

Sets support the operations of intersection∩ , union ∪ , disjoint union⊎ , set difference\ , and symmetric set differ-
ence⊖ . Disjoint union throwsDisjointUnionException if the arguments are in fact not disjoint.

Intervals support the operations of intersection∩ , union ∪ , and interior hull∪ . The operation⋓ returns a pair of
intervals; if the intersection of the arguments is a single contiguous span of real numbers, then the first result is an
interval representing that span and the second result is an empty interval, but if the intersection is two spans, then two
(disjoint) intervals are returned. The operation⋒ returns a pair of intervals; if the arguments overlap, then the first
result is the union of the two intervals and the second resultis an empty interval, but if the arguments are disjoint, they
are simply returned as is.

16.8.10 Minimum and Maximum Operators

The operatorMAX returns the larger of its two operands, andMIN returns the smaller of its two operands.

For floating-point numbers, if either argument is aNaN thenNaN is returned. The floating-point operationsMAXNUM
and MINNUM behave similarly except that if one argument isNaN and the other is a number, the number is returned.
For all four of these operators, when applied to floating-point values,−0 is considered to be smaller than+0 .

16.8.11 GCD, LCM, and CHOOSE Operators

The infix operatorGCD computes the greatest common divisor of its integer operands, andLCM computes the least
common multiple. The operatorCHOOSE computes binomial coefficients:n CHOOSE k =

(

n
k

)

= n!
k!(n−k)! .

16.8.12 Equivalence and Inequivalence Operators

The == operator denotes strict equivalence testing. If the two expressions tested denote object references, the equiva-
lence test evaluates totrue if and only if the object references are identical; otherwise, it evaluates tofalse . If the two
expressions tested denote value objects, the test evaluates to true if and only if the value objects have the identical
type, environment, and fields. Otherwise, it evaluates tofalse . If the two expressions tested denote function objects,
the test throws aFunctionEquivalenceTest exception.

The expressione 6= e′ is semantically equivalent to the expression¬(e = e′) .

16.8.13 Comparisons Operators

Unless otherwise noted, the operators described in this section produce boolean (true /false ) results.

The operators<, ≤ , ≥ , and> are used for numerical comparisons and are supported by integer, rational, and floating-
point types. Comparison of rational values throwsRationalComparisonException if either argument is the rational
infinity 1/0 or the rational indefinite0/0 . Comparison of floating-point values throwsFloatingComparisonException
if either argument is aNaN.

The operators<, ≤ , ≥ , and> may also be used to compare characters (according to the numerical value of their
Unicode codepoint values) and strings (lexicographic order based on the character ordering). They also use lexico-
graphic order when used to compare lists whose elements support these same comparison operators.

When<, ≤ , ≥ , and > are used to compare numerical intervals, the result is a boolean interval. The functions
possibly andcertainly are useful for converting boolean intervals to boolean values for testing. Thuspossibly(x > y)
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is true if and only if there is some value in the intervalx that is greater than some value in the intervaly , while
certainly(x > y) is true if and only ifx andy are nonempty and every value inx is greater than every value iny .

The operators⊂ , ⊆ , ⊇ , and⊃ may be used to compare sets or intervals regarded as sets.

The operator∈ may be used to test whether a value is a member of a set, list, array, interval, or range.

16.8.14 Logical Operators

The following binary operators may be used on boolean values:

∧ AND

∨ inclusiveOR

∨ or⊕ or 6= exclusiveOR

≡ or↔ or = equivalence (if and only if)
→ IMPLIES

∧ NAND

∨ NOR

These same operators may also be applied to boolean intervals to produce boolean interval results.

The following operators may be used on integers to perform “bitwise” operations:

∧∧ bitwiseAND

∨∨ bitwise inclusiveOR

∨∨ bitwise exclusiveOR

The prefix operator¬¬ computes the bitwiseNOT of an integer.

16.8.15 Conditional Operators

If p(x) and q(x) are expressions that produce boolean results, the expression p(x)∧: q(x) computes the logicalAND

of those two results by first evaluatingp(x) . If the result ofp(x) is true , then q(x) is also evaluated, and its result
becomes the result of the entire expression; but if the result of p(x) is false , then q(x) is not evaluated, and the
result of the entire expression isfalse without further ado. (Similarly, evaluating the expression p(x)∨: q(x) does not
evaluateq(x) if the result of p(x) is true .) Contrast this with the expressionp(x) ∧ q(x) (with no colon), which
evaluates bothp(x) and q(x) , in no specified order and possibly in parallel.
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Chapter 17

Conversions and Coercions

Fortress provides a mechanism, calledcoercion, to allow a value of one type to be automatically converted toa value of
another type. Programmers can define coercions (described in Section 17.2) and coercions may change the set of appli-
cable declarations for a call as described in Section 17.4. If multiple coercions can be applied to a particular functional
call then the most appropriate coercion is chosen statically. Restrictions on coercion declarations (described in Sec-
tion 17.6) guarantee that the static resolution of coercion(described in Section 17.5) is well-defined. Fortress provides
implicit coercions for tuple types and arrow types (described in Section 17.7). Fortress also provides an additional
feature of coercion that allows “widest-need” evaluation of numerical expressions (described in Section 17.8).

17.1 Principles of Coercion

In certain situations it is convenient to be able to use a value of one typeT as if it were a value of another typeU
even thoughT is not a subtype ofU . For example, it is convenient to be able to use the integer-valued expression
2 in a floating-point expression even though its type is not a subtype of any floating-point type. Fortress supports the
automatic conversion of integer values to floating-point values (the technical term for this kind of automatic conversion
is coercion). In this way one can write(x+ 1)/2 rather than(x+ 1.0)/2.0 , for example. Such coercion applies
generally to function and method (collectively called as functional) calls as well as to operators; one can writeln 2
rather thanln 2.0 , or arctan(1, 1) rather thanarctan(1.0, 1.0) , for example.

One way to think about coercion is that if typeT can be coerced to typeU , then a value of typeT can be used to
“stand in” for a value of typeU in a functional call. This is different from actuallybeingof type U ; it means only
that, given any value of typeT , an appropriate value of typeU can be computed to substitute for it. Also, coercion
occurs only when the declared type of the corresponding parameter in the functional declaration is exactly the typeU

being coerced to (in whose declaration the coercion is defined) not if it is a supertype ofU . Note, however, that if
type T can be coerced to typeU then any subtype ofT can also be coerced to typeU .

Coercion fromT to U may also occur in variable definitions and assignment expressions when the declared type of
the left-hand side isU and the type of the expression on the right-hand side is a subtype of T .

Coercion isnot automatically chained in Fortress, unlike some other programming languages: even if typeT can be
coerced to typeU and typeU can be coerced to typeV , it is not necessarily the case that typeT can be coerced
to type V . Type T can be coerced to typeV only if trait V itself contains an appropriate coercion declaration to
handle that particular type coercion.

Example 1: For any floating-point parameter, a decimal integer literal argument may be used.

Example 2: For any floating-point parameter, a floating-point argument of a shorter format may be used.
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Example 3: For any floating-point interval parameter, a non-interval floating-point argument (of the same or shorter
floating-point format) may be used.

17.2 Coercion Declarations

Syntax:
Coercion ::= coercion [StaticParams]( Id IsType) CoercionClauses= Expr
CoercionClauses ::= [Throws] [CoercionWhere] [Contract]
CoercionWhere ::= where { CoercionWhereClauseList}
CoercionWhereClauseList ::= CoercionWhereClause( , CoercionWhereClause)∗

CoercionWhereClause ::= WhereClause
| TypeRefwidens or coerces TypeRef

To declare that traitU allows a coercion from typeT , the declaration of traitU must provide a coercion declaration
whose parameter type isT . Coercion declarations are like functional declarations,except thatcoercion is actually
a special reserved word, a coercion declaration may have special where -clause constraints (described below), and it is
not permitted to specify a return type, because the return type must be the very trait in whose declaration the coercion
declaration appears. The coercion body is required; there is no such thing as an abstract coercion declaration.

Coercions may have static parameters (described in Chapter11) and awhere clause (described in Section 11.6), just
like functionals. Thewhere clause may contain one of the following special constraints:

Type1 coerces Type2

Type1 widens Type2

Type1 widens or coerces Type2

The first is true if traitType1 has a coercion fromType2 . The second is true if traitType1 has a widening coercion
(described in Section 17.8) fromType2 . The third may be used only in a coercion with the “widening ” special
reserved word; it is true ifType1 has a coercion fromType2 , and furthermore the coercion declaration to which the
where clause belongs is widening only ifType1 has a widening coercion fromType2 . For example:

trait VectorJT extends NumberK
widening coercion JU extends NumberK(x : VectorJUK)

where {T widens or coerces U } = . . .
end

Coercions, unlike methods, are not inherited. If traitV extends traitU , and traitU has a coercion from typeT , then
V doesnot thereby have a coercion from typeT . (It may, however, have its own coercion from typeT , separately
defined within the body ofV .) For example, given the following declarations,

trait A
coercion (b :B) = . . .

end

object B end

trait C extends A end

f(c :C) = 5

a call to f(B) is considered a static error because traitC does not inherit a coercion from typeB .
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17.3 Coercion Invocations

One may invoke a coercion explicitly with the syntax:Trait. coercion (expr) . Overloading resolution (described
in Section 15.5) applies in the usual way if the specified trait has more than one coercion that applies to the actual
argument.

One way to think about coercion is that explicit calls to coercion declarations are automatically inserted into the
arguments of functional calls and the right-hand sides of assignment expressions and variable definitions. If traitU

has a coercion from typeT , then whenever a functional,f , is declared with a parameter of typeU , a call f(t) where
t has typeT can be rewritten tof(U. coercion (t)) making the declaration off applicable to the call. However, this
rewriting does not occur if there exists a declaration that is applicable to the call before the rewriting (see Section 17.5
for further discussion).

If coercion is possible for more than one element of a tuple argument, a cross-product effect is obtained. For example,
in this code:

object X
coercion (kiki :Y ) = . . .
coercion (tutu :Q) = . . .
hack(other :X) = 1

end

object Y end

object Q end

foo(dodo :X) = 2

bar(hyar :X, yon :X) = 3
bar(hyar :Q, yon :Q) = 4

the following method invocations are valid:

X.hack(Y )
X.hack(Q)

Because there is no declaration ofhack applicable toY andQ , these invocations are rewritten to:

X.hack(X. coercion (Y ))
X.hack(X. coercion (Q))

Similarly, the function calls in the left-hand side of the following are valid and rewritten to the right-hand side:

foo(Y ) is rewritten to foo(X. coercion (Y ))
foo(Q) is rewritten to foo(X. coercion (Q))

bar(Y,X) is rewritten to bar(X. coercion (Y ), X)
bar(Q,X) is rewritten to bar(X. coercion (Q), X)
bar(X,Y ) is rewritten to bar(X,X. coercion (Y ))
bar(X,Q) is rewritten to bar(X,X. coercion (Q))
bar(Y, Y ) is rewritten to bar(X. coercion (Y ), X. coercion (Y ))
bar(Q,Q) is rewritten to bar(Q,Q)
bar(Q, Y ) is rewritten to bar(X. coercion (Q), X. coercion (Y ))
bar(Y,Q) is rewritten to bar(X. coercion (Y ), X. coercion (Q))

Note that the callbar(Q,Q) remains unchanged because there exists a declaration forbar that is applicable without
coercion.

To continue the example, let us illustrate a point about typeparameters. If we add the following definitions:
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trait Frobboz
frob(item :X) = 5
coercion (m :Matrix) = . . . (∗ irrelevant!∗)

end

object BozoJT extends FrobbozK(t :T ) . . . end

then this says nothing about whether the type parameterT of Bozo has coercions, because coercions are not inher-
ited. (In fact, we can make a stronger statement: types namedby type parametersdo not have coercions!) But it is
guaranteed that the following method invocations are validif they occur within the declaration ofBozo:

t.frob(X)
t.frob(Y )
t.frob(Q)

becauseT inherits the method declarationfrob(item :X) from Frobboz andX contains coercions fromY andQ .

17.4 Applicability with Coercion

As discussed in the previous section, coercion in Fortress alters the set of applicable declarations for a particular
functional call. In this section we formally define the applicability of declarations with coercion. (This level of
formality is necessary to discuss the interaction of overloading and coercion.) We build on the terminology and
notation defined in Chapter 15.

We writeT→U if U defines a coercion fromT . We say thatT can be coerced toU , and we writeT U , if U defines
a coercion fromT or any supertype ofT ; that is,T U ⇐⇒ ∃T ′ : T � T ′ ∧ T ′→U .

Because of automatic coercion, a declaration may be applicable even if its parameter type is not a supertype of the
argument type of the call. We define a new relation,substitutability, that takes coercion into account.

We say that a typeT is substitutablefor typeU , and we writeT ⊑ U , if T is a subtype ofU or T can be coerced to
U ; that is,

T ⊑ U ⇐⇒ T � U ∨ T U.

Note that⊑ need not be transitive. This is a result of the fact that coercion does not chain. However, ifT is substitutable
for U then so areT ’s subtypes; that is,A � T ∧ T ⊑ U =⇒ A ⊑ U .

A declarationf (P) is applicable with coercionto a callf (C ) if the call is in the scope of the declaration andC ⊑ P .
(See Chapter 7 for the definition of scope.)

Recall that Section 15.2 describes a rewriting of named functional calls into dotted method calls when no declarations
are applicable to the named functional call. This rewritingaccounts for the applicability with coercion of dotted
method declarations to named functional calls.

Similarly, a dotted method declarationP0.f (P) is applicable with coercionto a dotted method callC0.f (C ) if it
C0 � P0 andC ⊑ P . Notice that the self parameter and receiver are compared using the subtype relation instead
of the substitutable relation. This reflects the restriction that self parameters of dotted methods cannot be coerced.
However,self parameters of functional methods can be coerced. This distinction is consistent with the intuition that
functional methods are rewritten into top-level functions.

Note that the only difference between applicability and applicability with coercion is that substitutability is used
instead of subtyping to compare the parameter types of the declarations.

Also note that the definition of applicability with coerciondoes not take keyword parameters or varargs parameters into
account. Such declarations are conceptually rewritten into numerous declarations which cannot be called with elided
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arguments nor with variable number of arguments (as described in Section 15.4). If one of the expanded declarations
is applicable with coercion to a call, then the original declaration (with keyword or varargs parameters) is applicable
with coercion to the call.

17.5 Coercion Resolution

For a given functional call, we first determine whether thereexists a declaration that is applicable without coercion.
If so, the most specific declaration is selected; if not, thencoercions are explicitly added to the functional call. If
more than one coercion is possible then the coercion that yields the most specific type is chosen. Section 17.6 and
Chapter 33 describe restrictions on the declarations of coercions and overloaded functionals that guarantee there exists
always a most specific coercion when two or more are possible.

We first define a notion of more specific types in the presence ofcoercion. Recall from Section 8.1 that Fortress defines
anexclusionrelation between types which is denoted by♦.

For typesT andU , we say thatT rejectsU , and writeT−〉U , if for all coercions toT , the type coerced from excludes
U :

T−〉 U ⇐⇒ ∀A : A→T =⇒ A ♦ U.

Note thatT−〉 U impliesU 6 T .

We say thatT is no less specificthanU , and writeT E U , if T is a subtype ofU or T excludes, can be coerced to,
and rejectsU :

T E U ⇐⇒ T � U ∨ (T ♦ U ∧ T U ∧ T−〉 U).

TheE relation is reflexive and antisymmetric but not necessarilytransitive. It is possible, for example, for three types,
T , U andV , each excluding the other two, to have coercions fromT to U and fromU to V . In this case,T E U and
U E V butT 6E V .

Notice that if two tuple types have a bijective correspondence between their element types then theE relationship
between the tuple types is equivalent to applying theE relation elementwise.

We say thatT is more specificthanU , and writeT ⊳ U , if T E U ∧ T 6= U .

We extend the definitions of no less specific and more specific to declarations. We say that a declarationf (P) is no
less specificthan a declarationf (Q) if P E Q . Similarly, we say that a declarationP0.f (P) is no less specificthan
a declarationQ0.f (Q) if (P0,P) E (Q0,Q). A declarationf (P) is more specificthan a declarationf (Q) if P ⊳ Q .
Similarly, a declarationP0.f (P) is more specificthan a declarationQ0.f (Q) if (P0,P) ⊳ (Q0,Q).

Now we describe how to determine which coercion is applied toa given call in terms of rewriting functional calls. The
rewriting is for pedagogical purposes; implementation techniques may vary.

Consider a static callf (A) or A0.f (A). Let Σ be the set of parameter types of functional declarations off that are
applicable to the call. LetΣ′ be the set of parameter types of functional declarations off that are applicable with
coercion to the call. IfΣ is not empty then we use the overloading resolution described in Section 15.5 to determine
which element ofΣ is called. IfΣ is empty butΣ′ is not, then we rewrite the call as follows. Define:

C = {T ∈ Σ′ | S→T ∧A � S}.

Let T ∈ C be the most specific element ofC . In other words, there does not existT ′ ∈ C such thatT ′ ⊳ T . The
restrictions given in Section 17.6 and Chapter 33 guaranteethat such aT exists and that it is unique. The callf (A) or
A0.f (A) is rewritten tof(T. coercion (A)) or A0.f(T. coercion (A)) and the declaration with parameter type
T is applied to the call.

As an example, consider the following definitions:
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trait Z32 end

trait Z64
coercion (z : Z32) = . . .

end

trait Z128
coercion (z : Z32) = . . .
coercion (z : Z64) = . . .

end

f(z : Z64) = 1
f(z : Z128) = 2

Then the callf(Z32) resolves statically to the declarationf(z : Z64) becauseZ64 ⊳ Z128, which follows from the
fact thatZ64 coerces toZ128 . The statically chosen declaration will be called at run time.

Notice that coercion is resolved statically. Once a coercion is statically chosen for a call, this coercion is conceptually
inserted into the call. This means that the statically chosen coercion is applied at run time.

For example, in the following program:

trait A
coercion (c :C) = . . .

end

trait B excludes A end

trait C end

object D extends {B,C} end
f(a :A) = 3
f(b :B) = 4

c : C = D
f(c)

the call f(c) resolves to the declarationf(A) despite the fact that the declarationf(B) is applicable to the dynamic
call f(D) .

17.6 Restrictions on Coercion Declarations

We place two restrictions on coercion declarations to ensure that it is always possible to resolve coercions.

It is a static error for a type to define a coercion from any of its subtypes. For example, the following program is
statically rejected:

trait Number
coercion (z : Z) = . . .

end

trait Z extends Number end

It is also a static error for cycles to exist in the type hierarchy produced by extension and coercion declarations. Such
cycles may be composed of solely subtype relationships or solely coercion or a mixture of the two. In all cases the
cycles are statically rejected. An example showing a cycle that is a mixture of subtype and coercion relationships
follows:

trait A end
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trait B extends A end

trait C extends B
coercion (a :A) = . . .

end

17.7 Coercions for Tuple and Arrow Types

Unlike other types, tuple types (described in Section 8.4) and arrow types (described in Section 8.5) are not defined
explicitly. Therefore coercions to these types are also notdefined explicitly. Instead, the following rules describe when
these coercions are implicitly defined.

There is a coercion from a tuple typeX to a tuple typeY if all the following conditions hold:

1. X is not a subtype ofY ;

2. for every plain typeT in Y , there is a corresponding plain type inX whose type is substitutable forT ;

3. if neitherX norY has a varargs type, then they have the same number of plain types;

4. if X has a varargs type, thenY has a varargs type, the typeS of the varargs typeS ... in X is substitutable for
the typeT of the varargs typeT ... in Y , andX andY have the same number of plain types;

5. if X has no varargs type andY has a varargs typeT ..., then every plain type inX that has no corresponding
plain type inY is substitutable forT ; and

6. the correspondence between keyword-type pairs inX andY is bijective, and the type of each such pair inX is
substitutable for the type in the corresponding pair inY .

Tuple type coercions are invoked by distributing the coercion elementwise. However, if an element type of the tuple
type being coerced from is a subtype of the corresponding element type of the tuple type being coerced to, the coercion
is ignored. For example, the following coercions:

(A,B). coercion (x, y)
(kwd = A). coercion (kwd = x)

are rewritten to:

(A. coercion (x), B. coercion (y))
(kwd = A. coercion (x))

However, if the type ofy were a subtype ofB then the first coercion would instead be rewritten to:

(A. coercion (x), y)

Coercions to varargs types such as the following:

(A . . .). coercion (x, y)

are invoked by applying the coercion to the type in the varargs type,A in this example, to each of the elements of the
tuple. Additionally, there is a coercion from any typeT to a tuple type solely with varargs type(T . . .) .

There is a coercion from arrow type “A→ B throws C ” to arrow type “D → E throws F ” if all of the following
conditions hold:

1. “A→ B throws C ” is not a subtype of “D → E throws F ”;

2. D is substitutable forA;
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3. B is substitutable forE ; and

4. for allX in C, there existsY in F such thatX is substitutable forY .

Arrow type coercions are invoked by wrapping the argument function of the coercion in a function expression that
applies the appropriate coercions to the argument and result of the function. For example, assuming thatf is a
function from typeA to typeB the following coercion:

(C → D). coercion (f)

is rewritten to:

fn x⇒ D. coercion (f(A. coercion (x)))

17.8 Automatic Widening

Syntax:
Coercion ::= widening coercion [StaticParams]( Id IsType) CoercionClauses= Expr

Fortress supports what is sometimes called “widest-need” evaluation of numerical expressions. To see the problem,
suppose thata andb are 32-bit floating-point numbers andc is a 64-bit floating-point number. It is easy, and tempting,
to write an expression such as

c = c+ a · b
but if you stop to think about it, if interpreted naively it will compute the producta · b as a 32-bit floating-point
number, and the impression that the sum may be accurate to theprecision of a 64-bit floating-point number is only an
illusion. Widest-need processing takes context into account and “widens” (or “upgrades”) the operandsa and b to
64-bit floating-point numbers before the product is computed, so that the product will be computed as a 64-bit result.

Before widening is considered, a Fortress compiler, in its normal course of operation, analyzes an expression bottom-
up. For every functional invocation, it needs to staticallyidentify a specific declaration to be invoked. Once this is
done, then for every functional invocation, one of two conditions holds: (a) The type of the argument expression is
a subtype of the type of the parameter in the identified declaration. (b) The type of the argument expression can be
coerced to the type of the parameter in the identified declaration.

This process has to be done bottom-up because in order to select a specific declaration for a functional invocation,
it is necessary to know the types of the argument expressions, and if an argument expression is itself a functional
invocation, it is necessary to select the specific declaration for that invocation in order to find out the return type of the
invocation.

Once an expression has been fully analyzed in this way, then widening is performed as a top-down process. For
each functional invocation that appears as an argument to a functional invocation, or on the right-hand side of a
variable definition or an assignment expression, ask whether the argument expression (which, remember, is a functional
invocation) falls under case (a) or case (b) above. If case (b), coercion of the functional result is required; if the relevant
coercion declaration is a “widening” coercion, then this functional invocation is a candidate for widening. Call the
type of the functional invocationT , and call the type of the corresponding functional parameter, or of the left-hand
side of the variable definition or assignment expression,U .

When the functional call was considered during the bottom-up analysis, in general many overloaded declarations may
have been considered; of all those that were applicable withcoercion to the static call, the most specific one was
chosen. When considering widening, we consider the same setof declarations, but first discard all declarations whose
return types are not subtypes ofU . Then if any remain, and there is a unique most specific one among them, then that
declaration is attached to the functional call instead. In this way a coercion step is eliminated (coercion is no longer
needed to convert the result of the functional invocation from typeT to typeU ), possibly at the expense of requiring
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a new coercion in a subexpression—but this is exactly the desired effect. Once this is done, then the subexpressions
of the functional call are processed recursively.

This process is general enough not only to provide for widening floating-point precision, but to handle two other
cases of interest as well: widening point computations to interval computations, and widening computations involving
aggregate data structures whose components are widenable.For example, ind(v × w) suppose thatd is of typeR64
andv andw are 3-vectors with components of typeR32; this strategy is capable of promotingv andw to 3-vectors
with components of typeR64 and then performing all computations withR64 precision.

Let’s go through the example ofc+ a · b in detail. The relevant declarations might look something like this:

trait R32
. . .

end

trait R64
widening coercion (x : R32) = . . .
. . .

end

opr · (l: R32, r: R32): R32 = . . . (∗ 1 ∗)
opr · (l: R64, r: R64): R64 = . . . (∗ 2 ∗)
opr +(l: R32, r: R32): R32 = . . . (∗ 3 ∗)
opr +(l: R64, r: R64): R64 = . . . (∗ 4 ∗)

The bottom-up analysis observes thata and b are both of typeR32 , and discovers that declarations1 and 2 are
both applicable to the product, but declaration1 would be chosen because it requires no coercion and declaration
2 would require coercion of both arguments to typeR64 . The analysis then observes thatc has typeR64 and the
product expression has typeR32 , so declaration3 is not applicable but declaration4 is applicable (though requiring
a coercion fromR32 to R64 for its second argument).

Now the top-down widening analysis is performed. The product is a functional call that is an argument to another
functional call, and its result requires coercion, and thatcoercion is a widening coercion. Therefore the compiler
reconsiders the applicable declarations, which were declarations 1 and 2 . The result type of declaration1 is not
a subtype ofR64 , but the result type of declaration2 is a subtype ofR64 (in fact, it is R64 ). Declaration2 is
the most specific among the applicable declarations with that property (in fact, in this example it’s the only one), so
declaration2 replaces declaration1 for the product invocation. This in turn requiresa and b to be coerced from
type R32 to R64 before the product is performed.

Widening is a tricky business, best left to expert library designers. When used judiciously, it can greatly improve the
precision of numerical computations without requiring a great deal of thought on the part of the application program-
mer and without cluttering up code with explicit conversions.

Future versions of this specification will include tables ofcoercions and widening coercions supported by the Fortress
standard libraries.
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Chapter 18

Dimensions and Units

Syntax:
DimType ::= DimRef

| TypeRef DimRef| TypeRef· DimRef
| TypeRef/ DimRef | TypeRefper DimRef
| TypeRef UnitRef| TypeRef· UnitRef
| TypeRef/ UnitRef | TypeRefper UnitRef
| TypeRefin DimRef

DimRef ::= Unity
| DottedId
| DimRef DimRef| DimRef · DimRef
| DimRef / DimRef | DimRef per DimRef
| DimRef ˆ NatRef| 1 /DimRef | ( DimRef)
| DUPreOp DimRef| DimRef DUPostOp

DUPreOp ::= square | cubic | inverse
DUPostOp ::= squared | cubed
UnitExpr ::= UnitRef

| Expr UnitRef| Expr · UnitRef
| Expr / UnitRef | Expr per UnitRef
| Expr in UnitRef

UnitRef ::= dimensionless
| DottedId
| UnitRef UnitRef| UnitRef · UnitRef
| UnitRef / UnitRef | UnitRef per UnitRef
| UnitRef ˆ NatRef| 1/UnitRef | ( UnitRef)
| DUPreOp UnitRef| UnitRef DUPostOp

There are special type-like constructs calleddimensionsthat are separate from other types (described in Chapter 8).
There are also special constructs that modify types and values calledunitsthat are instances of dimensions. These are
used to describe physical quantities.

The Fortress standard libraries define dimensions and unitsfor the standard SI system of measurement based on meters,
kilograms, seconds, amperes, and so on (as described in Section 29.1). The Fortress standard libraries also provide
supplemental units of measurement, such as feet and miles (as described in Section 29.2). For example, the Fortress
standard libraries provide a dimension namedLength whose default unit is namedmeter and abbreviatedm_. By
rendering convention, this abbreviation is rendered in roman type without the underscore:m . In contrast, the variable
m is rendered as in standard mathematical notation:m . See Section 5.17 for a discussion of formatting conventions
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for tokens.

For readability, plural forms of the unit names are defined asequivalent to the corresponding singular forms; thus one
can write meters per second , for example. Standard SI prefixes may be used on both the nameand the symbol, so
that nanometer and nm are also units of the dimension namedLength, related tometer and m by a conversion
factor of10−9.

Every dimension may have a default unit that is used for representing values of quantities of that dimension if no unit
is specified explicitly. The Fortress standard libraries define these default dimensions and units:

Length meter MagneticFlux weber
Mass kilogram MagneticFluxDensity tesla
Time second Inductance henry
Frequency hertz Velocity meters per second
Force newton Acceleration meters per second squared
Pressure pascal Angle radian
Energy joule SolidAngle steradian
Power watt LuminousIntensity candela
Temperature kelvin LuminousFlux lumen
Area square meter Illuminance lux
Volume cubic meter RadionuclideActivity becquerel
ElectricCurrent ampere AbsorbedDose gray
ElectricCharge coulomb DoseEquivalent sievert

ElectricPotential volt AmountOfSubstance mole
Capacitance farad CatalyticActivity katal
Resistance ohm MassDensity kilograms per cubic meter
Conductance siemens

In addition, the Fortress standard libraries define the dimensionInformation with units bit andbyte (and the plurals
bits andbytes), abyte being equal to 8bits. To avoid confusion, SI prefixes arenotprovided for these units; instead,
programmers must use appropriate powers of 2 or 10, for example 106bits or 220bits .

Here are some examples of the use of dimensions and units:

x: R64 Length = 1.3 m
t: R64 Time = 5 s
v: R64 Velocity = x/t
w: R64 Velocity in nm/s = 17 nm/s
x: R64 Velocity in furlongs per fortnight = v in furlongs per fortnight

Dimensions and units can be multiplied, divided, and raisedto rational powers to produce new dimensions and units.
Both the numerator and the denominator of a rational power ofa dimension or a unit must be a validnat parameter
instantiation (as described in Section 11.2). Multiplication can be expressed using juxtaposition or· ; division can be
expressed using/ or per. The syntactic operatorssquare andcubic may be applied to a dimension or unit in order
to raise it to the second power, third power, respectively; the special postfix syntactic operatorssquared and cubed
may be used for the same purpose. The syntactic operatorinverse may be applied to a dimension or unit to divide it
into 1. All of these syntactic operators are merely syntactic sugar, expanded before type checking.

grams per cubic centimeter
meter per second squared
inverse ohms

One can also write1/X as a synonym forX−1 if X is either a dimension or a unit.

Most numerical values in Fortress are dimensionless quantity values. Multiplying or dividing a dimensionless value
by a unit produces a dimensioned value; thus5 s is the dimensioned value equal to five seconds, which has numerical
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value 5 andsecond for its unit. A dimensioned value may also be multiplied or divided by a unit, and the result is to
combine the units; the expression(17 nm)/s first multiplies 17 by nm to produce the dimensioned value seventeen
nanometers, which is then divided by the units to produce seventeen nanometers per second.

The unit of a dimensioned value may be changed to another unitof the same dimension by using thein operator,
which takes a quantity to its left and a unit to its right. Thein operator changes the unit and multiplies or divides
the numerical value by an appropriate conversion constant so as to preserve the overall dimensioned value. Thus
1.3 m in nm produces1300000000 nm .

Multiplying or dividing a dimensionless numerical type by aunit produces an equivalent dimensioned numerical type
with that unit associated; thusR64 meter is a type that is just likeR64 but whose values are values of dimension
Length measured inmeters. A dimensioned numerical type may be further multiplied or divided by a unit. As a
convenience, if a dimension has a default unit, a numerical type may also be multiplied or divided by a dimension, in
which case the result is as if the default unit for that dimension had been used. Thein operator may also be used to
change the unit associated with a dimensioned type; in this situation the effect is merely to alter the unit associated
with the type; no numerical operation is performed at run time.

Certain aggregate types, such asVector, may also have associated units.

There are two reasons for using dimensions and units. One is that the in operator can supply conversion factors
automatically. The other is that certain programming errors may be detected at compile time. When dimensioned
values are added, subtracted, or compared, it is a static error if the units do not match. When dimensioned values are
multiplied or divided, their units are multiplied or divided. When taking the square root of a dimensioned value, the
unit of the result is the square root of the argument’s unit. Other numerical functions, such assin and log , require
dimensionless arguments.

A variable whose declared type includes a dimension withoutan accompanying unit is understood to have the default
unit for that dimension. Thus, in most cases, the runtime unit of an expression can be statically inferred. However,
there are exceptions. For example, consider the following declaration:

a : Object[3] = [5 mg, 3 m, 4 s]

Now suppose we declare a function that takes an array of objects and returns one of its elements:

f(xs : Object[3]) = xs1

The value of the callf(a) is 3 m . However, the static type off(a) is simplyObject. When the value3 m is placed
in an array of objects, the value is boxed, and the unit associated with the value must be included as part of the boxed
value. However, unboxed values need not include unit information at runtime, as this information is statically evident
in such cases.

There are also special static parameters for units and dimensions; see Section 11.4.
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Chapter 19

Tests and Properties

Fortress supports automated program testing. Components and APIs can declaretests. Test declarations specify
explicit finite collections over which the test is run. Components, APIs, traits, and objects can declareproperties
which describe boolean conditions that the enclosing construct is expected to obey. Tests and properties may modify
the program state.

19.1 The Purpose of Tests and Properties

To help make programs more robust, Fortress programs are allowed to include special constructs calledtestsand
properties. Tests consist of test data along with code that can be run on that data. Properties are documentation used
to describe the behavior of the traits and functions of a program; they can be thought of as comments written in a
formal language. For each property, there is a special function that can be called by a program’s tests to ensure that
the property holds for specific test data.

A fortress includes hooks to allow programmers to run a specific test on an executable component, and to run all tests
on such a component. A particularly useful time to run the tests of an executable component is at component link
time; errors in the behavior of constituent components can be caught before the linked program is run.

19.2 Test Declarations

Syntax:
TestDecl ::= test Id [ GeneratorList] = Expr
GeneratorList ::= Generator( , Generator)∗

Generator ::= Id←Expr
| ( Id , IdList ) ←Expr
| Expr

IdList ::= Id ( , Id)∗

A test declaration begins with the special reserved wordtest followed by an identifier, a list of zero or more gener-
ators (described in Section 13.17) enclosed in square brackets, the token= , and a subexpression. When a test isrun
(See Section 22.7), the subexpression is evaluated in each extension of the enclosing environment corresponding to
each point in the cross product of bindings determined by thegenerators in the generator list.

For example, the following test:
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test fxLessThanFy [x← E, y ← F ] = assert(f(x) < f(y))

checks that, for each valuex supplied by generatorE, and for each valuey supplied by generatorF , f(x) is less than
f(y) .

19.3 Other Test Constructs

Syntax:
UniversalMod ::= test

The test modifier can also appear on a function definition, trait definition, object definition, or top-level variable
definition. In these contexts, the modifier indicates that the program construct it modifies can be referred to by a
test. Functions with modifiertest must not be overloaded with functions that do not have modifier test , and traits
with modifier test must not be extended by traits or objects that do not have modifier test . The collection of all
constructs in a program that include modifiertest are referred to collectively as the program’stests. Tests can refer
to non-tests but it is a static error for a non-test to refer toany test.

For example, we can write the following helper function:

test ensureApplicationFails(g, x) = do

applicationSucceeded := false

try

g(x)
applicationSucceeded := true

catch e
Exception⇒ ()

end

if applicationSucceeded then

fail “Application succeeded! ”
end

end

The library functionfail displays the error message provided and terminates execution of the enclosing test.

19.4 Running Tests

When a program’s tests arerun, the following actions are taken:

1. All top-level definitions, including constructs beginning with modifiertest , are initialized. A test declaration
with namet declares a function namedt that takes a tuple of parameters corresponding to the variables bound
in the generator list of the test declaration. For each variable v in the generator list oft, if the type of generator
supplied forv is GeneratorJαK then the parameter in the function corresponding tov has typeα . The return
type of the function is() .

Each such function bound in this manner is referred to as atest function. Test functions can be called from the
rest of the program’s tests.

2. Each testt in a program is run in each extension oft’s enclosing environment with a point in the cross product
of bindings determined by the generators in the test’s generator list.
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19.5 Test Suites

In order to allow programmers to run strict subsets of all tests defined in a program, Fortress allows tests to be
assembled intotest suites.

The convenience objectTestSuite is defined in the Fortress standard libraries. An instance ofthis object contains a
set of test functions that can all be called by invoking the method run :

test object TestSuite(testFunctions = {})
add(f : ()→ ()) = testFunctions .insert(f)

run() =
for t← testFunctions do

t()
end

end

Note that all tests in aTestSuite are run in parallel.

19.6 Property Declarations

Syntax:
PropertyDecl ::= property [Id = ] [∀ ValParam] Expr
ValParam ::= ParamId

| ( [ValParams])
ParamId ::= Id

|
ValParams ::= PlainParam( ,PlainParam)∗

| [PlainParam( ,PlainParam)∗ , ] Id : TypeRef...
| [PlainParam( ,PlainParam)∗ , ] [ Id : TypeRef... , ] PlainParam= Expr ( ,PlainParam= Expr)∗

PlainParam ::= ParamId[IsType]
| TypeRef

Components and APIs may includepropertydeclarations, documenting boolean conditions that a program is expected
to obey. Syntactically, a property declaration begins withthe special reserved wordproperty followed by an optional
identifier followed by the token= , an optional value parameter, which may be a tuple, precededby the token∀ , and
a boolean subexpression. In any execution of the program, the boolean subexpression is expected to evaluate to true
at any time for any binding of the property declaration’s parameter to any value of its declared type. When a property
declaration includes an identifier, the property identifieris bound to a function whose parameter and body are that of
the property, and whose return type isBoolean. A function bound in this manner is referred to as aproperty function.

Properties can also be declared in trait or object declarations. Such properties are expected to hold for all instances of
the trait or object and for all bindings of the property’s parameter. If a property in a trait or object includes a name,
the name is bound to a method whose parameter and body are thatof the property, and whose return type isBoolean.
A method bound in this manner is referred to as aproperty method. A property method of a traitT can be called, via
dotted method notation, on an instance ofT .

Property functions and methods can be referred to in a program’s tests. If the result of a call to a property function or
method is nottrue , a TestFailure exception is thrown. For example, we can write:

property fIsMonotonic = ∀(x: Z, y: Z) (x < y)→ (f(x) < f(y))
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test s : SetJZK = {−2000, 0, 1, 7, 42, 59, 100, 1000, 5697}
test fIsMonotonicOverS [x← s, y ← s] = fIsMonotonic(x, y)
test fIsMonotonicHairy [x← s, y ← s] = fIsMonotonic(x, x2 + y)

The testfIsMonotonicOverS tests that functionf is monotonic over all values in sets . The testfIsMonotonicHairy

tests thatf is monotonic with respect to the values ins compared to the set of values corresponding to all the ways in
which we can choose an element ofs , square it, and add it to another element ofs .
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Chapter 20

Type Inference

Type inference in Fortress is performed independently on each simple component (described in Chapter 22). For
separation of concerns, in this chapter, we describe the Fortress type inference as a procedure performed over a whole
Fortress program. We explain how this procedure can be adapted to perform type inference over a simple program
component in Section 22.5. Note that type inference cannot be performed on each functional (function or method)
declaration in isolation because it may be declared mutually recursively or may contain free variables.

20.1 What Is Inferred

Types of functional parameters, functional results, and variables may be elided in a program where they can be inferred
automatically. Similarly, instantiations of static parameters of generic functional invocations may be elided wherethey
can be inferred automatically. A Fortress compiler must allow types and static arguments inferable via the procedure
described in Section 20.2 to be elided, no more and no less. This strict requirement is made for the sake of source-code
portability; it is important that a program that compiles onone compiler will compile on all compilers. Of course,
there is nothing preventing a development environment fromaiding programmers by performing more sophisticated
analyses and filling in additional information, but the textproduced is not a valid Fortress program unless all elided
types and static arguments can be inferred via the describedprocedure.

20.2 Type Inference Procedure

To perform type inference, we first infer any elided parameter type in each functional declaration that can be inferred
from other declaration as follows:

1. If the declaration is a functional declaration and the type of the declared functional is declared via a separate
declaration, any elided parameter type is inferred to have the type provided by the separate declaration.

2. Otherwise, if the declaration is a method declaration that overloads a method declaration provided by a super-
trait, any elided parameter type is inferred to have the typeprovided (or inferred) by the overloaded method
declaration.

All remaining parameter types are inferred along with instantiations of static parameters.

In the following, we adopt the convention of writing “primed” static variables,T ′0, ..., T
′
m, U

′
0, ..., to stand for fresh

static variables. Our procedure will introduce primed static variables as placeholders that are to be replaced with
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nonprimed types and static arguments before the termination of type inference. We abuse notation by usingtypesto
refer to both types and static arguments when it is clear fromcontext.

First, we annotate every expressione that is not a functional application with a fresh static variable (written here as a
superscript):

eT ′

and every functional applicationf(a0, ..., an) (wheref is the name of a generic functional) with fresh static variables
for the instantiation of each of the functional’s static parameters as well as a superscript:

fJT ′0, ..., T ′m−1K(a0, ..., an)T ′

m

and every functional parameterx without a declared type with fresh static variable as its declared type:

x: T ′

We say that a functional application is anoutermostfunctional application if and only if it is not a proper subexpression
of another functional application.

For each outermost functional application:

fJT ′0, ..., T ′m−1K(a0, ..., an)T ′

m

let fJR0, ..., Rm−1K(p0: S0, ..., pn: Sn): Rm be a declaration off . Some of the types and static parameters appearing
at the declaration might be primed static variables themselves.

Note that there may be several declarations off due to overloading. When there are multiple declarations for f , type
inference is performed to each declaration. Only the declarations to which type inference succeed are considered for
overload resolution.

We accumulate a table of subtyping constraints as follows:

First, we add the following constraint to our table:

T ′m <: [R0 7→ T ′0, ..., Rm−1 7→ T ′m−1]Rm

where we use the notation[R0 7→ T ′0, ..., Rm−1 7→ T ′m−1] to denote the safe substitution ofR0, ..., Rm−1 with
T ′0, ..., T

′
m−1.

If the functional application occurs as the right-hand sideof a declarationx: T = e, we add the constraint:

T ′m <: T

An analogous constraint is added if the application occurs as the right-hand-side of an assignment to a variable with
typeT , or as the body of a functional with return typeT , or as an expression ascripted with typeT , etc. We refer to
all of these cases collectively by saying that the functional application “occurs in the context of typeT ”.

Additionally, for every argumentaU ′

i

i corresponding to value parameterpi, we add the following constraint:

U ′i <: [R0 7→ T ′0, ..., Rm−1 7→ T ′m−1]Si

Additionally, we add all “nested constraints” accumulatedfor ai, where nested constraints are accumulated as follows:

1. If ai is not a functional application or atypecase expression, the nested constraints are the union of the nested
constraints of all subexpressions ofai plus the constraintR <: U ′i , whereR is the type ofai in the enclosing
context.

2. If ai is a typecase expression, only nested constraints common to all branchesare accumulated. Furthermore,
static parameter instantiations of generic functional calls within each branch must be inferred independently, in
a separate table extending the constraints of the enclosingcontext with only those constraints available in that
branch.
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3. If ai is a functional application, the nested constraints are allconstraints accumulated forai as if it were an
outermost generic functional application occurring in contextU ′i .

Once we have accumulated all constraints for each outermostfunctional application, the constraints are solved in the
following phases:

1. For every cycle of constraints of naked primed static variablesT ′1 <: ... <: T ′n <: T ′1, one ofT ′1, ..., T
′
n is

chosen. We call the chosen naked primed static variableT ∗. All occurrences ofT ′1, ..., T
′
n in the constraints and

throughout the program are replaced withT ∗. Redundant constraints are eliminated. This process is repeated
until a fixed point is reached.

2. For every naked primed static variableT ′, consider the set of all subtype constraints onT ′: T ′ <: U1, ...T
′ <:

Un. Theunexpandedinferred least upper bound forT ′ is the intersection type (described in Section 8.8)U1 ∩
... ∩ Un.

3. If some primed static variableR′ appears in one of theUi in the unexpanded inferred least upper bound forT ′

andR′ does not appear within a type constructor,R′ is replaced with its own unexpanded inferred type. This
process is repeated until a fixed point is reached.

If T ′ is expanded to a type with no primed variables, this phase is done. IfT ′ is expanded to a type containing no
primed variables exceptT ′, the expansionE of T ′ is replaced with afixed-point typeµT ′.E. Fixed-point types
are needed to express types that would be “infinitely” large if expanded out into conventional ground types. We
have the following property for fixed-point types:µX.E = [X 7→ µX.E]E. Otherwise,T ′ is inferred to have
type Object .

4. For every naked primed static variableT ′, consider the set of all supertype constraints onT ′: V1 <: T ′, ...Vn <:
T ′. The unexpanded inferred greatest lower bound forT ′ is the union type (described in Section 8.8)V1∪...∪Vn.
This type is expanded analogously to the procedure used for the intersection ofT ′.

5. The inferred type for a static variableT ′ is the intersection of the expanded inferred least upper bound and the
expanded inferred greatest lower bound forT ′. For the purposes of type checking, the inferred type is put into
clausal normal form as a canonical form, eliminating redundant clauses.

20.3 Finding “Closest Expressible Types” for Inferred Types

Once solutions to the primed variables are inferred, we mustfind theclosest expressible typeto each inferred type.
Expressible types are all types that are neither intersection types nor union types and that syntactically contain only
expressible types. Note that fixed-point types are expressible types as in the Java type inference.

1. Given an intersection typeS1 ∩ ... ∩ Sn, if there is a unique most general expressible typeT such thatT is
a subtype ofS1, ..., Sn, thenT is the closest expressible type toS1 ∩ ... ∩ Sn. If there is not a unique most
general expressible type, then the close expressible type is the closest expressible supertype of the multiple
closest expressible types; this process is guaranteed to terminate because the type hierarchy is rooted at type
Object.

2. Given a union typeS1∪...∪Sn, if there is a unique most specific expressible typeT such thatT is a supertype of
S1, ..., Sn, thenT is the closest expressible type toS1∪ ...∪Sn. If there is not a unique most general expressible
type, then the close expressible type is the closest expressible supertype of the multiple closest expressible types.

3. Given a generic type instantiationCJS1, ..., SnK, where some of theS1, ..., Sn are not expressible, the closest
expressible type isCJE(S1), ..., E(Sn)K whereE(Si) is the closest expressible type toSi.

Each primed type in a program is replaced with the closest expressible type to its solution. Any remaining primed
types that have not yet been inferred are then inferred to have typeObject.
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Chapter 21

Memory Model

Fortress programs are highly multithreaded by design; the language makes it easy to expose parallelism. However,
many Fortress objects are mutable; without judicious use ofsynchronization constructs—reductions andatomic
expressions—data raceswill occur and programs will behave in an unpredictable way.The memory model has two
important functions:

1. Define a programming discipline for the use of data and synchronization, and describe the behavior of programs
that obey this discipline. This is the purpose of Section 21.2.

2. Define the behavior of programs that do not obey the programming discipline. This constrains the optimizations
that can be performed on Fortress programs. The remaining sections of this chapter specify the detailed memory
model that Fortress programs must obey.

21.1 Principles

The Fortress memory model has been written with several important guiding principles in mind. Violations of these
principles should be taken as a flaw in the memory model specification rather than an opportunity to be exploited
by the programmer or implementor. The most important principle is this: violations of the Fortress memory model
must still respect the underlying data abstractions of the Fortress programming language. All data structures must be
properly initialized before they can be read by another thread, and a program must not read values that were never
written. When a program fails, it must fail gracefully by throwing an exception.

The second goal is nearly as important, and much more difficult: present a memory model which can be understood
thoroughly by programmers and implementors. It should never be difficult to judge whether a particular program be-
havior is permitted by the model. Where possible, it should be possible to check that a program obeys the programming
discipline.

The final goal of the Fortress memory model is to permit aggressive optimization of Fortress programs. A multi-
processor memory model can rule out optimizations that might be performed by a compiler for a uniprocessor. The
Fortress memory model attempts to rule out as few behaviors as possible, but more importantly attempts to make it
easy to judge whether a particular optimization is permitted or not. The semantics of Fortress already allows permis-
sive operation reordering in many programs, simply by virtue of the implicitly parallel semantics of tuple evaluation
and looping.
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21.2 Programming Discipline

If Fortress programmers obey the following discipline, they can expect sequentially consistent behavior from their
Fortress programs:

• Updates to shared locations should always be performed using an atomic expression. A location is considered
to be shared if and only if that location can be accessed by more than one thread at a time. For example,
statically partitioning an array among many threads need not make the array elements shared; only elements
actually accessed by more than one thread are considered to be shared.

• Within a thread or group of implicit threads objects should not be accessed through aliased references; this can
yield unexpected results. Section 21.2.3 defines the notionof apparently disjointreferences. An object should
not be written through one reference when it is accessed through another apparently disjoint reference.

The following stylistic guidelines reduce the possibilityof pathological behavior when a program strays from the
above discipline:

• Where feasible, reduction should be used in favor of updating a single shared object.

• Immutable fields and variables should be used wherever practical. We discuss this further in Section 21.2.1.

• A getter or a setter should behave as though it is performing asimple field access, even if it internally accesses
many locations. The simplest (but not necessarily most efficient) way to obtain the appropriate behavior is to
make hand-coded accessorsatomic . Section 21.2.2 expands on this.

21.2.1 Immutability

Recall from Section 4.3 that we can distinguish mutable and immutable memory locations. Any thread that reads
an immutable field will obtain the initial value written whenthe object was constructed. In this regard it is worth
re-emphasizing the distinction between an object reference and the object it refers to. A location that does not contain
a value object contains an object reference. If the field is immutable, that means the reference is not subject to change;
however, the object referred to may still be modified in accordance with the memory model.

By contrast, recall that all the fields of a value object are immutable; however, a mutable location may have a value type.
Such a location can be written, completely replacing the value object it contains. Similarly, reading the value contained
in such a location conceptually causes the entire value object to be read; if this isn’t followed by an immediate field
reference, the read must be performed atomically. This may potentially be expensive (see Section 21.3).

21.2.2 Providing the Appearance of a Single Object

In practice, most accesses to fields occur through a mediating getter or setter method. It should not be possible for the
programmer to tell whether a given getter or setter directlyaccesses a field or if it performs additional computations.
Similarly, any subscripting operation must be indistinguishable from accessing a single field. Thus, accessor methods
and subscripting methods should provide the appearance of atomicity, as described in Section 21.3. The Fortress
standard libraries are written to preserve this abstraction. For example, theArray type in Fortress makes use of one or
more underlyingHeapSequences, and array subscripting preserves the atomicity guarantees of this underlying object.

21.2.3 Modifying Aliased Objects

In common with Fortran, and unlike most other popular programming languages, Fortress gives special treatment to
accesses to a location through different aliases. For the purposes of variable aliasing, it is important to define the notion
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of apparently disjoint(or simply disjoint) object and field references. If two references are not disjoint, we say they
arecertainly the same, or just the same. By contrast, we say object references areidentical if they refer to the same
object, anddistinctotherwise. Accesses to fields reached via apparently disjoint object references may be reordered
(except an initializing write is never reordered with respect to other accesses to the identical location).

Distinct references are always disjoint. Two identical references are apparently disjoint if they are obtained from any
of the following locations:

• distinct parameters of a single function call

• distinct fields

• a parameter and a field

• identically named fields read from apparently disjoint object references

• distinct reads of a single location for which there may be an interposing write

When comparing variables defined in different scopes, theserules will eventually lead to reads of fields or to reads of
parameters in some common containing scope.

We extend this to field references as follows: two field references are apparently disjoint if they refer to distinct fields,
or they refer to identically named fields read from apparently disjoint object references.

Consider the following example:

f(x : Z64[2], y : Z64[2]) : Z64 = do

x0 := 17
y0 := 32

end

Herex andy in f are apparently disjoint; the writes may be reordered, so thecall f(a, a) may assign either 17 or 32
to a0 .

A similar phenomenon occurs in the following example:

g(x : Z64[2], y : Z64[2]) : Z64 = do

x0 := 17
y0

end

Again x andy are apparently distinct ing , so the write tox0 and the read ofy0 may be reordered. The callg(a, a)
will assign 17 toa0 but may return either the former value ofa0 or 17.

It is safe toreadan object through apparently disjoint references:

h(x : Z64[2], y : Z64[2]) : Z64 = do

u : Z64 = x0

v : Z64 = y0
u+ v

end

A call to h(a, a) will read a0 twice without ambiguity. Note, however, that the reads may still be reordered, and if
a0 is written in parallel by another thread this reordering canbe observed.

If necessary,atomic expressions can be used to order disjoint field references:

f ′(x : Z64[2], y : Z64[2]) : () = do

atomic x0 := 17
atomic y0 := 32

end
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Here the callf(a, a) ends up settinga0 to 32. Note that simply using a singleatomic expression containing one or
both writes is not sufficient; the two writes must be in distinct atomic expressions to be required to occur in order.

When references occur in distinct calling contexts, they are disambiguated at the point of call:

j(x : Z64[2], y : Z64) : () = x0 := y
k(x : Z64[2]) : () = do

j(x, 17)
j(x, 32)

end

l(x : Z64[2], y : Z64[2]) : () = do

j(x, 17)
j(y, 32)

end

Here if we call k(a) the order of the writes performed by the two calls toj is unambiguous, anda0 is 32 in the
end. By contrast,l(a, a) calls j with two apparently disjoint references, and the writes in these two calls may thus be
reordered.

21.3 Read and Write Atomicity

Any read or write to a location isindivisible. In practical terms, this means that each read operation will see exactly the
data written by a single write operation. Note in particularthat indivisibility holds for a mutable location containing
a large value object. It is convenient to imagine that every access to a mutable location is surrounded by anatomic

expression. However, there are a number of ordering guarantees provided byatomic accesses that are not respected
by non-atomic accesses.

21.4 Ordering Dependencies among Operations

The Fortress memory model is specified in terms of two orderings: dynamic program order and memory order.Dy-
namic program orderis a partial order between the expressions evaluated in a particular execution of a program. The
actual order of memory operations in a given program execution ismemory order, a total order on all memory opera-
tions. Dynamic program order is used to constrain memory order. However, memory operations need not be ordered
according to dynamic program order; many memory operations, even reads and writes to a single field or array el-
ement, can be reordered. Programmers who adhere to the modelin Section 21.2 can expect sequentially consistent
behavior: there will be a global ordering for all memory operations that respects dynamic program order.

Here is a summary of the salient aspects of memory order:

• There is a single memory order which is respected in all threads.

• Every read obtains the value of the immediately preceding write to the identical location in memory order.

• Memory order onatomic expressions respects dynamic program order.

• Memory order respects dynamic program order for operationsthat certainly access the same location.

• Initializing writes are ordered before any other memory access to the same location.
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21.4.1 Dynamic Program Order

Much of the definition ofdynamic program orderis given in the descriptions of individual expressions in Chapter 13.
It is important to understand that dynamic program order represents a conceptual, naive view of the order of operations
in an execution; this naive view is used to define the more permissive memory order permitted by the memory model.
Dynamic program order is a partial order, rather than a totalorder; in most cases operations in different threads will
not be ordered with respect to one another. There is an important exception: there is an ordering dependency among
threads when a thread starts or must be complete.

An expression is ordered in dynamic program order after any expression it dynamically contains, with one exception: a
spawn expression is dynamically ordered before any subexpression of its body. The body of thespawn is dynamically
ordered before any point at which the spawned thread object is observed to have completed.

Only expressions whose evaluation completes normally occur in dynamic program order, unless the expression is
“directly responsible” for generating abrupt termination. Examples of the latter case arethrow andexit expressions
and division by zero. In particular, when the evaluation of asubexpression of an expression completes abruptly,
causing the expression itself to complete abruptly, the containing expression does not occur in dynamic program
order. A label block is ordered after anexit that targets it. The expressions in acatch clause whosetry block
throws a matching exception are ordered after thethrow and before any expression in thefinally clause. If the
catch completes normally, thetry block as a whole is ordered after the expressions in thefinally clause. For
this reason, when we refer to the place of non-spawn expression in dynamic program order, we mean the expression
or any expression it dynamically contains.

For any construct giving rise to implicit threads—tuple evaluation, function or method call, or the body of an expres-
sion with generators such asfor—there is no ordering in dynamic program order between the expression executed
in each thread in the group. These subexpressions are ordered with respect to expressions which precede or succeed
the group.

When a function or method is called, the body of the function or method occurs dynamically after the arguments and
function or receiver; the call expression is ordered after the body of the called function or method.

For conditional expressions such asif , case , and typecase , the expression being tested is ordered dynamically
before any chosen branch. This branch is in turn ordered dynamically before the conditional expression itself.

Iterations of the body of awhile loop are ordered by dynamic program order. Each evaluation of the guarding
predicate is ordered after any previous iteration and before any succeeding iteration. Thewhile loop as a whole is
ordered after the final evaluation of the guarding predicate, which yieldsfalse .

An iteration of the body of afor loop, and each evaluation of the body expression in a comprehension or big operator,
is ordered after the generator expressions.

21.4.2 Memory Order

Memory ordergives a total order on all memory accesses in a program execution. A read obtains the value of the most
recent prior write to the identical location in memory order. In this section we describe the constraints on memory
order, guided by dynamic program order. We can think of theseconstraints as specifying a partial order which must
be respected by memory order. The simplest constraint is that accesses certainly to the same location must respect
dynamic program order. Apparently disjoint accesses need not respect dynamic program order, but an initializing
write must be ordered before all other accesses to the identical location in program order.

Accesses in distinct (non-nested)atomic expressions respect dynamic program order. Given anatomic expression,
we divide accesses into four classes:

1. Components, dynamically contained within theatomic expression.
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2. Ancestors, dynamically ordered before theatomic expression.

3. Descendants, dynamically ordered before theatomic expression.

4. Peers, dynamically unordered with respect to operationsdynamically contained within theatomic expression.

We say anatomic expression iseffectiveif it contains an access to a location, there is a peer access to the identical
location, and at least one of these accesses is a write. For aneffective atomic expression, every peer access must
either be apredecessoror a successor. A predecessor must occur before every component and every descendant in
memory order. A successor must occur after every component and every ancestor in memory order. Every ancestor
must occur before every descendant in memory order.

The above conditions guarantee that there is a single, global ordering for the effectiveatomic expressions in a Fortress
program. This means that for any pair ofatomic expressionsA andB one of the following conditions holds:

• A is dynamically contained insideB.

• B is dynamically contained insideA.

• Every expression dynamically contained inA precedes every expression dynamically contained inB in memory
order. This will always hold whenA is dynamically ordered beforeB.

• Every expression dynamically contained inB precedes every expression dynamically contained inA in memory
order. This will always hold whenB is dynamically ordered beforeA.

The above rules are also sufficient to guarantee thatatomic expressions nested inside an enclosingatomic behave
with respect to one another just as if they had occurred at thetop level in an un-nested context.

Any access preceding aspawn in dynamic program order will precede accesses in the spawned expression in memory
order. Any access occurring after a spawned thread has been observed to complete in dynamic program order will
occur after accesses in the spawned expression in memory order.

A reduction variable in afor loop does not have a single associated location; instead, there is a distinct location for
each loop iteration, initialized by writing the identity ofthe reduction. These locations are distinct from the location
associated with the reduction variable in the surrounding scope. In memory order there is a read of each of these
locations each of which succeeds the last access to that variable in the loop iteration, along with a read of the location
in the enclosing scope which succeeds all accesses to that location preceding the loop in dynamic program order.
These reads are followed by a write of the location in the enclosing scope which in turn precedes all accesses to that
location that succeed the loop in dynamic program order.

Finally, reads and writes in Fortress programs must respectdynamic program order for operations that aresemantically
related. If the readA precedes the writeB in dynamic program order, and the value ofB can be determined in some
fashion without recourse toA, then these operations are not semantically related. A simple example is ifA is a
reference to variablex andB is the assignmenty := x · 0 . Here it can be determined thaty := 0 without recourse to
x and these variables are not semantically related. By contrast, the writey := x is always semantically related to the
read ofx . Note that two operations can only be semantically related if a transitive data or control dependency exists
between them.
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Chapter 22

Components and APIs

Fortress programs are developed, compiled, and deployed asencapsulated upgradable componentsthat exist not only
as programming language features, but also as self-contained run-time entities that are managed throughout the life of
the software. The imported and exported references of a component are described with explicitAPIs. With components
and APIs, Fortress provides the stability benefits of staticlinking with the sharing and upgrading benefits of dynamic
linking. 1 In addition to an informal description of the component system in this chapter, we also formally specify key
functionality of the system, and illustrate how we can reason about the correctness of the system in Appendix C.

22.1 Overview

Components are the fundamental structure of Fortress programs. They export and import APIs, which serve as “inter-
faces” of the components. Components do not refer directly to other components. Rather, all external references are
to APIs imported by the component. These references are resolved by linking components together: the references of
a component to an imported API are resolved to a component that exports that API. Linking components produces
new components, whoseconstituentsare the components that were linked together.

Components are similar to modules in other programming languages, such as those of ML and Scheme [18, 14, 13].
But, unlike modules in those languages, components are designed for use during both development and deployment
of software. In addition to compilation and linking, components can be produced by upgrading one component using
another component that exports some of the APIs exported by the first component.

A key aspect of Fortress components is that they are encapsulated, so that upgrading one component does not affect any
other component, even those produced by linking with the component that was upgraded. Abstractly, each component
has its own copy of its constituents. However, implementations are expected to share common constituents when
possible.

Users do not manipulate components directly. Instead, every component is installed in a persistent database on the
system. We think of this database, which we call afortress, as the agent that actually performs operations such as
compilation, linking, upgrading, and execution of components: a virtual machine, a compiler, and a library registry
all rolled into one. A fortress also maintains a list of APIs that are installed on it. A fortress also provides a shell by
which the user can issue commands to it. Components and APIs are immutable objects. A fortress maps names to
components installed on the system. The fortress operations are modeled as methods of the fortress that change the
mapping.

1The system described in this chapter is based on that described in [2].
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The ways in which fortresses are actually realized on particular platforms are beyond the scope of this specification.
An implementor might choose to instantiate a fortress as a process, or as a persistent object database stored in a file
system, with fortress operations being implemented as scripts that manipulate this database.

We call the source code for a single software component aproject. Typically, when a project written in other pro-
gramming languages is compiled, each file in the project is separately compiled. To ship an application, these files are
linked together to form an application or library. Fortressuses a different model: a project is compiled directly into a
single component, which is installed in the compiling fortress.

From the point of view of the compiler, all the source code fora project is contained in a single file. This approach sim-
plifies the design, and gives a well-defined order for initialization of static elements of the component. However, this
approach is unworkable for components of substantial size.Therefore, the compiler can be instructed to concatenate
several source files together before compiling, while maintaining the original source location information.

After these components are compiled from source files, they can then be linked together to form larger components.

22.2 Components

Syntax:
Component ::= component DottedId Import∗ Export∗ Decl∗ end

DottedId ::= Id ( . Id)∗

Import ::= import ImportFrom from DottedId
| import AliasedDottedIds

ImportFrom ::= * [ except Names]
| AliasedNames

Names ::= Name
| { NameList}

Name ::= Id
| opr Op

NameList ::= Name( , Name)∗

AliasedNames ::= AliasedName
| { AliasedNameList}

AliasedName ::= Id [ as DottedId]
| opr Op [ as Op]
| opr LeftEncloser RightEncloser[ as LeftEncloser RightEncloser]

AliasedNameList ::= AliasedName( , AliasedName)∗

AliasedDottedIds ::= AliasedDottedId
| { AliasedDottedIdList}

AliasedDottedId ::= DottedId[ as DottedId]
AliasedDottedIdList ::= AliasedDottedId( , AliasedDottedId)∗

Export ::= export DottedIds
DottedIds ::= DottedId

| { DottedIdList}
DottedIdList ::= DottedId( , DottedId)∗

In this specification, we will refer to components created bycompiling a file assimple components, while components
created by linking components together will be known ascompound components.

The source code of a simple component definition begins with the special reserved wordcomponent followed by
a possibly qualified name(an identifier or a sequence of identifiers separated by periods with no intervening whites-
pace), followed by a sequence ofimport statements, and a sequence ofexportstatements, and finally a sequence of
declarations.
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An import statement either imports an API and allows the specified names (separated by commas) declared in the API
to be referred to with their unqualified names:

import {name+} from apiName

or imports an API as another name:

import apiName as anotherAPIName

For convenience, an import statement can import an API and allow all elements declared in that API to be referred to
with unqualified names:

import * from apiName

or can import an API and allow all elements except the specified names (separated by commas) declared in that API
to be referred to with unqualified names:

import * except {name+} from apiName

If multiple elements with conflicting names are imported from separate APIs, all references to those elements within
the component definition must be fully qualified. An export statement specifies the APIs that the component exports.

Every component implicitly imports the Fortress core APIs;every fortress has at least one component implementing
all of these APIs. Apreferredcomponent exporting these APIs (configurable by the user) isimplicitly linked to every
component installed in the fortress.

An API (described in Section 22.3) serves as an interface of acomponent. For every APIA exported by a component
C, C must provide a definition for every program construct declared inA. These definitions must match the declara-
tions inA exactly; the modifiers on constructs, the types of variables, the headers of functions and methods, and the
headers of traits must be identical. There is one exception:A trait declaration with an emptycomprises clause inA
can be implemented by an object declaration inC. However, it is permissible for a trait or object definition to include
additional methods and fields that are not declared inA. Also, a component is allowed to include top-level definitions
that do not correspond to declarations in any of its exportedAPIs. The additional definitions that are not declared in
A are not visible from outside the component.

When a component is compiled, the APIs it refers to must be present in the fortress. The import statements in a
component are not a way to abbreviate unqualified names of objects or functions. In our system, an import statement
merely allows references to the imported API to appear in thecomponent definition. References to elements of an
imported API must be fully qualified unless they are importedby an import statement with afrom clause. When a
component imports a functionalf (either a top-level function or a functional method) by an import statement with a
from clause, the importedf may be overloaded with a functionalf declared by the component. When a component
imports a top-level declarationf from an APIA, all the relevant types to type check the uses off are implicitly
imported fromA. However, these implicitly imported types for type checking are not expressible by programmers;
programmers must import the types explicitly by import statements to use them.

A key design choice we make is to require that components never refer to other components directly; all external
references are to APIs. This requirement allows programmers to extend and test existing components more easily,
swapping new implementations of libraries in and out of programs at will.

One important restriction on components is that no API may beboth imported and exported by the same compo-
nent. This restriction is required throughout to ground thesemantics of operations on components, as discussed in
Section 22.7.

Every component has a unique name, used for the purposes of component linking. This name includes a user-provided
identifier. In the case of a simple component, the identifier is determined by a component name given at the top of the
source file from which it is compiled. A build script may keep atally on version numbers and append them to the first
line of a component, incrementing its tally on each compilation. The name of a compound component is specified as
an argument to thelink operation (described in Section 22.7) that defines it.
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Component equivalence is determined nominally to allow mutually recursive linking of components. By programmer
convention, identifiers associated with components that are not included in the Fortress standard libraries begin with
the reverse of the URL of the development team. A fortress does not allow the installation of distinct components with
the same name. Component names are used duringlink andupgrade operations to ensure that the restrictions on
upgrades to a component are respected, as explained in Section 22.7.

Every component also includes a vendor name, the name of the fortress it is compiled on, and a timestamp, denoting
the time of compilation. The time of compilation is measuredby the compiling fortress, and the name of the fortress
is provided by the fortress automatically. Every timestampissued by a fortress must be unique. The vendor name
typically remains the same throughout a significant portionof the life of a user account, and is best provided as a user
environment variable.

In our examples, we use published descriptions of packages in the Java 6.0 API [26] as examples of APIs expressible
in our component system. We use, as names for these APIs, the names of the corresponding Java packages, with
java replaced withFortress . For example, the following is the beginning of a source file for a fictional application
IronCrypto:

component Com.Sun.IronCrypto

import Fortress.IO
import Fortress.Security

export Fortress.Crypto
. . .
end

22.3 APIs

Syntax:
Api ::= api DottedId Import∗ AbsDecl∗ end

AbsDecl ::= AbsTraitDecl
| AbsObjectDecl
| AbsFnDecl
| AbsVarDecl
| AbsDimUnitDecl
| AbsTypeAlias
| TestDecl
| PropertyDecl

AbsTraitDecl ::= TraitHeader(AbsMdDecl| AbsCoercion| ApiFldDecl| PropertyDecl)∗ end

AbsObjectDecl ::= ObjectHeader(AbsMdDecl| AbsCoercion| ApiFldDecl| PropertyDecl)∗ end

AbsCoercion ::= [ widening ] coercion [StaticParams]( Id IsType) CoercionClauses
ApiFldDecl ::= ApiFldMod∗ Id IsType
ApiFldMod ::= hidden | settable | UniversalMod
AbsVarDecl ::= VarWTypes

| VarWoTypes: TypeRef...
| VarWoTypes: SimpleTupleType

AbsDimUnitDecl ::= dim Id [ default Unit]
| ( unit | SI unit ) Id+ [ : DimRef]
| dim Id ( unit | SI unit ) Id+

AbsTypeAlias ::= type Id [StaticParams]

APIs are compiled from special API definitions. These are source files which declare the entities declared by the API,
the names of all APIs referred to by those declarations, and prose documentation. In short, the source code of an API
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should specify all the information that is traditionally provided for the published APIs of libraries in other languages.

The syntax of an API definition is identical to the syntax of a component definition, except that:

1. An API definition begins with the special reserved wordapi rather thancomponent . As with components,
the identifiers associated with APIs that are not included inthe Fortress standard libraries are prefixed with the
reverse of the URL of the development team.

2. An API does not includeexport declarations. (However, it does includeimport declarations, which name
the other APIs used in the API definition.)

3. Only declarations (but not definitions!) are included in an API definition except test and property declarations. A
method or field declaration may include the modifierabstract . (Whether a declaration includes the modifier
abstract has a significant effect on its meaning, as discussed below).

For the sake of simplicity, every identifier reference in an API definition must refer either to a declaration in a used
API (i.e., an API named in an import declaration, or the Fortress core APIs, which are implicitly imported), or to a
declaration in the API itself. In this way, APIs differ from signatures in most module systems: they are not parametric
in their external dependencies.

Every API has a unique name that consists of a user-provided identifier. As with components, API equivalence is
determined nominally. Every API also includes a vendor name, the name of the fortress it is compiled on, and a
timestamp.

Component and API names exist in separate namespaces. For convenience, a compiler can also produce an API
directly from a project with the same name as the component itis derived from. Such an API includesmatching
declarations of the component. All declarations in the component appear in the API.

A component must include, for every APIA it exports, matching definitions for all the declarations inA. A matching
definition of a declarationd is a definitiond′ with the same name asd that includes definitions for all declarations
other than the methods or fields declaredabstract in d. The header and type ofd′ must be the same as the header
and type ofd. d′ may include additional definitions not declared ind.

For example, consider the APIsFortress.IO , Fortress.Security , and Fortress.Crypto, with declarations simi-
lar to those in their respective Java packages. These APIs are interdependent. For example, bothPublicKey in
Fortress.Security andSecretKey in Fortress.Crypto extend the traitFortress.IO.Serializable and the traitCipherSpi
in Fortress.Crypto has methods that return values of typeAlgorithmParameters in Fortress.Security . So the API
Fortress.Crypto must importFortress.IO and Fortress.Security as follows:

api Fortress.Crypto

import Fortress.IO
import Fortress.Security
. . .
end

22.4 Tests in Components and APIs

A component may include definitions of tests, as described inChapter 19. These definitions are allowed to refer to
both test and non-test code defined in the same component or declared in APIs imported by the component.

An API may also include definitions of tests. These definitions may refer to all declarations in the API as well as in
any APIs it imports. Tests defined in APIs should be thought ofas “executable documentation” that partially specifies
the required behavior of the declared entities.

See Section 22.7 for an explanation of how tests defined in components and APIs are executed.
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22.5 Type Inference for Components

Type inference for Fortress has been described as a procedure performed over a whole Fortress program in Chap-
ter 20. In this section, we explain how this procedure can be adapted to perform type inference over a simple program
component. For a compound component, concatenate all declarations of all constituents in the order specified by the
constructinglink operation. Constituent compound component declarations are recursively concatenated.

Type inference over a simple componentC is performed by first expandingC into a self-contained Fortress program,
as follows:

1. All program constructs corresponding to declarations inAPIs exported byC are expanded so that they include
all types and static parameters included in the exported APIs.

2. All types provided by all declarations in the APIs imported byC are prepended toC. Note that these declarations
must include types for all variables, functions, fields, andmethods; otherwise the APIs that declare them are not
well-formed.

3. In order for the resulting expanded program to be well-formed, we assume that all declarations in these APIs are
expanded into special definitions that includeempty bodies. The empty body of such a definition is a conceptual
body which cannot be expressed directly in Fortress programs. Because declarations in APIs do not have any
elided type, type inference ignores empty bodies.

OnceC is expanded, type inference is performed over all program constructs that still include elided types. Empty
bodies are ignored.

22.6 Initialization Order for Components

To ensure that all objects and all variables are initializedbefore their use, execution of program components proceeds
according to the procedure defined in this section. This procedure assumes that the program’s type hierarchy is already
checked to be acyclic.

If a component is a compound component, all constituent components are initialized nondeterministically, but before
first use. If a simple component has imports, take the transitive closure of all imported APIs. Collect all declarations
in this transitive closure, in any order, and prepend them tothe component definition. Finally, for a simple component
without imports, initialize all top-level variables and singleton object fields in what we calldemand-driven textual
order: Initialization is done in textual order except when the initialization of one object involves evaluating a refer-
ence to another object that is not yet initialized. In such cases, initialization of the object referred to occurs before
initialization of the referring object is completed. Note that cyclic references can diverge. Initialization of parametric
objects is entirely demand-driven.

22.7 Basic Fortress Operations

We now describe the operations that can be performed on a fortress by developers and end-users for developing,
installing, testing, and maintaining components. We can think of these operations as commands to an interactive shell
provided by the fortress.

In this section, we discuss operations on a fortress in theirmost basic form, postponing the discussion of more advanced
options, including additional optional parameters, to Section 22.8. Although these more advanced options are critical
to performing some real-world tasks with components, it is easier to describe their behavior after the basic forms of
operations have been discussed.
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Fortress.IO Fortress.Crypto

IronIO IronCrypto

Fortress.IO
Fortress.Security

Figure 22.1: Simple components in box notation: A componentis represented by a box, with the name of the compo-
nent at the top of the box. The arrow protruding from the upperright corner of a box is labeled with the APIs exported
by the component. The arrow pointing into the bottom of a box is labeled with APIs imported by the component. If
no APIs are imported, we elide the arrow.

Compile This operation takes the source code for a simple component (or API) definition and produces a new
component object (or API object) that is installed on the fortress. Its type is as follows:

compile(file:String):()

For example, supposeIronCrypto.fss contains the source code for the aforementionedIronCrypto application,
which importsFortress.IO andFortress.Security , and exportsFortress.Crypto. Suppose we also have source code,
IronIO.fss , for another application,IronIO, which imports nothing and exportsFortress.IO . We generate these
components by compiling the source files:

compile("IronIO.fss")

compile("IronCrypto.fss")

The results are depicted diagrammatically in Figure 22.1.

Link A collection of one or more components exporting different APIs may be combined to form a new, compound,
component by calling thelink operation, passing the names of the components to link alongwith the name of the
resulting compound component. Syntactically, alink operation is written as follows:2

link(result:String, constituents:String...):()

The components being linked are calledconstituentsof the resulting component, which exports all the APIs exported
by any of its constituents, and imports the APIs imported by at least one of its constituents but not exported by any of
them.

For example, we can link theIronIO andIronCrypto libraries compiled above:

link(IronLink, IronIO, IronCrypto)

The resulting component, illustrated in Figure 22.2, imports Fortress.Security and exportsFortress.IO andFortress.Crypto.

link does not distinguish between simple and compound components, so we can get arbitrarily nested components.
For example, we can construct an applicationCoolCryptoApp by compiling another source code,IronSecurity.fss ,
for the libraryIronSecurity that importsFortress.IO and exportsFortress.Security , and then linking the result with
IronLink .

2We present only the basic form oflink here.link has additional optional arguments that we discuss in the Section 22.8.
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Fortress.IO
Fortress.Crypto

IronLink

Fortress.IO

IronCryptoIronIO

Fortress.Crypto

Fortress.IO
Fortress.Security

Fortress.Security

Figure 22.2: A compound component: A component inside another component is a constituent of the component that
immediately encloses it.

compile(IronSecurity.fss)

link(CoolCryptoApp, IronSecurity, IronLink)

The resulting components are illustrated in Figure 22.3.

Two components cannot be linked if they export the same API.3 This restriction is made for the sake of simplicity; it al-
lows programmers to link a set of components without having to specify explicitly which constituent exporting an API
A provides the implementation exported by the linked component, and which constituent connects to the constituents
that importA: only one component exportsA, so there is only one choice. Although we lose expressiveness with this
design, the user interface to link is vastly simplified, and it is rare that including multiple components that export a
given API in a set of linked components is even desirable. We discuss how even such rare cases can be supported in
Section 22.8.

For a compound component, in addition to the exported and imported APIs, we want to know what its constituents
are. It is an invariant of the system that for any compound componentC, any API imported by any of its constituents
is either imported byC or exported by one of its constituents. This property is crucial for executing components, as
we discuss below. A simple component (i.e., one produced directly by compilation) has no constituents.

Execute Components provide implementations of the APIs they export. A component isexecutableif it imports no
APIs and it exports the special APIExecutable, defined as follows:

api Executable
run(args : String . . .) : ()
end

An executable component may beexecutedby calling theexecute operation, resulting in a call to the component’s
implementation of therun function in a new process. Arguments to therun function are passed to the shell:

3There is one exception to this rule: the special APIUpgradable , which is used during upgrades discussed below.
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Figure 22.3: Repeated linking
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execute(componentName:String, args:String...):()

We say that a component is being executed whenexecute has been called on that component and has not yet returned,
or if it is the constituent component of a component being executed. During an execution, references may be made to
APIs exported by a component being executed, which may in turn make references to APIs that it imports.

For references to an APIA exported by the component, if the component is simple, then it contains the code necessary
to evaluate any reference to an API it exports, possibly making references to APIs that it imports to do so. If the com-
ponent is compound, then it contains a unique constituent that exportsA; the reference is resolved to that constituent
component.

For external references within a constituent component, recall that all such references in a component must be to
APIs that the component imports. A component being executedeither does not import any API (and thus there are no
external references to resolve), or else is a constituent ofanother component that is being executed. In the latter case,
the constituent defers the reference to its enclosing component.

For example, supposeCoolCryptoApp above is the constituent of some executable component, and when that com-
ponent is executed, it generates a reference toSecretKey in Fortress.Crypto , which it resolves toCoolCryptoApp.
CoolCryptoApp resolves this reference toIronLink , which resolves it toIronCrypto, which is a simple component.
Suppose that in evaluating this reference,IronCrypto generates a reference toPublicKey in Fortress.Security . Be-
causeIronCrypto importsFortress.Security , it resolves this reference to its enclosing component,IronLink , which
in turn resolves it toCoolCryptoApp, which resolves it toIronSecurity , which is a simple component.

Not all projects are compiled to components that exportExecutable. For example, a library component does not
usually exportExecutable.

Upgrade Compound components may be upgraded with new constituent components by calling anupgrade op-
eration, passing the name of the component to upgrade (thetarget), the name of a component to upgrade with (the
replacement), and a name for the resulting component (which we call theresult). The type of theupgrade operation
is as follows:

upgrade(target:String, replacement:String, result = tar get):()

If no result name is provided, the result is bound to the name of the target, and the target is uninstalled (see below).

For example, we can upgradeCoolCryptoApp with a componentCoolSecurity , which exportsFortress.Security
and imports nothing toCoolCryptoApp.2.0.

upgrade(CoolCryptoApp, CoolSecurity, CoolCryptoApp.2. 0)

The resulting component is illustrated in Figure 22.4. Notice that the constituent,IronSecurity , exporting
Fortress.Security has been replaced.

A component can be upgraded only if it exports the special APIUpgradable , defined as follows:

api Upgradable
import Component from Components

isValidUpgrade(that : Component) : Boolean
upgrade(that : Component) : Component requires isValidUpgrade(that)

end

The Upgradable API imports a special APIComponents that provides handles onComponent and Api objects.
The Components API is described in Chapter 39.

An upgrade operation on a component invokes theisValidUpgrade function, as declared in the APIUpgradable .
This function must take a component and returntrue if and only if it is legal to upgrade with respect to that component.

171



CoolCryptoApp.2.0

Fortress.IO
Fortress.Crypto

Fortress.Security
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Fortress.IO
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Figure 22.4: An upgraded component

Developers can define their own versions of this component torestrict how their components can be upgraded. For
example, they can prevent upgrades with older versions of a component, or with a matching component from an
untrusted vendor.

The Upgradable API presents a problem for our model. Its implementation by the various constituent components in
a compound component must be accessed during anupgrade operation. However, because the exported APIs of the
constituent components must be disjoint, they cannot all export Upgradable after linking.

We solve this problem by introducing an additional step during linking. In a link operation, a special component,
called arestriction component, is constructed automatically, based on the provided constituents. This component ex-
ports theUpgradable API; its implementation is a function of all the constituents provided to thelink operation. The
provided constituents are then used to construct a new set ofconstituents that are identical to the provided constituents
except that they do not exportUpgradable . These new constituents are then combined, along with the restriction
component, to form the constituents of a new compound component.

In addition to the constraints imposed by a component’sisValidUpgrade function, there are several other conditions
that must be met in order for an upgrade to be valid. These conditions are necessary to ensure that the resulting
component is well-formed and imports and exports the same APIs as the target:4

1. Every API imported by the replacement must be either imported or exported by the target.

2. The APIs exported by the replacement must be a subset of those exported by the target.

4 These conditions are sufficient provided there are no hiddenor constrained APIs, which are discussed in Section 22.8.
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3. If the replacement does not export all the APIs that a constituent exports then either the replacement and con-
stituent do not export any APIs in common or the constituent can be upgraded with the replacement.

The rationale for the first two conditions is straightforward: If an API is imported by the replacement but not imported
or exported by the target, then references to that API cannotbe resolved in the result (unless we also import that API in
the result). If an API is exported by the replacement but not the target, then the result will export an API not exported
by the target.

The third condition says that the constituents of the targetcan be partitioned into three sets: those that are subsumed by
the replacement, those that are unaffected by the upgrade, and all the rest, which can be upgraded with the replacement.
This condition enables recursive propagation of upgrades.That is, an upgrade not only replaces constituents at the
top level of the component, but is also propagated into any constituents with which it exports some APIs in common.
Thus, in the example above, we could have upgradedCoolCryptoApp with a component that exportsFortress.IO .
However, we could not have upgradedCoolCryptoApp with a component that exports bothFortress.Security and
Fortress.IO becauseIronLink exportsFortress.IO but notFortress.Security . In Section 22.8, we show how hiding
and constraining APIs can help us get around many of the limitations that this condition imposes.

Recall that in our system, unlike with dynamic linking, components are encapsulated so that an upgrade to one com-
ponent does not affect any other component on the system. We can imagine that all operations on components copy
the components that they operate on rather than share them. Because components are immutable, these two inter-
pretations are semantically indistinguishable. Convenience operations that support mass upgrades are provided on
fortresses (e.g., anupgradeAll operation that takes a component and upgrades all components in the fortress that can
be upgraded with its argument).

Extract and Install A component installed on a fortress may beextractedby calling anextract operation on the
fortress, passing the name of the component as an argument, along with an argumentprereqs , denoting the names of
all APIs that must be installed on any fortress before this component can be installed.

extract(componentName:String, prereqs:Set[\String\] = {}):()

Furthermore, the destination fortress must have a component that exports these APIs and is a valid upgrade of the
extracted component. Intuitively, aprereqs argument allows a component to be serialized without havingto include
all of its libraries; new libraries can be provided when the component is installed at a destination fortress.

The prereqs argument is optional; if omitted, the extracted component can be installed on any fortress. Any com-
ponent can be extracted; however only compound components can be extracted with aprereqs argument: because
extracted components must be upgradable with respect to a component exporting theirprereqs , no prereqs argu-
ment makes sense for a simple component.

The APIs included in aprereqs argument must be the APIs exported by some subset of the extracted component’s
constituents (or a subset of the constituents of one of its constituents, and so on, due to recursive updating).

The extracted component is serialized to a file, including all the APIs it refers to (and, transitively, all APIs they
refer to) and all constituent components, except those thatexport theprereqs . This operation does not remove the
extracted component from the fortress; there is a separateuninstall operation for that.

When the component is extracted, if noprereqs were passed to theextract operation, then the contents of the
file can be deserialized by any fortress into the extracted component, which can be installed on the fortress. How-
ever, if prereqs were passed toextract , then the file must be deserialized into a component that exports only the
Installable API:

api Installable
import Component from Components
reconstitute(candidate : Component) : Component
end
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The deserialized component is immediately linked with preferred implementations of all of its imported APIs. (Pre-
ferred implementations of APIs are maintained in a table by afortress, which maps each API to a list of components
that implements it, in order of preference). Because the deserialized and linked component exports theInstallable
API, it has areconstitute function that takes acandidate component, which exports theprereqs APIs, and checks
whether the given component satisfies theisValidUpgrade condition of the extracted component. If so, it returns the
extracted component upgraded with the given component. Thereconstitute function is called by the fortress with
a new component, formed by linking the preferred componentsfor each API in the extracted components’prereqs

argument.

Note that an extracted component withprereqs APIs isnot the same as an extracted component that imports the same
APIs but has noprereqs APIs. The latter can always be installed on a fortress, and then can be subsequently linked
with any component that exports the imported APIs. In contrast, the fortress has no access to an extracted component
with prereqs APIs unless it has a component that exports these APIs and satisfies theisValidUpgrade function of
the extracted component. This difference provides a means for controlling access to the extracted component, for
security, legal, or other reasons.

Syntactically, aninstall operation takes the name of a file constraining an extracted component. Theinstall

operation is overloaded with another operation that takes the name of a component to matchprereqs . If this optional
argument is provided, and the deserialized component exports theInstallable API, then thereconstitute function is
called with the component denoted by the optional argument of install , rather than the fortress’ preferred imple-
mentation of theprereqs APIs. Install operations are written as follows:

install(file:String):()

install(file:String, prereqs:Set[\String\]):()

By default, a fortress adds a newly installed component to the head of the “preferred” list for every API it exports.
However, this default may be overridden by the end-user; an end-user may modify the table or even map some APIs
differently during a particular installation. If one or more of the APIs required by an extracted component is not
mapped to an API on the destination fortress, an exception isthrown.

There is a corresponding operation for APIs,installAPI , that takes a serialization of a set of APIs and installs them
into a fortress.

installAPI(file:String):()

This set of APIs must be closed under imports. If an API that isinstalled in this way is already installed on the fortress,
the definitions must match exactly, or an exception is thrown.

Uninstall An uninstall operation takes the name of a component as an argument and removes the top-level bind-
ing of that component from a fortress. Note that the uninstalled component may have been linked to other components,
or used as a replacement in an upgrade, and the result may still be installed; anuninstall operation will not affect
these other components.

uninstall(file:String):()

There is a corresponding operation for APIs,uninstallAPI , that removes an API from a fortress.

uninstallAPI(file:String):()

Typically, this operation is used only to remove APIs that have been corrupted in some fashion.

Testing A component can be tested by calling the methodrunTests on it:

runTests(inclusive = true): ()
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This method runs all test functions defined in the component.All test functions are run in parallel; each test function
is run for each combination of test cases (bound in its generator list as described in Section 19.2) in parallel. In the
case of a compound component, the set of defined test functions consists of all test functions defined by all constituent
components and by all exported APIs. The set of test functions run can be limited by first hiding the tested component
in a more restrictive API. The set of test functions can also be expanded by linking with a component defining
additional test functions.

The runTests method includes a keyword parameterinclusive that defaults totrue . If this parameter is set tofalse ,
only test functions defined in the APIs exported by the component are run.

22.8 Advanced Features of Fortress Operations

The system we have described thus far provides much of the desired functionality of a component system. However it
has a few significant weaknesses:

1. It exposes to everyone all the APIs used in the developmentof a project.

2. By allowing access to these APIs, it inhibits significant cross-component optimization.

3. It prevents components that use two different implementations of the same API from being linked, even if they
never actually pass references to that API between each other.

4. It restricts the upgradability of compound components, as described earlier.

We can mitigate all these shortcomings by providing two simple operations,hide andconstrain . Informally, hide

makes APIs no longer visible from outside the component so that they cannot be upgraded, andconstrain merely
prevents them from being exported. An API that is constrained but not hidden can still be upgraded. There are other
subtle consequences of this distinction, which we discuss as they arise.

Some of the properties about the APIs exported by a componentdiscussed in Section 22.7 are actually properties of
APIs that are visible or provided by a component. For example, APIs visible in a component cannot be imported by
that component, even if they are not exported. Other properties are really properties only of the exported APIs. Most
importantly, components that do not export any common APIs can be linked, as can components that share only visible
APIs.

Constrain A constrain operation takes a component name of an installed component,a new component name,
and a set of APIs, and produces a new component that does not export any of the APIs specified. Syntactically, we
write:

constrain(source:String, destination = source, apis:Set [\String\]):()

If no destination name is provided, the name of thesource is used.

The set of APIs provided must be a subset of the APIs exported by the component. Also, recall that every API used
by an API exported by a component must be imported or exportedby that component. Thus, if we constrain an API
that is used by any other API exported by the component, then we must also constrain that other API.

If the component is a simple component, we first link it by itself, and then applyconstrain to the result.

Hide A hide operation is like aconstrain operation, except that the given set of APIs is subtracted from the
visible and provided APIs, along with the exported APIs, in the resulting component.

hide(source:String, destination = source, apis:Set[\Str ing\]):()
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The requirement of APIs being imported or exported wheneveran API using them is exported also applies to visible
APIs. Thus, if we hide an API used by another exported API, we must hide that other API as well.

Link With constrained APIs, there is a new restriction on link: Any API visible in one constituent and imported by
another must be exported by some constituent. This restriction is necessary because an API visible in a component
cannot be imported by that component. Thus, if one of the component’s constituents imports that API, then the API
must be provided by some other constituent. Other than that,the link operation is largely unchanged: the visible
APIs are just all the APIs visible in any constituent, and theprovided APIs are just those exported by any constituent.
There is a subtle additional restriction on how linked components can be upgraded, which we discuss below.

Rather than requiring users and developers to callconstrain andhide directly, we provide optional parameters to
the link operation to do these operations immediately. Thelink operation has the following type:

link(result:String, constituents:String..., exports = { }, hide = {}):()

If the exports clause is present, only those APIs listed in the set following exports are exported; the others are
constrained. If thehide clause is present, those APIs listed in the set followinghide are hidden. An exception is
thrown if theexports clause contains any API not exported by any constituent, or if the hide clause contains any
API not visible in any constituent.

Hiding enables us to handle the rare case in which programmers want to link multiple components that implement the
same API without upgrading them to use the same implementation. Before linking, the programmer simply hides (or
constrains) the API in every component that exports it except the one that should provide the implementation for the
new compound component.

For example, suppose we wish to link the following two components:

• A componentNetApp that importsFortress.IO and exports theFortress.Net API.

• A componentEditApp that importsFortress.IO and exports theFortress.Swing.Textrf API.

We want to link these two components to use in building an application for editing messages and sending them over
a network. But we want to use different implementations ofFortress.IO (e.g., IOApp1 and IOApp2 for the two
components). We simply perform the following operations:

link(temp1, NetApp, IOApp1, exports = {Fortress.Net }, hide = {Fortress.IO })

link(temp2, EditApp,IOApp2, exports = {Fortress.Swing.Textrf }, hide = {Fortress.IO })

link(NetEdit, temp1, temp2)

In this case, theNetEdit component does not export, or even make visible,Fortress.IO at all.

Upgrade For theupgrade operation, there is no change at all in the semantics. However, because hiding and
constraining APIs allow us to change the APIs exported by a component, it is possible to do some upgrades that are
not possible without these operations.

For example, suppose we have a componentIOSecurity that exportsFortress.IO and Fortress.Security , and we
want to upgradeCoolCryptoApp with IOSecurity . As discussed above, we cannot useIOSecurity directly because
IronLink exportsFortress.IO but notFortress.Security . We can get around this restriction by doing two upgrades,
one withFortress.Security hidden and the other withFortress.IO hidden.

hide(IOSecurity, NewIO, Fortress.Security)

hide(IOSecurity, NewSecurity, Fortress.IO)

upgrade(CoolCryptoApp, NewSecurity, temp1)

upgrade(CoolCryptoApp.3.0, temp1, NewIO)

The resulting component is shown in Figure 22.5.
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Figure 22.5: Upgrading with hidden APIs: Crossed out APIs are hidden.
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The interplay between imported, exported, visible and provided APIs introduces subtleties that not present in our
discussion above. In particular, the last of the three conditions imposed for well-formedness of upgrades is modified
to state that for any constituent that is not subsumed by a replacement component, either it can be upgraded with
the replacement, or itsvisible APIs are disjoint from the APIs exported by the replacement (i.e., it is unaffected by
the upgrade). To maintain the invariant that no two constituents export the same API, we need another condition,
which was implied by the previous condition when no APIs wereconstrained or hidden: if the replacement subsumes
any constituents of the target, then its exported APIs must exactly match the exported APIs of some subset of the
constituents of the target. In practice, this restriction is rarely a problem; in most cases, a user wishes to upgrade a
target with a new version of a single constituent component,where the APIs exported by the old and new versions are
either an exact match, or there are new APIs introduced by thenew component that have no implementation in the
target.
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Part III

Fortress APIs and Documentation for
Application Programmers
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Chapter 23

Objects

23.1 The Trait Fortress.Core.Object

The trait Object is a single root of the type hierarchy; every object in Fortress has traitObject and therefore every
object implements the methods of this trait.

trait Object extends {EquivalenceRelationJObject,==K, IdentityOperatorJObjectK }
opr ==(self, other : Object): Boolean
opr IDENTITY(self):Object
hash(maxval : N64): N64
hash(maxval : N32): N32
getter hashCode(): N64
toString(): String
property ∀(x, y, n: N64) x == y → x.hash(n) == y.hash(n)
property ∀(x, y, n: N32) x == y → x.hash(n) == y.hash(n)
property ∀(x) x.hashCode == x.hash(264 − 1)
property ∀(x, y) x == y → x.toString() = y.toString()

end

23.1.1 opr ==(self, other : Object): Boolean

The infix operator== (object equivalence) is used to decide whether two objects are “the same object” in the strictest
sense possible; this is described in detail in Section 10.4.

For 6== see Section 26.1.1.

23.1.2 opr IDENTITY(self):Object

The operatorIDENTITY simply returns its argument. (This may not be terribly useful for applications programming,
but it has technical uses for specifying contracts and algebraic properties in libraries as described in Section 37.3.)
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23.1.3 hash(maxval : N64): N64
23.1.4 hash(maxval : N32): N32

The hash method returns ahash valuefor the object as an unsigned integer that is less than or equal to the maxval

argument. This hash value is not necessarily consistent from one Fortress application to another, nor from one exe-
cution of a Fortress application to another execution of thesame application, but the hash value produced for a given
value of themaxval argument remains fixed during the execution of a single Fortress application. There is no defined
relationship between hash values produced for the same object but with differentmaxval values. Fortress program-
mers and implementors should be aware that the performance of hash tables is likely to be improved if, for any given
collection of objects and given value for themaxval argument, thehash method assigns hash values to those objects
with relatively uniform distribution.

23.1.5 getter hashCode(): N64

Every object has associated with it a 64-bit unsigned integer value called itshash code; this is the value returned by
the hash method when given the argument264 − 1 . Hash codes are not necessarily consistent from one Fortress
application to another, nor from one execution of a Fortressapplication to another execution of the same application,
but remain fixed during the execution of a single Fortress application. It is permitted for two objects to have the same
hashCode, but Fortress programmers and implementors should be aware that assigning distinct hash codes to distinct
objects may improve the performance of hash tables.

The trait Object defines itshash methods in terms ofhashCode ; therefore it suffices for a subtrait to override
hashCode to get the benefit of thehash methods as well.

23.1.6 toString(): String

The general contract oftoString is that it returns a string that “textually represents” thisobject. The idea is to provide
a concise but informative representation that will be useful to a person reading it.
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Chapter 24

Booleans and Boolean Intervals

24.1 The Trait Fortress.Core.Boolean

trait Boolean
extends {BooleanAlgebraJBoolean,∧,∨,¬,∨, falsevalue, truevalueK,

BooleanAlgebraJBoolean,∧,∨,¬,⊕, falsevalue, truevalueK,
BooleanAlgebraJBoolean, juxtaposition,∨,¬,∨, falsevalue, truevalueK,
BooleanAlgebraJBoolean, juxtaposition,∨,¬,⊕, falsevalue, truevalueK,
IdentityEqualityJBooleanK,
EquivalenceRelationJBoolean,≡K,
EquivalenceRelationJBoolean,↔K,
TotalOrderJBoolean,→K,
SymmetricJBoolean,∧K, SymmetricJBoolean,∨K,
SymmetricJBoolean,∨K, SymmetricJBoolean,⊕K,
SymmetricJBoolean,∧K,CommutativeJBoolean,∧K,
SymmetricJBoolean,∨K,CommutativeJBoolean,∨K }

comprises {}
coercion Jbool bK(x: BooleanLiteralJbK)
opr juxtaposition (self, other : Boolean): Boolean
opr ∧(self, other : Boolean): Boolean
opr ∧(self, other : ()→ Boolean): Boolean
opr ∨(self, other : Boolean): Boolean
opr ∨(self, other : ()→ Boolean): Boolean
opr ¬(self): Boolean
opr ∨(self, other : Boolean): Boolean
opr ⊕(self, other : Boolean): Boolean
opr ≡(self, other : Boolean): Boolean
opr =(self, other : Boolean): Boolean
opr↔(self, other : Boolean): Boolean
opr→(self, other : Boolean): Boolean
opr→(self, other : ()→ Boolean): Boolean
opr ∧(self, other : Boolean): Boolean
opr ∨(self, other : Boolean): Boolean
getter truevalue(): Boolean
getter falsevalue(): Boolean
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opr ==(self, other : Boolean): Boolean
getter hashCode(): N64
toString(): String

end

test testData[ ] = { false, true }

24.1.1 coercion Jbool bK(x: BooleanLiteralJbK)

A boolean literal can always serve as aBoolean value.

24.1.2 opr juxtaposition (self, other : Boolean): Boolean

Juxtaposition of boolean expressions is equivalent to using the logicalAND operator∧ .

24.1.3 opr ∧(self, other : Boolean): Boolean
24.1.4 opr ∧(self, other : ()→ Boolean): Boolean

The logicalAND operator∧ ( AND) returnstrue if both arguments aretrue ; otherwise it returnsfalse .

The conditional logicalAND operator∧ : ( AND: ) examines its first argument; if it isfalse , the result isfalse , and
the second argument (a thunk) is not evaluated. But if the first argument istrue , the second argument is evaluated and
its result becomes the result of the conditional logicalAND operator expression.

24.1.5 opr ∨(self, other : Boolean): Boolean
24.1.6 opr ∨(self, other : ()→ Boolean): Boolean

The logicalOR operator∨ ( OR) returnsfalse if both arguments arefalse ; otherwise it returnstrue .

The conditional logicalOR operator∨ : ( OR: ) examines its first argument; if it istrue , the result istrue , and the
second argument (a thunk) is not evaluated. But if the first argument isfalse , the second argument is evaluated and its
result becomes the result of the conditional logicalOR operator expression.

24.1.7 opr ¬(self): Boolean

The logicalNOT operator¬ ( NOT) returnstrue if its argument isfalse ; it returnsfalse if its argument istrue .

24.1.8 opr ∨(self, other : Boolean): Boolean
24.1.9 opr ⊕(self, other : Boolean): Boolean

The logical exclusiveOR operator∨ ( XOR) returnstrue if the arguments are different, one beingtrue and the other
false ; it returnsfalse if both arguments aretrue or both arguments arefalse .

The operator⊕ ( OPLUS) does the same thing as∨ .
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24.1.10 opr ≡(self, other : Boolean): Boolean
24.1.11 opr =(self, other : Boolean): Boolean
24.1.12 opr↔(self, other : Boolean): Boolean

The logical equivalence, or exclusiveNOR, operator≡ ( EQV) returns true if both arguments aretrue or both
arguments arefalse ; it returns false if the arguments are different, one beingtrue and the otherfalse . (Thus its
behavior on boolean values happens to be exactly the same as that of the strict equivalence operator== .)

The equality operator= and the if-and-only-if operator↔ ( IFF ) do the same thing as≡ .

For 6≡ see Section 26.1.2. For6= see Section 26.1.4.

24.1.13 opr→(self, other : Boolean): Boolean
24.1.14 opr→(self, other : ()→ Boolean): Boolean

The logical implication operator→ ( IMPLIES ) returnsfalse if the first argument istrue but the second argument
is false ; otherwise it returnstrue .

The conditional logical implication operator→ : ( IMPLIES: ) examines its first argument; if it isfalse , the result
is true , and the second argument (a thunk) is not evaluated. But if the first argument istrue , the second argument is
evaluated and its result becomes the result of the conditional logical implication operator expression.

24.1.15 opr ∧(self, other : Boolean): Boolean

The logicalNAND (NOT AND) operator∧ ( NAND) returns false if both arguments aretrue ; otherwise it returns
true .

24.1.16 opr ∨(self, other : Boolean): Boolean

The logicalNOR (NOT OR) operator∨ ( NOR) returnsfalse if both arguments arefalse ; otherwise it returnstrue .

24.1.17 getter true(): Boolean
24.1.18 getter false(): Boolean

The gettertrue returns the valuetrue , and the getterfalse returns the valuefalse . These are defined primarily for
the benefit of theBooleanAlgebra traits thatBoolean extends.

24.1.19 opr ==(self, other : Boolean): Boolean

Two boolean values are strictly equivalent if and only if they are the same boolean value (that is, bothtrue or both
false ).
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24.1.20 getter hashCode(): N64

24.1.21 toString(): String

The toString method returns eithertrue or false as appropriate.

24.2 The Trait Fortress.Standard.BooleanInterval

A boolean interval is a set of boolean values. There are two distinct boolean values,true and false , and therefore
there are four distinct boolean intervals, which for convenience are given names:

True = {true}
False = {false}

Uncertain = {true, false}
Impossible = { }

Logical operations on intervals obey the interval containment rule: the result interval must contain every boolean result
that can be produced by applying the operator to a boolean value taken from each argument interval. For example, if
P andQ are boolean intervals, then by definitionP ∧Q = {x ∧ y | x← P, y ← Q } .

A principal application of boolean intervals is to express the results of numerical comparison of numerical intervals.
In this way numerical comparisons can also obey the intervalcontainment rule.

Set operations such as∪ and∩ may also be used on boolean intervals.
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trait BooleanInterval
extends {BooleanAlgebraJBooleanInterval,∩,∪, SET COMPLEMENT, SYMDIFF, empty , universeK,

SetJBooleanK,
BinaryIntervalContainmentJBooleanInterval,Boolean,∧K,
BinaryIntervalContainmentJBooleanInterval,Boolean,∨K,
BinaryIntervalContainmentJBooleanInterval,Boolean,∨K,
BinaryIntervalContainmentJBooleanInterval,Boolean,≡K,
BinaryIntervalContainmentJBooleanInterval,Boolean,=K,
BinaryIntervalContainmentJBooleanInterval,Boolean,↔K,
BinaryIntervalContainmentJBooleanInterval,Boolean,∧K,
BinaryIntervalContainmentJBooleanInterval,Boolean,∨K,
BinaryIntervalContainmentJBooleanInterval,Boolean,→K,
UnaryIntervalContainmentJBooleanInterval,Boolean,¬K,
GeneratorJBooleanK }

comprises {}
coercion (x: Boolean)
opr ∧(self, other : BooleanInterval): BooleanInterval
opr ∨(self, other : BooleanInterval): BooleanInterval
opr ¬(self): BooleanInterval
opr ∨(self, other : BooleanInterval): BooleanInterval
opr ⊕(self, other : BooleanInterval): BooleanInterval
opr ≡(self, other : BooleanInterval): BooleanInterval
opr =(self, other : BooleanInterval): BooleanInterval
opr↔(self, other : BooleanInterval): BooleanInterval
opr→(self, other : BooleanInterval): BooleanInterval
opr ∧(self, other : BooleanInterval): BooleanInterval
opr ∨(self, other : BooleanInterval): BooleanInterval
opr ∈(other : Boolean, self): Boolean
opr ∩(self, other : BooleanInterval): BooleanInterval
opr ∪(self, other : BooleanInterval): BooleanInterval
opr SET COMPLEMENT(self): BooleanInterval
opr SYMDIFF(self, other : BooleanInterval): BooleanInterval
opr \(self, other : BooleanInterval): BooleanInterval
possibly(self): Boolean
necessarily(self): Boolean
certainly(self): Boolean
getter empty(): BooleanInterval
getter universe(): BooleanInterval
opr ==(self, other : BooleanInterval): Boolean
getter hashCode(): Z64
toString(): String
property true ∈ True ∧ false 6∈ True
property true 6∈ False ∧ false ∈ False
property true ∈ Uncertain ∧ false ∈ Uncertain
property true 6∈ Impossible ∧ false 6∈ Impossible
property ∀(a) necessarily(a) == ¬possibly(¬a)
property ∀(a) possibly(a)↔ true ∈ a
property ∀(a) certainly(a)↔ (true ∈ a ∧ false 6∈ a)
property ∀(a, b) (a ∧ b)↔ ¬(a ∧ b)
property ∀(a, b) (a ∨ b)↔ ¬(a ∨ b)

end

True: BooleanInterval
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False: BooleanInterval
Uncertain: BooleanInterval
Impossible: BooleanInterval
test testData[ ] = {True,False,Uncertain, Impossible }

24.2.1 coercion (x: Boolean)

A boolean value can always serve as aBooleanInterval value. The valuetrue is coerced toTrue ; the valuefalse is
coerced toFalse .

24.2.2 opr ∧(self, other : BooleanInterval): BooleanInterval

The logicalAND operator∧ ( AND) returnsImpossible if either argument isImpossible ; otherwise it returnsFalse
if either argument isFalse ; otherwise it returnsUncertain if either argument isUncertain; otherwise it returnsTrue .
It obeys the interval containment rule. The∧ operator may be described by this table:

∧ Uncertain True False Impossible
Uncertain Uncertain Uncertain False Impossible

True Uncertain True False Impossible
False False False False Impossible

Impossible Impossible Impossible Impossible Impossible

24.2.3 opr ∨(self, other : BooleanInterval): BooleanInterval

The logicalOR operator∨ ( OR) returnsImpossible if either argument isImpossible ; otherwise it returnsTrue if
either argument isTrue ; otherwise it returnsUncertain if either argument isUncertain; otherwise it returnsFalse .
It obeys the interval containment rule. The∧ operator may be described by this table:

∧ Uncertain True False Impossible
Uncertain Uncertain True Uncertain Impossible

True True True True Impossible
False Uncertain True False Impossible

Impossible Impossible Impossible Impossible Impossible

24.2.4 opr ¬(self): BooleanInterval

The logicalNOT operator¬ ( NOT) returnsImpossible if its argument isImpossible , Uncertain if its argument is
Uncertain, False if its argument isTrue , andTrue if its argument isFalse . It obeys the interval containment rule.
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24.2.5 opr ∨(self, other : BooleanInterval): BooleanInterval
24.2.6 opr ⊕(self, other : BooleanInterval): BooleanInterval

The logical exclusiveOR operator∨ ( XOR) returnsImpossible if either argument isImpossible ; otherwise it re-
turnsUncertain if either argument isUncertain; otherwise it returnsFalse if the arguments are strictly equivalent;
otherwise it returnsTrue . It obeys the interval containment rule.

The operator⊕ ( OPLUS) does the same thing as∨ . The ∨ or ⊕ operator may be described by this table:

∨ or ⊕ Uncertain True False Impossible
Uncertain Uncertain Uncertain Uncertain Impossible

True Uncertain False True Impossible
False Uncertain True False Impossible

Impossible Impossible Impossible Impossible Impossible

24.2.7 opr ≡(self, other : BooleanInterval): BooleanInterval
24.2.8 opr =(self, other : BooleanInterval): BooleanInterval
24.2.9 opr↔(self, other : BooleanInterval): BooleanInterval

The logical equivalence, or exclusiveNOR, operator≡ ( EQV) returnsImpossible if either argument isImpossible ;
otherwise it returnsUncertain if either argument isUncertain; otherwise it returnsTrue if the arguments are strictly
equivalent; otherwise it returnsFalse . It obeys the interval containment rule. (Thus its behavioron boolean interval
values isnot the same as that of the strict equivalence operator== .)

The equality operator= and the if-and-only-if operator↔ ( IFF ) do the same thing as≡ . The ≡ or = or ↔
operator may be described by this table:

≡ or = or ↔ Uncertain True False Impossible
Uncertain Uncertain Uncertain Uncertain Impossible

True Uncertain True False Impossible
False Uncertain False True Impossible

Impossible Impossible Impossible Impossible Impossible

24.2.10 opr→(self, other : BooleanInterval): BooleanInterval

The logical implication operator→ ( IMPLIES ) returnsImpossible if either argument isImpossible ; otherwise it
returnsTrue if the first argument isFalse or the second argument isTrue ; otherwise it returnsUncertain if either
argument isUncertain; otherwise it returnsFalse . It obeys the interval containment rule. The→ operator may be
described by this table:

→ Uncertain True False Impossible
Uncertain Uncertain True Uncertain Impossible

True Uncertain True False Impossible
False True True True Impossible

Impossible Impossible Impossible Impossible Impossible
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24.2.11 opr ∧(self, other : BooleanInterval): BooleanInterval

The logicalNAND (NOT AND) operator∧ ( NAND) returnsImpossible if either argument isImpossible ; otherwise it
returnsTrue if either argument isFalse ; otherwise it returnsUncertain if either argument isUncertain; otherwise
it returnsFalse . It obeys the interval containment rule. The∧ operator may be described by this table:

∧ Uncertain True False Impossible
Uncertain Uncertain Uncertain True Impossible

True Uncertain False True Impossible
False True True True Impossible

Impossible Impossible Impossible Impossible Impossible

24.2.12 opr ∨(self, other : BooleanInterval): BooleanInterval

The logicalNOR (NOT OR) operator∨ ( NOR) returnsImpossible if either argument isImpossible ; otherwise it
returnsFalse if either argument isTrue ; otherwise it returnsUncertain if either argument isUncertain; otherwise
it returnsTrue . It obeys the interval containment rule. The∨ operator may be described by this table:

∨ Uncertain True False Impossible
Uncertain Uncertain False Uncertain Impossible

True False False False Impossible
False Uncertain False True Impossible

Impossible Impossible Impossible Impossible Impossible

24.2.13 opr ∈(other : Boolean, self): Boolean

The operator∈ ( IN ) returnstrue if its first argument, a boolean value, is contained in its second argument, a boolean
interval regarded as a set; otherwise it returnsfalse . The ∈ operator may be described by this table:

∈ Uncertain True False Impossible
true true true false false

false true false true false

24.2.14 opr ∩(self, other : BooleanInterval): BooleanInterval

The intersection operator∩ ( INTERSECTION or CAP) returnsImpossible if either argument isImpossible ; oth-
erwise, if either argument isUncertain, it returns the other argument; otherwise, if the argumentsare the same value
(strictly equivalent), it returns that value; otherwise itreturnsImpossible . The ∩ operator may be described by this
table:

∩ Uncertain True False Impossible
Uncertain Uncertain True False Impossible

True True True Impossible Impossible
False False Impossible False Impossible

Impossible Impossible Impossible Impossible Impossible
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24.2.15 opr ∪(self, other : BooleanInterval): BooleanInterval

The union operator∪ ( UNIONor CUP) returnsUncertain if either argument isUncertain; otherwise, if either argu-
ment isImpossible , it returns the other argument; otherwise, if the argumentsare the same value (strictly equivalent),
it returns that value; otherwise it returnsUncertain. The ∪ operator may be described by this table:

∪ Uncertain True False Impossible
Uncertain Uncertain Uncertain Uncertain Uncertain

True Uncertain True Uncertain True
False Uncertain Uncertain False False

Impossible Uncertain True False Impossible

24.2.16 opr SET COMPLEMENT(self): BooleanInterval

The set complement operatorSET COMPLEMENT returnsUncertain if its argument isImpossible , Impossible if its
argument isUncertain, False if its argument isTrue , andTrue if its argument isFalse .

24.2.17 opr SYMDIFF(self, other : BooleanInterval): BooleanInterval

The symmetric difference operatorSYMDIFF produces a result that contains a given boolean value if and only if
exactly one of the arguments contains that boolean value. The SYMDIFF operator may be described by this table:

SYMDIFF Uncertain True False Impossible
Uncertain Impossible False True Uncertain

True False Impossible Uncertain True
False True Uncertain Impossible False

Impossible Uncertain True False Impossible

24.2.18 opr \(self, other : BooleanInterval): BooleanInterval

The set difference operator\ ( SETMINUS) produces a result that contains a given boolean value if andonly if the
first argument contains that boolean value but the second argument does not. The\ operator may be described by this
table:

\ Uncertain True False Impossible
Uncertain Impossible False True Uncertain

True Impossible Impossible True True
False Impossible False Impossible False

Impossible Impossible Impossible Impossible Impossible
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24.2.19 possibly(self): Boolean
24.2.20 necessarily(self): Boolean
24.2.21 certainly(self): Boolean

The predicatepossibly returnstrue if and only if true is a member of this boolean interval.

The predicatenecessarily returnstrue if and only if false is not a member of this boolean interval (thus “necessarily”
is a concise way of saying “not possibly not”).

The predicatecertainly returnstrue if and only if this boolean interval isTrue , that is, it containstrue but notfalse
(thus “certainly” is a concise way of saying “both possibly and necessarily”).

The fourteen nontrivial functions from a valuex of type BooleanInterval to typeBoolean may thus be expressed as
follows:

necessarily(x) ∧ necessarily(¬x)
certainly(¬x)

necessarily(¬x)
certainly(x)

necessarily(x)
possibly(x) ≡ necessarily(x)

necessarily(x) ∨ necessarily(¬x)
possibly(x) ∧ possibly(¬x)
possibly(x) ∨ necessarily(x)

possibly(¬x)
¬certainly(x)
possibly(x)
¬certainly(¬x)

possibly(x) ∨ possibly(¬x))
There are other ways to express some of them; for example,necessarily(x) ∧ necessarily(¬x) is the same as
x == Impossible , and possibly(x) ∧ possibly(¬x) is the same asx == Uncertain .

24.2.22 getter empty():BooleanInterval
24.2.23 getter universe(): BooleanInterval

The getterempty returns the valueImpossible, and the getteruniverse returns the valueUncertain. These are defined
primarily for the benefit of theBooleanAlgebra trait thatBooleanInterval extends.

24.2.24 opr ==(self, other : BooleanInterval): Boolean

Two boolean intervals are strictly equivalent if and only ifthey are the same boolean interval.

24.2.25 getter hashCode(): Z64

24.2.26 toString(): String

The toString method returns either “True ” or “ False ” or “ Uncertain ” or “ Impossible ” as appropriate.
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24.3 Top-level BooleanInterval Values

24.3.1 True: BooleanInterval
24.3.2 False: BooleanInterval
24.3.3 Uncertain: BooleanInterval
24.3.4 Impossible: BooleanInterval

The immutable variablesTrue , False , Uncertain, and Impossible have as their values the four boolean intervals.
They are top-level variables declared in the Fortress standard libraries.
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Chapter 25

Numbers

25.1 Rational Numbers

The trait Q ( QQ) encompasses all finite rational numbers, the result of dividing any integer by any nonzero integer.
The trait Q∗ ( QQ_star ) is Q with two extra elements,+∞ and−∞ . The trait Q# ( QQ_splat ) is Q∗ with
one additional element, the indefinite rational (written0/0 ), which is used as the result of dividing zero by zero or of
adding−∞ to +∞ .

Often it is desirable to indicate that a variable ranges overonly a subset of the rationals, such as only positive values
or only nonnegative values or only nonzero values. Unfortunately, traditional notations such asQ+ are not used
consistently in the literature; one author may useQ+ to mean the set of strictly positive rationals and another may
use it to mean the set of nonnegative rationals. Fortress therefore uses a notation that is novel but unambiguous:

Q ( QQ) is the set of rationals (it is a subtype ofR and Q∗ ).
Q< ( QQ_LT) is the set of strictly negative rationals (it is a subtype ofR< , Q∗< , Q , Q≤ , and Q6= ).
Q≤ ( QQ_LE) is the set of nonpositive rationals, that is,Q< ∪ {0} (it is a subtype ofR≤ , Q∗≤ , and Q ).
Q≥ ( QQ_GE) is the set of nonnegative rationals, that is,Q> ∪ {0} (it is a subtype ofR≥ , Q∗≥ , and Q ).
Q> ( QQ_GT) is the set of strictly positive rationals (it is a subtype ofR> , Q∗> , Q , Q≥ , and Q6= ).
Q6= ( QQ_NE) is the set of strictly nonzero rationals (that is,Q< ∪Q> ) (it is a subtype ofR 6= , Q∗6= , and Q ).
Q∗ ( QQ_star ) is Q with extra elements+∞ and−∞ (it is a subtype ofR∗ and Q# ).
Q∗< ( QQ_star_LT ) is Q< with extra element−∞ (it is a subtype ofR∗< , Q#

< , Q∗ , Q∗≤ , and Q∗6= ).
Q∗≤ ( QQ_star_LE ) is Q≤ with extra element−∞ (it is a subtype ofR∗≤ , Q#

≤ , and Q∗ ).

Q∗≥ ( QQ_star_GE ) is Q≥ with extra element+∞ (it is a subtype ofR∗≥ , Q#
≥ , and Q∗ ).

Q∗> ( QQ_star_GT ) is Q> with extra element+∞ (it is a subtype ofR∗> , Q#
> , Q∗ , Q∗≥ , and Q∗6= ).

Q∗6= ( QQ_star_NE ) is Q6= with extra elements+∞ and−∞ (it is a subtype ofR∗6= , Q#
6= , and Q∗ ).

Q# ( QQ_splat ) is Q∗ with extra element0/0 (it is a subtype ofR# ).
Q#

< ( QQ_splat_LT ) is Q∗< with extra element0/0 (it is a subtype ofR#
< , Q# , Q#

≤ , and Q#
6= ).

Q#
≤ ( QQ_splat_LE ) is Q∗≤ with extra element0/0 (it is a subtype ofR#

≤ and Q# ).
Q#
≥ ( QQ_splat_GE ) is Q∗≥ with extra element0/0 (it is a subtype ofR#

≥ and Q# ).
Q#

> ( QQ_splat_GT ) is Q∗> with extra element0/0 (it is a subtype ofR#
> , Q# , Q#

≥ , and Q#
6= ).

Q#
6= ( QQ_splat_NE ) is Q∗6= with extra element0/0 (it is a subtype ofR#

6= and Q# ).

The Fortress type system tracks these types closely throughvarious arithmetic operations; for example, adding two
values of typeQ> produces a result of typeQ> , and adding a value of typeQ∗> and a value of typeQ≥ produces
a value of typeQ∗≥ .
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Here we present only the traitQ and its methods. The other rational types have exactly the same methods and differ
only in the details of the types of method arguments and results and exactly what traits are extended by each rational
type. For example,Q is a field and is totally ordered,Q∗ is totally ordered but is not a field, andQ# is neither
totally ordered nor a field. For the exact details of how all this is implemented, see Section 38.1.

trait Q
extends {R,Q∗,

FieldJQ,Q6=,+,−, ·, /K,
FieldJQ,Q6=,+,−,×, /K,
FieldJQ,Q6=,+,−, juxtaposition, /K,
TotalOrderOperatorsJQ, <,≤,≥, >, CMPK }

coercion ( : IdentityJ+K) = 0
coercion ( : IdentityJ·K) = 1
coercion ( : IdentityJ×K) = 1
coercion ( : IdentityJjuxtapositionK) = 1
coercion ( : ZeroJ·K) = 0
coercion ( : ZeroJ×K) = 0
coercion ( : ZeroJjuxtapositionK) = 0
opr juxtaposition (self, other : Q): Q
opr +(self): Q
opr +(self, other : Q): Q
opr −(self): Q
opr −(self, other : Q): Q
opr ·(self, other : Q): Q
opr ×(self, other : Q): Q
opr /(self): Q∗

opr /(self, other : Q): Q#

opr _(self, power : Z): Q#

opr <(self, other : Q): Boolean
opr ≤(self, other : Q): Boolean
opr =(self, other : Q): Boolean
opr ≥(self, other : Q): Boolean
opr >(self, other : Q): Boolean
opr CMP(self, other : Q∗): TotalComparison
opr CMP(self, other : Q#): Comparison
opr MAX(self, other : Q): Q
opr MIN(self, other : Q): Q
opr MAXNUM(self, other : Q): Q
opr MINNUM(self, other : Q): Q
opr |self| : Q≥
signum(self): Z
numerator(self): Z
denominator(self): Z
floor(self): Z
opr ⌊self⌋: Z
ceiling(self): Z
opr ⌈self⌉: Z
round(self): Z
truncate(self): Z
opr ⌊⌊self⌋⌋: N
opr ⌈⌈self⌉⌉: N
opr ⌊⌊⌊self⌋⌋⌋: N
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opr ⌈⌈⌈self⌉⌉⌉: N
realpart(self): Q
imagpart(self): Q
check(self): Q throws CastException
check∗(self): Q∗ throws CastException
check<(self): Q< throws CastException
check≤(self): Q≤ throws CastException
check≥(self): Q≥ throws CastException
check>(self): Q> throws CastException
check 6=(self): Q6= throws CastException
check∗<(self): Q∗< throws CastException
check∗≤(self): Q∗≤ throws CastException
check∗≥(self): Q∗≥ throws CastException
check∗>(self): Q∗> throws CastException
check∗6=(self): Q∗6= throws CastException

check
#
<(self): Q#

< throws CastException

check
#
≤(self): Q#

≤ throws CastException

check
#
≥(self): Q#

≥ throws CastException

check
#
>(self): Q#

> throws CastException

check
#
6=(self): Q#

6= throws CastException

end

25.1.1 opr juxtaposition (self, other : Q): Q

Juxtaposition of rational expressions is equivalent to using the multiplication operator· .

25.1.2 opr +(self): Q

The unary addition operator+ simply returns its argument.

25.1.3 opr +(self, other : Q): Q

The binary addition operator+ returns the sum of its arguments.

For typesQ∗ and Q# , the sum of an infinity and either a finite rational or another infinity of the same sign is equal
to the given infinity, but the sum of infinities of differing sign is 0/0 , and the sum of0/0 and any rational value is
0/0 .

25.1.4 opr −(self): Q

The unary negation operator− returns the negative of its argument.

For typesQ∗ and Q# , the negative of+∞ is −∞ , the negative of−∞ is +∞ , and the negative of0/0 is 0/0 .
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25.1.5 opr −(self, other : Q): Q

The binary subtraction operator− returns the difference of its arguments, which is equal to the sum of (a) the first
argument and (b) the negation of the second argument.

25.1.6 opr ·(self, other : Q): Q
25.1.7 opr ×(self, other : Q): Q

The multiplication operator· returns the product of its arguments. The multiplication operator× does exactly the
same thing.

For typesQ∗ and Q# , the product of0/0 and any rational value is0/0 , and the product of zero and an infinity
(regardless of sign) is0/0 ; the product of an infinity and any rational value other than zero and0/0 is an infinity
whose sign is positive if and only if the two arguments have the same sign.

25.1.8 opr /(self): Q∗

The unary reciprocal operator/ returns the reciprocal of its argument. The reciprocal of zero is +∞ (and therefore
the result type of/ when given an arguments of typeQ is necessarilyQ∗ ).

For typesQ∗ and Q# , the reciprocal of either+∞ or −∞ is zero, and the reciprocal of0/0 is 0/0 .

25.1.9 opr /(self, other : Q): Q∗

The binary division operator/ returns the quotient of its arguments, which is equal to the product of (a) the first
argument and (b) the reciprocal of the second argument.

25.1.10 opr _(self, power : Z): Q#

Exponentiation of a rational number to an integer power produces a rational result. If thepower is 0 , then the result
is always1 , even if the rational number base is0 (this definition is somewhat arbitrary but is computationally useful).

property ∀(x, y : Z) xy = 1/(x−y)
property ∀(x, y : Z) xy = x(⌊y/2⌋)x(⌈y/2⌉)
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25.1.11 opr <(self, other : Q): Boolean
25.1.12 opr ≤(self, other : Q): Boolean
25.1.13 opr =(self, other : Q): Boolean
25.1.14 opr ≥(self, other : Q): Boolean
25.1.15 opr >(self, other : Q): Boolean

The comparison operators< , ≤ , = , ≥ , and> allow any rational value to be compared numerically to any other
rational value.

For typesQ∗ and Q# , the rational values are totally ordered except for0/0 , which is unordered with respect to
all other rational values; moreover, for compatibility with floating-point arithmetic,0/0 is unordered with respect to
itself, and therefore these five comparison operators always returnfalse if either argument is0/0 . The value−∞ is
less than any finite rational value, and+∞ is greater than any finite rational value.

For 6= see Section 26.1.4.

25.1.16 opr CMP(self, other : Q): TotalComparison
25.1.17 opr CMP(self, other : Q#): Comparison

The CMP operator compares the arguments and returns one of the four valuesLessThan , EqualTo, GreaterThan,
and Unordered. If the argument types are such that the result cannot beUnordered, then the result has type
TotalComparison rather than simplyComparison .

25.1.18 opr MAX(self, other : Q): Q
25.1.19 opr MIN(self, other : Q): Q
25.1.20 opr MAXNUM(self, other : Q): Q
25.1.21 opr MINNUM(self, other : Q): Q

The operatorsMAX and MAXNUM return whichever argument is larger in the total order defined by < , ≤ , = , ≥ , > ,
and CMP , and the operatorsMIN and MINNUM return whichever argument is smaller. (For all four, if the arguments
are equal, then the result equals that same value.)

For typeQ# , MAXNUM and MINNUM differ from MAX and MIN in their treatment of0/0 : if one argument is0/0 and
the other is not, thenMAX or MIN returns0/0 but MAXNUM or MINNUM returns the argument that is not0/0 .

25.1.22 opr |self| : Q≥

The absolute value operator|. . .| returns the negative of this rational number if the argumentis less than zero, and
otherwise returns the argument.

For typeQ# , the absolute value of0/0 is 0/0 .
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25.1.23 signum(self): Z

The methodsignum returns−1 if this rational number is less than zero,0 if this rational number is zero, and1 if
this rational number is greater than zero.

For typeQ# , the signum of0/0 is 0/0 .

25.1.24 numerator(self): Z
25.1.25 denominator(self): Z

The methodnumerator returns the numerator of this rational number, and the method denominator returns the
denominator of this rational number, when this rational number is represented in lowest terms (such that the greatest
common divisor of numerator and denominator is 1).

For typesQ∗ and Q# , the numerator of+∞ is 1 , the numerator of−∞ is −1 , and the numerator of0/0 is 0 ;
the denominator of+∞ , −∞ , or 0/0 is 0 .
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25.1.26 floor(self): Z
25.1.27 opr ⌊self⌋: Z
25.1.28 ceiling(self): Z
25.1.29 opr ⌈self⌉: Z
25.1.30 round(self): Z
25.1.31 truncate(self): Z

The methodfloor , likewise the enclosing operator⌊. . .⌋ , returns the largest integer that is not greater than this rational
number.

The methodceiling , likewise the enclosing operator⌈. . .⌉ , returns the smallest integer that is not less than this rational
number.

The methodround returns the integer that is closest to this rational number,but if this rational number is exactly
halfway between two consecutive integers, thenround returns whichever of the two integers is even.

The methodtruncate returns the ceiling of this rational number if it is negative, and otherwise returns the floor of this
rational number. (This has the effect of taking the floor of the magnitude, also called “rounding toward zero.”)

For typesQ∗ and Q# , all of these methods simply return the argument if it is+∞ , −∞ , or 0/0 .

opr ⌊⌊self⌋⌋: N
opr ⌈⌈self⌉⌉: N
opr ⌊⌊⌊self⌋⌋⌋: N
opr ⌈⌈⌈self⌉⌉⌉: N

The hyperfloor operation⌊⌊x⌋⌋ computes2(⌊log2x⌋) and returns the result as a natural number. If the argument is
equal to0 , the result is0 . If the argument is negative, anInvalidArgumentException is thrown.

The hyperceiling operation⌈⌈x⌉⌉ computes2(⌈log2x⌉) and returns the result as a natural number. If the argument is
equal to0 , the result is0 . If the argument is negative, anInvalidArgumentException is thrown.

The hyperhyperfloor operation⌊⌊⌊x⌋⌋⌋ computes2(⌊⌊log2x⌋⌋) and returns the result as a natural number. If the argument
is equal to0 or 1 , the result is the same as the argument. If the argument is negative, anInvalidArgumentException
is thrown.

The hyperhyperceiling operation⌈⌈⌈x⌉⌉⌉ computes2(⌈⌈log2x⌉⌉) and returns the result as a natural number. If the argu-
ment is equal to0 or 1 , the result is the same as the argument. If the argument is negative, anInvalidArgumentException
is thrown.

25.1.32 realpart(self): Q

The methodrealpart for a rational number simply returns its argument.

25.1.33 imagpart(self): Q

The methodimagpart for a rational number simply returns zero.
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25.1.34 check(self): Q throws CastException
25.1.35 check∗(self): Q∗ throws CastException
25.1.36 check<(self): Q< throws CastException
25.1.37 check≤(self): Q≤ throws CastException
25.1.38 check≥(self): Q≥ throws CastException
25.1.39 check>(self): Q> throws CastException
25.1.40 check 6=(self): Q6= throws CastException
25.1.41 check∗<(self): Q∗< throws CastException
25.1.42 check∗≤(self): Q∗≤ throws CastException
25.1.43 check∗≥(self): Q∗≥ throws CastException
25.1.44 check∗>(self): Q∗> throws CastException
25.1.45 check∗6=(self): Q∗6= throws CastException

25.1.46 check
#
<(self): Q#

< throws CastException

25.1.47 check
#
≤(self): Q#

≤ throws CastException

25.1.48 check
#
≥(self): Q#

≥ throws CastException

25.1.49 check
#
>(self): Q#

> throws CastException

25.1.50 check
#
6=(self): Q#

6= throws CastException

Each of these methods checks this rational number to see whether it belongs to the result type of the method. If, the
number is returned; if not, aCastException is thrown.
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Chapter 26

Negated Relational Operators

26.1 Negated Relational Operators

26.1.1 opr 6==(x: Object, y: Object): Boolean

26.1.2 opr 6≡JT extends BinaryPredicateJT,≡KK(x:T, y:T ): Boolean

26.1.3 opr 6≡JT extends BinaryIntervalPredicateJT,≡KK(x:T, y:T ): BooleanInterval

26.1.4 opr 6=JT extends BinaryPredicateJT,=KK(x:T, y:T ): Boolean

26.1.5 opr 6=JT extends BinaryIntervalPredicateJT,=KK(x:T, y:T ): BooleanInterval

26.1.6 opr 6≃JT extends BinaryPredicateJT,≃KK(x:T, y:T ): Boolean

26.1.7 opr 6≃JT extends BinaryIntervalPredicateJT,≃KK(x:T, y:T ): BooleanInterval

26.1.8 opr 6≈JT extends BinaryPredicateJT,≈KK(x:T, y:T ): Boolean

26.1.9 opr 6≈JT extends BinaryIntervalPredicateJT,≈KK(x:T, y:T ): BooleanInterval

The infix operator6== applies¬ to the result of== on the same operands.

The infix operator6≡ applies¬ to the result of≡ on the same operands.

The infix operator6= applies¬ to the result of= on the same operands.

The infix operator6≃ applies¬ to the result of≃ on the same operands.

The infix operator6≈ applies¬ to the result of≈ on the same operands.
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26.1.10 opr ≮JT extends BinaryPredicateJT,<K(x:T, y:T ): Boolean

26.1.11 opr ≮JT extends BinaryIntervalPredicateJT,<K(x:T, y:T ): BooleanInterval

26.1.12 opr �JT extends BinaryPredicateJT,≤KK(x:T, y:T ): Boolean

26.1.13 opr �JT extends BinaryIntervalPredicateJT,≤KK(x:T, y:T ): BooleanInterval

26.1.14 opr �JT extends BinaryPredicateJT,≥KK(x:T, y:T ): Boolean

26.1.15 opr �JT extends BinaryIntervalPredicateJT,≥KK(x:T, y:T ): BooleanInterval

26.1.16 opr ≯JT extends BinaryPredicateJT,>KK(x:T, y:T ): Boolean

26.1.17 opr ≯JT extends BinaryIntervalPredicateJT,>KK(x:T, y:T ): BooleanInterval

The infix operator≮ applies¬ to the result of< on the same operands.

The infix operator� applies¬ to the result of≤ on the same operands.

The infix operator� applies¬ to the result of≥ on the same operands.

The infix operator≯ applies¬ to the result of> on the same operands.

26.1.18 opr 6⊂JT extends BinaryPredicateJT,⊂KK(x:T, y:T ): Boolean

26.1.19 opr 6⊂JT extends BinaryIntervalPredicateJT,⊂KK(x:T, y:T ): BooleanInterval

26.1.20 opr *JT extends BinaryPredicateJT,⊆KK(x:T, y:T ): Boolean

26.1.21 opr *JT extends BinaryIntervalPredicateJT,⊆KK(x:T, y:T ): BooleanInterval

26.1.22 opr +JT extends BinaryPredicateJT,⊇KK(x:T, y:T ): Boolean

26.1.23 opr +JT extends BinaryIntervalPredicateJT,⊇KK(x:T, y:T ): BooleanInterval

26.1.24 opr 6⊃JT extends BinaryPredicateJT,⊃KK(x:T, y:T ): Boolean

26.1.25 opr 6⊃JT extends BinaryIntervalPredicateJT,⊃KK(x:T, y:T ): BooleanInterval

The infix operator6⊂ applies¬ to the result of⊂ on the same operands.

The infix operator* applies¬ to the result of⊆ on the same operands.

The infix operator+ applies¬ to the result of⊇ on the same operands.

The infix operator6⊃ applies¬ to the result of⊃ on the same operands.
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26.1.26 opr ⊀JT extends BinaryPredicateJT,≺KK(x:T, y:T ): Boolean

26.1.27 opr ⊀JT extends BinaryIntervalPredicateJT,≺KK(x:T, y:T ): BooleanInterval

26.1.28 opr 6�JT extends BinaryPredicateJT,4KK(x:T, y:T ): Boolean

26.1.29 opr 6�JT extends BinaryIntervalPredicateJT,4KK(x:T, y:T ): BooleanInterval

26.1.30 opr 6�JT extends BinaryPredicateJT,<KK(x:T, y:T ): Boolean

26.1.31 opr 6�JT extends BinaryIntervalPredicateJT,<KK(x:T, y:T ): BooleanInterval

26.1.32 opr ⊁JT extends BinaryPredicateJT,≻KK(x:T, y:T ): Boolean

26.1.33 opr ⊁JT extends BinaryIntervalPredicateJT,≻KK(x:T, y:T ): BooleanInterval

The infix operator⊀ applies¬ to the result of≺ on the same operands.

The infix operator6� applies¬ to the result of� on the same operands.

The infix operator6� applies¬ to the result of� on the same operands.

The infix operator⊁ applies¬ to the result of≻ on the same operands.

26.1.34 opr 6⊏JT extends BinaryPredicateJT,⊏KK(x:T, y:T ): Boolean

26.1.35 opr 6⊏JT extends BinaryIntervalPredicateJT,⊏KK(x:T, y:T ): BooleanInterval

26.1.36 opr 6⊑JT extends BinaryPredicateJT,⊑KK(x:T, y:T ): Boolean

26.1.37 opr 6⊑JT extends BinaryIntervalPredicateJT,⊑KK(x:T, y:T ): BooleanInterval

26.1.38 opr 6⊒JT extends BinaryPredicateJT,⊒KK(x:T, y:T ): Boolean

26.1.39 opr 6⊒JT extends BinaryIntervalPredicateJT,⊒KK(x:T, y:T ): BooleanInterval

26.1.40 opr 6⊐JT extends BinaryPredicateJT,⊐KK(x:T, y:T ): Boolean

26.1.41 opr 6⊐JT extends BinaryIntervalPredicateJT,⊐KK(x:T, y:T ): BooleanInterval

The infix operator6⊏ applies¬ to the result of⊏ on the same operands.

The infix operator6⊑ applies¬ to the result of⊑ on the same operands.

The infix operator6⊒ applies¬ to the result of⊒ on the same operands.

The infix operator6⊐ applies¬ to the result of⊐ on the same operands.

26.1.42 opr 6∈JT extends BinaryPredicateJT,∈KK(x:T, y:T ): Boolean

26.1.43 opr 6∈JT extends BinaryIntervalPredicateJT,∈KK(x:T, y:T ): BooleanInterval

26.1.44 opr 6∋JT extends BinaryPredicateJT,∋KK(x:T, y:T ): Boolean

26.1.45 opr 6∋JT extends BinaryIntervalPredicateJT,∋KK(x:T, y:T ): BooleanInterval

The infix operator6∈ applies¬ to the result of∈ on the same operands.

The infix operator6∋ applies¬ to the result of∋ on the same operands.

26.1.46 opr ∦JT extends BinaryPredicateJT, ‖KK(x:T, y:T ): Boolean

26.1.47 opr ∦JT extends BinaryIntervalPredicateJT, ‖KK(x:T, y:T ): BooleanInterval

The infix operator∦ applies¬ to the result of‖ on the same operands.
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Chapter 27

Exceptions

27.1 The Trait Fortress.Standard.Exception

The traitException is a single root of the exception hierarchy; every exceptionin Fortress has traitException. An
exception is either aCheckedException or anUncheckException. Every exception has optional fields: a message
and a chained exception. These fields are default toNothing where an optional valuev is eitherNothing or Just(v)
as declared in Section 31.2.

trait Exception comprises {CheckedException,UncheckedException }
settable message: MaybeJStringK
settable chain:MaybeJExceptionK

end

27.1.1 settable message: MaybeJStringK

When an exception is thrown, itsmessage may be set.

27.1.2 settable chain: MaybeJExceptionK

When an exception is thrown, itschain may be set to the exception thrown immediately before this exception.

27.2 The Trait Fortress.Standard.CheckedException

trait CheckedException
extends {Exception }
excludes {UncheckedException }

end
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27.3 The Trait Fortress.Standard.UncheckedException

trait UncheckedException
extends {Exception }
excludes {CheckedException }

end
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Chapter 28

Threads

28.1 The Trait Fortress.Standard.Thread

Every thread in Fortress has traitThread.

trait Thread
valJT K():T
wait(): ()
ready(): Boolean
stop(): () throws Stopped

end

28.1.1 valJT K():T

The val method returns the value computed by the expression of the thread. If the thread has not yet completed
execution, the invocation ofval blocks until it has done so.

28.1.2 wait(): ()

The wait method waits for a thread to complete, but does not return a value.

28.1.3 ready(): Boolean

The ready method returnstrue if a thread has completed, and returnsfalse otherwise.

28.1.4 stop(): () throws Stopped

The stop method attempts to terminate a thread.

206



Chapter 29

Dimensions and Units

29.1 Fortress.SIUnits

(∗ Reference: http://physics.nist.gov/cuu/Units/index.html ∗)
(∗ SI base units∗)
dim Length SI unit meter meters m
dim Mass default kilogram; SI unit gram grams g: Mass
dim Time SI unit second seconds s
dim ElectricCurrent SI unit ampere amperes A
dim Temperature SI unit kelvin kelvins K
dim AmountOfSubstance SI unit mole moles mol
dim LuminousIntensity SI unit candela candelas cd

(∗ SI derived units with special names and symbols∗)
dim Angle = Unity SI unit radian radians rad
dim SolidAngle = Unity SI unit steradian steradians sr
dim Frequency = 1/Time SI unit hertz Hz
dim Force = Mass Acceleration SI unit newton newtons N
dim Pressure = Force/Area SI unit pascal pascals Pa
dim Energy = Length Force SI unit joule joules J
dim Power = Energy/Time SI unit watt watts W
dim ElectricCharge = ElectricCurrent Time SI unit coulomb coulombs C
dim ElectricPotential = Power/Current SI unit volt volts V
dim Capacitance = ElectricCharge/Voltage SI unit farad farads F
dim Resistance = ElectricPotential/Current SI unit ohm ohms Ω
dim Conductance = 1/Resistance SI unit siemens S
dim MagneticFlux = Voltage Time SI unit weber webers Wb
dim MagneticFluxDensity = MagneticFlux/Area SI unit tesla teslas T
dim Inductance = MagneticFlux/Current SI unit henry henries H
dim LuminousFlux = LuminousIntensity SolidAngle SI unit lumen lumens lm
dim Illuminance = LuminousFlux/Area SI unit lux lx
dim RadionuclideActivity = 1/Time SI unit becquerel becquerels Bq
dim AbsorbedDose = Energy/Mass SI unit gray grays Gy
dim CatalyticActivity = AmountOfSubstance/Time SI unit katal katals kat

(∗ other derived dimensions∗)
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dim Area = Length2

dim Volume = Length3

dim Velocity = Length/Time
dim Speed = Velocity
dim Acceleration = Velocity/Time
dim Momentum = Mass Velocity
dim AngularVelocity = Angle/Second

dim AngularAcceleration = Angle/Second2

dim WaveNumber = 1/Length
dim MassDensity = Mass/Volume
dim CurrentDensity = Current/Area
dim MagneticFieldStrength = Current/Length
dim Luminance = LuminousIntensity/Area
dim Work = Energy
dim Action = Energy Time
dim MomentOfForce = Force Length
dim Torque = MomentOfForce

dim MomentOfInertia = Mass Length2

dim Voltage = ElectricPotential
dim Conductivity = Conductance/Length
dim Resistivity = 1/Conductivity
dim Impedance = Resistance
dim Permittivity = Capacitance/Length
dim Permeability = Inductance/Length
dim Irradiance = Power/Area
dim RadiantIntensity = Power/SolidAngle
dim Radiance = Power/Area SolidAngle
dim AbsorbedDoseRate = AbsorbedDose/Time
dim CatalyticConcentration = CatalyticActivity/Volume
dim HeatCapacity = Energy/Temperature
dim Entropy = Energy/Temperature
dim DynamicViscosity = Pressure Time
dim SpecificHeatCapacity = Energy/Mass Temperature
dim SpecificEntropy = Energy/Mass Temperature
dim SpecificEnergy = Energy/Mass
dim ThermalConductivity = Energy/Length Temperature
dim EnergyDensity = Energy/Volume
dim ElectricFieldStrength = ElectricPotential/Length
dim ElectricChargeDensity = ElectricCharge/Volume
dim ElectricFlux = ElectricCharge
dim ElectricFluxDensity = ElectricCharge/Area
dim MolarEnergy = Energy/AmountOfSubstance
dim MolarHeatCapacity = Energy/AmountOfSubstance Temperature
dim MolarEntropy = Energy/AmountOfSubstance Temperature
dim RadiationExposure = ElectricCharge/Mass

(∗ Units outside the SI that are accepted for use with the SI∗)
unit minute minutes min: Time
unit hour hours h: Time
unit day days d: Time
unit degreeOfAngle degrees: Angle
unit minuteOfAngle minutesOfAngle:Angle

208



unit secondOfAngle secondsOfAngle: Angle
SI unit metricTon metricTons tonne tonnes t:Mass
SI unit liter liters L: Volume

29.2 Fortress.EnglishUnits

import {Length,Area,Volume,Time,Mass,millimeters, liters, grams }
from Fortress.SIUnits

unit inch inches: Length
unit foot feet: Length
unit yard yards: Length
unit mile miles: Length
unit rod rods: Length
unit furlong furlongs: Length

unit surveyFoot surveyFeet: Length
unit surveyMile surveyMiles: Length

unit nauticalMile nauticalMiles: Length
unit knot knots: Speed

unit week weeks: Time
unit fortnight fortnights: Time
unit microfortnight microfortnights

unit gallon gallons: Volume
unit fluidQuart fluidQuarts:Volume
unit fluidPint fluidPints: Volume
unit fluidCup fluidCups: Volume
Unit fluidOunce fluidOunces:Volume
unit fluidDram fluidDrams: Volume
unit minim minims: Volume

unit traditionalTablespoon traditionalTablespoons: Volume
unit traditionalTeaspoon traditionalTeaspoons: Volume
unit federalTablespoon federalTablespoons: Volume
unit federalTeaspoon federalTeaspoons: Volume

unit dryPint dryPints: Volume
unit dryQuart dryQuarts: Volume
unit peck pecks: Volume
unit bushel bushels: Volume

unit acre: Area

unit imperialGallon: Volume
unit imperialQuart: Volume
unit imperialPint: Volume
unit imperialGill: Volume
unit imperialFluidOunce: Volume
unit imperialFluidDrachm: Volume
unit imperialFluidDRam : Volume
unit imperialFluidScruple:Volume
unit imperialMinim: Volume

unit pound pounds lb lbs: Mass
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unit ounce ounces oz: Mass
unit grain grains: Mass
unit troyPound troyPounds: Mass
unit troyOunce troyOunces:Mass

29.3 Fortress.InformationUnits

dim Information unit bit bits
unit byte bytes
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Chapter 30

Tests

30.1 The Object Fortress.Standard.TestSuite

An instance of the objectTestSuite contains a set of test functions that can all be called by invoking the methodrun :

test object TestSuite(testFunctions = {})
add(f : ()→ ()): ()
run(): ()

end

30.1.1 add(f : ()→ ()): ()

The add method adds a given test function to thetestFunctions field of this object.

30.1.2 run(): ()

The run method calls each test function in thetestFunctions field of this object. Note that all tests in aTestSuite
are run in parallel.

30.2 Test Functions

30.2.1 test fail(message: String): ()

The helper functionfail displays the error message provided and terminates execution of the enclosing test.

211



Chapter 31

Convenience Functions and Types

31.1 Convenience Functions

31.1.1 castJT K(x : Object) :T

The functioncast converts the type of its argument to a given type. If the static type of the argument is not a subtype
of the given type, aCastException is thrown.

31.1.2 instanceOf JT K(x : Object) : Boolean

The functioninstanceOf tests whether its argument has a given type and returns a boolean value.

31.1.3 ignore(x : Object) : ()

The functionignore discards the value of its argument and returns() .

31.1.4 tuple(x : Object) :Object

The functiontuple returns its argument as a tuple expression.

31.1.5 identity(x : Object) :Object

The functionidentity returns its argument.
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31.2 Convenience Types

An optional valuev is eitherNothing or Just(v) declared as follows:

(∗ Optional Values∗)
trait MaybeJT K comprises {Nothing, JustJT K }

isNothing : Boolean
end

object Nothing extends MaybeJT K excludes JustJT K where {T extends Object}
end

object JustJT K(just :T ) extends MaybeJT K
end
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Part IV

Fortress for Library Writers
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Chapter 32

Parallelism and Locality

Fortress is designed to make parallel programming as simpleand as painless as possible. This chapter describes the
internals of Fortress parallelism designed for use by authors of library code (such asdistributions, generators, and
arrays). We adopt a multi-tiered approach to parallelism:

• At the highest level, we provide libraries which allocate locality-aware distributed arrays (Section 32.2) and
implicitly parallel constructs such as tuples and loops. Synchronization is accomplished through the use of
atomic sections (Section 13.23). More complex synchronization makes use of abortable atomicity, described in
Section 32.3.

• There is an extensive library of distributions, which permits the programmer to specify locality and data distri-
bution explicitly (Section 32.5).

• Immediately below that, theat expression requests that a computation take place in a particular region of the
machine (Section 32.7). We also provide a mechanism to terminate a spawned thread early (Section 32.6).

• Finally, there are mechanisms for constructing new generators via recursive subdivision into tree structures
with individual elements at the leaves. Section 32.8 explains how iterative constructs such asfor loops and
comprehensions are desugared into calls to methods of traitGenerator, and how new instances of this trait may
be defined.

We begin by describing the abstraction ofregions, which Fortress uses to describe the machine on which a program is
run.

32.1 Regions

Every thread and every object in Fortress, and every elementof a Fortress array, has an associatedregion. The region
in which an objecto resides can be obtained by callingo.region . Regions abstractly describe the structure of the
machine on which a Fortress program is running. They are organized hierarchically to form a tree, theregion hierarchy,
reflecting in an abstract way the degree of locality which those regions share. The different levels of this tree reflect
underlying machine structure, such as execution engines within a CPU, memory shared by a group of processors, or
resources distributed across the entire machine. Objects which reside in regions near the leaves of the tree are local
entities; those which reside at higher levels of the region tree are logically spread out. The method callr.isLocalTo(s)
returnstrue if r is contained within the region tree rooted ats .

It is important to understand that regions and the structures (such as distributions, Section 32.5) built on top of them
exist purely for performance purposes. The placement of a thread or an object does not have any semantic effect on
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the meaning of a program; it is simply an aid to enable the implementation to make informed decisions about data
placement.

It may not be possible for an object or a thread to reside in anypossible region. Theexecution levelof the region
hierarchy is where threads of execution reside, and is generally the bottommost level in the region tree. A thread is
generally associated with some region at the execution level, where that spawned thread will preferentially be run.
The programmer can affect the choice of region by using anat expression (Section 32.7) when the thread is created.
A spawned thread may be assigned a region higher in the regionhierarchy than the execution level, either because
a higher region was requested or because scheduling decisions permit the thread to run in several possible execution
regions. The region to which a thread is assigned may also change over time due to scheduling decisions. Theregion

method for the object associated with a spawned thread returns the region of the associated thread.

The memory levelof the region hierarchy is where individual reference objects reside; on a machine with nodes
composed of multiple processor cores sharing a single memory, this will not generally be the leaves of the region
hierarchy. Imagine a constructor for a reference object is called by a thread residing in regionr , yielding an objecto .
Except in very rare circumstances (for example when a local node is out of memory) eitherr.isLocalTo(o.region) or
(o.region).isLocalTo(r) ought to hold: data is allocated locally to the thread which runs the constructor. For a value
objectv being manipulated by a thread residing in regionr either (v.region).isLocalTo(r) or r.isLocalTo(v.region)
(value objects always appear to be local).

Note thatregion is a getter method and can be overridden like any other method. The chief example of this is arrays,
which are generally composed from many reference objects; the region method is overridden to return the location of
the array as a whole—the region which contains all of its constituent reference objects.

32.2 Distributed Arrays

Arrays, vectors, and matrices in Fortress are assumed to be spread out across the machine. As in Fortran, Fortress
arrays are complex data structures; simple linear storage is encapsulated by theHeapSequence type, which is used
in the implementation of arrays (see Section 32.7). The default distribution of an array is determined by the Fortress
libraries; in general it depends on the size of the array, andon the size and locality characteristics of the machine
running the program. For advanced users, the distribution library (introduced in Section 32.5) provides a way of
combining and pivoting distributions, or of redistributing two arrays so that their distributions match. Programmers
should create arrays by using an array comprehension (Section 13.29) or an aggregate expression (Section 13.28). The
operational internals of array comprehensions are described in Section 32.8.

Because the elements of a fortress array may reside in multiple regions of the machine, there is an additional method
a.region(i) which returns the region in which the array elementai resides. An element of an array is always local
to the region in which the array as a whole is contained, so(a.region(i)).isLocalTo(a.region) must always return
true . When an array contains reference objects, the programmer must be careful to distinguish the region in which the
array elementai resides,a.region(i) , from the region in which the object referred to by the array element resides,
ai.region . The former describes the region of the array itself; the latter describes the region of the data referred to by
the array. These may differ.

32.3 Abortable Atomicity

Fortress provides a user-levelabort() function which abandons execution of anatomic expression and rolls back
its changes, requiring theatomic expression to execute again from the beginning. This permits an atomic section to
perform consistency checks as it runs. However, the functionality provided byabort() can be abused; it is possible
to induce deadlock or livelock by creating an atomic sectionwhich always fails. Here is a simple example of a
program usingabort() which is incorrect because Fortress does not guarantee thatthe two implicit threads (created
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by evaluating the two elements of the tuple) will always run in parallel; it is possible for the first element of the tuple
to continually abort without ever running the second element of the tuple:

r : Z64 := 0
(a, b) = (atomic if r = 1 then 17 else abort() end,

do r := 1; r end)(∗ INCORRECT!∗)
Fortress also includes atryatomic expression, which attempts to run its body expression atomically. If it succeeds,
the result is returned; if it aborts due to a call toabort , the AtomicAborted exception is thrown; if it aborts due to
conflict (as described in Section 13.23), theAtomicConflict exception is thrown. These exceptions both implement
the AtomicFailed trait, which is an instance ofCheckedException. Conceptuallyatomic can be defined in terms
of tryatomic as follows:

label AtomicBlock
while true do

try

result = tryatomic body

exit AtomicBlock with result

catch e
AtomicFailed⇒ ()(∗ continue execution∗)

end

end

throw UnreachableCode(∗ inserted for type correctness∗)
end AtomicBlock

Unlike the above definition, an implementation may choose tosuspend a thread running anatomic expression which
invokesabort , re-starting it at a later time when it may be possible to makefurther progress. The above definition
restarts the body of theatomic expression immediately without suspending.

32.4 Shared and Local Data

Every object in a Fortress program is considered to be eithersharedor local (collectively referred to as thesharedness
of the object). A local object must be transitively reachable (through zero or more object references) from the variables
of at most one running thread. A local object may be accessed more cheaply than a shared object, particularly in the
case of atomic reads and writes. Sharedness is ordinarily managed implicitly by the Fortress implementation. Control
over sharedness is intended to be a performance optimization; however, methods such asisShared and localize can
affect program semantics, and must be used with care.

The sharedness of an object should be contrasted with its region. The region of an object describes where that object
is located on the machine. The sharedness of an object describes whether the object is visible to one thread or to many.
A local object need not actually reside in a region near the thread to which it is visible (though ordinarily it will).

The following rules govern sharedness:

• Reference objects are initially local when they are constructed.

• The sharedness of an object may change as the program executes.

• If an object is currently transitively reachable from more than one running thread, it must be shared.

• When a reference to a local object is stored into a field of a shared object, the local object must bepublished:
Its sharedness is changed to shared, and all of the data to which it refers is also published.

• The value of a local variable referenced by a thread must be published before that thread may be run in parallel
with the thread which created it. Values assigned to the variable while the threads run in parallel must also be
published.
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• A field with value type is assigned by copying, and thus has thesharedness of the containing object or closure.

Publishing can be expensive, particularly if the structurebeing broadcast is large and heavily nested; this can cause an
apparently shortatomic expression (a single write, say) to run arbitrarily long. Toavoid this, the library programmer
can request that an object be published by calling the semantically transparent functionshared :

x := shared Cons(x, xs)
shared(y)

A local copy of an object can be obtained by callingcopy , a method on traitObject :

localVar := sharedVar .copy()

Two additional methods are provided which permit differentchoices of program behavior based on the sharedness of
objects:

• The gettero.isShared returnstrue wheno is shared, andfalse when it is local. This permits the program to
take different actions based on sharedness.

• Method o.localize() is equivalent to the following expression:

if o.isShared then o.copy() else o end

These methods must be used with extreme caution. For example, localize should be used only when there is a unique
reference to the object being localized. Thelocalize method can have unexpected behavior if there is a reference to o

from another local objectp . Updates too will be visible throughp ; subsequent publication ofp will publish o . By
contrast, ifo was already shared, and referred to by another shared object, the newly-localized copy will be entirely
distinct; changes to the copy will not be visible throughp , and publishingp will not affect the locality of the copy.

32.5 Distributions

Most of the heavy lifting in mapping threads and arrays to regions is performed bydistributions. An instance of the
trait Distribution describes the parallel structure of ranges and other numeric generators (such as the generators for
the index space of an array), and provides for the allocationand distribution of arrays on the machine:

trait Distribution extends Object
distributeJT extends ArrayIndexK(RangeJT K) : RangeJT K
distributeJE,B extends ArrayIndexK(a : ArrayJE,BK) :ArrayJE,BK =

distributeFromToJE,BK(a, a.distribution, self)
end

Abstractly, aDistribution acts as a transducer for generators and arrays. Thedistribute method applied to a mul-
tidimensionalRange organizes its indices into the leaves of a tree whose inner nodes correspond to potential levels
of parallelism and locality in the underlying computation,producing a freshRange whose behavior as aGenerator
may differ from that of the passed-inRange . The distribute method applied to an array creates a copy of that
array distributed according to the given distribution. This is specified in terms of a call to the overloaded function
distributeFromTo . This permits the definition of specialized versions of thisfunction for particular pairs of distribu-
tions.

The intention of distributions is to separate the task of data distribution and program correctness. That is, it should be
possible to write and debug a perfectly acceptable parallelprogram using only the default data distribution provided
by the system. Imposing a distribution on particular computations, or designing and implementing distributions from
scratch, is a task best left for performance tuning, and one which should not affect the correctness of a working
program.
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There is aDefaultDistribution which is defined by the underlying system. This distributionis designed to be rea-
sonably adaptable to different system scales and architectures, at the cost of some runtime efficiency. Arrays and
generators that are not explicitly allocated through a distribution are given theDefaultDistribution.

We said in Section 13.15 that there is a generator,indices , associated with every array. This generator is dis-
tributed in the same way as the array itself. When we re-distribute an array, we also re-distribute the generator;
thus d.distribute(a.indices) is equivalent to(d.distribute(a)).indices .

There are a number of built-in distributions:

DefaultDistribution Name for distribution chosen by system.
Sequential Sequential distribution. Arrays are allocated in one contiguous piece of memory.
Local Equivalent toSequential.
Par Blocked into chunks of size 1.
Blocked Blocked into roughly equal chunks.
Blocked(n) Blocked inton roughly equal chunks.
Subdivided Chopped into2k-sized chunks, recursively.
Interleaved(d1, d2, . . . dn) The firstn dimensions are distributed according tod1 . . . dn ,

with subdivision alternating among dimensions.
Joined(d1, d2, . . . dn) The firstn dimensions are distributed according tod1 . . . dn ,

subdividing completely in each dimension before proceeding to the next.

From these, a number of composed distributions are provided:

Morton Bit-interleaved Morton order [20], recursive subdivisionin all dimensions.
Blocked(x1, x2, . . . xn) Blocked inn dimensions into chunks of sizexi in dimensioni ;

remaining dimensions (if any) are local.

To allocate an array which is local to a single thread (and most likely allocated in contiguous storage), theLocal
distribution can be used:

a = Local.distribute[ 1 0 0; 0 1 0; 0 0 1 ]

Other distributions can be requested in a similar way.

Distributions can be constructed and given names:

spatialDist = Blocked(n, n, 1)(∗ Pencils along thez axis∗)
The system will lay out arrays with the same distribution in the same way in memory (as much as this is feasible), and
will run loops with the same distribution in the same way (as much as this is feasible). By contrast, if we replace every
occurrence ofspatialDist by Blocked(n, n, 1) , this code will likely divide up arrays and ranges into the same-sized
pieces as above, but these pieces need not be collocated.

32.6 Early Termination of Threads

As noted in Section 4.4, an implicit thread can be terminatedif its group is going to throw an exception. Similarly, a
spawned threadt may be terminated by callingt.stop() . A successful attempt to terminate a thread causes the thread
to complete asynchronously. There is no guarantee that termination attempts will be prompt, or that they will occur at
all; the implementation will make its best effort. If a thread completes normally or exceptionally before an attempt to
terminate it succeeds, the result is retained and the termination attempt is simply dropped.

A termination attempt acts as if a special hiddenstop exceptionis thrown in that thread. This exception cannot be
thrown by throw or caught bycatch ; however,finally clauses are run as with any other exception. If the stopped
thread was in the middle of anatomic expression, the effects of that expression are rolled back just as with an ordinary
throw . A special wrapper around every spawned thread is provided by the Fortress implementation; it catches the
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stop exception and transforms it into a deferredStopped exception. This is visible to the programmer and should be
caught by invoking theval method on the thread object. Implicit threads are terminated only if another thread in the
group completes abruptly, and the threads that are terminated are ignored for the purposes of the completion of the
group.

Typical code for stopping a thread looks something like the following example:

x : Z64 := 0
t = spawn do

try

atomic if x = 0 then abort() else () end
finally

x := 1
end

end

t.stop()
try

t.val()
catch s

Stopped⇒ x += 2;x
end

Here the spawned threadt blocks until it is killed by the call tot .stop() ; it setsx to 1 in thefinally clause before
exiting. In this case, the call tot .val() will throw Stopped, which is caught, causing 2 to be added tox and returning
3.

Note that there is a race in the above code, so thetry block in t may not have been entered whent .stop() is called,
causingx to be 2 at the end of execution. Note also that the call tot .stop() occurs asynchronously; in the absence of
the call to t .val() , the spawning thread would not have waited fort to complete.

32.7 Placing Threads

A thread can be placed in a particular region by using anat expression:

(v, w) = (ai,
at a.region(j) do
aj

end)

In this example, two implicit threads are created; the first computesai locally, the second computesaj in the region
where thejth element ofa resides, specified bya.region(j) . The expression afterat must return a value of type
Region, and the block immediately followingdo is run in that region; the result of the block is the result of the at

expression as a whole. Often it is more graceful to use thealso do construct (described in Section 13.12) in these
cases:

do

v := ai

also at a.region(j) do
w := aj

end

We can also useat with a spawn expression:
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v = spawn at a.region(i) do
ai

end

w = spawn at v.region() do
v.val() · 17

end

Finally, note that it is possible to use anat expression within a block:

do

v := ai

at a.region(j) do
w := aj

end

x = v + w
end

We can think of this as the degenerate case ofalso do : a thread group is created with a single implicit thread running
the contents of theat expression in the given region; when this thread completes control returns to the original
location.

Note that the regions given in anat expression are non-binding: the Fortress implementation may choose to run the
computations elsewhere—for example, thread migration might not be possible within anatomic expression, or load
balancing might cause code to be executed in a different region. In general, however, implementations should attempt
to respect thread placement annotations when they are given.

32.8 Use and Definition of Generators

Several expressions in Fortress make use ofgenerator lists(given by the nonterminalGeneratorListin the Fortress
grammar defined in Appendix G) to express parallel iteration(see Section 13.17). A generator list binds a series of
variables to the values produced by a series of objects with the Generator trait. A generator list is simply syntactic
sugar for a nested series of invocations of methods on these objects. All the parallelism provided by a particular
generator is specified by its definitions for the methods of the Generator trait. In general, the library code for a
generator dictates the parallel structure of computationsinvolving that generator.

The definition of traitGenerator has very simple functionality at its core:

trait GeneratorJE K
size : Z64
generateJR extends MonoidJR,⊕ K, opr ⊕ K(body : E → R) :R
joinJN K(other : GeneratorJN K) : GeneratorJ (E,N) K =

SimplePairGeneratorJE,N K(self, other)
end

The mechanics of object generation are embedded entirely inthe generate method. This method takes one argument,
the body function. Thegenerate method invokesbody once for each object which is to be generated, passing the
generated object as an argument. Note thatbody returns a value in someMonoid R ; the results of the calls tobody
are combined using the monoid operator⊕ . This reduction may include any number of occurrences of the identity
of the monoid—in particular, a generator may generate no elements, in which case it will never invokebody and will
simply the identity.

A simple definition of aGenerator need only define thesize field and thegenerate method:
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T JR,⊞K[ ] body = body

T JR,⊞K[ x← g, gs ] body = g.generateJR,⊞K(fn ()⇒ T JR,⊞K[gs ]body)
T JR,⊞K[ p , gs ] body = if p then (T JR,⊞K[gs ]body) else IdentityJ⊞K end

Figure 32.1: Naive and simple desugaring of generator listsusing only thegenerate method.

value object BlockedRange(lo: Z64, hi : Z64, b: Z64) extends GeneratorJZ64K
size : Z64 = hi − lo + 1
generateJR extends MonoidJR,⊕K, opr ⊕K(body : Z64→ R) : R =

if size ≤ max(b, 1) then
r : R = IdentityJ⊕K
i : Z64 = lo

if i ≤ hi then

label done do

while true do

r := r ⊕ body(i)
if i ≥ hi then exit done with () end
i += 1

end

end

end

r
else

mid = ⌈lo/2⌉+ ⌊hi/2⌋
BlockedRange(lo,mid , b).generate(body)⊕

BlockedRange(mid + 1, hi , b).generate(body)
end

end

This example generates the integers betweenlo andhi inclusive. It does this usingrecursive subdivision. Recursive
subdivision is the recommended technique for exposing large amounts of parallelism in a Fortress program because
it adjusts easily to varying machine sizes and can be dynamically load balanced. In this example we divide the range
in half if it is larger than the block sizeb ; these two halves are computed in parallel (recall that the arguments to an
operator are evaluated in parallel). If the range is smallerthan b , then it is enumerated serially using awhile loop,
accumulating the resultr as it goes.

The remainder of this section describes in detail the desugaring of generator lists and expressions with generators into
invocations of thegenerate and join methods of the generators in the generator list. It then outlines how method
overloading may be used to specialize the behavior of particular combinations of generators and reductions.

32.8.1 Simple Desugaring of Expressions with Generators

Each expression with generators is desugared into the following general form:

wrapper(fn ()⇒ T JR,⊞K[ gs ]body)

where the desugaring must provide appropriate instantiations ofwrapper , body , and the reduction static parameters,
R and⊞ . A simple and easily-understood desugaring “T JR,⊞K[ gs ]body ” for generator lists is shown in Figure 32.1.

The desugaring ofGeneratorListtakes three parameters: a block of static parameters,R and ⊞ , the actual gener-
ator list (which we enclose in square brackets), and thebody expression which should be used. Here and in sub-
sequent desugarings,v in v ← g can stand either for a single variable or for a tuple of variables. We convert the
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expr type wrapper body JR,⊞K
∑

gs

e R
∑

e JR,+K

lv := e, gs () noReduction lv := e JNoReduction,⊕K
〈 e | gs 〉 ListJEK closeList singletonOpen(e) JOpenList,++K

Figure 32.2: Desugaring of expressions with generators. Top to bottom: big operators (here
∑

is used as an ex-
ample; the appropriate library function is called on the right-hand side), assignments, and comprehensions (here list
comprehensions are shown; with the exception of array comprehensions, other comprehensions are similar to list
comprehensions).

providedGeneratorListinto a nested series of calls togenerate . For example, when we perform the desugaring
T JZ64,+K[x← xs , y ← ys , x 6= y](x · y) we obtain the following code:

xs.generateJZ64,+K(fn x⇒
ys.generateJZ64,+K(fn y ⇒

if x 6= y then (x · y) else IdentityJ+K end))

Some example desugarings of expressions with generators are shown in Figure 32.2 for big operators, assignments,
and list comprehensions (set and multiset comprehensions are similar to list comprehensions).

The simplest desugarings are the ones for big operators suchas
∑

. The type of the traversal corresponds to the type
of the result. The body expression used is exactly the body expression of the big operator. The wrapper function is
named by the big operator itself. For example, the

∑

operator has the following declaration:

opr
∑JR extends CommutativeMonoidJR,+KK(rhs : ()→ R):R = rhs()

Assignments desugar in a manner similar to big operators. However, they make use of the specialNoReduction type,
which is a singleton type which extendsCommutativeMonoidJNoReduction,⊕K . We can think ofNoReduction
as composing the writes of the assignments in parallel. The wrappernoReduction is defined as follows:

noReduction(rhs : ()→ NoReduction): () = do

rhs()
()

end

Lists also desugar in a similar way. The desugaring given in Figure 32.2 makes use of theOpenList type—such a list
is constructed with an updatable tail cell, permitting partially-constructed lists to be appended in constant time using
the++ (DOUBLEPLUS) operator. ThecloseList operation converts the result into an ordinary non-updatable list.

An array comprehension simply desugars into a factory function call and a series of assignments:

[ i1 = e1 | gs1
i2 = e2 | gs2
. . .
in = en | gsn ]

−→

do a = array()
a[i1] := e1, gs1
a[i2] := e2, gs2
. . .
a[in] := en, gsn

a
end

The desugaring of afor loop depends upon the set of reduction variables. We conceptually desugar thefor loop
with reduction variables,r1, r2, . . ., rn, reduced using the reduction operator⊕ for type (T1, T2, . . . Tn) as follows:

for gs do block end

−→
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(r1, r2, . . . rn) ⊕= T J(T1, T2, . . . Tn),⊕K[gs ] (do
(r1, r2, . . . rn) : (T1, T2, . . . Tn) := IdentityJ⊕K
block

(r1, r2, . . . rn)
end)

In practice, a tuple type is not a monoid. If there is only one reduction variable, this is not a problem. If there are no
reduction variables, we simply use the typeNoReduction used in desugaring assignments. When there are multiple
reduction variables, we use nested applications of types extending the traitReductionPair. These types encode
the common properties of the variables being reduced. Recall that every reduction variable must at least have type
Monoid , so it is not difficult to guarantee thatReductionPair itself also extendsMonoid.

32.8.2 Accounting for Dependencies among Generators

The naive desugaring for generator lists in Figure 32.1 assumes there are always data dependencies among generators.
The actual desugaring makes use of thejoin method in theGenerator trait to group together generators that have
no data dependencies. The goal is to permit library code to define more efficient merged generators for generator
pairs. For example, it is possible for thejoin method to take the generator listi← 1 # 100, j ← 2 # 200 and generate
a blocked two-dimensional traversal. This could then be joined with k ← 3 # 300 to obtain a three-dimensional
blocked traversal.

However, most generators will simply make use of the defaultdefinition of join which callsSimplePairGenerator :

object SimplePairGeneratorJA,B K(outer : GeneratorJA K, inner : GeneratorJB K)
extends GeneratorJ (A,B) K

size : Z64 = outer .size · inner .size
generateJR extends MonoidJR,⊕ K, opr ⊕ K(body : (A,B)→ R) :R =

outer .generate(fn (a : A)⇒ inner .generate(fn (b : B)⇒ body(a, b)))
joinJN K(other : GeneratorJN K) : GeneratorJ ((A,B), N) K =

SimpleMapGenerator(outer .join(inner .join(other)),
(fn (a, (b, n))⇒ ((a, b), n)))

end

Note howSimplePairGenerator itself overrides thejoin method. When we attempt to join an existing pair of joined
generators, we first attempt tojoin the inner generator of the pair with theother generator (the new innermost
generator) passed in. This means that every generator will have the opportunity to combine with both its left and right
neighbors if neither has a dependency which prevents it. Note that we use aSimpleMapGenerator , which simply
applies a function to the result of another generator, to re-nest the tuples produced by the nestedjoin operation.

Which pairs of adjacent traversals are combined usingjoin ? This question is complicated by examples such as
i← 1 : 100, j ← 1 : 100, k ← i : 100, l← j : 100 . We can either combinei and j traversals, or we can combinej
andk traversals. In the former case we can also combinek and l traversals. The Fortress compiler is free to choose
any grouping subject to the following constraints:

• Two generators may not be combined usingjoin if the second is data dependent upon the first.

• Generator order must be preserved when invokingjoin .

• When a chain of three or more generators is joined, the traversals must be combined left-associatively.

We can obtain a simple greedy desugaring which joins together traversals in accordance with the above rules by simply
adding the following desugaring rule which takes precedence over those given in Figure 32.1 when each variable bound
in v1 does not occur free ing2.

T JR,⊞K[ v1 ← g1, v2 ← g2, gs ] body = T JR,⊞K[ (v1, v2)← g1.join(g2), gs ] body
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32.8.3 Using Overloading to Adapt Generators and Traversals

Overloaded instances of thegenerate method can be used to adapt a generator to the particular properties of the re-
duction being performed. For example, a commutative monoidneed only maintain a single variableresult containing
the reduced value so far:

value object BlockedRange(lo: Z64, hi : Z64, b: Z64) extends GeneratorJZ64K
. . .
generateJR extends CommutativeMonoidJR,⊕K, opr ⊕K(body : Z64→ R) : R = do

result : R = IdentityJ⊕K
traverse(l, u) =

if u− l + 1 ≤ max(b, 1) then
i : Z64 = l
while i ≤ u do

t = body(i)
atomic result := result ⊕ t
i += 1

end

()
else

mid = ⌈l/2⌉+ ⌊u/2⌋
(traverse(l,mid), traverse(mid + 1, u))
()

end

traverse(lo, hi)
result

end

end

The choice of whether to apply this transformation is left upto the author of the generator; when many iterations run
in parallel theresult variable becomes a scalability bottleneck and this technique should not be used.

Various other properties of the reduction operator can be exploited:

• Idempotent reductions permit redundant computation. For example, when computing the maximum element of
a set it might be simpler to enumerate set elements more than once.

• On the other hand, sometimes a more efficient non-idempotentoperator can be used for a reduction if the
generator promises never to produce duplicates—this fact can be used to advantage in set, multiset, or map
comprehensions.

• If the reduction operator has a zero, this can be used to exit early from a partial computation. This requires that
the body expression have no visible side effects such as writes orio actions.

At the moment, the author of aGenerator is responsible for taking advantage of opportunities such as these. In
future, we expect some standardized support for efficient versions of various traversals based on experience with the
definitions provided here.

32.8.4 Making a Serial Version of a Generator or Distribution

A generatorg can be made sequential simply by calling the builtin function sequential as follows:

v ← sequential(g)
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Several builtin generators (such as those for array indices) have an associated distribution. For these generators,
sequential function simply re-distributes the underlying object as follows:

sequential(r) = Sequential.distribute(r)

As a convenient shorthand, thesequential function is also defined to work for distributions themselves. The complete
signature for the overloadings ofsequential is as follows:

sequentialJE K(g : GeneratorJEK) : GeneratorJEK
sequentialJE K(d : Distribution) : Distribution

The sequential function has special meaning to the Fortress implementation; there is no need to distinguish reduction
variables in loops for which generator is surrounded by a direct call tosequential .

Note that at the moment there is no way to tell the compiler forperformance reasons that we really mean it when
we ask for sequentiality, as opposed to saying that we shouldpreserve sequential semantics. Future versions of this
specification may use theLocal distribution for this purpose, or provide additional functions on generators which
guarantee serial execution (rather than simply providing sequential semantics).
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Chapter 33

Overloaded Functional Declarations

Fortress allows multiple functional declarations to be in scope of a particular program point. We call this overloading.
Chapter 15 describes how to determine which overloaded declarations are applicable to a particular functional call,
and when several are applicable, how to select the most specific one among them. In this chapter, we give a set of
restrictions on overloaded declarations that guarantee there exists a most specific declaration for any given functional
call. These rules are complicated by the presence of coercion, which may enlarge the set of declarations that are
applicable to a functional call, as discussed in Chapter 17.

33.1 Principles of Overloading

Fortress allows multiple functional declarations of the same name to be declared in a single scope. However, recall
from Chapter 7 the following shadowing rules:

• dotted method declarations shadow top-level function declarations with the same name, and

• dotted method declarations provided by a trait or object declaration shadow functional method declarations with
the same name that are provided by a different trait or objectdeclaration.

Also, note that a trait or object declaration must not have a functional method declaration and a dotted method dec-
laration with the same name, either directly or by inheritance. Therefore, top-level functions can overload with other
top-level functions and functional methods, dotted methods with other dotted methods, and functional methods with
other functional methods and top-level functions.

Overloading functional declarations allows the benefits ofpolymorphic declarations. However, with these benefits
comes the potential for ambiguous calls at run time. Fortress places restrictions on thedeclarationsof functionals to
eliminate thepossibilityof ambiguous call at run time, whether or not these calls actually appear in the program.

Furthermore, these restrictions are checked statically. In fact, the restrictions on overloading in Fortress allow the com-
piler to identify the statically most specific declaration for a particular call. Therefore an implementation strategymay
be used in which the statically most specific declaration is identified statically, and the runtime dispatch mechanism
need only consider dispatching among that declaration plusdeclarations that are more specific than that declaration
(proof of this is given in Section B.2).

Rather than describe the overloadings that are forbidden inFortress, this chapter outlines several criteria for valid
functional overloading. At any given program point, there may be a set of overloaded declarations that are in scope.
Fortress determines whether there is a possibility for ambiguous calls from this set by comparing declarations pair-
wise. The following three sections describe the rules to accept a pair of overloaded functional declarations. If a pair
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of overloaded declarations satisfies any one of the three rules, it is considered valid overloading. In addition, the over-
loaded declarations must have static parameters that are identical (up toα-equivalence). Also, valid overloading for
declarations that contain keyword or varargs parameters isdetermined by analyzing the expansion of these declarations
into declarations without such parameters, as described inSection 15.4.

Section 33.2 states theSubtype Rule, which stipulates that the parameter type of one declaration be a subtype of the
parameter type of the other. In this case, there is no possibility of ambiguous calls, because one declaration is more
specific than the other. This section also places a restriction on the return types of the overloaded declarations to ensure
that type safety is not violated. Section 33.3 defines theIncompatibility Rulethat, if satisfied by a pair of declarations,
guarantees that neither declaration is applicable to the same functional call. In Section 33.4, theMore Specific Rule
requires the existence of a declaration that is more specificthan both overloaded declarations in the situation that both
are applicable to a given call.

In the remainder of this chapter we build on the terminology and notation defined in Chapter 15 and Chapter 17.

33.2 Subtype Rule

If the parameter type of one declaration is a subtype of the parameter type of another then there is no possibility
of ambiguous calls because the most specific declaration will be dispatched to. This is the basis of the Subtype
Rule. The Subtype Rule also requires a relationship betweenthe return types of the two declarations. Without such a
requirement, a program may be statically well typed but havea runtime error because the return type of a dynamically
resolved functional is not a subtype of the return type of thestatically resolved functional.

The Subtype Rule for Functions and Functional Methods: Suppose thatf (P) : U andf (Q) : V are two distinct
function or functional method declarations both visible atsome pointZ in a Fortress program (Z need not be the site
of a call). If P ≺ Q andU � V thenf (P) andf (Q) are valid overloadings.

The Subtype Rule for Dotted Methods: Suppose thatP0.f (P) : U andQ0.f (Q) : V are two distinct dotted
method declarations provided by a trait or objectC. If (P0,P) ≺ (Q0,Q) andU � V thenP0.f (P) andQ0.f (Q)
are valid overloadings.

33.3 Incompatibility Rule

The basic idea behind the Incompatibility Rule is that if there is no call to which two overloaded declarations are both
applicable then there is no potential for ambiguous calls. In such a case, we say that the declarations are incompatible.
Without coercion, incompatibility is equivalent to exclusion. However, the presence of coercion complicates the
definition of incompatibility. To formally define incompatibility we first define the following notation. For typesT
andU , we say thatT andU do not share coercions, and writeT ≬ U , if any type that coerces toT excludes any type
that coerces toU :

T ≬ U ⇐⇒ ∀A,B : A→T ∧B→U =⇒ A ♦ B.

We say thatT is incompatible withU , and writeT � U , if T andU exclude, reject each other, and do not share
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coercions:

T � U ⇐⇒ T ♦ U ∧ T−〉 U ∧ U−〉 T ∧ T ≬ U
⇐⇒ T ♦ U

∧ (∀A : A→T =⇒ A ♦ U)

∧ (∀B : B→U =⇒ B ♦ T )

∧ (∀A,B : A→T ∧B→U =⇒ A ♦ B)

Note that ifT � U then no type is substitutable for bothT andU .

The Incompatibility Rule for Functions and Functional Meth ods: Suppose thatf (P) andf (Q) are two distinct
function or functional method declarations both visible atsome pointZ in a Fortress program (Z need not be the site
of a call). If P � Q thenf (P) andf (Q) are valid overloadings.

The Incompatibility Rule for Dotted Methods: Suppose thatP0.f (P) andQ0.f (Q) are two distinct dotted method
declarations provided by a trait or objectC. If P � Q thenP0.f (P) andQ0.f (Q) are valid overloadings.

33.4 More Specific Rule

If neither the Subtype Rule nor the Incompatibility Rule holds for a pair of overloaded declarations then they may
still be valid overloadings if the More Specific Rule is satisfied. The More Specific Rule requires that for any two
declarations there exists a third applicable declaration that is at least as specific as both.

This rule is complicated by the fact that functions and functional methods can overload. Recall that functional methods
can be viewed semantically as top-level functions, as described in Section 9.2. However, treating functional methods
as top-level functions for determining valid overloading is too restrictive. In the following example:

trait Z
opr −(self): Z

end

trait R
opr −(self): R

end

if the functional methods were interpreted as top-level functions then this program would define two top-level functions
with parameter typesZ and R . These declarations would be statically rejected as invalid overloadings because there
is no relation betweenZ andR ; another trait may extend them both without declaring its own version of the functional
method which may lead to an ambiguous call at run time. To allow such overloading, we define different restrictions
on overloaded function declarations and overloaded functional method declarations. When function and functional
method declarations are overloaded, the more restrictive rule for function declarations is used. This rule follows.

The More Specific Rule for Functions and Functional Methods: Suppose thatf (P) andf (Q) are two function
or functional method declarations both visible at some point Z in a Fortress program (Z need not be the site of a call)
such that neitherP norQ is a subtype of the other andP andQ are not incompatible with one another. LetS be the
set of types thatP defines coercions from andT be the set of types thatQ defines coercions from.f (P) andf (Q) are
valid overloadings if all of the following hold:

• eitherP ♦ Q or there is a declarationf (P ∩Q) visible atZ, and

• eitherP ⊳ Q or Q ⊳ P or for all P ′ ∈ S andQ ′ ∈ T one of the two conditions holds:
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– P ′ ♦ Q ′, or

– there is a declarationf (P ′ ∩Q ′) visible atZ.

Recall thatP ∩ Q is the intersection of typesP andQ as defined in Section 8.8. If for some typeS we haveS � P
andS � Q thenS � (P ∩ Q), but it’s not necessarily the case thatS = (P ∩ Q) since another type may be more
specific than bothP andQ. For example, suppose the following:

trait S comprises {U, V } end
trait T comprises {V,W} end
trait U extends S excludes W end

trait V extends {S, T} end
traitW extends T end

f(s :S) = 1
f(t :T ) = 1
f(v :V ) = 1

Because of thecomprises clauses ofS andT and theexcludes clause ofU , any subtype of bothS andT must be
a subtype ofV . Thus,V = S ∩ T , and the declarationf(V ) “disambiguates”f(S) andf(T ), i.e., it is applicable to
and more specific for any call to which bothf(S) andf(T ) are applicable.

This requirement should not be difficult to obey, especiallybecause the compiler can give useful feedback. First
example:

foo(x : Number, y : Z64) = . . .
foo(x : Z64, y : Number) = . . .

Assuming thatZ64≺ Number , the compiler reports that these two declarations are a problem because of ambiguity
and suggests that a new declaration forfoo(Z64,Z64) would resolve the ambiguity. Second example:

bar(x : Printable) = . . .
bar(x : Throwable) = . . .

Assuming thatPrintable andThrowable are neither comparable by the subtyping relation nor disjoint, the compiler
reports that these two declarations are a problem becausePrintable and Throwable are incomparable but possibly
overlapping types. As a result, these two declarations are statically rejected.

The More Specific Rule for Dotted Methods: Suppose thatP0.f (P) andQ0.f (Q) are two dotted method declara-
tions provided by a trait or objectC such that neither(P0,P) nor (Q0,Q) is a subtype of the other andP andQ are
not incompatible with one another. LetS be the set of types thatP defines coercions from andT be the set of types
thatQ defines coercions from.P0.f (P) andQ0.f (Q) are valid overloadings if all of the following hold:

• eitherP ♦ Q or there is a declarationR0.f (P ∩Q) provided byC with R0 � (P0 ∩Q0), and

• eitherP ⊳ Q or Q ⊳ P or for all P ′ ∈ S andQ ′ ∈ T one of the two conditions holds:

– P ′ ♦ Q ′, or

– there is a declarationR0.f (P ′ ∩Q ′) provided byC with R0 � (P0 ∩Q0).

Unlike for functions and functional methods, the More Specific Rule for dotted methods only applies to dotted methods
that are provided by the same trait or object. This is possible because two dotted methods are applicable to a given
call A0.f(A) only if they are both provided by the trait or objectA0. This is not the case for functional methods as the
following rule shows.
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The More Specific Rule for Functional Methods: Suppose thatf (P) andf (Q) are two functional method decla-
rations occurring in trait or object declarations such thatneitherP nor Q is a subtype of the other andP andQ are
not incompatible with one another. Letf (P) andf (Q) have self parameters ati andj respectively. Also, letS be the
set of types thatP defines coercions from andT be the set of types thatQ defines coercions from.f (P) andf (Q) are
valid overloadings if all of the following hold:

• i = j

• eitherP ♦ Q or if there exists a trait or objectC that provides bothf (P) andf (Q) thenP 6= Q and there is a
declarationf (P ∩Q) provide byC, and

• eitherP ⊳ Q or Q ⊳ P or for all P ′ ∈ S andQ ′ ∈ T one of the two conditions holds:

– P ′ ♦ Q ′, or

– there is a declarationf (P ′ ∩Q ′) provided byC.

Verifying the More Specific Rule for functional methods can be thought of as a two step process. First there must be no
ambiguity caused by the position of the self parameter. To guarantee this, overloaded declarations with different self
parameter positions must be incompatible with one another.Second, functional method declarations that create the
potential for ambiguity because neither is more specific than the other must be accompanied by a third disambiguating
declaration that is more specific than both. Notice that the second step is similar to the overloading requirements
placed on dotted methods.

33.5 Coercion and Overloading Resolution

The restrictions on overloaded declarations given in this chapter are sufficient to prove the following two facts:

1. If no declaration is applicable to a static call but there is a declaration that is applicable with coercion then there
exists a single most specific declaration that is applicablewith coercion to the static call.

2. If any declaration is applicable to a static call then there exists a single most specific declaration that is applicable
to the static call and a single most specific declaration thatis applicable to the corresponding dynamic call.

Moreover, we can prove that the most specific declaration that is applicable to a dynamic call is more specific than the
most specific declaration that is applicable to the corresponding static call.

Appendix B formally proves that the restrictions discussedin the previous sections guarantee the static resolution
of coercion (described in Section 17.5) is well defined for functions (the case for methods is analogous). Also in
Appendix B is a proof that the restrictions placed on overloaded function declarations are sufficient to guarantee no
undefined nor ambiguous calls at run time (again, the case formethods is analogous).
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Chapter 34

Operator Declarations

An operator declaration may appear anywhere a top-level function or method declaration may appear. Operator decla-
rations are like other function or method declarations in all respects except that an operator declaration has the special
reserved wordopr and has an operator name (see Section 16.1 for a discussion ofvalid operator names) instead of
an identifier. The precise placement of the operator name within the declaration depends on the fixity of the operator.
Like other functionals, operators may have overloaded declarations (see Chapter 15 for a discussion of overloading).
These overloadings may be of the same or differing fixities.

Syntax:
OpDecl ::= FnDecl
FnDecl ::= AbsFnDecl

| FnDef
FnDef ::= FnMod∗ FnHeader= Expr
FnHeader ::= OpHeader
OpHeader ::= opr Op [StaticParams] ValParam[IsType] FnClauses

| opr [StaticParams] ValParam Op[IsType] FnClauses
| opr [StaticParams] LeftEncloser ValParams RightEncloser[ := ValParam] [ IsType] FnClauses

An operator declaration has one of seven forms: infix/multifix operator declaration, prefix operator declaration, postfix
operator declaration, nofix operator declaration, bracketing operator declaration, subscripting operator method decla-
ration, and subscripted assignment operator method declaration. Each is invoked according to specific rules of syntax.
An operator method declaration should be a functional method declaration, a subscripting operator method declaration,
or a subscripted assignment operator method declaration.

34.1 Infix/Multifix Operator Declarations

An infix/multifix operator declaration has the special reserved wordopr and then an operator name where a functional
declaration would have an identifier. The declaration must not have any keyword parameters, and must be capable of
accepting at least two arguments. It is permissible to use a varargs parameter; in fact, this is a good way to define
a multifix operator. Static parameters (described in Chapter 11) may also be present, between the operator and the
parameter list.

An expression consisting of an infix operator applied to an expression will invoke an infix/multifix operator declaration.
The compiler considers all infix/multifix operator declarations for that operator that are both accessible and applicable,
and the most specific operator declaration is chosen according to the usual rules for overloaded functionals. If the
expression is actually multifix, the invocation will pass more than two arguments.
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An infix/multifix operator declaration may also be invoked bya prefix or nofix (but not a postfix) operator application
if the declaration is applicable.

Note that superscripting (ˆ ) may be defined using an infix operator declaration even though it has very high precedence
and cannot be used as a multifix operator. (An operator declaration for superscripting should have exactly two value
parameters.)

Example:

opr MAXJT extends RationalK(x :T, y :T ) :T = if x > y then x else y end

34.2 Prefix Operator Declarations

A prefix operator declaration has the special reserved wordopr and then an operator name where a functional declara-
tion would have an identifier. The declaration must have one value parameter, which must not be a keyword parameter
or varargs parameter. Static parameters may also be present, between the operator and the parameter list.

An expression consisting of a prefix operator applied to an expression will invoke a prefix operator declaration. The
compiler considers all prefix and infix/multifix operator declarations for that operator that are both accessible and
applicable, and the most specific operator declaration is chosen according to the usual rules for overloaded functionals.

Example:

opr ˜(x :Widget) :Widget = x.invert()

34.3 Postfix Operator Declarations

A postfix operator declaration has the special reserved wordopr where a functional declaration would have an iden-
tifier; the operator name itselffollows the parameter list. The declaration must have one value parameter, which must
not be a keyword parameter or varargs parameter. Static parameters may also be present, between the special reserved
word opr and the parameter list.

An expression consisting of a postfix operator applied to an expression will invoke a postfix operator declaration. The
compiler considers all postfix operator declarations for that operator that are both accessible and applicable, and the
most specific operator declaration is chosen according to the usual rules for overloaded functionals.

Example:

opr (n : Integer)! =
∏

[i← 1 :n]i (∗ factorial∗)

34.4 Nofix Operator Declarations

A nofix operator declaration has the special reserved wordopr and then an operator name where a functional decla-
ration would have an identifier. The declaration must have noparameters.

An expression consisting only of a nofix operator will invokea nofix operator declaration. The compiler considers all
nofix and infix/multifix operator declarations for that operator that are both accessible and applicable, and the most
specific operator declaration is chosen according to the usual rules for overloaded functionals.

Uses for nofix operators are rare, but those rare examples arevery useful. For example, the colon operator is used to
construct subscripting ranges, and it is the nofix declaration of : that allows a lone: to be used as a subscript:

opr : () = ImplicitRange
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34.5 Bracketing Operator Declarations

A bracketing operator declaration has the special reservedword opr where a functional declaration would have an
identifier. The value parameter list, rather than being surrounded by parentheses, is surrounded by the brackets being
defined. A bracketing operator declaration may have any number of parameters, keyword parameters, and varargs
parameters in the value parameter list. Static parameters may also be present, between the special reserved wordopr

and the parameter list. Any paired Unicode brackets may be sodefinedexceptordinary parentheses and white square
brackets.

An expression consisting of zero or more comma-separated expressions surrounded by a bracket pair will invoke a
bracketing operator declaration. The compiler considers all bracketing operator declarations for that type of bracket
pair that are both accessible and applicable, and the most specific operator declaration is chosen according to the usual
rules for overloaded functionals. For example, the expression 〈p, q〉 might invoke the following bracketing method
declaration:

(∗ angle bracket notation for inner product∗)
opr 〈x : Vector, y : Vector〉 =

∑

[i← x.indices ]xi · yi

(∗ vector space norm (may not be the most efficient)∗)
opr ‖x : Vector‖ = sqrt〈x, x〉

34.6 Subscripting Operator Method Declarations

A subscripting operator method declaration has the specialreserved wordopr where a method declaration would
have an identifier. The value parameter list, rather than being surrounded by parentheses, is surrounded by a pair of
brackets. A subscripting operator method declaration may have any number of value parameters, keyword parameters,
and varargs parameters in that value parameter list. Staticparameters may also be present, between the special reserved
word opr and the parameter list. Any paired Unicode brackets may be sodefinedexceptordinary parentheses and
white square brackets; in particular, the square brackets ordinarily used for indexing may be used.

An expression consisting of a subexpression immediately followed (with no intervening whitespace) by zero or more
comma-separated expressions surrounded by brackets will invoke a subscripting operator method declaration. Methods
for the expression preceding the bracketed expression listare considered. The compiler considers all subscripting op-
erator method declarations that are both accessible and applicable, and the most specific method declaration is chosen
according to the usual overloading rules. For example, the expressionfoop might invoke the following subscripting
method declaration because expressions in the square brackets are rendered as subscripts:

(∗ subscripting method∗)
opr [x : BizarroIndex] = self.bizarroFetch(x)

34.7 Subscripted Assignment Operator Method Declarations

A subscripted assignment operator method declaration has the special reserved wordopr where a method declaration
would have an identifier. The value parameter list, rather than being surrounded by parentheses, is surrounded by a
pair of brackets; this is then followed by the operator:= and then a second value parameter list in parentheses, which
must contain exactly one non-keyword value parameter. A subscripted assignment operator method declaration may
have any number of value parameters within the brackets; these value parameters may include keyword parameters and
varargs parameters. A result type may appear after the second value parameter list, but it must be(). Static parameters
may also be present, between the special reserved wordopr and the first parameter list. Any paired Unicode brackets
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may be so definedexceptordinary parentheses and white square brackets; in particular, the square brackets ordinarily
used for indexing may be used.

An assignment expression consisting of an expression immediately followed (with no intervening whitespace) by zero
or more comma-separated expressions surrounded by brackets, followed by the assignment operator:= , followed by
another expression, will invoke a subscripted assignment operator method declaration. Methods for the expression
preceding the bracketed expression list are considered. The compiler considers all subscript operator method declara-
tions that are both accessible and applicable, and the most specific method declaration is chosen according to the usual
overloading rules. When a compound assignment operator (described in Section 13.8) is used with a subscripting
operator and a subscripted assignment operator, for example a3 += k , both a subscripting operator declaration and
a subscripted assignment operator declaration are required. For example, the assignmentfoop := myWidget might
invoke the following subscripted assignment method declaration:

(∗ subscripted assignment method∗)
opr [x : BizarroIndex] := (newValue :Widget) = self.bizarroInstall(x,newValue)

34.8 Conditional Operator Declarations

A conditional operatoris a binary operator (other than ‘: ’) that is immediately followed by ‘: ’; see Section 16.6.
A conditional operator expressionx@ : y is syntactic sugar forx@(fn ()⇒ y) ; that is, the right-hand operand is
converted to a “thunk” (zero-parameter function) that thenbecomes the right-hand operand of the corresponding
unconditional operator. Therefore a conditional operatoris simply implemented as an overloading of the operator that
accepts a thunk.

It is also permitted for a conditional operator to have a preceding as well as a following colon. A conditional operator
expressionx : @ : y is syntactic sugar for(fn ()⇒ x)@(fn ()⇒ y) ; that is, each operand is converted to a thunk.
This mechanism is used, for example, to define the results-comparison operator: ∼: , which takes exceptions into
account.

The conditional∧ and∨ operators for boolean values, for example, are implementedas methods in this manner:

opr ∧(self, other : Boolean) = if self then other else false end

opr ∧(self, other : ()→ Boolean) = if self then other() else false end

opr ∨(self, other : Boolean) = if self then true else other end

opr ∨(self, other : ()→ Boolean) = if self then true else other() end

34.9 Big Operator Declarations

A big operatorsuch as
∑

or
∏

is declared as a usual operator declaration. See Section 32.8.1 for an example
declaration of a big operator. A big operator application iscalled areduction expressionand described in Section 13.18.
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Chapter 35

Dimensions and Units Declarations

Syntax:
DimUnitDecl ::= dim Id [ = DimRef] [ default Unit]

| ( unit | SI unit ) Id+ [ : DimRef] [ = Expr]
| dim Id [ = DimRef] ( unit | SI unit ) Id+ [ = Expr]

35.1 Dimensions Declarations

Dimensions may be explicitly declared; every declared dimension must be declared at the top level of a program
component, not within a block expression or trait. Other dimensions may be constructed by multiplying and dividing
other dimensions, as described in Chapter 18. An explicitlydeclared dimension may be abase dimension(with no
definition specified) or aderived dimension(with a definition specified in the form of an initialization expression).

The set of all dimensions has the algebraic structure of a free abelian group. The identity element of this group is the
dimensionUnity , which represents dimensionlessness.

For every two dimensionsD andE , there is a dimensionDE (which may also be writtenD · E ), corresponding to
the product of the dimensionsD andE and a dimensionD/E , corresponding to the quotient of the dimensionsD

andE . The syntactic sugar1/D is equivalent toUnity/D for all dimensionsD . A dimension can be raised to a
rational power where both the numerator and the denominatorof the rational power must be a validnat parameter
instantiation (as described in Section 11.2);D0 is the same asUnity , D1 is the same asD , andDm+n is the same
asDmDn . The syntactic sugarD−n is the same asUnity/Dn .

Here are some examples of base dimension declarations:

dim Length
dim Mass
dim Time
dim ElectricCurrent

Here are some examples of computed dimensions:

Length/Time
Velocity/Time
Length ·Mass/Time2

Length Mass Time−2

ElectricCurrent/Length2
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and here some of these computed dimensions are given names through the use of derived dimension declarations:

dim Velocity = Length/Time
dim Acceleration = Velocity/Time

dim CurrentDensity = ElectricCurrent/Length2

35.2 Units Declarations

Every unit belongs to exactly one dimension, which is the type of the unit. A dimension may have more than one unit,
but one of these units may be singled out as thedefault unitfor that dimension by adding adefault clause:

dim Length default meter
dim Mass default kilogram
dim Time default second

The default unit is used when a numerical type is multiplied by a dimension to produce a new type (see Chapter 18).
If no default clause is specified for a base dimension, then ithas no default unit. If no default clause is specified for a
derived dimension, then it has a default unit if and only if all the dimensions mentioned in its initialization expression
have defaults, in which case its default unit is calculated using the initialization expression with each dimension
replaced by its default unit.

Some units are explicitly declared; every declared unit must be declared at the top level of a program component,
not within a block expression or trait. Other units may be constructed by multiplying and dividing other units. An
explicitly declared unit may be abase unit(with no definition specified) or aderived unit(with a definition specified
in the form of an initialization expression).

The set of all units, like the set of all dimensions, has the algebraic structure of a free abelian group. The identity
element of this group is the unitdimensionless , of dimensionUnity . Note that there may be other units of dimension
Unity , such asradian and steradian, but only dimensionless is the identity of the group of all units. (Note that
there is a straightforward homomorphism of units onto dimensions, wherein every unit is mapped to its dimension.)

Here are some examples of base unit declarations:

unit meter : Length
unit kilogram : Mass
unit second : Time
unit ampere : ElectricCurrent

Here are some examples of computed units:

meter/second
(meter/second)/second

meter · kilogram/second2

meter kilogram second−2

ampere/meter2

and here some computed units are given names through the use of derived unit declarations:

unit newton: Force = meter · kilogram/second2

unit joule: Energy = newton meter
unit pascal: Pressure = newton/meter2

In the preceding examples, the initialization expression for each unit is itself a unit. It is also permitted for the
initialization expression to be a dimensioned numerical value, in which case the unit being declared is related to the
unit of the dimensioned numerical value by a numerical conversion factor.
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As with an ordinary variable declaration, one may omit the dimension for a unit if there is an initialization expression;
the dimension of the declared unit is the dimension of the unit of the expression.

Every unit can be reduced to a canonical value as follows. A base unit is multiplied by the value1 ; a unit parameter
is multiplied by the value1 ; a defined unit is replaced by its initialization expressionand then every unit in that
expression is replaced by its canonical form; and finally allarithmetic is performed so as to reduce the units to a single
unit and the numerical values to a single numerical value. A dimensioned value with unitU is convertible by the
in operator to a value with unitV if the canonical values forU andV have the same unit; the conversion involves
multiplying the numerical value by the ratio of the numerical value of the canonical form ofV to the numerical value
of the canonical form ofU .

For example, given the declarations:

dim Length
unit meter: Length; unit meters = meter
unit kilometer: Length = 103meter; unit kilometers = kilometer
unit inch: Length = 2.54× 10−2meter; unit inches = inch
unit foot: Length = 12 inch; unit feet = foot
unit mile: Length = 5280 foot; unit miles = mile

then one can say3 miles in kilometers and thein operator will multiply the numerical value3 by the amount of
((2.54× 10−2)(12)(5280)/103) , or 25146/15625 .

Notice the subtle difference between these two declarations:

unit radian = meter/meter
unit radian = 1 meter/meter

The first declaration definesradian to be equivalent todimensionless , and so a value with unitradian can be used
anywhere a dimensionless value can be used, and vice versa. The second declaration definesradian to be convertible
to dimensionless but not equivalent, and so it is necessary to use thein operator (or multiplication and division by
radian) to convert between values in radians and truly dimensionless values.

35.3 Abbreviating Dimension and Unit Declarations

For convenience, three forms of syntactic sugar are provided when declaring dimensions and units. First, in aunit

declaration one may mention more than one name before the colon, and the extra names are defined to be synonyms
for the first name; thus

unit foot feet ft: Length

means exactly the same thing as

unit foot: Length
unit feet: Length = foot
unit ft: Length = foot

Second, instead of the reserved wordunit one may use the reserved wordSI unit , which has the effect of defining
not only the specified names but also names with the various SIprefixes attached. If more than one name is specified,
then the last name is assumed to be a symbol and has symbol prefixes (such asM and n) attached; all other names
have the full prefixes (such asmega andnano) attached. Thus

SI unit name1 name2 name3: . . .

may be regarded as an abbreviation for
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unit name1 name2 name3: . . .
unit yottaname1 yottaname2 Yname3 = 1024name1
unit zettaname1 zettaname2 Zname3 = 1021name1
unit exaname1 exaname2 Ename3 = 1018name1
unit petaname1 petaname2 Pname3 = 1015name1
unit teraname1 teraname2 Tname3 = 1012name1
unit giganame1 giganame2 Gname3 = 109name1
unit meganame1 meganame2 Mname3 = 106name1
unit kiloname1 kiloname2 kname3 = 103name1
unit hectoname1 hectoname2 hname3 = 102name1
unit dekaname1 dekaname2 daname3 = 10name1
unit deciname1 deciname2 dname3 = 10−1name1
unit centiname1 centiname2 cname3 = 10−2name1
unit milliname1 milliname2 mname3 = 10−3name1
unit microname1 microname2 µname3 = 10−6name1
unit nanoname1 nanoname2 nname3 = 10−9name1
unit piconame1 piconame2 pname3 = 10−12name1
unit femtoname1 femtoname2 fname3 = 10−15name1
unit attoname1 attoname2 aname3 = 10−18name1
unit zeptoname1 zeptoname2 zname3 = 10−21name1
unit yoctoname1 yoctoname2 yname3 = 10−24name1

whereµ is the Unicode character U+00B5 MICRO SIGN. Third, adim declaration and aunit or SI unit declara-
tion may be collapsed into a single declaration by writing the unit or SI unit declaration in place of thedefault
clause in thedim declaration and omitting the colon and dimension from theunit declaration. Thus

dim Length SI unit meter meters m
dim Power = Energy/Time SI unit watt watts W = joule/second

is understood to abbreviate

dim Length default meter; SI unit meter meters m: Length
dim Power = Energy/Time default watt; SI unit watt watts W: Power = joule/second

In this way the names of the seven SI base units, along with allpossible plural and prefixed forms, may be concisely
defined as follows:

dim Length SI unit meter meters m
dim Mass default kilogram; SI unit gram grams g: Mass
dim Time SI unit second seconds s
dim ElectricCurrent SI unit ampere amperes A
dim Temperature SI unit kelvin kelvins K
dim AmountOfSubstance SI unit mole moles mol
dim LuminousIntensity SI unit candela candelas cd

Note the subtle difference in the declaration ofMass that allows the default unit to bekilogram rather thangram.

35.4 Absorbing Units

Syntax:
StaticParam ::= Id [Extends] [ absorbs unit ]

| unit Id [ : DimRef] [ absorbs unit ]
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The declaration of a type parameter or aunit parameter for a parameterized trait may contain a clause “absorbs unit ”;
at most one static parameter of a trait may have this clause. An instance of a parameterized trait with a static parameter
that “absorbs unit ” may be multiplied or divided by a unit, the result being another instance of that parameterized
trait in which the static argument corresponding to the unit-absorbing parameter has been multiplied or divided by the
unit.

A few examples should make this clear. Given the declaration

trait VectorJEltType extends Number absorbs unit, nat lenK . . . end

then VectorJFloat, 3Kmeter means the same asVectorJFloat meter, 3K , and VectorJFloat, 3K/second means the
same asVectorJFloat/second, 3K . Similarly, given the declaration

trait FloatJunit U absorbs unit, nat e, nat sK . . . end

then FloatJmeter, 11, 53K/second means the same asFloatJmeter/second, 11, 53K , and

FloatJdimensionless, 8, 24Kmeter kilogram/second2

means the same as

FloatJdimensionless meter kilogram/second2, 8, 24K ,

which is the same as

FloatJmeter kilogram/second2, 8, 24K .

This is the mechanism by which meaning is given to the multiplication and division of library-defined types by units.
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Chapter 36

Support for Domain-Specific Languages

To support syntax for domain-specific languages, and to allow the Fortress language to grow with time, programmers
can extend the basic syntax of Fortress in their programs. Such extensions are possible through the use ofsyntax
expanders. Syntax expanders must be defined in the top level of a simple component.

36.1 Definitions of Syntax Expanders

Syntax:
Decl ::= ExternalSyntax
ExternalSyntax ::= syntax OpenExpander Id CloseExpander= Expr
OpenExpander ::= Id | LeftEncloser
CloseExpander ::= Id | RightEncloser| end

The definition of a syntax expander starts with the special reserved wordsyntax , followed by anopening delimiter,
followed by acontents parameter, followed by aterminating delimiter, followed by an= , and a subexpression. The
opening delimiter must be either an identifier or the openingmember of an enclosing operator. The contents parameter
must be an identifier (see Section 5.15). The terminating delimiter must be either an identifier, the terminating member
of an enclosing operator, or the special reserved wordend . If either the opening delimiter or the closing delimiter is
part of an enclosing operator, the opening and closing delimiters must both be parts of enclosing operators, and they
must match, or it is a static error. Because delimiters conceptually delimit blocks, just asdo and end delimit blocks,
delimiters of syntax expanders are rendered as special reserved words. The subexpression of a syntax expander has
type Fortress.Ast.SyntaxTree . This SyntaxTree must be that of a Fortress expression. Here is an example:

syntax sql e end = parseSQL(e)

where parseSQL is a function that takes an argument of typeFortress.Lang.SourceAssembly (a sequence of
Unicode characters and abstract syntax trees), interpretsit as an SQL query, and returns an expression with type
SyntaxTree consisting of constructor calls to SQL syntax nodes (definedin some SQL library).

At a use site, all characters between the opening delimiter and the terminating delimiter are turned into aSourceAssembly
(see Section 36.4 for a more detailed description of how thisconversion is achieved). The resultingSourceAssembly
is bound to the contents parameter of the syntax expander. The use site is then expanded by evaluating the body of the
expander. Every use site of a syntax expander must occur in anexpression context, or it is a static error.

For example, we could defineparseSQL so that a use site such as:
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sql

SELECT spectral class FROM stars

end

would be expanded into the following FortressSyntaxTree:

Call(Empty,
List(VarRef(Identifier(“SqlQuery ”)),

Call(Empty,
List(VarRef(Identifier(“Select ”)),

String(“spectral_class ”))),
Call(Empty,

List(VarRef(Identifier(“From”)),
String(“stars ”)))))

(The Empty lists passed toCalls are the lists of static parameters to these calls). Note that this SyntaxTree corre-
sponds to the following Fortress concrete syntax:

SqlQuery(Select(“spectral_class ”),From(“stars ”))

36.2 Declarations of Syntax Expanders

Syntax:
AbsDecl ::= AbsExternalSyntax
AbsExternalSyntax ::= syntax OpenExpander Id CloseExpander

A declarationof a syntax expander is syntactically identical to the definition of a syntax expander, except that=
and the body of the expander (i.e., the expression followingthe = sign in an expander definition) are elided. Syntax
expander declarations must occur only in APIs. A component that exports an APIA must provide, for each syntax
expander declarationd in A, a syntax expander definition with a header identical tod.

36.3 Restrictions on Delimiters

Consider the setS of syntax expander declarations imported by a component or API B, along with the syntax ex-
panders defined or declared inB directly. Every expander inS must have a distinct opening delimiter, or it is a static
error. Moreover, the terminating delimiter of each syntax expander must be distinct from every opening delimiter of
every syntax expander inS, or it is a static error.

36.4 Processing Syntax Expanders

In a given component, only syntax expander declarations appearing in APIs imported by the component may be used.
A component exporting an APIA that includes a syntax expander must not import APIs that arenot also imported by
A, or it is a static error. This restriction ensures that all names in scope of the definition of the syntax expander are also
in scope of any component importing the syntax expander inA. Additionally, all use sites of a syntax expander must
occur in simple components other than the defining component. Furthermore, multiple components containing syntax
expanders must not be cyclically linked. These restrictions avoid pathologies with nontermination during expansion.
Finally, to maintain proper separation of test code, a syntax expander definition is statically forbidden from referring
to variables or functions that have modifiertest .
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Because syntax expanders are defined at the top level of program components, and because they are syntactically
distinguished, they can be identified before scanning or parsing (but after ASCII conversion). Use sites are then
identified and expanded before parsing occurs.

Syntax expansion takes a sequence of Unicode characters andyields a sequence of Unicode characters and syntax
trees, where all the syntax expanders have been replaced by syntax trees. This result has typeSourceAssembly .
Syntax expansion proceeds from left to right as follows. First, the source is scanned for opening delimiters of syntax
expanders, stopping at the leftmost one. We call this scanningFortress-source scanning.

If the opening delimiter of a syntax expander is encounteredduring Fortress-source scanning, the source is scanned
rightward until the first occurrence of either an opening delimiter of some syntax expander (possibly another use of the
same expander), or the terminating delimiter of that syntaxexpander, is found. (If no matching terminating delimiter
is found in the remainder of the program, it is a static error.) We call this scanningexpander scanning.

If an opening delimiter is encountered before the terminating delimiter, there is anested use siteof another syntax
expander. The nested use site is processed, and then expander scanning continues rightward of that use site. Thus, the
processing of syntax expanders is recursive, syntax expanders may be nested arbitrarily, and expanders are processed
from the leftmost-innermost occurrence outward and rightward.

When the terminating delimiter is encountered during expander scanning, the scanning is terminated, the resulting
SourceAssembly is bound to the contents parameter of the expander, and then the body of the expander is evaluated.
The result of evaluating this body has typeSyntaxTree, and it is placed into the resultingSourceAssembly in place
of the expander in the scanned source.

36.4.1 Introduced Variable Names

Often, when expanding concrete syntax for a domain-specificlanguage, it is useful to introduce variable binding
constructs into the resultingSyntaxTree. It is required that such bindings, in general, respect the rules of hygiene
and referential transparency [7]. Several aspects of the Fortress semantics allow the library programmer to ensure
referential transparency of syntax expanders:

1. A component exporting an APIA that includes a syntax expander must not import APIs that arenot also
imported byA.

2. Syntax expanders must expand toSyntaxTrees of expressions.

3. Shadowing of identifiers is not allowed.

Thus, syntax expanders cannot expand into new top-level identifiers. Moreover, provided that the library programmer
is careful to ensure that all top-level identifier references appearing in expanded code are fully qualified identifiers
exported by APIs, all top-level identifiers referred to in the definition of a syntax expander are visible at all use sites.

To ensure hygiene, all variables bound in aSyntaxTree resulting from an expansion are renamed, following the
syntax-case system of Dybvig et al. [9].

36.4.2 Comments and Syntax Expansion

Comments arenot recognized before syntax expansion (the embedded syntax may have its own commenting syntax):
during expander scanning, an opening or terminating delimiter that occurs in what appears to be a Fortress comment
is nonetheless recognized as an opening or terminating delimiter for that expander. Comments can be viewed as uses
of a syntax expander, with special opening and terminating delimiters.
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36.5 Expanders for Fortress

As the above examples demonstrate, it is often useful to denote Fortress abstract syntax using Fortress concrete syntax.
A special set of syntax expanders are defined in the APIFortress.Syntax for every nonterminal in Fortress grammar,
defined in Appendix G. The name of each expander consists of the name of the nonterminal in lowercase. The
terminating symbol for each nonterminal is the special reserved wordend . For example:

expr

x+ y
end

expands to theSyntaxTree:

Call(Empty,
VarRef(Identifier(“+”)),
VarRef(Identifier(“x ”)),
VarRef(Identifier(“y ”)))

When one of these syntax expanders parses a binding construct, the bound identifier is replaced with an identifier
resulting from a call to the functiongensym , which yields an identifier distinct from all other identifiers bound in
any component installed in the same fortress, or in any otherfortress, anywhere, throughout all time past, present, and
future. All variable references captured by the original identifier are replaced with references to the new identifier.

For convenience, a syntax expander with opening delimiter≪ and terminating delimiter≫ behaves identically to
the expr expander whenFortress.Syntax is imported.
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Part V

Fortress APIs and Documentation for
Library Writers
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Chapter 37

Algebraic Constraints

The traits in this component are used to describe propertiesof traits and their associated operators. These traits provide
very few concrete methods, but specify abstract methods andproperty declarations. For this reason, the complete
code for these traits is presented here, rather than just theAPIs.

37.1 Predicates and Equivalence Relations

A predicateis an operator that produces a boolean result. A binary predicate may be identified with a mathematical
relation, where the predicate returnstrue in exactly those cases that its two operands satisfy the relation; therefore we
use the mathematical terminology usually associated with relations to describe the properties of binary predicates.

trait UnaryPredicateJT extends UnaryPredicateJT,∼K, opr ∼K
opr ∼(self): Boolean

end

A unary predicate is a prefix operator that takes one argumentand returns a boolean value (true or false ). Note that
∼ is a static parameter, used here as a “variable” name for an operator.

trait BinaryPredicateJT extends BinaryPredicateJT,∼K, opr ∼K
opr ∼(self, other :T ): Boolean

end

A binary predicate is an infix operator that takes two arguments and returns a boolean value. Thus, for example, any
trait T that extendsBinaryPredicateJT,⊏K necessarily has an infix method for the operator⊏ , and that operator
returns a boolean value.

trait ReflexiveJT extends ReflexiveJT,∼K, opr ∼K
extends {BinaryPredicateJT,∼K }

property ∀(a:T ) (a ∼ a)
end

A reflexivepredicate always returnstrue when its operands are the same. Because this fact is expressed as aproperty
declaration, the behavior of such an operator can be checkedfor correctness by unit testing.

trait IrreflexiveJT extends IrreflexiveJT,∼K, opr ∼K
extends {BinaryPredicateJT,∼K }
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property ∀(a:T ) ¬(a ∼ a)
end

An irreflexivepredicate always returnsfalse when its operands are the same. (Note that it is possible for apredicate
to be neither reflexive nor irreflexive.)

trait SymmetricJT extends SymmetricJT,∼K, opr ∼K
extends {BinaryPredicateJT,∼K }

property ∀(a:T, b:T ) (a ∼ b)↔ (b ∼ a)
end

A symmetricpredicate doesn’t care in which order its arguments are presented; the result is the same either way.

trait TransitiveJT extends TransitiveJT,∼K, opr ∼K
extends {BinaryPredicateJT,∼K }

property ∀(a:T, b:T, c:T ) ((a ∼ b) ∧ (b ∼ c))→ (a ∼ c)
end

A transitivepredicate has the property that ifa is related tob andb is related toc , thena is related toc .

trait EquivalenceRelationJT extends EquivalenceRelationJT,∼K, opr ∼K
extends {ReflexiveJT,∼K, SymmetricJT,∼K,TransitiveJT,∼K }

end

An equivalence relationis any predicate that is reflexive, symmetric, and transitive. You can think of an equivalence
relation as describing a way to separate a set of items into categories, such that each item belongs to exactly one
category; the predicate istrue of two items if and only if they are in the same category.

trait IdentityEqualityJT extends IdentityEqualityJT KK
extends {EquivalenceRelationJT,=K }

opr =(self, other :T ): Boolean = (self == other)
end

This trait provides a concrete implementation of the operator = (defining it to behave the same as the operator== )
and states that= is an equivalence relation over instances of the typeT .

trait UnaryPredicateSubstitutionLawsJT extends UnaryPredicateSubstitutionLawsJT,∼,≃K,
opr ∼, opr ≃K

extends {UnaryPredicateJT,∼K,BinaryPredicateJT,≃K }
property ∀(a:T, a′:T ) (a ≃ a′)→: ((∼ a)↔ (∼ a′))

end

This handy trait states that the unary predicate∼ is consistent under substitutions described by the relation ≃ (which
is typically, but not always, an equivalence relation); that is, the result produced by∼ is unchanged if its argument is
replaced by some other value that is equivalent.

trait BinaryPredicateSubstitutionLawsJT extends BinaryPredicateSubstitutionLawsJT,∼,≃K,
opr ∼, opr ≃K

extends {BinaryPredicateJT,∼K,BinaryPredicateJT,≃K }
property ∀(a:T, a′:T ) (a ≃ a′)→:∀(b:T ) (a ∼ b)↔ (a′ ∼ b)
property ∀(b:T, b′:T ) (b ≃ b′)→:∀(a:T ) (a ∼ b)↔ (a ∼ b′)

end

This equally handy trait states that the binary predicate∼ is consistent under substitutions described by the relation
≃ (which is typically, but not always, an equivalence relation); that is, the result produced by∼ is unchanged if either

247



argument is replaced by some other value that is equivalent.(It is then easy to prove that the result is unchanged even
whenbotharguments are replaced by equivalent values.)

37.2 Partial and Total Orders

trait AntisymmetricJT extends AntiSymmetricJT,∼K, opr ∼K
extends {BinaryPredicateJT,∼K,EquivalenceRelationJT,=K,

BinaryPredicateSubstitutionLawsJT,∼,=K }
property ∀(a:T, b:T ) ((a ∼ b) ∧ (b ∼ a)) :→: (a = b)

end

A binary predicate∼ is antisymmetricif and only if two conditions are true: (a)∼ is consistent under substitutions
described by the predicate= , which must be an equivalence relation; (b) whenever∼ holds true for a pair of
arguments and for those same arguments in reverse order, those arguments are equivalent as specified by= .

trait PartialOrderJT extends PartialOrderJT,4K, opr 4K
extends {ReflexiveJT,4K,AntisymmetricJT,4K,TransitiveJT,4K }

end

A partial order is a binary predicate that is reflexive, antisymmetric, and transitive.

trait StrictPartialOrderJT extends StrictPartialOrderJT,≺K, opr ≺K
extends { IrreflexiveJT,≺K,AntisymmetricJT,≺K,TransitiveJT,≺K }

end

A strict partial order is a binary predicate that is irreflexive, antisymmetric, and transitive. (Thus it differs from an
ordinary partial order in being irreflexive rather than reflexive.)

It is easy to prove that, because≺ is irreflexive and antisymmetric, thata ≺ b and a = b cannot both be true. (If
they were both true, then because antisymmetry requires that ≺ obey substitution laws,a ≺ a would be true—but
that contradicts the fact that≺ is irreflexive.) It is then easy to prove thata ≺ b and b ≺ a cannot both be true. (If
they were both true, then by antisymmetrya = b must be true—buta ≺ b and a = b cannot both be true.)

trait TotalOrderJT extends TotalOrderJT,4K, opr 4K
extends {PartialOrderJT,4K }

property ∀(a:T, b:T ) (a 4 b) ∨ (b 4 a)
end

A total order is a partial order in which every pair of operands must be related by the predicate4 in one order or the
other; thus no two values are ever unordered with respect to each other.

trait StrictTotalOrderJT extends StrictTotalOrderJT,≺K, opr ≺K
extends { StrictPartialOrderJT,≺K }

property ∀(a:T, b:T ) (a ≺ b) ∨ (b ≺ a) ∨ (a = b)
end

A strict total orderis a strict partial order in which every pair of operands mustbe related, either by equality= or by
the predicate≺ in one order or the other; thus no two values are ever unordered with respect to each other.

For a strict total orderat leastone of a ≺ b and a = b and b ≺ a is true; but a strict total order is also a strict partial
order, for whichat mostone of a ≺ b and a = b and b ≺ a is true. Therefore a strict total order obeys thelaw of
trichotomy: for any a andb , exactlyone of a ≺ b and a = b and b ≺ a is true.
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trait PartialOrderOperatorsJT extends PartialOrderOperatorsJT,≺,4,<,≻, CMPK,
opr ≺, opr 4, opr <, opr ≻, opr CMPK

extends { StrictPartialOrderJT,≺K,PartialOrderJT,4K,
PartialOrderJT,<K, StrictPartialOrderJT,≻K }

opr CMP(self, other :T ): Comparison
opr ≺(self, other :T ): Boolean = (a CMP b) == LessThan
opr 4(self, other :T ): Boolean = (a CMP b) == LessThan ∨ (a CMP b) == EqualTo
opr =(self, other :T ): Boolean = (a CMP b) == EqualTo
opr <(self, other :T ): Boolean = (a CMP b) == GreaterThan ∨ (a CMP b) == EqualTo
opr ≻(self, other :T ): Boolean = (a CMP b) == GreaterThan
property ∀(a:T, b:T ) ((a CMP b) == LessThan)↔ ((b CMP a) == GreaterThan)
property ∀(a:T, b:T ) ((a CMP b) == EqualTo)↔ ((b CMP a) == EqualTo)
property ∀(a:T, b:T ) ((a CMP b) == Unordered)↔ ((b CMP a) == Unordered)
property ∀(a:T, b:T ) (a ≺ b)↔ ((a CMP b) == LessThan)
property ∀(a:T, b:T ) (a 4 b)↔ ((a CMP b) == LessThan ∨ (a CMP b) == EqualTo)
property ∀(a:T, b:T ) (a = b)↔ ((a CMP b) == EqualTo)
property ∀(a:T, b:T ) (a < b)↔ ((a CMP b) == GreaterThan ∨ (a CMP b) == EqualTo)
property ∀(a:T, b:T ) (a ≻ b)↔ ((a CMP b) == GreaterThan)

end

For practical programming, we assume that partial order operators come in groups of five: a “less than” predicate, a
“less than or equal to” predicate, a “greater than or equal to” predicate, a “greater than” predicate, and a “compar-
ison” operator that returns one of the four valuesLessThan , EqualTo, GreaterThan, andUnordered. The trait
PartialOrderOperators declares such a set of five operators and describes the necessary algebraic constraints among
them and the equality predicate= . It also provides default definitions for the predicates (including = ) in terms of
the comparison operator.

trait TotalOrderOperatorsJT extends TotalOrderOperatorsJT,≺,4,<,≻, CMPK,
opr ≺, opr 4, opr <, opr ≻, opr CMPK

extends {PartialOrderOperatorsJT,≺,4,<,≻, CMPK,
StrictTotalOrderJT,≺K,TotalOrderJT,4K,
TotalOrderJT,<K, StrictTotalOrderJT,≻K }

opr CMP(self, other :T ): TotalComparison
end

Total order operators likewise come in groups of five: a “lessthan” predicate, a “less than or equal to” predicate, a
“greater than or equal to” predicate, a “greater than” predicate, and a “comparison” operator that returns one of the
three valuesLessThan , EqualTo, andGreaterThan. The traitTotalOrderOperators declares such a set of five
operators and describes the necessary algebraic constraints among them and the equality predicate= . For a total
order, the comparison operatorCMP never returnsUnordered.

trait PartialOrderBasedOnLEJT extends PartialOrderBasedOnLEJT,≺,4,<,≻, CMPK,
opr ≺, opr 4, opr <, opr ≻, opr CMPK

extends {PartialOrderOperatorsJT,≺,4,<,≻, CMPK }
opr CMP(self, other :T ): Comparison =

if a 4 b then
if b 4 a then EqualTo else LessThan end

else

if b 4 a then GreaterThan else Unordered end

end

opr ≺(self, other :T ): Boolean = (self 4 other) ∧ ¬(other 4 self)
opr =(self, other :T ): Boolean = (self 4 other) ∧ (other 4 self)
opr <(self, other :T ): Boolean = (other 4 self)
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opr ≻(self, other :T ): Boolean = (other ≺ self)
end

The traitPartialOrderBasedOnLE specifies a partial order by assuming that the “less than or equal to” predicate is
already defined and providing definitions for the comparisonoperator, the “less than” predicate, the equality predicate,
the “greater than or equal to” predicate, and the “greater than” predicate in terms of the “less than or equal to” predicate.

trait TotalOrderBasedOnLEJT extends TotalOrderBasedOnLEJT,≺,4,<,≻, CMPK,
opr ≺, opr 4, opr <, opr ≻, opr CMPK

extends {TotalOrderOperatorsJT,≺,4,<,≻, CMPK }
opr CMP(self, other :T ): TotalComparison =

if a 4 b then (if b 4 a then EqualTo else LessThan end) else GreaterThan end

opr ≺(self, other :T ): Boolean = ¬(other 4 self)
opr =(self, other :T ): Boolean = (self 4 other) ∧ (other 4 self)
opr <(self, other :T ): Boolean = (other 4 self)
opr ≻(self, other :T ): Boolean = (other ≺ self)

end

The trait TotalOrderBasedOnLE specifies a total order by assuming that the “less than or equal to” predicate is
already defined and providing definitions for the comparisonoperator, the “less than” predicate, the equality predicate,
the “greater than or equal to” predicate, and the “greater than” predicate in terms of the “less than or equal to” predicate.

trait TotalOrderBasedOnLTJT extends TotalOrderBasedOnLTJT,≺,4,<,≻, CMPK,
opr ≺, opr 4, opr <, opr ≻, opr CMPK

extends {TotalOrderOperatorsJT,≺,4,<,≻, CMPK }
opr CMP(self, other :T ): TotalComparison =

if a ≺ b then LessThan elif b ≺ a then GreaterThan else EqualTo end

opr 4(self, other :T ): Boolean = ¬(other ≺ self)
opr =(self, other :T ): Boolean = (self 4 other) ∧ (other 4 self)
opr <(self, other :T ): Boolean = (other 4 self)
opr ≻(self, other :T ): Boolean = (other ≺ self)

end

The traitTotalOrderBasedOnLT specifies a total order by assuming that the “less than” predicate is already defined
and providing definitions for the comparison operator, the “less than or equal to” predicate, the equality predicate, the
“greater than or equal to” predicate, and the “greater than”predicate in terms of the “less than” predicate.

value object MaximalElementJopr 4K end
trait HasMaximalElementJT extends HasMaximalElementJT,4K, opr 4K

extends {PartialOrderJT,4K }
where {T coerces MaximalElementJ�K }

property ∀(a :T ) a 4 MaximalElementJ�K
end

The HasMaximalElement trait specifies that a partial order has a maximal element, that is, one to which every other
element is related by the ordering predicate4 . The maximal element may be identified by coercing the objectnamed
MaximalElementJ�K to typeT .

value object MinimalElementJopr 4K end
trait HasMinimalElementJT extends HasMinimalElementJT,4K, opr 4K

extends {PartialOrderJT,4K }
where {T coerces MinimalElementJ�K }

property ∀(a :T ) MinimalElementJ�K 4 a
end
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The HasMinimalElement trait specifies that a partial order has a minimal element, that is, one to which every other
element is related by the ordering predicate4 . The minimal element may be identified by coercing the objectnamed
MinimalElementJ�K to typeT .

trait LexicographicPartialOrderJT extends LexicographicPartialOrderJT,⊏,⊑,≡,⊒,⊐, TCMP,
X,≺,4,≃,<,≻, XCMPK,

opr ⊏, opr ⊑, opr ≡, opr ⊒, opr ⊐, opr TCMP,
X extends TotalOrderOperatorsJX,≺,4,≃,<,≻, XCMPK,
opr ≺, opr 4, opr ≃, opr <, opr ≻, opr XCMPK

extends {PartialOrderOperatorsJLexicographicPartialOrderJT,⊏,⊑,≡,⊒,⊐, TCMP,
X,≺,4,≃,<,≻, XCMPK,

⊏,⊑,⊒,⊐, TCMPK }
where {T extends ZeroBasedIndexingJT,XK }

opr TCMP(self, other : LexicographicPartialOrderJT,⊏,⊑,≡,⊒,⊐, TCMP, X,≺,4,≃,<,≻, XCMPK) :
Comparison =

( BIG LEXICO
i←self.indices∩other .indices

(selfi XCMP other i)) LEXICO (|self| CMP |other |)
end

TheComparison trait provides an associative operatorLEXICO whose principal use is in defining lexicographic order
on sequences of elements, which may be partial or total depending on whether the ordering of the elements is partial
or total.

A set of lexicographic partial order operators⊏,⊑,≡,⊒,⊐, TCMP may be defined in terms of a partial order on the
elements of the sequence with operators≺,4,≃,<,≻, XCMP . All that is really necessary is to define the lexicographic
sequence comparison operatorTCMP in terms of the element comparison operatorXCMP ; this is easily expressed by
using the associativeLEXICO operator to reduce the results of elementwise comparisons to a single value. (If the
sequences to be compared are of unequal length, then the shorter sequence is compared to a prefix of the longer
sequence, and if they are equal, then the longer sequence is considered to be greater than the shorter sequence. This
rule is implemented by an additional application of theLEXICO operator to the result of comparing the lengths of the
sequences.)

trait LexicographicTotalOrderJT extends LexicographicTotalOrderJT,⊏,⊑,≡,⊒,⊐, TCMP,
X,≺,4,≃,<,≻, XCMPK,

opr ⊏, opr ⊑, opr ≡, opr ⊒, opr ⊐, opr TCMP,
X extends TotalOrderOperatorsJX,≺,4,≃,<,≻, XCMPK,
opr ≺, opr 4, opr ≃, opr <, opr ≻, opr XCMPK

extends {LexicographicPartialOrderJT,⊏,⊑,≡,⊒,⊐, TCMP, X,≺,4,≃,<,≻, XCMPK,
TotalOrderBasedOnLEJLexicographicTotalOrderJT,⊏,⊑,≡,⊒,⊐, TCMP,

X,≺,4,≃,<,≻, XCMPK,
⊏,⊑,⊒,⊐, TCMPK }

opr TCMP(self, other : LexicographicTotalOrderJT,⊏,⊑,≡,⊒,⊐, TCMP, X,≺,4,≃,<,≻, XCMPK) :
TotalComparison =

( BIG LEXICO
i←self.indices∩other .indices

(selfi XCMP other i)) LEXICO (|self| CMP |other |)
end

Similarly, a set of lexicographic total order operators⊏,⊑,≡,⊒,⊐, TCMP may be defined in terms of a total order on
the elements of the sequence with operators≺,4,≃,<,≻, XCMP .
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37.3 Operators and Their Properties

For some types, such as the integersZ or the rationalsQ , results are always exact, and algebraic properties can be
expected to be obeyed exactly. For other types, such as floating-point numbers, results are not always numerically
exact, and algebraic properties can be expected to be obeyedonly approximately. For example, given three floating-
point valuesa and b and c , it may well be thata+ (b+ c) is not equal to(a+ b) + c ; but we would expect their
values to be reasonably close—unless, of course, overflow occurred in one expression but not the other.

In order to address the difficulties of such approximate computation, many of the traits described in this section come
in two varieties: approximate and exact. The+ operator on integers or rationals is correctly described bythe trait
Associative, and the+ operator on floating-point numbers is correctly described by the traitApproximatelyAssociative .
An important distinction is that the predicate used to test acceptability of exact algebraic properties is= , which is
required to be an equivalence relation and therefore transitive, but a type-dependent binary predicate (typically≈ )
may be used to test acceptability of approximate algebraic properties, and this predicate is required only to be reflexive
and symmetric.

trait UnaryOperatorJT extends UnaryOperatorJT,⊙K, opr ⊙K
opr ⊙(self):T

end

A unary operatoris a prefix operator that takes one argument and returns a value of the same type. Note that⊙ is a
static parameter, used here as a “variable” name for an operator.

trait BinaryOperatorJT extends BinaryOperatorJT,⊙K, opr ⊙K
opr ⊙(self, other :T ):T

end

A binary operatoris an infix operator that takes two arguments of the same type and returns a value of that type. Thus,
for example, any traitT that extendsBinaryPredicateJT,+K necessarily has an infix method for the operator+ ,
and that operator takes two operands of typeT and returns a value of typeT .

trait IdentityOperatorJT extends IdentityOperatorJT KK
extends {UnaryOperatorJT, IDENTITYK }

opr IDENTITY(self):T = self

property ∀(a:T ) (IDENTITY a) == a
end

The traitIdentityOperator provides a definition of the unaryIDENTITY operator, which simply returns its argument.
The traitObject extendsIdentityOperatorJObjectK , so theIDENTITY operator is defined for every type whatso-
ever. (This operator may not be terribly useful for applications programming, but it has technical uses for specifying
contracts and algebraic properties in libraries. It is used, for example, when defining the traitBooleanAlgebra in
terms of the traitRing : because every value is its own inverse with respect to the “exclusiveOR” operator in a Boolean
Algebra, IDENTITY is the appropriate additive inverse operator for use with the trait Ring in this connection.)

trait ApproximatelyCommutativeJT extends ApproximatelyCommutativeJT,⊙,≈K, opr ⊙, opr ≈K
extends {BinaryOperatorJT,⊙K,ReflexiveJT,≈K, SymmetricJT,≈K }

property ∀(a:T, b:T ) (a⊙ b) :≈: (b⊙ a)
end

The traitApproximatelyCommutative requires the operator⊙ to beapproximately commutative; that is, reversing
the operands produces a result that is considered to be “close enough” as determined by the specified≈ predicate.

trait CommutativeJT extends CommutativeJT,⊙K, opr ⊙K
extends {ApproximatelyCommutativeJT,⊙,=K,EquivalenceRelationJT,=K }

end
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The traitCommutative requires the operator⊙ to becommutative; that is, reversing the operands produces an equal
result.

trait ApproximatelyAssociativeJT extends ApproximatelyAssociativeJT,⊙,≈K, opr ⊙, opr ≈K
extends {BinaryOperatorJT,⊙K,ReflexiveJT,≈K, SymmetricJT,≈K }

property ∀(a:T, b:T, c:T ) ((a⊙ b)⊙ c) :≈: (a⊙ (b⊙ c))
end

The traitApproximatelyAssociative requires the operator⊙ to beapproximately associative; that is, the expressions
(a⊙ b)⊙ c and a⊙ (b⊙ c) always produce results that are “close enough” to each otheras determined by the
specified≈ predicate.

trait AssociativeJT extends AssociativeJT,⊙K, opr ⊙K
extends {ApproximatelyAssociativeJT,⊙,=K,EquivalenceRelationJT,=K }

end

The traitAssociative requires the operator⊙ to beassociative; that is, the expressions(a⊙ b)⊙ c and a⊙ (b⊙ c)
always produce equal results.

trait IdempotentBinaryOperatorJT extends IdempotentBinaryOperatorJT,⊙K, opr ⊙K
extends {BinaryOperatorJT,⊙K,EquivalenceRelationJT,=K }

property ∀(a:T ) (a⊙ a) :=: a
end

An idempotent binary operator has the property that if its two arguments are the same then the result is equal to each
argument. For example,MAX and MIN are idempotent, as are∧ and ∨ applied to boolean arguments and∩ and ∪
applied to sets; but+ applied to integers is not idempotent because1 + 1 does not produce1 , and⊕ applied to
boolean arguments is not idempotent becausetrue ⊕ true producesfalse . The property of idempotency is sometimes
of interest when performing reductions such asMAX

i←1:n
ai .

trait HasLeftZeroesJT extends HasLeftZeroesJT,⊙, isLeftZeroK, opr ⊙, ident isLeftZeroK
extends {BinaryOperatorJT,⊙K }

isLeftZero(): Boolean
property ∀(a:T, b:T ) a.isLeftZero()→: ((a⊙ b) = a)

end

A valuee is aleft zerofor a binary operator⊙ if the result of⊙ always equalse whenevere is the left-hand operand.
For example,−∞ is a left zero for theMIN operator on floating-point values, and7FFFFFFF16 is a left zero for the
MAX operator on values of typeZ32 . The purpose of this trait is to specify a method that says whether a given element
is a left zero for⊙ .

trait HasRightZeroesJT extends HasRightZeroesJT,⊙, isRightZeroK, opr ⊙, ident isRightZeroK
extends {BinaryOperatorJT,⊙K }

isRightZero(): Boolean
property ∀(a:T, b:T ) b.isRightZero()→: ((a⊙ b) = b)

end

A value e is a right zerofor a binary operator⊙ if the result of⊙ always equalse whenevere is the right-hand
operand. For example,−∞ is a right zero (as well as a left zero) for theMIN operator on floating-point values, and
7FFFFFFF16 is a right zero (as well as a left zero) for theMAX operator on values of typeZ32 . By way of contrast,0
is a left zero for the arithmetic shift operator on integers,but is not a right zero. The purpose of this trait is to specify
a method that says whether a given element is a right zero for⊙ .

trait ApproximatelyLeftDistributiveJT extends ApproximatelyLeftDistributiveJT,⊗,⊕,≈K,
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opr ⊗, opr ⊕, opr ≈K
extends {BinaryOperatorJT,⊗K,BinaryOperatorJT,⊕K,ReflexiveJT,≈K, SymmetricJT,≈K }

property ∀(a:T, b:T, c:T ) (a⊗ (b⊕ c)) :≈: ((a⊗ b)⊕ (a⊗ c))
end

The trait ApproximatelyLeftDistributive requires the operator⊗ to be approximately left distributiveover the
operator⊕ ; that is, the expressionsa⊗ (b⊕ c) and (a⊗ b)⊕ (a⊗ c) always produce results that are “close enough”
to each other as determined by the specified≈ predicate.

trait LeftDistributiveJT extends LeftDistributiveJT,⊗,⊕K, opr ⊗, opr ⊕K
extends {ApproximatelyLeftDistributiveJT,⊗,⊕,=K,EquivalenceRelationJT,=K }

end

The traitLeftDistributive requires the operator⊗ to beleft distributiveover the operator⊕ ; that is, the expressions
a⊗ (b⊕ c) and (a⊗ b)⊕ (a⊗ c) always produce equal results.

trait ApproximatelyRightDistributiveJT extends ApproximatelyRightDistributiveJT,⊗,⊕,≈K,
opr ⊗, opr ⊕, opr ≈K

extends {BinaryOperatorJT,⊗K,BinaryOperatorJT,⊕K,ReflexiveJT,≈K, SymmetricJT,≈K }
property ∀(a:T, b:T, c:T ) ((a⊕ b)⊗ c) :≈: ((a⊗ c)⊕ (b⊗ c))

end

The traitApproximatelyRightDistributive requires the operator⊗ to beapproximately right distributiveover the
operator⊕ ; that is, the expressions(a⊕ b)⊗ c and (a⊗ c)⊕ (b⊗ c) always produce results that are “close enough”
to each other as determined by the specified≈ predicate.

trait RightDistributiveJT extends RightDistributiveJT,⊗,⊕K, opr ⊗, opr ⊕K
extends {ApproximatelyRightDistributiveJT,⊗,⊕,=K,EquivalenceRelationJT,=K }

end

The traitRightDistributive requires the operator⊗ to beright distributiveover the operator⊕ ; that is, the expres-
sions (a⊕ b)⊗ c and (a⊗ c)⊕ (b⊗ c) always produce equal results.

trait ApproximatelyDistributiveJT extends ApproximatelyDistributiveJT,⊗,⊕,≈K,
opr ⊗, opr ⊕, opr ≈K

extends {ApproximatelyLeftDistributiveJT,⊗,⊕,≈K,
ApproximatelyRightDistributiveJT,⊗,⊕,≈K }

end

The traitApproximatelyDistributive requires the operator⊗ to be both approximately left distributive and approx-
imately right distributive over the operator⊕ .

trait DistributiveJT extends DistributiveJT,⊗,⊕K, opr ⊗, opr ⊕K
extends {ApproximatelyDistributiveJT,⊗,⊕,=K,LeftDistributiveJT,⊗,⊕K,RightDistributiveJT,⊗,⊕K }

end

The traitDistributive requires the operator⊗ to be both left distributive and right distributive over theoperator⊕ .

trait HasLeftIdentityJT extends HasLeftIdentityJT,⊙K, opr ⊙K
extends {BinaryOperatorJT,⊙K,EquivalenceRelationJT,=K }

isLeftIdentity(): Boolean
property ∀(a:T, b:T ) a.isLeftIdentity()→: ((a⊙ b) = b)

end
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A value e is a left identityfor a binary operator⊙ if the result of⊙ always equals the right-hand operand whenever
e is the left-hand operand. For example,0 is a left identity for the+ operator on integers and the empty set is a left
identity for the∪ operator on sets.

trait HasRightIdentityJT extends HasRightIdentityJT,⊙K, opr ⊙K
extends {BinaryOperatorJT,⊙K,EquivalenceRelationJT,=K }

isRightIdentity(): Boolean
property ∀(a:T, b:T ) b.isRightIdentity()→: ((a⊙ b) = a)

end

A value e is aright identityfor a binary operator⊙ if the result of⊙ always equals the right-hand operand whenever
e is the left-hand operand. For example,0 is a right identity (as well as a left identity) for the+ operator on integers
and the empty set is a right identity (as well as a left identity) for the ∪ operator on sets. By way of contrast,1 is a
right identity for division of rationals but not a left identity.

value object IdentityJopr ⊙K end
trait HasIdentityJT extends HasIdentityJT,⊙K, opr ⊙K

extends {HasLeftIdentityJT,⊙K,HasRightIdentityJT,⊙K }
where {T coerces IdentityJ⊙K }

property ∀(a:T ) (a⊙ IdentityJ⊙K) = a
property ∀(a:T ) (IdentityJ⊙K⊙ a) = a
property ∀(a:T ) a.isLeftIdentity()↔ (a = IdentityJ⊙K)
property ∀(a:T ) a.isRightIdentity()↔ (a = IdentityJ⊙K)

end

If the same value is both a left identity and a right identity for ⊙ , then it may be called simply anidentity—in fact,
the identity, for it is unique and may be obtained by coercing theobject namedIdentityJ⊙K to typeT .

value object ZeroJopr ⊗K end
trait ApproximateZeroAnnihilationJT extends ApproximateZeroAnnihilationJT,⊗,≈K,

opr ⊗, opr ≈K
extends {BinaryOperatorJT,⊗K,ReflexiveJT,≈K, SymmetricJT,≈K }

property ∀(a:T ) (ZeroJ⊗K⊗ a) :≈: ZeroJ⊗K
property ∀(a:T ) (a⊗ ZeroJ⊗K) :≈: ZeroJ⊗K

end

An operator⊗ obeysapproximate zero annihilationif and only if there is an element (call itz ) that when used as
either operand of⊗ causes the result to be “close enough” toz as determined by the specified≈ predicate. This
zero element may be obtained by coercing the object namedZeroJ⊗K to typeT .

trait ZeroAnnihilationJT extends ZeroAnnihilationJT,⊗K, opr ⊗K
extends {ApproximateZeroAnnihilationJT,⊗,=K,EquivalenceRelationJT,=K }

end

An operator⊗ obeyszero annihilationif and only if there is an element (call itz ) that when used as either operand of
⊗ causes the result to equalz . (It follows that z is both a left idempotent element and a right idempotent element for
⊗ . However, the traitZeroAnnihilationJT,⊗K intentionally does not extend the traitsHasLeftZeroesJT,⊗,nameK
and HasRightZeroesJT,⊗,nameK because there is not always a practical requirement for methods that determine
whether any value is left idempotent or right idempotent; sometimes it suffices to know only that one particular
element, produced by coercingZeroJ⊗K to typeT , has that property.)

trait UnaryOperatorSubstitutionLawsJT extends UnaryOperatorSubstitutionLawsJT,⊙,=K,
opr ⊙, opr ≃K
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extends {UnaryOperatorJT,⊙K,BinaryPredicateJT,≃K }
property ∀(a:T, a′:T ) (a ≃ a′)→: (⊙a) ≃ (⊙a′)

end

This peculiarly spiffy trait states that the unary operator⊙ is consistent under substitutions described by the relation
≃ (which is typically, but not always, an equivalence relation); that is, the result produced by⊙ is unchanged if its
argument is replaced by some other value that is equivalent.

trait BinaryOperatorSubstitutionLawsJT extends BinaryOperatorSubstitutionLawsJT,⊙,=K,
opr ⊙, opr ≃K

extends {BinaryOperatorJT,⊙K,BinaryPredicateJT,≃K }
property ∀(a:T, a′:T ) (a ≃ a′)→:∀(b:T ) (a⊙ b) ≃ (a′ ⊙ b)
property ∀(b:T, b′:T ) (b ≃ b′)→:∀(a:T ) (a⊙ b) ≃ (a⊙ b′)

end

This equally spiffy trait states that the binary operator⊙ is consistent under substitutions described by the relation ≃
(which is typically, but not always, an equivalence relation); that is, the result produced by⊙ is unchanged if either
argument is replaced by some other value that is equivalent.(It is then easy to prove that the result is unchanged even
whenbotharguments are replaced by equivalent values.)

37.4 Monoids, Groups, Rings, and Fields

trait ApproximateMonoidJT extends ApproximateMonoidJT,⊙,≈K, opr ⊙, opr ≈K
extends {ApproximatelyAssociativeJT,⊙,≈K,HasIdentityJT,⊙K }

end

An approximate monoidis a set of values with an approximately associative binary operator⊙ that has an identity.
For example, floating-point multiplication has identity1 and is approximately associative.

trait MonoidJT extends MonoidJT,⊙K, opr ⊙K
extends {ApproximateMonoidJT,⊙,=K,AssociativeJT,⊙K }

end

A monoid is a set of values with an associative binary operator⊙ that has an identity. For example, traitString
extendsMonoidJString, ‖K where‖ is the string concatenation operator. Note that string concatenation is associative
but not commutative and that the empty string is the identityfor string concatenation, so coercingIdentityJ ‖, K to
type String produces the empty string.

trait ApproximateCommutativeMonoidJT extends ApproximateCommutativeMonoidJT,⊕,≈K,
opr ⊕, opr ≈K

extends {ApproximateMonoidJT,⊕,≈K,ApproximatelyCommutativeJT,⊕,≈K }
end

An approximate commutative monoidis an approximate monoid whose binary operator is also approximately com-
mutative. For example, floating-point multiplication has identity 1 and is approximately associative and also approx-
imately (indeed, exactly) commutative.

trait CommutativeMonoidJT extends CommutativeMonoidJT,⊕K, opr ⊕K
extends {ApproximateCommutativeMonoidJT,⊕,=K,MonoidJT,⊕K,CommutativeJT,⊕K }

end

A commutative monoidis a monoid whose binary operator is also commutative. For example, the operator∧ on
boolean values is associative and commutative and has identity true ; likewise, the operator∨ on boolean values is
associative and commutative and has identityfalse .
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trait ApproximatelyHasInversesJT extends ApproximatelyHasInversesJT,⊙,⊘,≈K,
opr ⊙, opr ⊘, opr ≈K

extends {HasIdentityJT,⊙K,UnaryOperatorJT,⊘K,BinaryOperatorJT,⊘K }
property ∀(a:T ) (a⊙ (⊘ a)) :≈: IdentityJ⊙K
property ∀(a:T ) ((⊘ a)⊙ a) :≈: IdentityJ⊙K
property ∀(a:T, b:T ) (a⊘ b) :≈: (a⊙ (⊘ b))

end

A set of values with a binary operator⊙ hasapproximate inversesif and only if the operator has an identity and
for every valuea there is another valuea′ such that the result of applying⊙ to a and a′ (in either order) is
“close enough” to the identity. The unary operator⊘ returns the approximate inverse of its argument; as a notational
convenience, it may also be used as a binary operator.

trait HasInversesJT extends HasInversesJT,⊙,⊘K, opr ⊙, opr ⊘K
extends {ApproximatelyHasInversesJT,⊙,⊘,=K }

end

A set of values with a binary operator⊙ hasinversesif and only if the operator has an identity and for every value
a there is another valuea′ such that the result of applying⊙ to a and a′ (in either order) equals the identity. The
unary operator⊘ returns the inverse of its argument; as a notational convenience, it may also be used as a binary
operator. A standard example is the operator+ on integers; the identity is0 , and the unary operator− returns the
additive inverse of its argument, such thata+ (−a) = 0 and (−a) + a = 0 . Moreover,− may be used as a binary
operator:a− b meansa+ (−b) .

trait ApproximateGroupJT extends ApproximateGroupJT,⊙,⊘,≈K, opr ⊙, opr ⊘, opr ≈K
extends {ApproximateMonoidJT,⊙,≈K,ApproximatelyHasInversesJT,⊙,⊘,≈K }

end

An approximate groupis an approximate monoid that has approximate inverses. Forexample, a floating-point repre-
sentation of quaternions with multiplication as the binaryoperator would form an approximate group.

trait GroupJT extends GroupJT,⊙,⊘K, opr ⊙, opr ⊘K
extends {ApproximateGroupJT,⊙,⊘,=K,MonoidJT,⊙K,HasInversesJT,⊙,⊘K }

end

A group is monoid that has inverses.

trait ApproximateAbelianGroupJT extends ApproximateAbelianGroupJT,⊕,⊖,≈K,
opr ⊕, opr ⊖, opr ≈K

extends {ApproximateGroupJT,⊕,⊖,≈K,
ApproximateCommutativeMonoidJT,⊕,≈K }

end

An approximate Abelian groupis an approximate group whose binary operator is also approximately commutative.

trait AbelianGroupJT extends AbelianGroupJT,⊕,⊖K, opr ⊕, opr ⊖K
extends {ApproximateAbelianGroupJT,⊕,⊖,=K,

GroupJT,⊕,⊖K,CommutativeMonoidJT,⊕K }
end

An Abelian groupis group whose binary operator is also commutative. (The term “Abelian” is traditionally used
instead of “commutative” when discussing groups, in tribute to mathematician Niels Henrik Abel.) For example, the
integers with the binary addition operator+ , unary negation operator− , and identity0 form an Abelian group. As
another example, the boolean values with the binary exclusive OR operator⊕ and unary negation operatorIDENTITY
form an Abelian group; the valuefalse is the identity for⊕ .
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trait ApproximateSemiRingJT extends ApproximateSemiRingJT,⊕,⊗,≈K,
opr ⊕, opr ⊗, opr ≈K

extends {ApproximateCommutativeMonoidJT,⊕,≈K,
ApproximateMonoidJT,⊗,≈K,
ApproximatelyDistributiveJT,⊗,⊕,≈K,
ApproximateZeroAnnihilationJT,⊗,≈K }

property castJT K(ZeroJ⊗K) ≈ castJT K(IdentityJ⊕K)
end

An approximate semiringis a set of values that has two binary operators⊕ and⊗ , such that (a) the values form an
approximate commutative monoid with⊕ ; (b) the values form an approximate monoid with⊗ ; (c) ⊗ is approxi-
mately distributive over⊕ ; and (d)⊗ obeys approximate zero annihilation, where the zero for⊗ is the same as the
identity for ⊕ .

trait SemiRingJT extends SemiRingJT,⊕,⊗K, opr ⊕, opr ⊗K
extends {ApproximateSemiRingJT,⊕,⊗,=K,

CommutativeMonoidJT,⊕K,
MonoidJT,⊗K,
DistributiveJT,⊗,⊕K,
ZeroAnnihilationJT,⊗K }

end

A semiring is a set of values that has two binary operators⊕ and ⊗ , such that (a) the values form a commuta-
tive monoid with⊕ ; (b) the values form a monoid with⊗ ; (c) ⊗ is distributive over⊕ ; and (d)⊗ obeys zero
annihilation, where the zero for⊗ is the same as the identity for⊕ .

trait ApproximateRingJT extends ApproximateRingJT,⊕,⊖,⊗,≈K,
opr ⊕, opr ⊖, opr ⊗, opr ≈K

extends {ApproximateAbelianGroupJT,⊕,⊖,≈K,
ApproximateSemiRingJT,⊕,⊗,≈K }

end

An approximate ringis an approximate semiring that also has a unary operator⊖ that returns inverses for the⊕
operator so that the values form an approximate group with⊕ and⊖ .

trait RingJT extends RingJT,⊕,⊖,⊗K, opr ⊕, opr ⊖, opr ⊗K
extends {ApproximateRingJT,⊕,⊖,⊗,=K,

AbelianGroupJT,⊕,⊖K,
SemiRingJT,⊕,⊗K }

end

A ring is a semiring that also has a unary operator⊖ that returns inverses for the⊕ operator so that the values form
a group with⊕ and⊖ .

trait ApproximateCommutativeRingJT extends ApproximateCommutativeRingJT,⊕,⊖,⊗,≈K,
opr ⊕, opr ⊖, opr ⊗, opr ≈K

extends {ApproximateRingJT,⊕,⊖,⊗,≈K,
ApproximatelyCommutativeJT,⊗,≈K }

end

An approximate commutative ringis an approximate ring for which the binary operator⊗ is also approximately
commutative.

trait CommutativeRingJT extends CommutativeRingJT,⊕,⊖,⊗K,
opr ⊕, opr ⊖, opr ⊗K
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extends {ApproximateCommutativeRingJT,⊕,⊖,⊗,=K,
RingJT,⊕,⊖,⊗K,
CommutativeJT,⊗K }

end

A commutative ringis a ring for which the binary operator⊗ is also commutative.

trait ApproximateDivisionRingJT extends ApproximateDivisionRingJT, U,⊕,⊖,⊗,⊘,≈K,
U extends T,
opr ⊕, opr ⊖, opr ⊗, opr ⊘, opr ≈K

extends {ApproximateRingJT,⊕,⊖,⊗,≈K,
ApproximateGroupJU,⊗,⊘,≈K }

property ¬ instanceOf JUK(castJT K(ZeroJ⊕K))
property ∀(a:T ) a 6= ZeroJ⊕K→ instanceOf JUK(a)

An approximate division ringis an approximate ring for which the binary operator⊗ also has approximate inverses,
so that the values other than the zero of⊗ form an approximate group with⊗ and⊘ .

trait DivisionRingJT extends DivisionRingJT, U,⊕,⊖,⊗,⊘K,
U extends T,
opr ⊕, opr ⊖, opr ⊗, opr ⊘K

extends {ApproximateDivisionRingJT, U,⊕,⊖,⊗,⊘,=K,
RingJT,⊕,⊖,⊗K,
GroupJU,⊗,⊘K }

end

A division ring is a ring for which the binary operator⊗ also has inverses, so that the values other than the zero of⊗
form a group with⊗ and⊘ .

trait ApproximateFieldJT extends ApproximateFieldJT, U,⊕,⊖,⊗,⊘,≈K,
U extends T,
opr ⊕, opr ⊖, opr ⊗, opr ⊘, opr ≈K

extends {ApproximateCommutativeRingJT,⊕,⊖,⊗,≈K,
ApproximateDivisionRingJT, U,⊕,⊖,⊗,⊘,≈K }

end

An approximate fieldis an approximate commutative ring that is also an approximate division ring: the binary operator
⊗ is approximately commutative and also has approximate inverses, so that the values other than the zero of⊗ form
an approximate Abelian group with⊗ and⊘ .

trait FieldJT extends FieldJT, U,⊕,⊖,⊗,⊘K, U extends T, opr ⊕, opr ⊖, opr ⊗, opr ⊘K
extends {ApproximateFieldJT, U,⊕,⊖,⊗,⊘,=K,

CommutativeRingJT,⊕,⊖,⊗K,
DivisionRingJT, U,⊕,⊖,⊗,⊘K }

end

A field is a commutative ring that is also a division ring: the binaryoperator⊗ is commutative and also has inverses,
so that the values other than the zero of⊗ form an Abelian group with⊗ and⊘ .

37.5 Boolean Algebras

value object ComplementBoundJopr ⊙K end
trait HasComplementsJT extends HasComplementsJT,⊙,∼K, opr ⊙, opr ∼K
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extends {BinaryOperatorJT,⊙K,UnaryOperatorJT,∼K,EquivalenceRelationJT,=K }
where {T coerces ComplementBoundJ⊙K }

property ∀(a:T ) (a⊙ (∼ a)) :=: ComplementBoundJ⊙K
end

A set of values with a binary operator⊙ hascomplementsif and only if there is a specific valuee such that for every
valuea there is another valuea′ such that the result of applying⊙ to a and a′ (in either order) equals the specified
value e . This value may be obtained by coercing the object namedComplementBoundJ⊙K to typeT . The unary
operator∼ returns the complement of its argument with respect to the operator⊙ .

Note that the traitHasComplements is similar to the traitHasInverses , but HasComplements does not require that
that specified element be an identity of the binary operator.

trait DeMorganJT extends DeMorganJT,f,g,∼K, opr f, opr g, opr ∼K
extends {BinaryOperatorJT,fK,BinaryOperatorJT,gK,

UnaryOperatorJT,∼K,EquivalenceRelationJT,=K }
property ∀(a:T, b:T ) (∼ (ag b)) :=: ((∼ a)f (∼ b))

end

This trait expresses De Morgan’s law for two binary operators f and g and a unary operator∼ : the expressions
∼ (ag b) and (∼ a)f (∼ b) produce equal results.

trait BooleanAlgebraJT extends BooleanAlgebraJT,f,g,∼,∨K, opr f, opr g, opr ∼, opr ∨K
extends {CommutativeJT,fK,AssociativeJT,fK,

CommutativeJT,gK,AssociativeJT,gK,
IdempotentBinaryOperatorJT,fK,
IdempotentBinaryOperatorJT,gK,
HasIdentityJT,fK,HasIdentityJT,gK,
HasComplementsJT,g,∼K,HasComplementsJT,f,∼K,
DistributiveJT,f,gK,DistributiveJT,g,fK,
DeMorganJT,f,g,∼K,DeMorganJT,g,f,∼K,
RingJT,∨, IDENTITY,fK }

property ∀(a:T ) (∼ (∼ a)) :=: a
opr ∨(self, other :T ):T = (selff (∼ other))g ((∼ self)f other)
property castJT K(IdentityJ∨K) = castJT K(IdentityJgK)
property castJT K(ComplementBoundJfK) = castJT K(IdentityJgK)
property castJT K(ComplementBoundJgK) = castJT K(IdentityJfK)

end

A boolean algebrais an algebraic structure consisting of a set of values, three binary operatorsf , g , and∨ , and a
unary operator∼ , such that the operators obey a number of specific properties:

• f is commutative, associative, and idempotent, and has a unique identity

• g is commutative, associative, and idempotent, and has a unique identity

• f has complements with respect to∼

• g has complements with respect to∼

• f andg distribute over each other

• De Morgan’s law applies tof , g , and∼ , and also tog , f , and∼

• The values form a ring with∨ as the addition operator,IDENTITY as the additive inverse operator, andf as
the multiplication operator
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A default definition is provided for the∨ operator in terms off , g , and∼ .

The typeBoolean is the most familiar example of a boolean algebra. The power set of a set (that is, the set of all
subsets of the set) also forms a boolean algebra with operators ∩ , ∪ , set complement, and symmetric set difference;
the empty set is the identity for∪ , and the original set is the identity for∩ .
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Chapter 38

Numbers

38.1 The Trait Fortress.Standard.RationalQuantity

The standard types for rational numbers such asQ andQ∗ andQ#
≤ are defined in terms of a single traitRationalQuantity

that handles dimensions and units as well as performing a case analysis to distinguish rather a particular expression is
guaranteed not to produce infinities,0/0 , or numbers of a particular sign.

The traitRationalQuantity takes seven static parameters; the first is a dimensional unit, and the others are booleans
specifying whether an instance of the trait can possibly be−∞ , a finite rational less than zero, zero, a finite rational
greater than zero,+∞ , or 0/0 . This allows the standard rational types to be represented as follows:

type Q = RationalQuantityJdimensionless, false, true, true, true, false, falseK
type Q< = RationalQuantityJdimensionless, false, true, false, false, false, falseK
type Q≤ = RationalQuantityJdimensionless, false, true, true, false, false, falseK
type Q≥ = RationalQuantityJdimensionless, false, false, true, true, false, falseK
type Q> = RationalQuantityJdimensionless, false, false, false, true, false, falseK
type Q6= = RationalQuantityJdimensionless, false, true, false, true, false, falseK
type Q∗ = RationalQuantityJdimensionless, true, true, true, true, true, falseK
type Q∗< = RationalQuantityJdimensionless, true, true, false, false, false, falseK
type Q∗≤ = RationalQuantityJdimensionless, true, true, true, false, false, falseK
type Q∗≥ = RationalQuantityJdimensionless, false, false, true, true, true, falseK
type Q∗> = RationalQuantityJdimensionless, false, false, false, true, true, falseK
type Q∗6= = RationalQuantityJdimensionless, true, true, false, true, true, falseK
type Q# = RationalQuantityJdimensionless, true, true, true, true, true, trueK
type Q#

< = RationalQuantityJdimensionless, true, true, false, false, false, trueK
type Q#

≤ = RationalQuantityJdimensionless, true, true, true, false, false, trueK
type Q#

≥ = RationalQuantityJdimensionless, false, false, true, true, true, trueK
type Q#

> = RationalQuantityJdimensionless, false, false, false, true, true, trueK
type Q#

6= = RationalQuantityJdimensionless, true, true, false, true, true, trueK

Here is the detailed description ofRationalQuantity , showing the details of the type calculations:
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trait RationalQuantityJunit U absorbs unit, bool ninf , bool lt , bool eq , bool gt , bool pinf , bool nanK
extends {RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K

where { bool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′,
ninf → ninf ′, lt → lt ′, eq → eq ′, gt → gt ′, pinf → pinf ′,nan → nan ′ },

FieldJ RationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK,
RationalQuantityJU,ninf , lt , false, gt , pinf ,nanK,+,−, ·, /K

where { lt ∧ eq ∧ gt ∧ ¬ninf ∧ ¬pinf ∧ ¬nan, U = dimensionless },
FieldJ RationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK,

RationalQuantityJU,ninf , lt , false, gt , pinf ,nanK,+,−,×, /K
where { lt ∧ eq ∧ gt ∧ ¬ninf ∧ ¬pinf ∧ ¬nan, U = dimensionless },
FieldJ RationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK,

RationalQuantityJU,ninf , lt , false, gt , pinf ,nanK,+,−, juxtaposition, /K
where { lt ∧ eq ∧ gt ∧ ¬ninf ∧ ¬pinf ∧ ¬nan, U = dimensionless },
AbelianGroupJRationalQuantityJU,ninf , lt , eq, gt , pinf ,nanK,+,−K,
TotalOrderOperatorsJRationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK, <,≤,≥, >, CMPK
where {¬nan } }

where {ninf ∨ lt ∨ eq ∨ gt ∨ pinf ∨ nan }
coercion ( : IdentityJ+K) = 0
coercion ( : IdentityJ·K) = 1
coercion ( : IdentityJ×K) = 1
coercion ( : IdentityJjuxtapositionK) = 1
coercion ( : ZeroJ×K) = 0
coercion (x: IntegerQuantityJU,ninf , lt , eq , gt , pinf ,nanK)
opr juxtaposition Junit U ′, bool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K

(self, other : RationalQuantityJU ′,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU U ′,

ninf ∧ pinf ′ ∨ ninf ∧ gt ′ ∨ lt ∧ pinf ′ ∨ pinf ∧ ninf ′ ∨ pinf ∧ lt ′ ∨ gt ∧ ninf ′,
lt ∧ gt ′ ∨ gt ∧ lt ′,
eq ∧ (lt ′ ∨ eq ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt) ∧ eq ′,
lt ∧ lt ′ ∨ gt ∧ gt ′,
ninf ∧ ninf ′ ∨ ninf ∧ lt ′ ∨ lt ∧ ninf ′ ∨ pinf ∧ pinf ′ ∨ pinf ∧ gt ′ ∨ gt ∧ pinf ′,
nan ∨ nan ′ ∨ ninf ∧ eq ′ ∨ pinf ∧ eq ′ ∨ eq ∧ ninf ′ ∨ eq ∧ pinf ′K

opr +(self): RationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK
opr +Jbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool inf ′, bool nan ′K

(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU,

ninf ∧ (ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′) ∨ (ninf ∨ lt ∨ eq ∨ gt) ∧ ninf ′,
lt ∧ (lt ′ ∨ eq ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt) ∧ lt ′,
lt ∧ gt ′ ∨ eq ∧ eq ′ ∨ gt ∧ lt ′,
gt ∧ (lt ′ ∨ eq ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt) ∧ gt ′,
pinf ∧ (lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′) ∨ (lt ∨ eq ∨ gt ∨ pinf ) ∧ pinf ′,
nan ∨ nan ′ ∨ ninf ∧ pinf ′ ∨ pinf ∧ ninf ′K

opr −(self): RationalQuantityJU, pinf , gt , eq , lt ,ninf ,nanK
opr −Jbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K

(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU,

ninf ∧ (lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′) ∨ (ninf ∨ lt ∨ eq ∨ gt) ∧ pinf ′,
lt ∧ (lt ′ ∨ eq ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt) ∧ gt ′,
lt ∧ lt ′ ∨ eq ∧ eq ′ ∨ gt ∧ gt ′,
gt ∧ (lt ′ ∨ eq ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt) ∧ lt ′,
pinf ∧ (ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt ∨ pinf ) ∧ ninf ′,
nan ∨ nan ′ ∨ ninf ∧ ninf ′ ∨ pinf ∧ pinf ′K
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opr ·Junit U ′, bool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU ′,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU U ′,

ninf ∧ pinf ′ ∨ ninf ∧ gt ′ ∨ lt ∧ pinf ′ ∨ pinf ∧ ninf ′ ∨ pinf ∧ lt ′ ∨ gt ∧ ninf ′,
lt ∧ gt ′ ∨ gt ∧ lt ′,
eq ∧ (lt ′ ∨ eq ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt) ∧ eq ′,
lt ∧ lt ′ ∨ gt ∧ gt ′,
ninf ∧ ninf ′ ∨ ninf ∧ lt ′ ∨ lt ∧ ninf ′ ∨ pinf ∧ pinf ′ ∨ pinf ∧ gt ′ ∨ gt ∧ pinf ′,
nan ∨ nan ′ ∨ ninf ∧ eq ′ ∨ pinf ∧ eq ′ ∨ eq ∧ ninf ′ ∨ eq ∧ pinf ′K

opr /(self): RationalQuantityJ1/U, eq, lt ,ninf ∨ pinf , gt , eq ,nanK
opr /Junit U ′, bool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K

(self, other : RationalQuantityJU ′,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU/U ′,

ninf ∧ eq ′ ∨ ninf ∧ gt ′ ∨ lt ∧ eq ′ ∨ pinf ∧ lt ′,
lt ∧ gt ′ ∨ gt ∧ lt ′,
eq ∧ (lt ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt) ∧ (ninf ′ ∨ pinf ′)′,
lt ∧ lt ′ ∨ gt ∧ gt ′,
ninf ∧ lt ′ ∨ pinf ∧ eq ′ ∨ pinf ∧ gt ′ ∨ gt ∧ eq ′,
nan ∨ nan ′ ∨ (ninf ∨ pinf ) ∧ (ninf ′ ∨ pinf ′) ∨ eq ∧ eq ′K

opr <Jbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K): Boolean

opr ≤Jbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K): Boolean

opr =Jbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K): Boolean

opr ≥Jbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K): Boolean

opr >Jbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K): Boolean

opr CMPJbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′, falseK): TotalComparison

opr CMPJbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′, trueK): Comparison

opr MAXJbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU,

ninf ∧ ninf ′,
lt ∧ (ninf ′ ∨ lt ′) ∨ (ninf ∨ lt) ∧ lt ′,
eq ∧ (ninf ′ ∨ lt ′ ∨ eq ′) ∨ (ninf ∨ lt ∨ eq) ∧ eq ′,
gt ∧ (ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′) ∨ (ninf ∨ lt ∨ eq ∨ gt) ∧ gt ′,
pinf ∧ (ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′) ∨ (ninf ∨ lt ∨ eq ∨ gt ∨ pinf ) ∧ pinf ′,
nan ∨ nan ′K

opr MINJbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU,

ninf ∧ (ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′) ∨ (ninf ∨ lt ∨ eq ∨ gt ∨ pinf ) ∧ ninf ′,
lt ∧ (lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′) ∨ (lt ∨ eq ∨ gt ∨ pinf ) ∧ lt ′,
eq ∧ (eq ′ ∨ gt ′ ∨ pinf ′) ∨ (eq ∨ gt ∨ pinf ) ∧ eq ′,
gt ∧ (gt ′ ∨ pinf ′) ∨ (gt ∨ pinf ) ∧ gt ′,
pinf ∧ pinf ′,
nan ∨ nan ′K

opr MAXNUMJbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
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(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU,

ninf ∧ (nan ′ ∨ ninf ′) ∨ (nan ∨ ninf ) ∧ ninf ′,
lt ∧ (nan ′ ∨ ninf ′ ∨ lt ′) ∨ (nan ∨ ninf ∨ lt) ∧ lt ′,
eq ∧ (nan ′ ∨ ninf ′ ∨ lt ′ ∨ eq ′) ∨ (nan ∨ ninf ∨ lt ∨ eq) ∧ eq ′,
gt ∧ (nan ′ ∨ ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′) ∨ (nan ∨ ninf ∨ lt ∨ eq ∨ gt) ∧ gt ′,
pinf ∧(nan ′ ∨ ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′)∨

(nan ∨ ninf ∨ lt ∨ eq ∨ gt ∨ pinf ) ∧ pinf ′,
nan ∧ nan ′K

opr MINNUMJbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU,

ninf ∧(ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′ ∨ nan ′)∨
(ninf ∨ lt ∨ eq ∨ gt ∨ pinf ∨ nan) ∧ ninf ′,

lt ∧ (lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′ ∨ nan ′) ∨ (lt ∨ eq ∨ gt ∨ pinf ∨ nan) ∧ lt ′,
eq ∧ (eq ′ ∨ gt ′ ∨ pinf ′ ∨ nan ′) ∨ (eq ∨ gt ∨ pinf ∨ nan) ∧ eq ′,
gt ∧ (gt ′ ∨ pinf ′ ∨ nan ′) ∨ (gt ∨ pinf ∨ nan) ∧ gt ′,
pinf ∧ (pinf ′ ∨ nan ′) ∨ (pinf ∨ nan) ∧ pinf ′,
nan ∧ nan ′K

opr |self| : RationalQuantityJU, false, false, eq , lt ∨ gt ,ninf ∨ pinf ,nanK
signum(self): RationalQuantityJU, false, lt , eq , gt , false,nanK
numerator(self): IntegerQuantityJU, false,ninf ∨ lt , eq , gt ∨ pinf , false,nanK
denominator(self): IntegerQuantityJdimensionless, false, false,ninf ∨ pinf , lt ∨ eq ∨ gt , false,nanK
floor(self): IntegerQuantityJU,ninf , lt , eq ∨ gt , gt , pinf ,nanK
opr ⌊self⌋: IntegerQuantityJU,ninf , lt , eq ∨ gt , gt , pinf ,nanK
ceiling(self): IntegerQuantityJU,ninf , lt , lt ∨ eq , gt , pinf ,nanK
opr ⌈self⌉: IntegerQuantityJU,ninf , lt , lt ∨ eq , gt , pinf ,nanK
round(self): IntegerQuantityJU,ninf , lt , lt ∨ eq ∨ gt , gt , pinf ,nanK
truncate(self): IntegerQuantityJU,ninf , lt , lt ∨ eq ∨ gt , gt , pinf ,nanK
realpart(self): RationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK
imagpart(self): RationalQuantityJU, false, false, true, false, false,nanK
check(self): Q throws CastException
check∗(self): Q∗ throws CastException
check<(self): Q< throws CastException
check≤(self): Q≤ throws CastException
check≥(self): Q≥ throws CastException
check>(self): Q> throws CastException
check 6=(self): Q6= throws CastException
check∗<(self): Q∗< throws CastException
check∗≤(self): Q∗≤ throws CastException
check∗≥(self): Q∗≥ throws CastException
check∗>(self): Q∗> throws CastException
check∗6=(self): Q∗6= throws CastException

check
#
<(self): Q#

< throws CastException

check
#
≤(self): Q#

≤ throws CastException

check
#
≥(self): Q#

≥ throws CastException

check
#
>(self): Q#

> throws CastException

check
#
6=(self): Q#

6= throws CastException

end

For descriptions of the methods, see Section 25.1.
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38.2 The Trait Fortress.Standard.TotalComparison

The comparison operatorCMP , when applied to values belonging to a total order, typically returns a value of type
TotalComparison . The three values of typeTotalComparison are calledLessThan , EqualTo, andGreaterThan.

This trait supports an associative operatorLEXICO that is useful for supporting lexicographic comparison of ordered
sequences; the trick is to compare the sequences elementwise and then to use theLEXICO operator to reduce the
sequence of comparison results. Note thatEqualTo is the identity forLEXICO , and all other comparison values are
left zeroes forLEXICO .

value trait TotalComparison
extends {Comparison,

AssociativeJTotalComparison, LEXICOK,
HasIdentityJTotalComparison, LEXICOK,
HasLeftZeroesJTotalComparison, LEXICO, isLeftZeroForLEXICOK }

comprises {LessThan,EqualTo,GreaterThan }
opr LEXICO(self, other : TotalComparison): TotalComparison
isLeftZeroForLEXICO(self): Boolean
opr ==(self, other : TotalComparison): Boolean
getter hashCode(): Z64
toString(): String

end

LessThan: TotalComparison
EqualTo: TotalComparison
GreaterThan: TotalComparison

38.2.1 opr LEXICO(self, other : TotalComparison):TotalComparison

The operatorLEXICO returns its right argument if the left argument isEqualTo; otherwise it returns its left argument.
The LEXICO operator as applied to total comparison values may be described by this table:

LEXICO LessThan EqualTo GreaterThan
LessThan LessThan LessThan LessThan
EqualTo LessThan EqualTo GreaterThan

GreaterThan GreaterThan GreaterThan GreaterThan

38.2.2 isLeftZeroForLEXICO(self): Boolean

This method returnsfalse for EqualTo and true for all other total comparison values.

38.2.3 opr ==(self, other : TotalComparison): Boolean

Two total comparison values are strictly equivalent if and only if they are the same.
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38.2.4 getter hashCode(): Z64

38.2.5 toString(): String

The toString method returns either “LessThan ” or “ EqualTo ” or “ GreaterThan ” as appropriate.

38.3 Top-level Total Comparison Values

38.3.1 LessThan: TotalComparison
38.3.2 EqualTo: TotalComparison
38.3.3 GreaterThan: TotalComparison

The immutable variablesLessThan , EqualTo, and GreaterThan have as their values the three total comparison
values that respectively signify whether a left-hand comparand is less than, equal to, or greater than a right-hand
comparand. They are top-level variables declared in the Fortress standard libraries.

38.4 The Trait Fortress.Standard.Comparison

When the comparison operatorCMP is applied to values belonging to a partial order, rather than a total order, it typi-
cally returns a value of typeComparison , which includes the three valuesLessThan , EqualTo, andGreaterThan
of type TotalComparison and also a fourth value,Unordered.

This trait, like trait TotalComparison , supports an associative operatorLEXICO that is useful for supporting lexi-
cographic comparison of ordered sequences; the trick is to compare the sequences elementwise and then to use the
LEXICO operator to reduce the sequence of comparison results. Notethat EqualTo is the identity forLEXICO , and
all other comparison values are left zeroes forLEXICO .

value trait Comparison
extends { IdentityEqualityJComparisonK,

AssociativeJComparison, LEXICOK,
HasIdentityJComparison, LEXICOK,
HasLeftZeroesJComparison, LEXICO, isLeftZeroForLEXICOK }

comprises {TotalComparison,Unordered }
opr LEXICO(self, other : Comparison): Comparison
isLeftZeroForLEXICO(self): Boolean
opr ==(self, other : Comparison): Boolean
getter hashCode(): Z64
toString(): String

end

Unordered: Comparison
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38.4.1 opr LEXICO(self, other : Comparison):Comparison

The operatorLEXICO returns its right argument if the left argument isEqualTo; otherwise it returns its left argument.
The LEXICO operator as applied to comparison values may be described bythis table:

LEXICO LessThan EqualTo GreaterThan Unordered
LessThan LessThan LessThan LessThan LessThan
EqualTo LessThan EqualTo GreaterThan Unordered

GreaterThan GreaterThan GreaterThan GreaterThan GreaterThan
Unordered Unordered Unordered Unordered Unordered

38.4.2 isLeftZeroForLEXICO(self): Boolean

This method returnsfalse for EqualTo and true for all other comparison values.

38.4.3 opr ==(self, other : Comparison): Boolean

Two comparison values are strictly equivalent if and only ifthey are the same.

38.4.4 getter hashCode(): Z64

38.4.5 toString(): String

The toString method returns either “LessThan ” or “ EqualTo ” or “ GreaterThan ” or “ Unordered ” as
appropriate.

38.5 Top-level Comparison Value

38.5.1 Unordered: Comparison

The immutable variableUnordered has as its value the comparison value that signifies that two comparands are
unordered. It is a top-level variable declared in the Fortress standard libraries.
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Chapter 39

Components and APIs

We define a specialFortress.Components API that provides handles on components and APIs, and operations on
them, for use by components themselves (e.g., development environments), allowing components to build and maintain
other components, manipulate projects and components as objects, compile projects into components, link components
together, deploy components on specific sites over the internet, etc. This API is also used by theUpgradable and
Installable APIs. A component implementing this API is installed along with the Fortress standard libraries on every
fortress.

Note thatComponents andApis can be constructed only from the factory functions provided in the API. The compo-
nents and APIs so constructed are also installed and accessible via getComponent , preferences (which returns a list
of components implementing a given API, in order of preference), andgetAPI . Calling preferences on an API in the
Fortress standard libraries returns a non-empty list of components. In particular,preferences(Fortress.Components)
returns a non-empty list whose first element is the very component on which the call topreferences was made. Con-
ceptually, this component serves as a handle on the enclosing fortress, which might be necessary for the purposes of
certain development tools.

The operations on a fortress provided in this API take components and APIs as arguments directly, rather than names
of components and APIs as the corresponding shell operations are described. This decision is done for the sake of
convenience. Note, however, that a component name may be rebound on a fortress, or even uninstalled, while some
processp keeps a reference to a correspondingComponent object. This possibility is not problematic because the
component corresponding to this object may be simply kept bythe fortress until the object is freed inp. Also, note
thatupgrade operations on a compound component are purely functional: they produce new compound components
as a result. Thus, the structure of a component as viewed through aComponent object does not became stale in the
face of upgrades.

We include a methodgetSourceFile on components that returns the source file the component was compiled from.
Source files can be included with simple components during compilation as a compiler option. Doing so allows
development tools such as graphical debuggers to easily display the locations of errors without the possibility that
source code would not be synchronized with compiled code, ascan happen in conventional programming models
where compiled code is stored in nonencapsulated object files.

api Fortress.Components
import File from Fortress.IO
import {List, Set,Date } from Fortress.Util

trait Fortress
fortressName: Name
birthDate: Date
getComponent(componentName: Name):Component
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getAPI (apiName: Name): Api
preferences(ofAPI : Api): 〈Component〉
compile(file: File): SimpleComponent
install(file: File): Component
install(file: File, prereqs: SetJApiK): Component
upgradeAll(componentName: Name, that : Component): ()

isValidLink (constituents : 〈Component〉, exports = SetJApiK, hide = SetJApiK): Boolean

link(result : Name, constituents : 〈Component〉, exports = SetJApiK, hide = SetJApiK): Component
requires isValidLink(constituents , exports, hide)

end

object EnclosingFortress extends {Fortress } end
trait FortressElement

elementName : Name
vendor : String
owner : Fortress
timeStamp: Date
version: Version
uninstall(): ()

end

trait Component extends FortressElement
imports: SetJApiK
exports : SetJApiK
provides : SetJApiK
visibles : SetJApiK
constituents : SetJComponentK
run(args: String . . .): ()
constrain(destination: Name, apis: SetJApiK): Component
hide(destination: Name, apis: SetJApiK): Component
extract(prereqs: SetJApiK): File
isValidUpgrade(that : Component): Boolean
abstract upgrade(result : Name, that : Component): Component

requires self.isValidUpgrade(that)
sourceIsAvailable: Boolean
getSourceFile(): File

requires sourceIsAvailable

runTests(inclusive = Boolean): ()
end

trait Api extends FortressElement
uses : SetJApiK
extraction: File

end

trait Name end

trait SimpleComponent extends Component end

trait Version
major : N
minor : N

end

end
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Chapter 40

Memory Sequences and Binary Words

These are the lowest-level data structures in Fortress, upon which all others are built. Even such conceptually “primi-
tive” data types asZ and Z32 and R64 are defined in terms of memory sequences and binary words.

Consider, for example, the typesBinaryWordJ6K , Z64 , and N64 . All three may be regarded as 64-bit data objects.
However, Z64 causes the operator< to compare 64-bit words as two’s-complement signed integers, N64 causes
the operator< to compare 64-bit words as unsigned integers, andBinaryWordJ6K does not support the operator
< at all—instead it has two methods namedsignedLT and unsignedLT (which are, of course, conveniently used
to implement the operator< for Z64 and N64 ). Moreover, Z64 and N64 support units and dimensions, but
BinaryWord values do not. The parameterized typeBinaryWord provides methods that are only a modest abstraction
of operations supported by typical hardware instruction sets and serves as the lowest-level substrate that allows types
such asZ64 to be defined by libraries coded entirely in Fortress.

Similarly, the parameterized traitsLinearSequence andHeapSequence describe the lowest-level data structures that
are array-like or vector-like, capable of little more than one-dimensional indexing. They serve as the lowest-level
substrate that allows the complete distributed and multi-dimensional array types to be defined by libraries coded
entirely in Fortress.

For convenience, we use the termbinary linear sequenceto refer to a linear sequence of binary words, and the term
binary heap sequenceto refer to a heap sequence of binary words.

type BinaryLinearSequenceJnat b, nat nK = LinearSequenceJBinaryWordJbK, nK
type BinaryHeapSequenceJnat bK = HeapSequenceJBinaryWordJbKK

Most operations on binary words do not depend onendianness, that is, in which order the bits are numbered. For
operations that do depend on endianness, the parameterizedtrait BinaryEndianWord is provided.

It is also sometimes desirable to perform endianness-dependent operations on a linear sequence of binary words. For
this purpose the specialized parameterized traitsBinaryLinearEndianSequence andBinaryEndianLinearEndianSequence
are provided; the former hasBinaryWord values as elements, and the latter hasBinaryEndianWord values as ele-
ments.
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40.1 The Trait Fortress.Core.LinearSequence

A value of typeLinearSequenceJT, nK is a sequence ofn things of typeT , wheren may be any natural number.
Note that its length is statically fixed and may be described by a static expression. The general intent is that such a
sequence will reside in a contiguous region of memory, typically belonging to a single processor or processor node,
and that any element (indicated by an integer index) may be fetched or updated quickly by that processor or processor
node.

If T is not a value type, thenLinearSequenceJT, nK describes a sequence of references, and a variable of type
LinearSequenceJT, nK occupies an amount of storage equal ton times the amount of storage required to hold a
reference. IfT is a value type, thenLinearSequenceJT, nK describes a sequence of “unboxed” values, and a variable
of type LinearSequenceJT, nK occupies an amount of storage equal ton times the amount of storage required to
hold one value of typeT .

Linear sequences, unlike arrays, are not too fancy. The mainthings you can do with linear sequences are subscripting
and subscripted assignment, as well as assignment of entiresequences. They also support the concatenation operator
‖ . For example:

x: LinearSequenceJThread, 3K
y: LinearSequenceJThread, 6K
z: LinearSequenceJThread, 5K = x‖y[3 # 2]

Note in this example that the lengths are statically checkable. The range3 # 2 is a range of constant size 2, soy[3 # 2]
is known to be of typeLinearSequenceJThread, 2K . Indeed, only ranges of static size with element typeIndexInt
may be used to subscript a linear sequence.

value trait LinearSequenceJT extends Object, nat nK comprises {}
coercion Jnat b, bool bigEndianSequenceK

(x: BinaryLinearEndianSequenceJb, n, bigEndianSequenceK)
where {T extends BinaryWordJbK }

coercion Jnat b, bool bigEndianBytes , bool bigEndianBits , bool bigEndianSequenceK
(x: BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

n, bigEndianSequenceK)
where {T extends BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK }

coercion Jnat b, bool bigEndianBytes , bool bigEndianBits , bool bigEndianSequenceK
(x: BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

n, bigEndianSequenceK)
where {T extends BinaryWordJbK }

opr [j: IndexInt]:T throws { IndexOutOfBoundsException }
opr Jnat kK[j: IntegerStaticJkK]:T where { k < n }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK]: LinearSequenceJT,mK

throws { IndexOutOfBoundsException } where {m ≤ n }
opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK]: LinearSequenceJT,mK

where { 0 ≤ a < n, 0 ≤ a+m · c < n }
opr [j: IndexInt] := (v:T ): LinearSequenceJT, nK throws { IndexOutOfBoundsException }
opr Jnat kK[j: IntegerStaticJkK] := (v:T ): LinearSequenceJT, nK where { k < n }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] := (v: LinearSequenceJT,mK):

LinearSequenceJT, nK
throws { IndexOutOfBoundsException } where {m ≤ n }

opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] := (v: LinearSequenceJT,mK):
LinearSequenceJT, nK

where { 0 ≤ a < n, 0 ≤ a+m · c < n }
update(j: IndexInt, v:T ): LinearSequenceJT, nK throws { IndexOutOfBoundsException }
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updateJnat kK(j: IntegerStaticJkK, v:T ): LinearSequenceJT, nK where { k < n }
updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK, v: LinearSequenceJT,mK):

LinearSequenceJT, nK
throws { IndexOutOfBoundsException } where {m ≤ n }

updateJint a, nat m, int cK(r: StaticRangeJa,m, cK, v: LinearSequenceJT,mK):
LinearSequenceJT, nK

where { 0 ≤ a < n, 0 ≤ a+m · c < n }
opr ‖ Jnat mK(self, other : LinearSequenceJT,mK): LinearSequenceJT, n+mK
getter reverse(): LinearSequenceJT, nK
getter littleEndianJnat bK(): BinaryLinearEndianSequenceJb, n, falseK

where {T extends BinaryWordJbK }
getter bigEndianJnat bK(): BinaryLinearEndianSequenceJb, n, trueK

where {T extends BinaryWordJbK }
getter littleEndianJnat b, bool bigEndianBytes , bool bigEndianBitsK():

BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits , n, falseK
where {T extends BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK }

getter bigEndianJnat b, bool bigEndianBytes , bool bigEndianBitsK():
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits , n, trueK

where {T extends BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK }
end

40.1.1 coercion Jnat b, bool bigEndianSequenceK
(x: BinaryLinearEndianSequenceJb, n, bigEndianSequenceK)

where {T extends BinaryWordJbK }
40.1.2 coercion Jnat b, bool bigEndianBytes , bool bigEndianBits , bool bigEndianSequenceK

(x: BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
n, bigEndianSequenceK)

where {T extends BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK }

Any binary linear endian sequence may be coerced to an ordinary binary linear sequence of corresponding element
type. The bit values remain the same; all that is lost is the endianness information of the sequence in the static type.

40.1.3 coercion Jnat b, bool bigEndianBytes , bool bigEndianBits , bool bigEndianSequenceK
(x: BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
n, bigEndianSequenceK)
where {T extends BinaryWordJbK }

A binary linear endian sequence of binary endian words may becoerced to an ordinary binary linear sequence of
ordinary binary words. The bit values remain the same; all that is lost is the endianness information of both the
sequence and the elements.
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40.1.4 opr [j: IndexInt]:T throws { IndexOutOfBoundsException }
40.1.5 opr Jnat kK[j: IntegerStaticJkK]:T where { k < n }

Subscripting returns elementj of this linear sequence. Indexing is zero-origin; anIndexOutOfBoundsException is
thrown unless0 ≤ j < n , wheren is the length of the linear sequence. If the subscript is a static expression, then its
validity is checked statically, and no exception will occurat run time.

40.1.6 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK]: LinearSequenceJT,mK
throws { IndexOutOfBoundsException } where {m ≤ n }

40.1.7 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK]: LinearSequenceJT,mK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

Subscripting with a range of static sizem returns the indicated subsequence of this linear sequence.Indexing is zero-
origin; an IndexOutOfBoundsException is thrown unlessr ⊆ 0 # n , wheren is the length of the linear sequence.
If the subscript is a static range, then its validity is checked statically, and no exception will occur at run time. Ele-
ment k of the result sequence is the same as elementr.lowerBound + k × r.stride of this linear sequence, for all
0 ≤ k < m .

40.1.8 opr [j: IndexInt] := (v:T ): LinearSequenceJT, nK throws { IndexOutOfBoundsException }
40.1.9 opr Jnat kK[j: IntegerStaticJkK] := (v:T ): LinearSequenceJT, nK where { k < n }

After subscripted value object assignment, elementj of the subscripted variable is the same as the given valuev ,
and all other elements are the same as before. Indexing is zero-origin; anIndexOutOfBoundsException is thrown
unless0 ≤ j < n , wheren is the length of the linear sequence. If the subscript is a static expression, then its validity
is checked statically, and no exception will occur at run time.

40.1.10 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] := (v: LinearSequenceJT,mK):
LinearSequenceJT, nK
throws { IndexOutOfBoundsException } where {m ≤ n }

40.1.11 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] := (v: LinearSequenceJT,mK):
LinearSequenceJT, nK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

After subscripted value object assignment, elements of thesubscripted variable selected byr are the same as corre-
sponding elements ofv , and all other elements are the same as before; specifically,elementr.lowerBound + k × r.stride
of the updated variable is the same as elementk of v , for all 0 ≤ k < m . Indexing is zero-origin; anIndexOutOfBoundsException
is thrown unlessr ⊆ 0 # n , wheren is the length of the linear sequence. If the subscript is a static range, then its
validity is checked statically, and no exception will occurat run time.
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40.1.12 update(j: IndexInt, v:T ): LinearSequenceJT, nK throws { IndexOutOfBoundsException }
40.1.13 updateJnat kK(j: IntegerStaticJkK, v:T ): LinearSequenceJT, nK where { k < n }

This is a functional version of subscripted value object assignment: elementj of the result is the same as the given
valuev , and all other elements are the same as before. Indexing is zero-origin; anIndexOutOfBoundsException is
thrown unless0 ≤ j < n , wheren is the length of the linear sequence. If the subscript is a static expression, then its
validity is checked statically, and no exception will occurat run time.

40.1.14 updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK, v: LinearSequenceJT,mK):
LinearSequenceJT, nK
throws { IndexOutOfBoundsException } where {m ≤ n }

40.1.15 updateJint a, nat m, int cK(r: StaticRangeJa,m, cK, v: LinearSequenceJT,mK):
LinearSequenceJT, nK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

This is a functional version of subscripted value object assignment: elements of the result selected byr are the same as
corresponding elements ofv , and all other elements are the same as before; specifically,elementr.lowerBound + k × r.stride
of the result is the same as elementk of v , for all 0 ≤ k < m . Indexing is zero-origin; anIndexOutOfBoundsException
is thrown unless0 ≤ j < n , wheren is the length of the linear sequence. If the subscript is a static range, then its
validity is checked statically, and no exception will occurat run time.

40.1.16 opr ‖ Jnat mK(self, other : LinearSequenceJT,mK): LinearSequenceJT, n+mK

The result is a linear sequence whose length is equal to the sum of the lengths of this linear sequence and the other
linear sequence. Elementk of the result is the same as elementk of this linear sequence if0 ≤ k < n , and is the
same as elementk − n of the other linear sequence ifn ≤ k < n+m .

40.1.17 getter reverse(): LinearSequenceJT, nK

The result is a linear sequence such that elementk of the result is the same as elementn − 1 − k of this linear
sequence, for all0 ≤ k < n .

40.1.18 getter littleEndianJnat bK(): BinaryLinearEndianSequenceJb, n, falseK
where {T extends BinaryWordJbK }

40.1.19 getter bigEndianJnat bK(): BinaryLinearEndianSequenceJb, n, trueK
where {T extends BinaryWordJbK }

40.1.20 getter littleEndianJnat b, bool bigEndianBytes , bool bigEndianBitsK():
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits , n, falseK
where {T extends BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK }

40.1.21 getter bigEndianJnat b, bool bigEndianBytes , bool bigEndianBitsK():
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits , n, trueK
where {T extends BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK }

These conversion getters allow a linear sequence of (possibly endian) binary words to be treated as a specifically
little-endian or specifically big-endian linear sequence.This is especially useful just before invoking an endianness-
dependent method, for examples.littleEndian .countLeadingZeroBits() .
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40.2 Constructing Linear Sequences

40.2.1 makeLinearSequenceJT extends Object, nat nK(item:T ): LinearSequenceJT, nK

A new linear sequence of lengthn is returned. Every element of the linear sequence is initialized to be the same as
the givenitem .

40.2.2 computeLinearSequenceJT extends Object, nat nK(f : IndexInt→ T ): LinearSequenceJT, nK

A new linear sequence of lengthn is returned. Elementj of the new linear sequence is initialized to a value computed
by calling the given functionf with argumentj .

40.3 The Trait Fortress.Core.HeapSequence

A value of type HeapSequenceJT K is an array-like object that contains items of typeT . The length of a heap
sequence is in general not known statically, but can be discovered by asking for its length. A variable of type
HeapSequenceJT K occupies the amount of storage required to hold a reference;this reference refers to an object
that occupies an amount of storage greater than or equal to the amount that would be occupied by a variable of type
LinearSequenceJT, nK wheren is the length of the heap sequence.

Heap sequences, like linear sequences and unlike arrays, are not too fancy. The main things you can do with heap
sequences are subscripting and subscripted assignment. Concatenation isnot supported, because a basic principle of
the low-level types is that none of the operations, other than explicit construction of a heap sequence, does any heap
allocation. However, a range of static size may be used to index a heap sequence; the result is a linear sequence.

trait HeapSequenceJT extends ObjectK extends Object comprises {}
opr [j: IndexInt]:T throws { IndexOutOfBoundsException }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK]: LinearSequenceJT,mK

throws { IndexOutOfBoundsException }
opr [j : IndexInt] := (v:T ): () throws { IndexOutOfBoundsException }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] := (v: LinearSequenceJT,mK): ()

throws { IndexOutOfBoundsException }
reverse(selfStart : IndexInt, length : IndexInt): () throws { IndexOutOfBoundsException }
opr |self| : IndexInt

end

40.3.1 opr [j: IndexInt]:T throws { IndexOutOfBoundsException }

Subscripting returns elementj of this heap sequence. Indexing is zero-origin; anIndexOutOfBoundsException is
thrown unless0 ≤ j < n , wheren is the length of the heap sequence.
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40.3.2 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK]: LinearSequenceJT,mK
throws { IndexOutOfBoundsException }

Subscripting by a range returns the indicated subsequence of this heap sequence. The range must be a range of static
size, and the result is returned as a linear sequence (not a heap sequence), so no heap allocation is performed. Indexing
is zero-origin; anIndexOutOfBoundsException is thrown unlessr ⊆ (0 :n− 1) , wheren is the length of the heap
sequence. Elementk of the result linear sequence is the same as elementr.lowerBound + k × r.stride of this heap
sequence, for all0 ≤ k < m .

40.3.3 opr [j : IndexInt] := (v:T ): () throws { IndexOutOfBoundsException }

After subscripted assignment, elementj of this heap sequence is the same as the given valuev , and all other elements
are the same as before. Indexing is zero-origin; anIndexOutOfBoundsException is thrown unless0 ≤ j < n ,
wheren is the length of the heap sequence.

40.3.4 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] := (v: LinearSequenceJT,mK): ()
throws { IndexOutOfBoundsException }

After subscripted assignment using a range as a subscript, elements of the subscripted variable selected byr are
the same as corresponding elements ofv , and all other elements are the same as before; specifically,element
r.lowerBound + k × r.stride of the updated variable is the same as elementk of v , for all 0 ≤ k < m . The range
must be a range of static size, and the values to be assigned must be passed as linear sequence of the same size. Index-
ing is zero-origin; anIndexOutOfBoundsException is thrown unlessr ⊆ (0 :n− 1) , wheren is the length of the
heap sequence.

40.3.5 reverse(selfStart : IndexInt, length : IndexInt): () throws { IndexOutOfBoundsException }

ElementsselfStart through selfStart + length − 1 , inclusive, are reversed in order, that is, rearranged so that the
value originally stored at elementselfStart + j becomes elementselfStart + length − 1− j , for all 0 ≤ j < length .
Other elements of this heap sequence are unaffected.

40.3.6 opr |self| : IndexInt

The length of this heap sequence is returned. Note that the size of a heap sequence is specified at run time when the
heap sequence is created; once a heap sequence has been created, its length does not change.
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40.4 Constructing Heap Sequences

40.4.1 makeHeapSequenceJT extends ObjectK(n: IndexInt, item:T ):HeapSequenceJT K
throws {NegativeLengthException }

A new heap sequence of lengthn is allocated and returned. ANegativeLengthException is thrown if n < 0 . Every
element of the heap sequence is initialized to be the same as the givenitem .

40.4.2 computeHeapSequenceJT extends ObjectK(n: IndexInt, f : IndexInt→ T ): HeapSequenceJT K
throws {NegativeLengthException }

A new heap sequence of lengthn is allocated and returned. ANegativeLengthException is thrown if n < 0 .
Elementj of the new heap sequence is initialized to a value computed bycalling the given functionf with argument
j .
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40.5 The Trait Fortress.Core.BinaryWord

A value of typeBinaryWordJbK is a binary word of2b bits; b may be any natural number, soBinaryWordJ0K is a
bit, BinaryWordJ3K is a byte,BinaryWordJ6K is a 64-bit word, andBinaryWordJ10K is a 1024-bit word. In fact,
for convenience, the type abbreviationsBit andByte are defined:

type Bit = BinaryWordJ0K
type Byte = BinaryWordJ3K

The typeBinaryWordJbK has 2(2b) distinct values. When the binary word is regarded as an unsigned integer, these
values are identified with the nonnegative integers that areless than2(2b) . A binary word may also be regarded as a
signed integer: a value that, when regarded as an unsigned integer, is identified with an integer less than2(2b−1) , is
identified with that same integer when regarded as a signed integer; but a value that, when regarded as an unsigned
integer, is identified with an integer not less than2(2b−1) , is identified with that same integer less2(2b) . (This is the
standard “two’s complement” representation for signed integers.)

A binary word of one bit can have one of two values, 0 or 1. A binary word of more than one bit has two halves, a
high half and a low half, which are binary words of half the size. If v is the unsigned integer value of a binary word
of 2b bits, b ≥ 1 , h is the unsigned integer value of its high half, andl is the unsigned integer value of its low half,
then v = h · 22b−1

+ l .

Operations on binary words include bitwise boolean operations, arithmetic operations, shifts and rotates, population
count, and counting of leading and trailing zeros. The typeBinaryWordJbK is not “endian” and has no operations
that depend on endianness. However, ifw is binary word, thenw.littleEndian is a little-endian version ofw and
w.bigEndian is a big-endian version ofw ; for example, ifw is of type BinaryWordJ6K , thenw.littleEndian63 is
the most significant bit (the sign bit if the word is regarded as a two’s-complement integer), andw.bigEndian0 is that
same bit.

trait BinaryWordJnat bK extends {BasicBinaryWordOperationsJBinaryWordJbKK }
comprises {}
where { b ≤ maxBinaryWordBitLog }

coercion Jint rK(x: IntegerStaticJrK) where {−2b−1 ≤ r < 2b }
coercion Jbool bigEndianBytes , bool bigEndianBitsK

(x: BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK)
coercion Jnat b′, nat n, bool bigEndianSequenceK

(x: BinaryLinearEndianSequenceJb′, n, bigEndianSequenceK)
where { 2b = n · 2b′ }

coercion Jnat b′, bool bigEndianBytes , bool bigEndianBits , nat n, bool bigEndianSequenceK
(x: BinaryEndianLinearEndianSequenceJb′, bigEndianBytes , bigEndianBits ,

n, bigEndianSequenceK)
where { 2b = n · 2b′ }

bit(m: IndexInt): Bit
getter lowHalf (): BinaryWordJb− 1K where { b > 0 }
getter highHalf (): BinaryWordJb− 1K where { b > 0 }
opr ‖ Jnat mK(self, other : BinaryWordJbK): BinaryWordJb+ 1K

where { b < maxBinaryWordBitLog }
bitShuffle(other : BinaryWordJbK): BinaryWordJb+ 1K

where { b < maxBinaryWordBitLog }
bitUnshuffle(): (BinaryWordJb− 1K,BinaryWordJb− 1K) where { b > 0 }

end
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40.5.1 coercion Jint rK(x: IntegerStaticJrK) where {−2b−1 ≤ r < 2b }

An static integer may be coerced to a binary word that corresponds to that integer value when interpreted as either a
signed integer or an unsigned integer. For example, the typeBinaryWordJ3K has 2(23) = 256 distinct binary word
values; when they are interpreted as signed integers, the integer values range from−128 to 127, and when they are
interpreted as unsigned integers, the integer values rangefrom 0 to 255. Therefore any static integer from−128 to
255 may be coerced to typeBinaryWordJ3K .

40.5.2 coercion Jbool bigEndianBytes , bool bigEndianBitsK
(x: BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK)

Any binary endian word may be coerced to a plain binary word ofthe same size and value. In effect, this coercion
merely discards the endianness information.

40.5.3 coercion Jnat b′, nat n, bool bigEndianSequenceK
(x: BinaryLinearEndianSequenceJb′, n, bigEndianSequenceK)
where { 2b = n · 2b′ }

A binary linear endian sequence of smaller binary words may be coerced to a single binary word, provided that the
length of the linear sequence is an appropriate power of two,so that the total number of bits in the sequence is the
same as the total number of bits in the resulting binary word.The manner in which the elements of the sequence are
used to form the new binary word value respects the endianness of the sequence, so that element 0 of the sequence
supplies the most significant bits of the result ifbigEndianSequence is true, but supplies the least significant bits of
the result ifbigEndianSequence is false.

40.5.4 coercion Jnat b′, bool bigEndianBytes , bool bigEndianBits , nat n, bool bigEndianSequenceK
(x: BinaryEndianLinearEndianSequenceJb′, bigEndianBytes , bigEndianBits ,
n, bigEndianSequenceK)
where { 2b = n · 2b′ }

A binary endian linear endian sequence of smaller binary endian words may be coerced to a single binary word,
provided that the length of the linear sequence is an appropriate power of two, so that the total number of bits in the
sequence is the same as the total number of bits in the resulting binary word. The manner in which the elements of
the sequence are used to form the new binary word value respects the endianness of the sequence, so that element 0
of the sequence supplies the most significant bits of the result if bigEndianSequence is true, but supplies the least
significant bits of the result ifbigEndianSequence is false. In effect, the “bytes and bits” endianness information is
simply ignored and discarded.
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40.5.5 bit(m: IndexInt): Bit

The result is a bit whose value (0 or 1) is equal to⌊v · 2−m⌋ mod 2 wherev is the value of the binary word regarded
as an unsigned integer. This formula holds for any value ofm ; note that ifm is negative or greater than2b − 1 , the
result will always be a 0-bit. Thus thebit method provides a kind of “little-endian” indexing of the bits of a binary
word, even a binary word whose type is not intrinsically endian, but it does not require that the bit number identify an
actual represented bit of the binary word.

The bit method is particularly useful for describing the behavioral properties of other methods of binary data.

40.5.6 getter lowHalf (): BinaryWordJb− 1K where { b > 0 }
40.5.7 getter highHalf (): BinaryWordJb− 1K where { b > 0 }

The getterslowHalf andhighHalf each return a binary word of half the size (in bits) of this binary word; lowHalf

returns the less significant bits, andhighHalf returns the more significant bits.

property ∀(v) ∧

m←0#2b−1

v.lowHalf .bit(m) = v.bit(m)

property ∀(v) ∧

m←0#2b−1

v.highHalf .bit(m) = v.bit(m+ 2b−1)

40.5.8 opr ‖ Jnat mK(self, other : BinaryWordJbK): BinaryWordJb+ 1K
where { b < maxBinaryWordBitLog }

The result of concatenating two binary words of size2b is a single binary word of size2b+1 . The left-hand operand
becomes the high (more significant) half of the result and theright-hand operand becomes the low (less significant)
half of the result.

property ∀(v, w) (v ‖w).highHalf = v
property ∀(v, w) (v ‖w).lowHalf = w

40.5.9 bitShuffle(other : BinaryWordJbK): BinaryWordJb+ 1K
where { b < maxBinaryWordBitLog }

The bit-shuffle operation interleaves the bits of two words,as if shuffling cards together (using what magicians call a
“perfect shuffle”). The result of shuffling the bits two binary words of size2b is a single binary word of size2b+1 .
This binary word provides the odd-numbered bits of the result and the other binary word provides the even-numbered
bits of the result. For example, shuffling1111 and 0000 produces10101010 .

property ∀(v, w,m: IndexInt) v.bitShuffle(w).bit(m) = (if odd m then v.bit((m− 1)/2) else w.bit(m/2))
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40.5.10 bitUnshuffle(): (BinaryWordJb− 1K,BinaryWordJb− 1K) where { b > 0 }

This is the inverse of thebitShuffle method: the odd-numbered bits of this binary word are used toform a binary
word of half the size, and likewise the even-numbered bits, and a tuple of the two binary words is returned.

property ∀(v, w) v.bitShuffle(w).bitUnshuffle() = (v, w)
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40.6 The Trait Fortress.Core.BinaryEndianWord

The type BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK is exactly like BinaryWordJbK but bears two
kinds of endianness information. ABinaryEndianWord may be split into a sequence of smaller words; the result is of
type BinaryLinearEndianSequence. The flagbigEndianBytes indicates whether subword 0 is the most significant
subword (ifbigEndianBytes is true) or least significant subword (ifbigEndianBytes is false) of the original binary
word. A BinaryEndianWord may also be subscripted to extract a bit or a bit field; the flagbigEndianBits indicates
whether bit 0 is the most significant bit (ifbigEndianBits is true) or least significant bit (ifbigEndianBits is false)
of the original binary word. (Yes, it may seem strange for thebit ordering to differ from the subword ordering, but they
do differ on a number of architectures, including SPARC.) Extracting a bit produces aBit, that is, aBinaryWordJ0K .
Extracting a bit field of widthk produces aBinaryEndianLinearEndianSequence with n = k and b = 0 ; the
endianness of the sequence matches the bit-endianness of the originalBinaryEndianWord .

trait BinaryEndianWordJnat b, bool bigEndianBytes , bool bigEndianBitsK
extends {BasicBinaryWordOperationsJBinaryEndianWordJb, bigEndianBytes , bigEndianBitsK, bK}
comprises {}
where { b ≤ maxBinaryWordBitLog }

coercion Jint rK(x: IntegerStaticJrK) where {−2b−1 ≤ r < 2b }
opr [j: IndexInt] : BinaryEndianWordJ1, bigEndianBytes , bigEndianBitsK

throws { IndexOutOfBoundsException }
opr Jnat kK[j: IntegerStaticJkK] : BinaryEndianWordJ1, bigEndianBytes , bigEndianBitsK

where { k < 2b }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :

BinaryEndianLinearEndianSequenceJ1, bigEndianBytes , bigEndianBits ,m, bigEndianBitsK
throws { IndexOutOfBoundsException }

opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :
BinaryEndianLinearEndianSequenceJ1, bigEndianBytes , bigEndianBits ,m, bigEndianBitsK

where { 0 ≤ a < 2b, 0 ≤ a+m · c < 2b }
opr [j: IndexInt] := (v: Bit):

BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK
throws { IndexOutOfBoundsException }

opr Jnat kK[j: IntegerStaticJkK] := (v: Bit):
BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK

where { k < 2b }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] := (v: BinaryLinearSequenceJ1,mK):

BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK
throws { IndexOutOfBoundsException }

opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] := (v: BinaryLinearSequenceJ1, kK):
BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK

where { 0 ≤ a < 2b, 0 ≤ a+m · c < 2b }
update(j: IndexInt, v: Bit):

BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK
throws { IndexOutOfBoundsException }

updateJnat kK(j: IntegerStaticJkK, v: Bit):
BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK

where { k < 2b }
updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK, v: BinaryLinearSequenceJ1,mK):

BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK
throws { IndexOutOfBoundsException }

updateJint a, nat m, int cK(r: StaticRangeJa,m, cK, v: BinaryLinearSequenceJ1,mK):
BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK

where { 0 ≤ a < 2b, 0 ≤ a+m · c < 2b }
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lowHalf (): BinaryEndianWordJb− 1, bigEndianBytes , bigEndianBitsK where { b > 0 }
highHalf (): BinaryEndianWordJb− 1, bigEndianBytes , bigEndianBitsK where { b > 0 }
opr ‖ Jnat m, bool bigEndianSequenceK

(self, other : BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb+ 1, bigEndianBytes , bigEndianBits ,

2, bigEndianSequenceK
where { bigEndianSequence = bigEndianBytes }

opr ‖ Jnat m, bool bigEndianSequence , nat radix , nat q, nat k, nat vK
(self, other : NaturalNumeralJm, radix , vK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

k + 1, bigEndianSequenceK
where { bigEndianSequence = bigEndianBytes , radix = 2q, q ·m = k · 2b }

opr ‖ Jnat m, bool bigEndianSequence , nat radix , nat q, nat k, nat vK
(other : NaturalNumeralJm, radix , vK, self):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

k + 1, bigEndianSequenceK
where { bigEndianSequence = bigEndianBytes , radix = 2q, q ·m = k · 2b }

bitShuffle(other : BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK):
BinaryEndianWordJb+ 1, bigEndianBytes , bigEndianBitsK
where { b < maxBinaryWordBitLog }

bitUnshuffle(): (BinaryEndianWordJb− 1, bigEndianBytes , bigEndianBitsK,
BinaryEndianWordJb− 1, bigEndianBytes , bigEndianBitsK)

where { b > 0 }
littleEndian():BinaryEndianWordJb, false, falseK
bigEndian(): BinaryEndianWordJb, true, trueK

end

40.6.1 coercion Jint rK(x: IntegerStaticJrK) where {−2b−1 ≤ r < 2b }

An static integer may be coerced to a binary endian word exactly as if it were coerced to a plain binary word of the
same size; the endian numbering of the bytes and bits does notaffect which binary word value is produced from the
static integer.

40.6.2 opr [j: IndexInt] : BinaryEndianWordJ1, bigEndianBytes, bigEndianBitsK
throws { IndexOutOfBoundsException }

40.6.3 opr Jnat kK[j: IntegerStaticJkK] : BinaryEndianWordJ1, bigEndianBytes , bigEndianBitsK
where { k < 2b }

Subscripting returns bitj of this binary endian word. The numbering of the bits is dictated by bigEndianBits .
Indexing is zero-origin; anIndexOutOfBoundsException is thrown unless0 ≤ j < 2b . If the subscript is a static
expression, then its validity is checked statically, and noexception will occur at run time.

property ∀(v) ∧

j←0#2b

vj = (if bigEndianBits then v.bit(2b − 1− j) else v.bit(j) end)
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40.6.4 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :
BinaryEndianLinearEndianSequenceJ1, bigEndianBytes , bigEndianBits ,m, bigEndianBitsK
throws { IndexOutOfBoundsException }

40.6.5 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :
BinaryEndianLinearEndianSequenceJ1, bigEndianBytes , bigEndianBits ,m, bigEndianBitsK
where { 0 ≤ a < 2b, 0 ≤ a+m · c < 2b }

Subscripting with a range of static sizem returns the indicated subsequence of bits of this binary endian word. The
numbering of the bits is dictated bybigEndianBits . The result is a binary endian linear endian sequence of bits
whose sequence endianness is the same as the bit endianness of this binary endian word. Indexing is zero-origin;
an IndexOutOfBoundsException is thrown unlessr ⊆ 0 # 2b . If the subscript is a static range, then its validity is
checked statically, and no exception will occur at run time.Elementk of the result sequence is the same as the bit
that would be selected from this binary endian word by subscripting it with r.lowerBound + k × r.stride , for all
0 ≤ k < m .

40.6.6 opr [j: IndexInt] := (v: Bit):
BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK
throws { IndexOutOfBoundsException }

40.6.7 opr Jnat kK[j: IntegerStaticJkK] := (v: Bit):
BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK
where { k < 2b }

After subscripted value object assignment, the bit that would be selected from this binary endian word by subscript-
ing it with j is the same as the given bitv , and all other bits are the same as before. Indexing is zero-origin; an
IndexOutOfBoundsException is thrown unless0 ≤ j < 2b . If the subscript is a static expression, then its validity
is checked statically, and no exception will occur at run time.

40.6.8 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] := (v: BinaryLinearSequenceJ1,mK):
BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK
throws { IndexOutOfBoundsException }

40.6.9 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] := (v: BinaryLinearSequenceJ1,mK):
BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK
where { 0 ≤ a < 2b, 0 ≤ a+m · c < 2b }

After subscripted value object assignment, bits that wouldbe selected from this binary endian word by subscripting
it with r are the same as corresponding elements ofv , and all other bits are the same as before; specifically, the bit
that would be selected from this binary endian word by subscripting it with r.lowerBound + k × r.stride is the same
as elementk of v , for all 0 ≤ k < m . Indexing is zero-origin; anIndexOutOfBoundsException is thrown unless
r ⊆ 0 # 2b . If the subscript is a static range, then its validity is checked statically, and no exception will occur at run
time.
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40.6.10 update(j: IndexInt, v: Bit):
BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK
throws { IndexOutOfBoundsException }

40.6.11 updateJnat kK(j: IntegerStaticJkK, v: Bit):
BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK
where { k < 2b }

This is a functional version of subscripted value object assignment: the bit that would be selected from the result by
subscripting it withj is the same as the given bitv , and all other bits are the same as before. Indexing is zero-origin; an
IndexOutOfBoundsException is thrown unless0 ≤ j < 2b . If the subscript is a static expression, then its validity
is checked statically, and no exception will occur at run time.

40.6.12 updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK, v: BinaryLinearSequenceJ1,mK):
BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK
throws { IndexOutOfBoundsException }

40.6.13 updateJint a, nat m, int cK(r: StaticRangeJa,m, cK, v: BinaryLinearSequenceJ1,mK):
BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK
where { 0 ≤ a < 2b, 0 ≤ a+m · c < 2b }

This is a functional version of subscripted value object assignment: bits that would be selected from the result by
subscripting it withr are the same as corresponding elements ofv , and all other bits are the same as before; specifi-
cally, the bit that would be selected from the result by subscripting it with r.lowerBound + k × r.stride is the same
as elementk of v , for all 0 ≤ k < m . Indexing is zero-origin; anIndexOutOfBoundsException is thrown unless
r ⊆ 0 # 2b . If the subscript is a static range, then its validity is checked statically, and no exception will occur at run
time.

40.6.14 lowHalf (): BinaryEndianWordJb− 1, bigEndianBytes , bigEndianBitsK where { b > 0 }
40.6.15 highHalf (): BinaryEndianWordJb− 1, bigEndianBytes , bigEndianBitsK where { b > 0 }

The getterslowHalf and highHalf each return a binary endian word of half the size (in bits) of this binary endian
word, and with the same endian characteristics;lowHalf returns the less significant bits, andhighHalf returns the
more significant bits.

property ∀(v) ∧

m←0#2b−1

v.lowHalf .bit(m) = v.bit(m)

property ∀(v) ∧

m←0#2b−1

v.highHalf .bit(m) = v.bit(m+ 2b−1)

property ∀(v) ∧

m←0#2b−1

v.lowHalf m = v[if bigEndianBits then m+ 2b−1 else m end]

property ∀(v) ∧

m←0#2b−1

v.highHalf m = v[if bigEndianBits then m else m+ 2b−1 end]
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40.6.16 opr ‖ Jnat m, bool bigEndianSequenceK
(self, other : BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb+ 1, bigEndianBytes , bigEndianBits ,
2, bigEndianSequenceK
where { bigEndianSequence = bigEndianBytes }

[Description to be supplied.]

40.6.17 opr ‖ Jnat m, bool bigEndianSequence , nat radix , nat q, nat k, nat vK
(self, other : NaturalNumeralJm, radix , vK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
k + 1, bigEndianSequenceK
where { bigEndianSequence = bigEndianBytes , radix = 2q, q ·m = k · 2b }

[Description to be supplied.]

40.6.18 opr ‖ Jnat m, bool bigEndianSequence , nat radix , nat q, nat k, nat vK
(other : NaturalNumeralJm, radix , vK, self):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
k + 1, bigEndianSequenceK
where { bigEndianSequence = bigEndianBytes , radix = 2q, q ·m = k · 2b }

[Description to be supplied.]

40.6.19 bitShuffle(other : BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK):
BinaryEndianWordJb+ 1, bigEndianBytes , bigEndianBitsK
where { b < maxBinaryWordBitLog }

[Description to be supplied.]

40.6.20 bitUnshuffle(): (BinaryEndianWordJb− 1, bigEndianBytes , bigEndianBitsK,
BinaryEndianWordJb− 1, bigEndianBytes , bigEndianBitsK)
where { b > 0 }

[Description to be supplied.]

40.6.21 littleEndian(): BinaryEndianWordJb, false, falseK
40.6.22 bigEndian(): BinaryEndianWordJb, true, trueK

[Description to be supplied.]
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40.7 The Trait Fortress.Core.BasicBinaryOperations

trait BasicBinaryOperationsJT extends BasicBinaryOperationsJT KK
wrappingAdd(other :T ):T
add(other :T, carryIn: Bit = 0): (T,Bit)
signedAdd(other :T, overflowAction: ()→ T ):T
unsignedAdd(other :T, overflowAction: ()→ T ):T
saturatingSignedAdd(other :T ):T
saturatingUnsignedAdd(other :T ):T
wrappingSubtract(other :T ):T
subtract(other :T, carryIn: Bit = 1): (T,Bit)
signedSubtract(other :T, overflowAction: ()→ T ):T
unsignedSubtract(other :T, overflowAction: ()→ T ):T
saturatingSignedSubtract(other :T ):T
saturatingUnsignedSubtract(other :T ):T
wrappingNegate():T
negate(carryIn: Bit = 1): (T,Bit)
signedNegate(overflowAction: ()→ T ):T
unsignedNegate(overflowAction: ()→ T ):T
saturatingSignedNegate():T
bitNot():T
bitAnd(other :T ):T
bitOr(other :T ):T
bitXor(other :T ):T
bitXorNot(other :T ):T
bitNand(other :T ):T
bitNor(other :T ):T
bitAndNot(other :T ):T
bitOrNot(other :T ):T
signedMax (other :T ):T
signedMin(other :T ):T
unsignedMax (other :T ):T
unsignedMin(other :T ):T
opr =(self, other :T ): Boolean
opr 6=(self, other :T ): Boolean
signedLT (other :T ): Boolean
signedLE (other :T ): Boolean
signedGE (other :T ): Boolean
signedGT (other :T ): Boolean
unsignedLT (other :T ): Boolean
unsignedLE (other :T ): Boolean
unsignedGE (other :T ): Boolean
unsignedGT (other :T ): Boolean
signedShift(j: IndexInt):T
signedShift(j: IndexInt, overflowAction: ()→ T ):T
saturatingSignedShift(j: IndexInt):T
unsignedShift(j: IndexInt):T
unsignedShift(j: IndexInt, overflowAction: ()→ T ):T
saturatingUnsignedShift(j: IndexInt):T
bitRotate(j: IndexInt):T
countOneBits(): IndexInt
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countLeadingZeroBits(): IndexInt
countTrailingZeroBits(): IndexInt
leftmostOneBit():T
rightmostOneBit():T
bitReverse():T
signedIndex (): IndexInt throws { IntegerOverflowException }
unsignedIndex (): IndexInt throws { IntegerOverflowException }
gatherBits(mask :T ):T
spreadBits(mask :T ):T
disentangleBits(mask :T ):T
intersperseBits(mask :T ):T

end

40.7.1 wrappingAdd(other :T ):T
40.7.2 add(other :T, carryIn: Bit = 0): (T,Bit)
40.7.3 signedAdd(other :T, overflowAction: ()→ T ):T
40.7.4 unsignedAdd(other :T, overflowAction: ()→ T ):T
40.7.5 saturatingSignedAdd(other :T ):T
40.7.6 saturatingUnsignedAdd(other :T ):T

[Description to be supplied.]

40.7.7 wrappingSubtract(other :T ):T
40.7.8 subtract(other :T, carryIn: Bit = 1): (T,Bit)
40.7.9 signedSubtract(other :T, overflowAction: ()→ T ):T
40.7.10 unsignedSubtract(other :T, overflowAction: ()→ T ):T
40.7.11 saturatingSignedSubtract(other :T ):T
40.7.12 saturatingUnsignedSubtract(other :T ):T

[Description to be supplied.]

40.7.13 wrappingNegate():T
40.7.14 negate(carryIn: Bit = 1): (T,Bit)
40.7.15 signedNegate(overflowAction: ()→ T ):T
40.7.16 unsignedNegate(overflowAction: ()→ T ):T
40.7.17 saturatingSignedNegate():T

[Description to be supplied.]

40.7.18 bitNot():T

[Description to be supplied.]
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40.7.19 bitAnd(other :T ):T
40.7.20 bitOr(other :T ):T
40.7.21 bitXor(other :T ):T
40.7.22 bitXorNot(other :T ):T
40.7.23 bitNand(other :T ):T
40.7.24 bitNor(other :T ):T
40.7.25 bitAndNot(other :T ):T
40.7.26 bitOrNot(other :T ):T

[Description to be supplied.]

40.7.27 signedMax (other :T ):T
40.7.28 signedMin(other :T ):T

[Description to be supplied.]

40.7.29 unsignedMax (other :T ):T
40.7.30 unsignedMin(other :T ):T

[Description to be supplied.]

40.7.31 opr =(self, other :T ): Boolean
40.7.32 opr 6=(self, other :T ): Boolean

[Description to be supplied.]

40.7.33 signedLT (other :T ): Boolean
40.7.34 signedLE (other :T ): Boolean
40.7.35 signedGE (other :T ): Boolean
40.7.36 signedGT (other :T ): Boolean

[Description to be supplied.]

40.7.37 unsignedLT (other :T ): Boolean
40.7.38 unsignedLE (other :T ): Boolean
40.7.39 unsignedGE (other :T ): Boolean
40.7.40 unsignedGT (other :T ): Boolean

[Description to be supplied.]
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40.7.41 signedShift(j: IndexInt):T
40.7.42 signedShift(j: IndexInt, overflowAction: ()→ T ):T
40.7.43 saturatingSignedShift(j: IndexInt):T

[Description to be supplied.]

40.7.44 unsignedShift(j: IndexInt):T
40.7.45 unsignedShift(j: IndexInt, overflowAction: ()→ T ):T
40.7.46 saturatingUnsignedShift(j: IndexInt):T

[Description to be supplied.]

40.7.47 bitRotate(j: IndexInt):T

[Description to be supplied.]

40.7.48 countOneBits(): IndexInt

[Description to be supplied.]

40.7.49 countLeadingZeroBits(): IndexInt
40.7.50 countTrailingZeroBits(): IndexInt

[Description to be supplied.]

40.7.51 leftmostOneBit():T
40.7.52 rightmostOneBit():T

[Description to be supplied.]

40.7.53 bitReverse():T

[Description to be supplied.]

40.7.54 signedIndex (): IndexInt throws { IntegerOverflowException }
40.7.55 unsignedIndex (): IndexInt throws { IntegerOverflowException }

[Description to be supplied.]

291



40.7.56 gatherBits(mask :T ):T
40.7.57 spreadBits(mask :T ):T

[Description to be supplied.]

40.7.58 disentangleBits(mask :T ):T
40.7.59 intersperseBits(mask :T ):T

[Description to be supplied.]

40.8 The Trait Fortress.Core.BasicBinaryWordOperations

trait BasicBinaryWordOperationsJT extends BasicBinaryWordOperationsJT, bK, nat bK
extends BasicBinaryOperationsJT K where { b ≤ maxBinaryWordBitLog }

multiplyLow(other :T ):T where { b ≤ maxMultiplyBitLog }
multiplyLow(other :T, overflowAction: ()→ T ):T where { b ≤ maxMultiplyBitLog }
saturatedMultiplyLow(other :T ):T where { b ≤ maxMultiplyBitLog }
multiplyHigh(other :T ):T where { b ≤ maxMultiplyBitLog }
multiplyDouble(other :T ): (T, T ) where { b ≤ maxMultiplyBitLog }
signedDivide(other :T, overflowAction: ()→ T, zeroDivideAction: ()→ T ):T

where { b ≤ maxDivideBitLog }
unsignedDivide(other :T, zeroDivideAction: ()→ T ):T where { b ≤ maxDivideBitLog }
signedDivRem(other :T, overflowAction: ()→ T, zeroDivideAction: ()→ T ): (T, T )

where { b ≤ maxDivideBitLog }
unsignedDivRem(other :T, zeroDivideAction: ()→ T ): (T, T ) where { b ≤ maxDivideBitLog }
signedRemainder(other :T, zeroDivideAction: ()→ T ):T where { b ≤ maxDivideBitLog }
unsignedModulo(other :T, zeroDivideAction: ()→ T ):T where { b ≤ maxDivideBitLog }
bitSwap(j: IndexInt):T
getter littleEndian(): BinaryEndianWordJb, false, falseK
getter bigEndian(): BinaryEndianWordJb, true, trueK

end

40.8.1 multiplyLow(other :T ):T where { b ≤ maxMultiplyBitLog }
40.8.2 multiplyLow(other :T, overflowAction: ()→ T ):T where { b ≤ maxMultiplyBitLog }
40.8.3 saturatedMultiplyLow(other :T ):T where { b ≤ maxMultiplyBitLog }
40.8.4 multiplyHigh(other :T ):T where { b ≤ maxMultiplyBitLog }
40.8.5 multiplyDouble(other :T ): (T, T ) where { b ≤ maxMultiplyBitLog }

[Description to be supplied.]
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40.8.6 signedDivide(other :T, overflowAction: ()→ T, zeroDivideAction: ()→ T ):T
where { b ≤ maxDivideBitLog }

40.8.7 unsignedDivide(other :T, zeroDivideAction: ()→ T ):T where { b ≤ maxDivideBitLog }

[Description to be supplied.]

40.8.8 signedDivRem(other :T, overflowAction: ()→ T, zeroDivideAction: ()→ T ): (T, T )
where { b ≤ maxDivideBitLog }

40.8.9 unsignedDivRem(other :T, zeroDivideAction: ()→ T ): (T, T ) where { b ≤ maxDivideBitLog }

[Description to be supplied.]

40.8.10 signedRemainder(other :T, zeroDivideAction: ()→ T ):T where { b ≤ maxDivideBitLog }
40.8.11 unsignedModulo(other :T, zeroDivideAction: ()→ T ):T where { b ≤ maxDivideBitLog }

[Description to be supplied.]

40.8.12 bitSwap(j: IndexInt):T

[Description to be supplied.]

40.8.13 getter littleEndian(): BinaryEndianWordJb, false, falseK
40.8.14 getter bigEndian(): BinaryEndianWordJb, true, trueK

[Description to be supplied.]
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40.9 The Trait Fortress.Core.BinaryLinearEndianSequence

trait BinaryLinearEndianSequenceJnat b, nat n, bool bigEndianSequenceK
extends {BasicBinaryOperationsJBinaryLinearEndianSequenceJb, n, bigEndianSequenceKK }

where { b ≤ maxBinaryWordBitLog }
coercion Jnat b′, bool bigEndianBytes , bool bigEndianBitsK

(x: BinaryEndianWordJb′, bigEndianBytes , bigEndianBitsK)
where { bigEndianBytes = bigEndianSequence , 2b′ = n · 2b }

coercion Jnat m, nat radix , nat q, nat k, nat vK(x: NaturalNumeralJm, radix , vK)
where { radix = 2q, q ·m = n · 2bk }

opr [j: IndexInt] : BinaryWordJbK
throws { IndexOutOfBoundsException }

opr Jnat kK[j: IntegerStaticJkK] : BinaryWordJbK where { k < n }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :

BinaryLinearEndianSequenceJb,m, bigEndianSequenceK
throws { IndexOutOfBoundsException } where {m ≤ n }

opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :
BinaryLinearEndianSequenceJb,m, bigEndianSequenceK

where { 0 ≤ a < n, 0 ≤ a+m · c < n }
opr [j: IndexInt] := (v: BinaryWordJbK):

BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

opr Jnat kK[j: IntegerStaticJkK] := (v: BinaryWordJbK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK where { k < n }

opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :=
(v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK

throws { IndexOutOfBoundsException }
opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :=

(v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK

where { 0 ≤ a < n, 0 ≤ a+m · c < n }
update(j: IndexInt, v: BinaryWordJbK):

BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

updateJnat kK(j: IntegerStaticJkK, v: BinaryWordJbK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK where { k < n }

updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK,
v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):

BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

updateJint a, nat m, int cK(r: StaticRangeJa,m, cK,
v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):

BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

opr ‖ Jnat mK(self, other : BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n+m, bigEndianSequenceK

opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(self, other : NaturalNumeralJm, radix , vK):
LinearSequenceJBinaryWordJbK, n+ kK where { radix = 2q, q ·m = k · 2b }

opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(other : NaturalNumeralJm, radix , vK, self):
LinearSequenceJBinaryWordJbK, n+ kK where { radix = 2q, q ·m = k · 2b }
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littleEndian():BinaryEndianLinearEndianSequenceJb, false, false, n, bigEndianSequenceK
bigEndian(): BinaryEndianLinearEndianSequenceJb, true, true, n, bigEndianSequenceK
littleEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes , false,

n, bigEndianSequenceK
bigEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes , true,

n, bigEndianSequenceK
littleEndianSequence(): BinaryLinearEndianSequenceJb, n, falseK
bigEndianSequence(): BinaryLinearEndianSequenceJb, n, trueK
splitJnat b′K(): BinaryLinearEndianSequenceJb′, n · 2b−b′ , bigEndianSequenceK

where { b′ ≤ b }
end

40.9.1 coercion Jnat b′, bool bigEndianBytes , bool bigEndianBitsK
(x: BinaryEndianWordJb′, bigEndianBytes , bigEndianBitsK)
where { bigEndianBytes = bigEndianSequence , 2b′ = n · 2b }

[Description to be supplied.]

40.9.2 coercion Jnat m, nat radix , nat q, nat k, nat vK(x: NaturalNumeralJm, radix , vK)
where { radix = 2q, q ·m = n · 2bk }

[Description to be supplied.]

40.9.3 opr [j: IndexInt] : BinaryWordJbK
throws { IndexOutOfBoundsException }

40.9.4 opr Jnat kK[j: IntegerStaticJkK] : BinaryWordJbK where { k < n }

[Description to be supplied.]

40.9.5 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :
BinaryLinearEndianSequenceJb,m, bigEndianSequenceK
throws { IndexOutOfBoundsException } where {m ≤ n }

40.9.6 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :
BinaryLinearEndianSequenceJb,m, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

[Description to be supplied.]
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40.9.7 opr [j: IndexInt] := (v: BinaryWordJbK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.9.8 opr Jnat kK[j: IntegerStaticJkK] := (v: BinaryWordJbK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK where { k < n }

[Description to be supplied.]

40.9.9 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :=
(v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.9.10 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :=
(v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

[Description to be supplied.]

40.9.11 update(j: IndexInt, v: BinaryWordJbK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.9.12 updateJnat kK(j: IntegerStaticJkK, v: BinaryWordJbK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK where { k < n }

[Description to be supplied.]

40.9.13 updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK,
v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.9.14 updateJint a, nat m, int cK(r: StaticRangeJa,m, cK,
v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

[Description to be supplied.]

40.9.15 opr ‖ Jnat mK(self, other : BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n+m, bigEndianSequenceK

[Description to be supplied.]
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40.9.16 opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(self, other : NaturalNumeralJm, radix , vK):
LinearSequenceJT, n+ kK where { radix = 2q, q ·m = k · 2b }

[Description to be supplied.]

40.9.17 opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(other : NaturalNumeralJm, radix , vK, self):
LinearSequenceJT, n+ kK where { radix = 2q, q ·m = k · 2b }

[Description to be supplied.]

40.9.18 littleEndian(): BinaryEndianLinearEndianSequenceJb, false, false, n, bigEndianSequenceK
40.9.19 bigEndian(): BinaryEndianLinearEndianSequenceJb, true, true, n, bigEndianSequenceK

[Description to be supplied.]

40.9.20 littleEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes , false,
n, bigEndianSequenceK

40.9.21 bigEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes , true,
n, bigEndianSequenceK

[Description to be supplied.]

40.9.22 littleEndianSequence():BinaryLinearEndianSequenceJb, n, falseK
40.9.23 bigEndianSequence(): BinaryLinearEndianSequenceJb, n, trueK

[Description to be supplied.]

40.9.24 splitJnat b′K(): BinaryLinearEndianSequenceJb′, n · 2b−b′ , bigEndianSequenceK
where { b′ ≤ b }

[Description to be supplied.]
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40.10 The Trait Fortress.Core.BinaryEndianLinearEndianSequence

trait BinaryEndianLinearEndianSequenceJnat b, bool bigEndianBytes , bool bigEndianBits ,
nat n, bool bigEndianSequenceK

extends {BasicBinaryOperationsJ
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

n, bigEndianSequenceKK }
where { b ≤ maxBinaryWordBitLog }

coercion Jnat b′, bool bigEndianBytes , bool bigEndianBitsK
(x: BinaryEndianWordJb′, bigEndianBytes , bigEndianBitsK)

where { bigEndianBytes = bigEndianSequence , 2b′ = n · 2b }
coercion Jnat m, nat radix , nat q, nat k, nat vK(x: NaturalNumeralJm, radix , vK)

where { radix = 2q, q ·m = n · 2bk }
opr [j: IndexInt] : BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK

throws { IndexOutOfBoundsException }
opr Jnat kK[j: IntegerStaticJkK] : BinaryWordJb, bigEndianBytes , bigEndianBitsK

where { k < n }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :

BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
m, bigEndianSequenceK

throws { IndexOutOfBoundsException } where {m ≤ n }
opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :

BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
m, bigEndianSequenceK

where { 0 ≤ a < n, 0 ≤ a+m · c < n }
opr [j: IndexInt] := (v: BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK):

BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
n, bigEndianSequenceK

throws { IndexOutOfBoundsException }
opr Jnat kK[j: IntegerStaticJkK] :=

(v: BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

n, bigEndianSequenceK
where { k < n }

opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :=
(v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

m, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :=
(v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

k, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

n, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

update(j: IndexInt, v: BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

updateJnat kK(j: IntegerStaticJkK,
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v: BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

n, bigEndianSequenceK
where { k < n }

updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK,
v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

m, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

updateJint a, nat m, int cK
(r: StaticRangeJa,m, cK,
v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

m, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

n, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

opr ‖ Jnat mK(self, other : BinaryEndianLinearEndianSequenceJ
b, bigEndianBytes , bigEndianBits ,
m, bigEndianSequenceK):

BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
n+m, bigEndianSequenceK

opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(self, other : NaturalNumeralJm, radix , vK):
LinearSequenceJT, n+ kK

where { radix = 2q, q ·m = k · 2b }
opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(other : NaturalNumeralJm, radix , vK, self):

LinearSequenceJT, n+ kK
where { radix = 2q, q ·m = k · 2b }

littleEndian():BinaryEndianLinearEndianSequenceJb, false, false, n, bigEndianSequenceK
bigEndian(): BinaryEndianLinearEndianSequenceJb, true, true, n, bigEndianSequenceK
littleEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes , false,

n, bigEndianSequenceK
bigEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes , true,

n, bigEndianSequenceK
littleEndianSequence(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

n, falseK
bigEndianSequence(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,

n, trueK
splitJnat b′K() :

BinaryEndianLinearEndianSequenceJb′, bigEndianBytes , bigEndianBits ,

n · 2b−b′ , bigEndianSequenceK
where { b′ ≤ b }

end

40.10.1 coercion Jnat b′, bool bigEndianBytes , bool bigEndianBitsK
(x: BinaryEndianWordJb′, bigEndianBytes , bigEndianBitsK)
where { bigEndianBytes = bigEndianSequence , 2b′ = n · 2b }

[Description to be supplied.]
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40.10.2 coercion Jnat m, nat radix , nat q, nat k, nat vK(x: NaturalNumeralJm, radix , vK)
where { radix = 2q, q ·m = n · 2bk }

[Description to be supplied.]

40.10.3 opr [j: IndexInt] : BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK
throws { IndexOutOfBoundsException }

40.10.4 opr Jnat kK[j: IntegerStaticJkK] : BinaryWordJb, bigEndianBytes , bigEndianBitsK
where { k < n }

[Description to be supplied.]

40.10.5 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
m, bigEndianSequenceK
throws { IndexOutOfBoundsException } where {m ≤ n }

40.10.6 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
m, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

[Description to be supplied.]

40.10.7 opr [j: IndexInt] := (v: BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.10.8 opr Jnat kK[j: IntegerStaticJkK] :=
(v: BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
n, bigEndianSequenceK
where { k < n }

[Description to be supplied.]
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40.10.9 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :=
(v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
m, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.10.10 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :=
(v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
k, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
n, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

[Description to be supplied.]

40.10.11 update(j: IndexInt, v: BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.10.12 updateJnat kK(j: IntegerStaticJkK,
v: BinaryEndianWordJb, bigEndianBytes , bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
n, bigEndianSequenceK
where { k < n }

[Description to be supplied.]

40.10.13 updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK,
v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
m, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.10.14 updateJint a, nat m, int cK
(r: StaticRangeJa,m, cK,
v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
m, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
n, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

[Description to be supplied.]
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40.10.15 opr ‖ Jnat mK(self, other : BinaryEndianLinearEndianSequenceJ
b, bigEndianBytes , bigEndianBits ,
m, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
n+m, bigEndianSequenceK

[Description to be supplied.]

40.10.16 opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(self, other : NaturalNumeralJm, radix , vK):
LinearSequenceJT, n+ kK
where { radix = 2q, q ·m = k · 2b }

[Description to be supplied.]

40.10.17 opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(other : NaturalNumeralJm, radix , vK, self):
LinearSequenceJT, n+ kK
where { radix = 2q, q ·m = k · 2b }

[Description to be supplied.]

40.10.18 littleEndian(): BinaryEndianLinearEndianSequenceJb, false, false, n, bigEndianSequenceK
40.10.19 bigEndian(): BinaryEndianLinearEndianSequenceJb, true, true, n, bigEndianSequenceK

[Description to be supplied.]

40.10.20 littleEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes , false,
n, bigEndianSequenceK

40.10.21 bigEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes , true,
n, bigEndianSequenceK

[Description to be supplied.]

40.10.22 littleEndianSequence(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
n, falseK

40.10.23 bigEndianSequence(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes , bigEndianBits ,
n, trueK

[Description to be supplied.]
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40.10.24 splitJnat b′K() :
BinaryEndianLinearEndianSequenceJb′, bigEndianBytes , bigEndianBits ,
n · 2b−b′ , bigEndianSequenceK
where { b′ ≤ b }

[Description to be supplied.]

40.11 The Trait Fortress.Core.BinaryHeapEndianSequence

trait BinaryHeapEndianSequenceJnat b, bool bigEndianSequenceK
extends {BinaryHeapSequenceJbK,

BasicBinaryHeapSubsequenceOperationsJ
BinaryHeapEndianSequenceJb, bigEndianSequenceK,
bigEndianSequenceK }

end

40.12 The Trait Fortress.Core.BinaryEndianHeapEndianSequence

trait BinaryEndianHeapEndianSequenceJnat b, bool bigEndianBytes , bool bigEndianBits ,
bool bigEndianSequenceK

extends {HeapSequenceJBinaryEndianWordJb, bigEndianBytes , bigEndianBitsKK,
BasicBinaryHeapSubsequenceOperationsJ

BinaryHeapEndianSequenceJb, bigEndianSequenceK,
bigEndianSequenceK }

end

303



40.13 The Trait Fortress.Core.BasicBinaryHeapSubsequenceOperations

trait BasicBinaryHeapSubsequenceOperationsJ
T extends BasicBinaryHeapSubsequenceOperationsJT, bigEndianSequenceK,
bool bigEndianSequenceK

copy(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

wrappingAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

add(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length : IndexInt, carryIn: Bit = 0):Bit

throws { IndexOutOfBoundsException }
signedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt,

length : IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

unsignedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length : IndexInt, overflowAction: ()→ ()): ()

throws { IndexOutOfBoundsException }
saturatingSignedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()

throws { IndexOutOfBoundsException }
saturatingUnsignedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()

throws { IndexOutOfBoundsException }
wrappingSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()

throws { IndexOutOfBoundsException }
subtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,

length : IndexInt, carryIn: Bit = 1):Bit
throws { IndexOutOfBoundsException }

signedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length : IndexInt, overflowAction: ()→ ()): ()

throws { IndexOutOfBoundsException }
unsignedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,

length : IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

saturatingSignedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length : IndexInt): ()

throws { IndexOutOfBoundsException }
saturatingUnsignedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,

length : IndexInt): ()
throws { IndexOutOfBoundsException }

wrappingNegate(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

negate(selfStart : IndexInt, length : IndexInt, carryIn: Bit = 1):Bit
throws { IndexOutOfBoundsException }

signedNegate(selfStart : IndexInt, length : IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

unsignedNegate(selfStart : IndexInt, length : IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

saturatingSignedNegate(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

bitNot(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }
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bitAnd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

bitOr(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

bitXor(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

bitXorNot(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

bitNand(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

bitNor(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

bitAndNot(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

bitOrNot(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

signedMax (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

signedMin(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

unsignedMax (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

unsignedMin(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

equal(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

unequal(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

signedLT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

signedLE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

signedGE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

signedGT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

unsignedLT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

unsignedLE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

unsignedGE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

unsignedGT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

signedShift(selfStart : IndexInt, length : IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

signedShift(selfStart : IndexInt, length : IndexInt, j: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

saturatingSignedShift(selfStart : IndexInt, length : IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

unsignedShift(selfStart : IndexInt, length : IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }
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unsignedShift(selfStart : IndexInt, length : IndexInt, j: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

saturatingUnsignedShift(selfStart : IndexInt, length : IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

bitRotate(selfStart : IndexInt, length : IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

countOneBits(selfStart : IndexInt, length : IndexInt): IndexInt
throws { IndexOutOfBoundsException }

countLeadingZeroBits(selfStart : IndexInt, length : IndexInt): IndexInt
throws { IndexOutOfBoundsException }

countTrailingZeroBits(selfStart : IndexInt, length : IndexInt): IndexInt
throws { IndexOutOfBoundsException }

leftmostOneBit(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

rightmostOneBit(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

bitReverse(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

gatherBits(selfStart : IndexInt,mask :T,maskStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

spreadBits(selfStart : IndexInt,mask :T,maskStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

clearAllBits(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

setAllBits(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

signedIndex (): IndexInt
throws { IntegerOverflowException }

signedIndex (selfStart : IndexInt, length : IndexInt): IndexInt
throws { IndexOutOfBoundsException, IntegerOverflowException }

unsignedIndex (): IndexInt
throws { IntegerOverflowException }

unsignedIndex (selfStart : IndexInt, length : IndexInt): IndexInt
throws { IndexOutOfBoundsException, IntegerOverflowException }

end

40.13.1 copy(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]
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40.13.2 wrappingAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.3 add(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length : IndexInt, carryIn: Bit = 0): Bit
throws { IndexOutOfBoundsException }

40.13.4 signedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length : IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.5 unsignedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length : IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.6 saturatingSignedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.7 saturatingUnsignedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.8 wrappingSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.9 subtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length : IndexInt, carryIn: Bit = 1): Bit
throws { IndexOutOfBoundsException }

40.13.10 signedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length : IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.11 unsignedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length : IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.12 saturatingSignedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.13 saturatingUnsignedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length : IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]
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40.13.14 wrappingNegate(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.15 negate(selfStart : IndexInt, length : IndexInt, carryIn: Bit = 1):Bit
throws { IndexOutOfBoundsException }

40.13.16 signedNegate(selfStart : IndexInt, length : IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.17 unsignedNegate(selfStart : IndexInt, length : IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.18 saturatingSignedNegate(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.19 bitNot(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.20 bitAnd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.21 bitOr(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.22 bitXor(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.23 bitXorNot(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.24 bitNand(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.25 bitNor(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.26 bitAndNot(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.27 bitOrNot(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.28 signedMax (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.29 signedMin(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]
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40.13.30 unsignedMax (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.31 unsignedMin(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.32 equal(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.33 unequal(selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.34 signedLT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.35 signedLE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.36 signedGE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.37 signedGT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.38 unsignedLT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.39 unsignedLE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.40 unsignedGE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.41 unsignedGT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length : IndexInt): Boolean
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.42 signedShift(selfStart : IndexInt, length : IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.43 signedShift(selfStart : IndexInt, length : IndexInt, j: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.44 saturatingSignedShift(selfStart : IndexInt, length : IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]
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40.13.45 unsignedShift(selfStart : IndexInt, length : IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.46 unsignedShift(selfStart : IndexInt, length : IndexInt, j: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.47 saturatingUnsignedShift(selfStart : IndexInt, length : IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.48 bitRotate(selfStart : IndexInt, length : IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.49 countOneBits(selfStart : IndexInt, length : IndexInt): IndexInt
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.50 countLeadingZeroBits(selfStart : IndexInt, length : IndexInt): IndexInt
throws { IndexOutOfBoundsException }

40.13.51 countTrailingZeroBits(selfStart : IndexInt, length : IndexInt): IndexInt
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.52 leftmostOneBit(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.53 rightmostOneBit(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.54 bitReverse(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]
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40.13.55 gatherBits(selfStart : IndexInt,mask :T,maskStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.56 spreadBits(selfStart : IndexInt,mask :T,maskStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.57 clearAllBits(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.58 setAllBits(selfStart : IndexInt, length : IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.59 signedIndex (): IndexInt
throws { IntegerOverflowException }

40.13.60 signedIndex (selfStart : IndexInt, length : IndexInt): IndexInt
throws { IndexOutOfBoundsException, IntegerOverflowException }

40.13.61 unsignedIndex (): IndexInt
throws { IntegerOverflowException }

40.13.62 unsignedIndex (selfStart : IndexInt, length : IndexInt): IndexInt
throws { IndexOutOfBoundsException, IntegerOverflowException }

[Description to be supplied.]
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Appendix A

Fortress Calculi

A.1 Basic Core Fortress

In this section, we define a basic core calculus for Fortress.We call this calculusBasic Core Fortress. Following the
precedent set by prior core calculi such as Featherweight Generic Java [12], we have abided by the restriction that all
valid Basic Core Fortress programs are valid Fortress programs.

A.1.1 Syntax

A syntax for Basic Core Fortress is provided in Figure A.1. Weuse the following notational conventions:

• For brevity, we omit separators such as, and ; from Basic Core Fortress.

• −→τ is a shorthand for a (possibly empty) sequenceτ1, · · · , τn.

• Similarly, we abbreviate a sequence of relationsα1 extends N1, · · · , αn extends Nn to
−−−−−−−−−→
α extendsN

• We useτi to denote theith element of−→τ .

• For simplicity, we assume that every name (type variables, field names, and parameters) is different and every
trait/object declaration declares unique name.

• We prohibit cycles in type hierarchies.

The syntax of Basic Core Fortress allows only a small subset of the Fortress language to be formalized. Basic Core
Fortress includes trait and object definitions, method and field invocations, andself expressions. The types of
Basic Core Fortress include type variables, instantiated traits, instantiated objects, and the distinguished traitObject.
Note that we syntactically prohibit extending objects. Among other features, Basic Core Fortress doesnot include
top-level variable and function definitions, overloading,excludes clauses,bounds clauses,where clauses, object
expressions, and function expressions. Basic Core Fortress will be extended to formalize a larger set of Fortress
programs in the future.

A.1.2 Dynamic Semantics

A dynamic semantics for Basic Core Fortress is provided in Figure A.2. This semantics has been mechanized via
the PLT Redex tool [15]. It therefore follows the style of explicit evaluation contexts and redexes. The Basic Core
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α, β type variables
f method name
x field name
T trait name
O object name
τ, τ ′, τ ′′ ::= α type

| σ
σ ::= N type that is not a type variable

| OJ−→τ K
N,M,L ::= T J−→τ K type that can be a type bound

| Object

e ::= x expression
| self

| OJ−→τ K(−→e )
| e.x
| e.fJ−→τ K(−→e )

fd ::= fJ−−−−−−−−−→α extendsNK(−→x:τ):τ = e method definition

td ::= trait T J−−−−−−−−−→α extendsNK extends {−→N } −→fd end trait definition

od ::= objectOJ−−−−−−−−−→α extendsNK(−→x:τ) extends {−→N } −→fd end object definition
d ::= td definition

| od

p ::=
−→
d e program

Figure A.1: Syntax of Basic Core Fortress

Fortress dynamic semantics consists of two evaluations rules: one for field access and another for method invocation.
For simplicity, we use ‘ ’ to denote some parts of the syntax that do not have key roles in a rule. We assume that
does not expand across definition boundaries unless the entire definition is included in it.

A.1.3 Static Semantics

A static semantics for Basic Core Fortress is provided in Figures A.3, A.4, and A.5. The Basic Core Fortress static
semantics is based on the static semantics of FeatherweightGeneric Java (FGJ) [12]. The major difference is the
division of classes into traits and objects. Both trait and object definitions include method definitions but only object
definitions include field definitions. With traits, Basic Core Fortress supports multiple inheritance. However, due to
the similarity of traits and objects, many of the rules in theBasic Core Fortress dynamic and static semantics combine
the two cases. Note that Basic Core Fortress allows parametric polymorphism, subtype polymorphism, and overriding
in much the same way that FGJ does.

We proved the type soundness of Basic Core Fortress using thestandard technique of proving a progress theorem and
a subject reduction theorem.
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Values, evaluation contexts, redexes, and trait and objectnames

v ::= OJ−→τ K(−→v ) value
E ::= � evaluation context
| OJ−→τ K(−→e E−→e )
| E.x
| E.fJ−→τ K(−→e )
| e.fJ−→τ K(−→e E−→e )

R ::= v.x redex
| v.fJ−→τ K(−→v )

C ::= T trait name
| O object name

Evaluation rules:p ⊢ E[R] −→ E[e]

[R-FIELD ]
objectO (−−→x: ) end ∈ p
p ⊢ E[OJ−→τ K(−→v ).xi] −→ E[vi]

[R-METHOD]
objectO (−−→x: ) end ∈ p mbodyp(fJ

−→
τ ′ K, OJ−→τ K) = {(−→x′ )→ e}

p ⊢ E[OJ−→τ K(−→v ).fJ
−→
τ ′ K(
−→
v′ )] −→ E[[−→v /−→x ][OJ−→τ K(−→v )/self][

−→
v′/
−→
x′ ]e]

Method body lookup:mbodyp(fJ−→τ K, τ ) = {(−→x )→ e}

[M B-SELF]
CJ−−−−−−−−−→α extends K −→

fd ∈ p fJ−−−−−−−−−→α′ extends K(−−→x′: ) = e ∈ {−→fd}
mbodyp(fJ

−→
τ ′ K, CJ−→τ K) = {[−→τ ′/−→α′ ][−→τ /−→α ](

−→
x′ )→ e}

[M B-SUPER]
CJ−−−−−−−−−→α extends K extends {−→N } −→

fd ∈ p f 6∈ {−−−−−−−→Fname(fd)}
mbodyp(fJ

−→
τ ′ K, CJ−→τ K) =

⋃

Ni∈{
−→
N}

mbodyp(fJ
−→
τ ′ K, [−→τ /−→α ]Ni)

[M B-OBJ] mbodyp(fJ−→τ K, Object) = ∅

Function/method name lookup:Fname(fd ) = f

Fname(fJ−−−−−−−−−→α extendsNK(−→x:τ ):τ = e) = f

Figure A.2: Dynamic Semantics of Basic Core Fortress
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Environments

∆ ::=
−−−−−→
α <: N bound environment

Γ ::= −−→x : τ type environment

Program typing: ⊢ p : τ

[T-PROGRAM]
p =
−→
d e p ⊢ −→d ok p; ∅; ∅ ⊢ e : τ

⊢ p : τ

Definition typing: p ⊢ d ok

[T-TRAITDEF]

∆ =
−−−−−→
α <: N p; ∆ ⊢ −→N ok p; ∆ ⊢ −→M ok p; ∆; self : T J−→α K;T ⊢ −→fd ok

p ⊢ oneOwner (T )

p ⊢ trait T J−−−−−−−−−→α extendsNK extends {−→M} −→fd end ok

[T-OBJECTDEF]

∆ =
−−−−−→
α <: N p; ∆ ⊢ −→N ok p; ∆ ⊢ −→τ ok p; ∆ ⊢ −→M ok

p; ∆; self : OJ−→α K −−→x : τ ;O ⊢ −→fd ok p ⊢ oneOwner (O)

p ⊢ objectOJ−−−−−−−−−→α extendsNK(−→x:τ ) extends {−→M} −→fd end ok

Method typing: p; ∆; Γ;C ⊢ fd ok

[T-M ETHODDEF]

C extends {−→M} ∈ p p; ∆ ⊢ override(f, {−→M}, J−−−−−−−−−→α extendsNK −→τ → τ0)

∆′ = ∆
−−−−−→
α <: N p; ∆′ ⊢ −→N ok p; ∆′ ⊢ −→τ ok p; ∆′ ⊢ τ0 ok

p; ∆′; Γ −−→x : τ ⊢ e : τ ′ p; ∆′ ⊢ τ ′ <: τ0

p; ∆; Γ;C ⊢ fJ−−−−−−−−−→α extendsNK(−→x:τ):τ0 = e ok

Method overriding: p; ∆ ⊢ override(f, {−→N}, J−−−−−−−−−→α extendsNK −→τ → τ )

[OVERRIDE]

⋃

Li∈{
−→
L}

mtypep(f, Li) = {J−−−−−−−−−→β extendsMK
−→
τ ′ → τ ′0}

−→
N = [−→α /−→β ]

−→
M −→τ = [−→α /−→β ]

−→
τ ′ p;

−−−−−→
α <: N ⊢ τ0 <: [−→α /−→β ]τ ′0

p; ∆ ⊢ override(f, {−→L }, J−−−−−−−−−→α extendsNK −→τ → τ0)

Method type lookup:mtypep(f, τ) = {J−−−−−−−−−→α extendsNK −→τ → τ}

[M T-SELF]
CJ−−−−−−−−−→α extends K −→

fd ∈ p fJ−−−−−−−−−→β extendsMK(−−→:τ ′):τ ′0 = e ∈ {−→fd}
mtypep(f, CJ−→τ K) = {[−→τ /−→α ]J−−−−−−−−−→β extendsMK −→τ ′ → τ ′0}

[M T-SUPER]
CJ−−−−−−−−−→α extends K extends {−→N } −→

fd ∈ p f 6∈ {−−−−−−−→Fname(fd)}
mtypep(f, CJ−→τ K) =

⋃

Ni∈{
−→
N}

mtypep(f, [
−→τ /−→α ]Ni)

[M T-OBJ] mtypep(f, Object) = ∅

Figure A.3: Static Semantics of Basic Core Fortress (I)
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Expression typing:p; ∆; Γ ⊢ e : τ

[T-VAR] p; ∆; Γ ⊢ x : Γ(x)

[T-SELF] p; ∆; Γ ⊢ self : Γ(self)

[T-OBJECT]

objectOJ−−−−−−−−−→α extends K(
−−→

:τ ′) end ∈ p p; ∆ ⊢ OJ−→τ Kok

p; ∆; Γ ⊢ −→e :
−→
τ ′′ p; ∆ ⊢ −→τ ′′ <: [−→τ /−→α ]

−→
τ ′

p; ∆; Γ ⊢ OJ−→τ K(−→e ) : OJ−→τ K

[T-FIELD ]
p; ∆; Γ ⊢ e0 : τ0 bound∆(τ0) = OJ

−→
τ ′ K objectOJ−−−−−−−−−→α extends K(−→x:τ) end ∈ p

p; ∆; Γ ⊢ e0. xi : [
−→
τ ′/−→α ]τi

[T-M ETHOD]

p; ∆; Γ ⊢ e0 : τ0 mtypep(f, bound∆(τ0)) = {J−−−−−−−−−→α extendsNK
−→
τ ′ → τ ′0}

p; ∆ ⊢ −→τ ok p; ∆ ⊢ −→τ <: [−→τ /−→α ]
−→
N

p; ∆; Γ ⊢ −→e :
−→
τ ′′ p; ∆ ⊢ −→τ ′′ <: [−→τ /−→α ]

−→
τ ′

p; ∆; Γ ⊢ e0.fJ−→τ K(−→e ) : [−→τ /−→α ]τ ′0

Subtyping: p; ∆ ⊢ τ <: τ

[S-OBJ] p; ∆ ⊢ τ <: Object

[S-REFL] p; ∆ ⊢ τ <: τ

[S-TRANS]
p; ∆ ⊢ τ1 <: τ2 p; ∆ ⊢ τ2 <: τ3

p; ∆ ⊢ τ1 <: τ3

[S-VAR] p; ∆ ⊢ α <: ∆(α)

[S-TAPP]
CJ−−−−−−−−−→α extends K extends {−→N } ∈ p

p; ∆ ⊢ CJ−→τ K <: [−→τ /−→α ]Ni

Well-formed types:p; ∆ ⊢ τ ok

[W-OBJ] p; ∆ ⊢ Object ok

[W-VAR]
α ∈ dom(∆)

p; ∆ ⊢ α ok

[W-TAPP]
CJ−−−−−−−−−→α extendsNK ∈ p p; ∆ ⊢ −→τ ok p; ∆ ⊢ −→τ <: [−→τ /−→α ]

−→
N

p; ∆ ⊢ CJ−→τ K ok

Figure A.4: Static Semantics of Basic Core Fortress (II)
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Bound of type: bound∆(τ ) = σ

bound∆(α) = ∆(α)
bound∆(σ) = σ

One owner for all the visible methods:p ⊢ oneOwner (C)

[ONEOWNER]
∀f ∈ visiblep(C) . f only occurs once invisiblep(C)

p ⊢ oneOwner (C)

Auxiliary functions for methods:definedp / inheritedp / visiblep(C) = {−→f }

definedp(C) = {−−−−−−−→Fname(fd)} where C
−→
fd ∈ p

inheritedp(C) =
⊎

Ni∈{
−→
N}
{fi | fi ∈ visiblep(Ni), fi 6∈ definedp(C)} where C extends {−→N } ∈ p

visiblep(C) = definedp(C) ⊎ inheritedp(C)

Figure A.5: Static Semantics of Basic Core Fortress (III)

A.2 Core Fortress with Where Clauses

In this section, we define a Fortress core calculus withwhere clauses. We call this calculusCore Fortress with Where
Clauses. Core Fortress with Where Clauses is an extension of Basic Core Fortress withwhere clauses.

A.2.1 Syntax

The syntax for Core Fortress with Where Clauses is provided in Figure A.6. For simplicity, we use the following
notational conventions:

• We abbreviate a sequence of relationsα1 extends {
−→
K1} · · · αn extends {−→Kn} to

−−−−−−−−−−−→
α extends {−→K} andτ1 <:

H11 τ1 <: H12 · · · τ1 <: H1l τ2 <: H21 · · · τn <: Hnm to−→τ <:
−→−→
H .

• Substitutions ofx with v andα with τ are denoted as[v/x] and[τ/α], respectively. A sequence of substitutions
represents the composition of those substitutions where the right-most substitution is applied first. For example,
Sn · · · S1τ representsSn(· · · S2(S1τ ) · · · ).

Most of the syntax is a straightforward extension of Basic Core Fortress in Section A.1.1. An object or trait definition
may includewhere clauses. Every method invocation is annotated with three kinds of static types by type inference:
the static types of the receiver, the arguments, and the result. These type annotations appear in Core Fortress with
Where Clauses in a form ofas τ . If the annotated types are not enough (to find “witnesses” for the where-clauses
variables), type checking rejects the program and requiresmore type information from the programmer.

A.2.2 Dynamic Semantics

A dynamic semantics for Core Fortress with Where Clauses is provided in Figures A.7 and A.8.
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α, β type variables
f method name
x field name
T trait name
O object name
C trait or object name
τ, τ ′, τ ′′ ::= α type

| σ
σ ::= N type that is not a type variable

| OJ−→τ K
N,M,L ::= T J−→τ K super trait

| Object

K,H, J ::= α bound on a type variable
| N

e ::= x expression
| self

| OJ−→τ K(−→e )
| e.x
| e as CJ−→τ K.fJ−→τ K(−−−→e as τ) as τ
| typecase x = e in −−−→τ ⇒ e else e end

fd ::= fJ
−−−−−−−−−−−→
α extends {−→K}K(−→x:τ):τ = e method definition

td ::= trait T J
−−−−−−−−−−−→
α extends {−→K}K extends {−→N } where {

−−−−−−−−−−−→
α extends {−→K}} −→fd end trait definition

od ::= objectOJ
−−−−−−−−−−−→
α extends {−→K}K(−→x:τ) extends {−→N } where {

−−−−−−−−−−−→
α extends {−→K}} −→fd end object definition

d ::= td definition
| od

p ::=
−→
d e program

Figure A.6: Syntax of Core Fortress with Where Clauses

A.2.3 Static Semantics

A static semantics for Core Fortress with Where Clauses is provided in Figures A.9, A.10, A.11, and A.12.

For simplicity, we use the following conventions:

• FTV (τ ) collects all free type variables inτ .

• Similarly, FTV (e) collects all free type variables in all types ine.

We proved the type soundness of Core Fortress with Where Clauses using the standard technique of proving a progress
theorem and a subject reduction theorem.
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Values, evaluation contexts, and redexes

v ::= OJ−→τ K(−→v )
E ::= �
| OJ−→τ K(−→v E−→e )
| E.x
| E as τ .fJ−→τ K(−−−→e as τ )as τ
| v as τ .fJ−→τ K(−−−→v as τ E as τ −−−→e as τ)as τ
| typecase x = E in −−−→τ ⇒ e else e end

R ::= v.x
| v as τ .fJ−→τ K(−−−→v as τ)as τ
| typecase x = v in −−−→τ ⇒ e else e end

Evaluation rules:p ⊢ E[R] −→ E[e]

[R-FIELD ]
objectOJ−−−−−−−−−→α extends K(−−→x: ) end ∈ p

p ⊢ E[OJ−→τ K(−→v ).xi] −→ E[vi]

[R-METHOD]

mtypep(f, CJ−→τ cK, ∅) = {(J−−−−−−−−−→α′ extends K −→τ ′′ → τ ′0, )} S([
−→
τ ′/
−→
α′ ]
−→
τ ′′) =

−→
τa S([

−→
τ ′/
−→
α′ ]τ ′0) = τ r

objectO (−−→x: ) end ∈ p mbodyp(fJ−→τ ′ K, OJ−→τ K, CJ−→τ cK) = {(−→x′ )→ e}
p ⊢ E[OJ−→τ K(−→v )as CJ−→τ cK.fJ−→τ ′ K(−−−−−→v′ as τa)as τ r] −→ E[[−→v /−→x ][OJ−→τ K(−→v )/self][

−→
v′/
−→
x′ ]Se]

[R-TYPECASE]
type(v) = τv |−→τ | = n ¬(p; ∅ ⊢ τv <: τi) 1 ≤ i < n p; ∅ ⊢ τv <: τn

p ⊢ E[typecase x = v in −−−→τ ⇒ e
−−−−→
τ ′ ⇒ e′ else e end] −→ E[[v/x]en]

[R-TYPECASEELSE]
type(v) = τv ¬(p; ∅ ⊢ τv <: τi) 1 ≤ i ≤ |−→τ |

p ⊢ E[typecase x = v in −−−→τ ⇒ e else e′ end] −→ E[[v/x]e′]

Method body lookup:mbodyp(fJ−→τ K, τ, τ) = {(−→x )→ e}

[M B-SELF]
CJ−−−−−−−−−→α extends K −→

fd ∈ p fJ−−−−−−−−−→α′ extends K(−−→x′: ): = e ∈ {−→fd}
mbodyp(fJ

−→
τ ′ K, CJ−→τ K, CJ−→τ cK) = {(−→x′ )→ [

−→
τ ′/
−→
α′ ][
−→
τ c/−→α ]e}

[M B-WITNESS]

CJ−−−−−−−−−→α extends K −→
fd ∈ p fJ

−−−−−−−−−→
α′ extends K(

−−→
x′: ): = e ∈ {−→fd}

τo 6= CJ K witnessp(CJ−→τ K, τo) = S

mbodyp(fJ
−→
τ ′ K, CJ−→τ K, τo) = {(−→x′ )→ [

−→
τ ′/
−→
α′ ](S([

−−→
τ/α]e))}

[M B-SUPER]
CJ−−−−−−−−−→α extends K extends {−→N } −→

fd ∈ p f 6∈ {−−−−−−−→Fname(fd)} C 6= C ′

mbodyp(fJ
−→
τ ′ K, CJ−→τ K, C ′J−→τ cK) =

⋃

Ni∈{
−→
N}

mbodyp(fJ
−→
τ ′ K, [−→τ /−→α ]Ni, C

′J−→τ cK))

[M B-STATIC ]
CJ−−−−−−−−−→α extends K extends {−→N } −→

fd ∈ p f 6∈ {−−−−−−−→Fname(fd)}
mbodyp(fJ−→τ ′ K, CJ−→τ K, CJ−→τ cK) =

⋃

Ni∈{
−→
N}

mbodyp(fJ−→τ ′ K, [−→τ c/−→α ]Ni, Object)

[M B-OBJ] mbodyp(fJ−→τ K, Object, τ ) = ∅

Figure A.7: Dynamic Semantics of Core Fortress with Where Clauses (I)
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Function/method name lookup:Fname(fd ) = f

Fname(fJ
−−−−−−−−−−−→
α extends {−→K}K(−→x:τ):τ = e) = f

Types of values:type(v) = τ

type(OJ−→τ K(−→v )) = OJ−→τ K

Finding witnesses from the static type of the receiver:witnessp(τ , τ ) = S

witnessp(τ, τ
′) =



































[ ] if τ ′ = Object

match(CJ−→τ K, CJ
−→
τ ′ K) if τ = CJ−→τ K andτ ′ = CJ

−→
τ ′ K

Sn · · · S1 if τ = CJ−→τ K, τ ′ = C ′J
−→
τ ′ K, C 6= C ′,

CJ−−−−−−−−−→α extends K extends {−→N } ∈ p,
andwitnessp([

−→τ /−→α ]Ni, C
′J
−→
τ ′ K) = Si for Ni ∈ {

−→
N }

[ ] otherwise

Match two types to get substitutions:match(τ , τ ) = S

match(τ, τ ′) =















[ ] if τ = τ ′

[τ ′/β] if τ = β

Sn · · · S1 if τ = CJ−→τ K, τ ′ = CJ
−→
τ ′ K, andmatch(Si−1 · · · S1τi, τi

′) = Si for 1 ≤ i ≤ n
[ ] otherwise

Figure A.8: Dynamic Semantics of Core Fortress with Where Clauses (II)
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Environments and method types

∆ ::=
−−−−−−−→
α <: {−→K} bound environment

Γ ::= −−→x : τ type environment

η ::= J
−−−−−−−−−−−→
α extends {−→K}K −→τ → τ method type

Program typing: ⊢ p : τ

[T-PROGRAM]
p =
−→
d e p ⊢ −→d ok p; ∅; ∅ ⊢ e : τ

⊢ p : τ

Definition typing: p ⊢ d ok

[T-TRAITDEF]

p ⊢ validMultipleInheritance(T ) ∆ =
−−−−−−−→
α <: {−→K}

−−−−−−−→
β <: {−→H}

p; ∆ ⊢
−→−→
K ok p; ∆ ⊢ −→N ok p; ∆ ⊢

−→−→
H ok p; ∆; self : T J−→α K;T ⊢ −→fd ok

p ⊢ trait T J
−−−−−−−−−−−→
α extends {−→K}K extends {−→N} where {

−−−−−−−−−−−→
β extends {−→H}} −→fd end ok

[T-OBJECTDEF]

p ⊢ validMultipleInheritance(O) ∆ =
−−−−−−−→
α <: {−→K} ∆′ = ∆

−−−−−−−→
β <: {−→H}

p; ∆′ ⊢
−→−→
K ok p; ∆ ⊢ −→τ ok p; ∆′ ⊢ −→N ok p; ∆′ ⊢

−→−→
H ok

p; ∆′; self : OJ−→α K −−→x : τ ;O ⊢ −→fd ok

p ⊢ objectOJ
−−−−−−−−−−−→
α extends {−→K}K(−→x:τ ) extends {−→N } where {

−−−−−−−−−−−→
β extends {−→H}} −→fd end ok

Method typing: p; ∆; Γ;C ⊢ fd ok

[T-M ETHODDEF]

p ⊢ override(f, C, J
−−−−−−−−−−−→
α extends {−→K}K −→τ → τ0) ∆′ = ∆

−−−−−−−→
α <: {−→K} p; ∆′ ⊢

−→−→
K ok

p; ∆′ ⊢ −→τ ok p; ∆′ ⊢ τ0 ok p; ∆′; Γ −−→x : τ ⊢ e : τ ′ p; ∆′ ⊢ τ ′ <: τ0

p; ∆; Γ;C ⊢ fJ
−−−−−−−−−−−→
α extends {−→K}K(−→x:τ ):τ0 = e ok

Method overriding: p ⊢ override(f, C, η)

[OVERRIDE]

CJ
−−−−−−−−−−−−−→
α′′ extends {−→K ′′}K extends {−→N } where {

−−−−−−−−−−−→
β extends {−→H}} ∈ p

∆ =
−−−−−−−−−→
α′′ <: {−→K ′′}

−−−−−−−→
β <: {−→H}

⋃

C′J
−→
τ ′′K∈{

−→
N}

mtypep(f, C
′J
−→
τ ′′K,∆) = {(J

−−−−−−−−−−−−→
α′ extends {−→K ′}K −→τ ′ → τ ′0,∆

′)}
−→−→
K = [−→α /−→α′ ]

−→−→
K ′ p; ∆′ ⊢ [−→α /−→α′ ]−→τ ′ <: −→τ p; ∆′ ⊢ τ0 <: [−→α /−→α′ ]τ ′0
p ⊢ override(f, C, J

−−−−−−−−−−−→
α extends {−→K}K −→τ → τ0)

Valid multiple inheritance:p ⊢ validMultipleInheritance(C)

[VALID MI]
p ⊢ oneOwner (C) p ⊢ validWhere(C)

p ⊢ validMultipleInheritance(C)

Figure A.9: Static Semantics of Core Fortress with Where Clauses (I)
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One owner for all the visible methods:p ⊢ oneOwner (C)

[ONEOWNER]
∀f ∈ visiblep(C) . f only occurs once invisiblep(C)

p ⊢ oneOwner (C)

Valid where clauses:p ⊢ validWhere(C)

[VALID WHERE]

∀f ∈ visiblep(C) .

where CJ−−→α K extends {−→N } ∈ p
mbodyp(fJ

−→
αf K, CJ−→α K, CJ−→α K) = { → ef}, mtypep(f, CJ−→α K, ∅) = {(ηf ,∆)}

1. ∀β ∈ (FTV (ef ) \ {−→α
−→
αf}) . β ∈ FTV (ηf )

2. ∀β ∈ (FTV (ηf ) \ {−→α
−→
αf}) . ∀C ′J−→τ cK ∈ ⋃

Ni∈{
−→
N}

definingp(f,Ni) .

β = τ c
i ∆(β) =

−→
K ′i for 1 ≤ i ≤ |−→τ c| where C ′J

−−−−−−−−−−−−→
α′ extends {−→K ′}K ∈ p

p ⊢ validWhere(C)

Valid witnesses:p ⊢ validWitness(∆,
−−−−−−−→
α <: {−→τ },−→τ )

[VALID WITNESS]

p; ∆ ⊢
−−−−−−→
[
−→
τβ/
−→
β ]−→τ ok p; ∆ ⊢

−→
τβ ok p; ∆ ⊢

−→
τβ <:

−−−−−−→
[
−→
τβ/
−→
β ]−→τ

{−→β } ∩ dom(∆) = ∅
p ⊢ validWitness(∆,

−−−−−−−→
β <: {−→τ },

−→
τβ)

Expression typing:p; ∆; Γ ⊢ e : τ

[T-VAR] p; ∆; Γ ⊢ x : Γ(x)

[T-SELF] p; ∆; Γ ⊢ self : Γ(self)

[T-OBJECT]

object OJ−−−−−−−−−→α extends K (
−−→

:τ ′) end ∈ p p; ∆ ⊢ OJ−→τ Kok

p; ∆; Γ ⊢ −→e :
−→
τ ′′ p; ∆ ⊢ −→τ ′′ <: [−→τ /−→α ]

−→
τ ′

p; ∆; Γ ⊢ OJ−→τ K(−→e ) : OJ−→τ K

[T-FIELD ]
p; ∆; Γ ⊢ e0 : τ0 bound∆(τ0) = {OJ

−→
τ ′ K} objectOJ−−−−−−−−−→α extends K(−→x:τ) end ∈ p

p; ∆; Γ ⊢ e0. xi : [
−→
τ ′/−→α ]τi

[T-M ETHOD]

p; ∆; Γ ⊢ e0 : τ0 p; ∆ ⊢ τ0 <: CJ−→τ cK mtypep(f, CJ−→τ cK, ∅) = {(J
−−−−−−−−−−−−→
α′ extends {−→K ′}K −→τ ′ → τ ′0,∆

′)}
p; ∆ ⊢ −→τ ok p; ∆ ⊢ CJ−→τ cK ok p; ∆ ⊢ −→τa ok p; ∆ ⊢ τ r ok

p; ∆; Γ ⊢ −→e :
−→
τ ′′ p; ∆ ⊢ −→τ ′′ <:

−→
τa dom(∆′) = {−→β } S = [

−→
τβ/
−→
β ]

p ⊢ validWitness(∆,∆′,
−→
τβ) p; ∆ ⊢ −→τ <: S([−→τ /−→α′ ]

−→−→
K ′) S([−→τ /−→α′ ]−→τ ′ ) =

−→
τa S([−→τ /−→α′ ]τ ′0) = τ r

p; ∆; Γ ⊢ e0 as CJ−→τ cK. fJ−→τ K(−−−−→e as τa)as τ r : τ r

[T-TYPECASE]

p; ∆; Γ ⊢ e : τ p; ∆; Γ x : τi ⊢ ei : τ e
i p; ∆ ⊢ τ e

i <: τ ′ 1 ≤ i ≤ |−→τ |
p; ∆; Γ x : τ ⊢ e′ : τ e′

p; ∆ ⊢ τ e′

<: τ ′

p; ∆; Γ ⊢ typecase x = e in −−−→τ ⇒ e else e′ end : τ ′

Figure A.10: Static Semantics of Core Fortress with Where Clauses (II)
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Subtyping: p; ∆ ⊢ τ <: τ

[S-OBJ] p; ∆ ⊢ τ <: Object

[S-REFL] p; ∆ ⊢ τ <: τ

[S-TRANS]
p; ∆ ⊢ τ1 <: τ2 p; ∆ ⊢ τ2 <: τ3

p; ∆ ⊢ τ1 <: τ3

[S-VAR]
τ ∈ ∆(α)

p; ∆ ⊢ α <: τ

[S-TAPP]

CJ
−−−−−−−−−−−→
α extends {−→K}K extends {−→N } where {

−−−−−−−−−−−→
β extends {−→H}} ∈ p

p; ∆ ⊢ −→τ ok p; ∆ ⊢ −→τ <: [
−→
τβ/
−→
β ][−→τ /−→α ]

−→−→
K p ⊢ validWitness(∆,

−−−−−−−−−−−−−→
β <: {[−→τ /−→α ]

−→
H},
−→
τβ)

p; ∆ ⊢ CJ−→τ K <: [
−→
τβ/
−→
β ][−→τ /−→α ]Ni

Well-formed types:p; ∆ ⊢ τ ok

[W-OBJ] p; ∆ ⊢ Object ok

[W-VAR]
α ∈ dom(∆)

p; ∆ ⊢ α ok

[W-TAPP]

CJ
−−−−−−−−−−−→
α extends {−→K}K where {

−−−−−−−−−−−→
β extends {−→H}} ∈ p

p; ∆ ⊢ −→τ ok p; ∆ ⊢ −→τ <: [
−→
τβ/
−→
β ][−→τ /−→α ]

−→−→
K p ⊢ validWitness(∆,

−−−−−−−−−−−−−→
β <: {[−→τ /−→α ]

−→
H},
−→
τβ)

p; ∆ ⊢ CJ−→τ K ok

Method type lookup:mtypep(f, τ,∆) = {(η,∆)}

[M T-SELF]

CJ−−−−−−−−−→α extends K where {
−−−−−−−−−−−→
β extends {−→H}} −→fd ∈ p fJ

−−−−−−−−−−−−→
α′ extends {−→K ′}K(−−→:τ ′):τ0 ∈ {−→fd}

∆′ = ∆
−−−−−−−→
β <: {−→H}

mtypep(f, CJ−→τ K,∆) = {([−→τ /−→α ]J
−−−−−−−−−−−−→
α′ extends {−→K ′}K −→τ ′ → τ0, [

−→τ /−→α ]∆′)}

[M T-SUPER]

CJ−−−−−−−−−→α extends K extends {−→N } where {
−−−−−−−−−−−→
β extends {−→H}} −→fd ∈ p f 6∈ {−−−−−−−→Fname(fd)}

∆′ = ∆
−−−−−−−→
β <: {−→H}

mtypep(f, CJ−→τ K,∆) =
⋃

Ni∈{
−→
N}

mtypep(f, [
−→τ /−→α ]Ni, [

−→τ /−→α ]∆′)

[M T-OBJ] mtypep(f, Object,∆) = ∅
Bound of type: bound∆(τ ) = {−→σ }

bound∆(α) =
⋃

τi∈∆(α) bound∆(τi)

bound∆(σ) = {σ}

Figure A.11: Static Semantics of Core Fortress with Where Clauses (III)
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Traits defining a method:definingp(f ,N ) = {−→N }

definingp(f, Object) = ∅

definingp(f, CJ−→τ K) =







































⋃

Ni∈{
−→
N}

definingp(f, [
−→τ /−→α ]Ni)

if CJ−−→α K extends {−→N } ∈ p andf 6∈ definedp(C)
⋃

Ni∈{
−→
N}

definingp(f, [
−→τ /−→α ]Ni) ∪ {CJ−→τ K}

if CJ−−→α K extends {−→N } ∈ p andf ∈ definedp(C)

Auxiliary functions for methods:definedp / inheritedp / visiblep(C) = {−→f }

definedp(C) = {−−−−−−−→Fname(fd)} where C
−→
fd ∈ p

inheritedp(C) =
⊎

Ni∈{
−→
N}
{fi | fi ∈ visiblep(Ni), fi 6∈ definedp(C)} where C extends {−→N } ∈ p

visiblep(C) = definedp(C) ⊎ inheritedp(C)

Figure A.12: Static Semantics of Core Fortress with Where Clauses (IV)

A.3 Core Fortress with Overloading

In this section, we define a Fortress core calculus with overloading for dotted methods and first-order functions. We
call this calculusCore Fortress with Overloading. Core Fortress with Overloading is an extension of Basic Core
Fortress with overloading.

A.3.1 Syntax

The syntax for Core Fortress with Overloading is provided inFigure A.13.

A.3.2 Dynamic Semantics

A dynamic semantics for Core Fortress with Overloading is provided in Figure A.14.

A.3.3 Static Semantics

A static semantics for Core Fortress with Overloading is provided in Figures A.15, A.16, A.17, and A.18.

We proved the type soundness of Core Fortress with Overloading using the standard technique of proving a progress
theorem and a subject reduction theorem.
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α, β type variables
f function or method name
x field name
T trait name
O object name
τ, τ ′, τ ′′ ::= α type

| σ
σ ::= N type that is not a type variable

| OJ−→τ K
N,M,L ::= T J−→τ K type that can be a type bound

| Object

e ::= x expression
| self

| OJ−→τ K(−→e )
| e.x
| e.fJ−→τ K(−→e )
| fJ−→τ K(−→e )

fd ::= fJ−−−−−−−−−→α extendsNK(−→x:τ):τ = e function or method definition

td ::= trait T J−−−−−−−−−→α extendsNK extends {−→N } −→fd end trait definition

od ::= objectOJ−−−−−−−−−→α extendsNK(−→x:τ) extends {−→N } −→fd end object definition
d ::= fd definition

| td

| od

p ::=
−→
d e program

Figure A.13: Syntax of Core Fortress with Overloading

326



Values, evaluation contexts, and redexes

v ::= OJ−→τ K(−→v ) value
E ::= � evaluation context
| OJ−→τ K(−→e E−→e )
| E.x
| E.fJ−→τ K(−→e )
| e.fJ−→τ K(−→e E−→e )
| fJ−→τ K(−→e E−→e )

R ::= v.x redex
| v.fJ−→τ K(−→v )
| fJ−→τ K(−→v )

Evaluation rules:p ⊢ E[R] −→ E[e]

[R-FIELD ]
objectO (−−→x: ) end ∈ p
p ⊢ E[OJ−→τ K(−→v ).xi] −→ E[vi]

[R-METHOD]

objectOJ−−−−−−−−−→α extendsNK(−−→x: ) end ∈ p −−−−−→
type(v′) =

−→
τ ′′

mostspecificp;∅(applicablep;∅(fJ
−→
τ ′ K(
−→
τ ′′), visiblep(OJ−→τ K))) = fJ

−−−−−−−−−−→
α′ extendsN ′K(

−−→
x′: ): = e

p ⊢ E[OJ−→τ K(−→v ).fJ
−→
τ ′ K(
−→
v′ )] −→ E[[−→v /−→x ][OJ−→τ K(−→v )/self][

−→
v′/
−→
x′ ]e]

[R-FUNCTION]

−−−−→
type(v) =

−→
τ ′

mostspecificp;∅(applicablep;∅(fJ−→τ K(
−→
τ ′ ), {(fd , Object) | fd ∈ p})) = fJ−−−−−−−−−→α extendsNK(−−→x: ): = e

p ⊢ E[fJ−→τ K(−→v )] −→ E[[−→v /−→x ]e]

Types of values:type(v) = τ

type(OJ−→τ K(−→v )) = OJ−→τ K

Figure A.14: Dynamic Semantics of Core Fortress with Overloading
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Environments and trait or object names

∆ ::=
−−−−−→
α <: N bound environment

Γ ::= −−→x : τ type environment
C ::= T trait name
| O object name

Program typing: ⊢ p : τ

[T-PROGRAM]
p =
−→
d e p; ∅; ∅ ⊢ −→d ok p ⊢ validFun(

−→
d ) p; ∅; ∅ ⊢ e : τ

⊢ p : τ

Trait typing: p; ∅; ∅ ⊢ td ok

[T-TRAITDEF]

∆ =
−−−−−→
α <: N p; ∆ ⊢ −→N ok p; ∆ ⊢ −→M ok

p; ∆; self : T J−→α K ⊢ −→fd ok p ⊢ validMeth(T )

p; ∅; ∅ ⊢ trait T J−−−−−−−−−→α extendsNK extends {−→M} −→fd end ok

Object typing: p; ∅; ∅ ⊢ od ok

[T-OBJECTDEF]

∆ =
−−−−−→
α <: N p; ∆ ⊢ −→N ok p; ∆ ⊢ −→τ ok p; ∆ ⊢ −→M ok

p; ∆; self : OJ−→α K −−→x : τ ⊢ −→fd ok p ⊢ validMeth(O)

p; ∅; ∅ ⊢ objectOJ−−−−−−−−−→α extendsNK(−→x:τ) extends {−→M} −→fd end ok

Function and method typing:p; ∆; Γ ⊢ fd ok

[T-FUNMETHDEF]

∆′ = ∆
−−−−−−−→
α <: {−→N } p; ∆′ ⊢ −→N ok p; ∆′ ⊢ −→τ ok p; ∆′ ⊢ τ0 ok

p; ∆′; Γ −−→x : τ ⊢ e : τ ′ p; ∆′ ⊢ τ ′ <: τ0

p; ∆; Γ ⊢ fJ−−−−−−−−−→α extendsNK(−→x:τ ):τ0 = e ok

Valid method declarations:p ⊢ validMeth(C)

[VALID METH]

∀ (fd , CJ−→τ cK), (fd ′, C ′J
−→
τ c′K) ∈ visiblep(C

oJ−→αoK).
where CoJ−−−−−−−−−−→αo extends K ∈ p,

fd 6= fd ′ (not same declaration),

fd = fJ−−−−−−−−−→α extendsNK(−−→:τ ):τ r = , fd ′ = fJ
−−−−−−−−−−→
α′ extendsN ′K(

−−→
:τ ′):τ r′

= ,

p ⊢ valid(J−−−−−−−−−→α extendsNKCJ−→τ cK−→τ → τ r, J
−−−−−−−−−−→
α′ extendsN ′KC ′J

−→
τ c′K
−→
τ ′ → τ r′

, visiblep(C
oJ−→αoK))

p ⊢ validMeth(Co)

Figure A.15: Static Semantics of Core Fortress with Overloading (I)
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Valid function declarations:p ⊢ validFun(
−→
d )

[VALID FUN]

∀ fd , fd ′ ∈ −→d .
where fd 6= fd ′ (not same declaration),

fd = fJ−−−−−−−−−→α extendsNK(−−→:τ ):τ r = , fd ′ = fJ
−−−−−−−−−−→
α′ extendsN ′K(

−−→
:τ ′):τ r′

= ,

p ⊢ valid(J−−−−−−−−−→α extendsNKObject−→τ → τ r, J
−−−−−−−−−−→
α′ extendsN ′KObject

−→
τ ′ → τ r′

, {(fd , Object) | fd ∈ −→d })
p ⊢ validFun(

−→
d )

Valid declarations:p ⊢ valid (J−−−−−−−−−→α extendsNK−→τ → τ, J−−−−−−−−−→α extendsNK−→τ → τ, {−−−−→(fd , τ )})

[VALID ]

∆ =
−−−−−−−→
α <: {−→N }, |−→τ | = n

1. |−→τ | 6= |−→τ ′ |
∨ 2. 1)

−→
N = [−→α /−→α′ ]−→N ′

∧ 2) ∀ 1 ≤ i ≤ n. p; ∆ ⊢ τi <: [−→α /−→α′ ]τ ′i ∨ p; ∆ ⊢ [−→α /−→α′ ]τ ′i <: τi

∧ 3) ∃ 1 ≤ i ≤ n. τi 6= [−→α /−→α′ ]τ ′i
∧ 4) ∃ (fJ−−−−−−−−−−−→α′′ extendsN ′′K(−−−→:τ ′′):τ r′′

= , τ ′′0 ) ∈ S.
where

∀ 0 ≤ i ≤ n. p; ∆ ⊢ meet({τi, [−→α /
−→
α′ ]τ ′i}, [−→α /

−→
α′′]τ ′′i )

∧ −→
N = [−→α /−→α′′]−→N ′′

∧ p; ∆ ⊢ [−→α /−→α′′]τ r′′

<: τ r

∧ p; ∆ ⊢ [
−→
α′/
−→
α′′]τ r′′

<: τ r′

p ⊢ valid(J−−−−−−−−−→α extendsNK−→τ → τ r, J
−−−−−−−−−−→
α′ extendsN ′K

−→
τ ′ → τ r′

, S)

Expression typing:p; ∆; Γ ⊢ e : τ

[T-VAR] p; ∆; Γ ⊢ x : Γ(x)

[T-SELF] p; ∆; Γ ⊢ self : Γ(self)

[T-OBJECT]

objectOJ−−−−−−−−−→α extends K(
−−→

:τ ′) end ∈ p p; ∆ ⊢ OJ−→τ Kok

p; ∆; Γ ⊢ −→e :
−→
τ ′′ p; ∆ ⊢ −→τ ′′ <: [−→τ /−→α ]

−→
τ ′

p; ∆; Γ ⊢ OJ−→τ K(−→e ) : OJ−→τ K

[T-FIELD ]
p; ∆; Γ ⊢ e0 : τ0 bound∆(τ0) = OJ−→τ ′ K objectOJ−−−−−−−−−→α extends K(−→x:τ) end ∈ p

p; ∆; Γ ⊢ e0. xi : [
−→
τ ′/−→α ]τi

[T-M ETHOD]

p; ∆; Γ ⊢ e0 : τ0 p; ∆ ⊢ −→τ ok p; ∆; Γ ⊢ −→e :
−→
τ ′

mostspecificp;∆(applicablep;∆(fJ−→τ K(
−→
τ ′ ), visiblep(bound∆(τ0)))) = fJ−−−−−−−−−→α extendsNK( ):τ r

p; ∆; Γ ⊢ e0.fJ−→τ K(−→e ) : τ r

[T-FUNCTION]

p; ∆ ⊢ −→τ ok p; ∆; Γ ⊢ −→e :
−→
τ ′

mostspecificp;∆(applicablep;∆(fJ−→τ K(
−→
τ ′ ), {(fd , Object) | fd ∈ p}))) = fJ−−−−−−−−−→α extendsNK( ):τ r

p; ∆; Γ ⊢ fJ−→τ K(−→e ) : τ r

Figure A.16: Static Semantics of Core Fortress with Overloading (II)
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Subtyping: p; ∆ ⊢ τ <: τ

[S-OBJ] p; ∆ ⊢ τ <: Object

[S-REFL] p; ∆ ⊢ τ <: τ

[S-TRANS]
p; ∆ ⊢ τ1 <: τ2 p; ∆ ⊢ τ2 <: τ3

p; ∆ ⊢ τ1 <: τ3

[S-VAR] p; ∆ ⊢ α <: ∆(α)

[S-TAPP]
CJ−−−−−−−−−→α extends K extends {−→N } ∈ p

p; ∆ ⊢ CJ−→τ K <: [−→τ /−→α ]Ni

Well-formed types:p; ∆ ⊢ τ ok

[W-OBJ] p; ∆ ⊢ Object ok

[W-VAR]
α ∈ dom(∆)

p; ∆ ⊢ α ok

[W-TAPP]
CJ−−−−−−−−−→α extendsNK ∈ p p; ∆ ⊢ −→τ ok p; ∆ ⊢ −→τ <: [−→τ /−→α ]

−→
N

p; ∆ ⊢ CJ−→τ K ok

Most specific definitions:mostspecificp;∆({−−−−→(fd , τ )}) = fd

−→
fd = fJ(−−−−−−−−−→α extendsN)1K((

−−−→
:τa)1):τ

r
1 · · · fJ(−−−−−−−−−→α extendsN)nK((−−−→:τa)n):τ r

n

1 ≤ i ≤ n (
−→
τa)i = τa

i1 · · · τa
im τa

i0 = τi ∀ 0 ≤ j ≤ m . p; ∆ ⊢ meet({τa
1j , · · · , τa

nj}, τa
ij)

mostspecificp;∆({−−−−→(fd , τ )}) = fd i

Applicable definitions:applicablep;∆(fJ−→τ K(−→τ ), {−−−−→(fd , τ )}) = {−−−−→(fd , τ )}

applicablep;∆(fJ−→τ ′ K(−→τ ′′), S) =























{([−→τ ′/−→α ]fd , τ ) | where(fd , τ ) ∈ S,
fd = fJ−−−−−−−−−→α extendsNK(

−−−→
x:τ ′′′): ,

p; ∆ ⊢ −→τ ′′ <: [
−→
τ ′/−→α ]

−→
τ ′′′

p; ∆ ⊢ −→τ ′ <: [
−→
τ ′/−→α ]

−→
N }

Figure A.17: Static Semantics of Core Fortress with Overloading (III)
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Method definition lookup:visiblep / definedp(CJ−→τ K) = {
−−−−−−−→
(fd , CJ−→τ K)}

visiblep(CJ−→τ K) = definedp(CJ−→τ K) ∪ ⋃

C′J
−→
τ ′K∈{

−→
N}

visiblep([
−→τ /−→α ]C ′J−→τ ′ K) where CJ−−→α K extends {−→N } ∈ p

definedp(CJ−→τ K) = {
−−−−−−−−−−−−−→
([−→τ /−→α ]fd , CJ−→τ K)} where CJ−−→α K −→

fd ∈ p

Most specific type:p; ∆ ⊢ meet({−→τ }, τ )

[M EET]
τ ′ ∈ {−→τ } ∀ 1 ≤ i ≤ |−→τ | . p; ∆ ⊢ τ ′ <: τi

p; ∆ ⊢ meet({−→τ }, τ ′)

Bound of type: bound∆(τ ) = σ

bound∆(α) = ∆(α)
bound∆(σ) = σ

Figure A.18: Static Semantics of Core Fortress with Overloading (IV)

A.4 Acyclic Core Fortress with Field Definitions

In this section, we define a Fortress core calculus with acyclic type hierarchy and field definitions inside object defini-
tions. We call this calculusAcyclic Core Fortress with Field Definitions. Acyclic Core Fortress with Field Definitions
is an extension of Basic Core Fortress with acyclic type hierarchy and field definitions inside object definitions.

A.4.1 Syntax

The syntax for Acyclic Core Fortress with Field Definitions is provided in Figure A.19.

A.4.2 Dynamic Semantics

A dynamic semantics for Acyclic Core Fortress with Field Definitions is provided in Figure A.20.

A.4.3 Static Semantics

A static semantics for Acyclic Core Fortress with Field Definitions is provided in Figures A.21, A.22, and A.23.

We proved the type soundness of Acyclic Core Fortress with Field Definitions and the acyclic type hierarchy of a
well-type program in Acyclic Core Fortress with Field Definitions using the standard technique of proving a progress
theorem and a subject reduction theorem.
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α, β type variables
f method name
x, y, z field names
T trait name
O object name
τ, τ ′, τ ′′ ::= α type

| σ
σ ::= N type that is not a type variable

| OJ−→τ K
N,M,L ::= T J−→τ K type that can be a type bound

| Object

e ::= x expression
| self

| OJ−→τ K(−→e )
| e.x
| e.fJ−→τ K(−→e )

fd ::= fJ−−−−−−−−−→α extendsNK(−→x:τ):τ = e method definition
vd ::= x:τ = e field definition

td ::= trait T J−−−−−−−−−→α extendsNK extends {−→N } −→fd end trait definition

od ::= objectOJ−−−−−−−−−→α extendsNK(−→x:τ) extends {−→N } −→fd end object definition
d ::= td definition

| od

p ::=
−→
d e program

Figure A.19: Syntax of Acyclic Core Fortress with Field Definitions
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Values, intermediate expressions, evaluation contexts, redexes, and trait and object names

v ::= OJ−→τ K{−−−→x 7→ v; } value
ǫ ::= x intermediate expression
| self

| OJ−→τ K(−→ǫ )
| ǫ.x
| ǫ.fJ−→τ K(−→ǫ )
| OJ−→τ K{−−−→x 7→ ǫ;−−−→x 7→ ǫ}

E ::= � evaluation context
| OJ−→τ K(−→ǫ E−→ǫ )
| E.x
| E.fJ−→τ K(−→ǫ )
| ǫ.fJ−→τ K(−→ǫ E−→ǫ )
| OJ−→τ K{−−−→x 7→ v; x 7→ E −−−→x 7→ e}

R ::= OJ−→τ K(−→v ) redex
| OJ−→τ K{−−−→x 7→ v; x 7→ v −−−→x 7→ e}
| v.x
| v.fJ−→τ K(−→v )

C ::= T trait name
| O object name

Evaluation rules:p ⊢ E[R] −→ E[ǫ]

[R-OBJECT]
objectOJ−−−−−−−−−→α extends K(−−→x: )

−−−−−−→
x′: = e′ end ∈ p

p ⊢ E[OJ−→τ K(−→v )] −→ E[OJ−→τ K{−−−→x 7→ v ;
−−−−−−−−−−−−−−−→
x′ 7→ [−→v /−→x ][−→τ /−→α ]e′}]

[R-SUB] p ⊢ E[OJ−→τ K{−−−→x 7→ v; y 7→ v −−−→z 7→ e}] −→ E[OJ−→τ K{−−−→x 7→ v y 7→ v;
−−−−−−−→
z 7→ [v/y]e}]

[R-FIELD ] p ⊢ E[OJ−→τ K{−−−→x 7→ v; }.xi] −→ E[vi]

[R-METHOD]
mbodyp(fJ

−→
τ ′ K, OJ−→τ K) = {(−→x′ )→ e}

p ⊢ E[OJ−→τ K{−−−→x 7→ v; }.fJ
−→
τ ′ K(
−→
v′ )] −→ E[[−→v /−→x ][OJ−→τ K{−−−→x 7→ v; }/self][−→v′ /−→x′ ]e]

Method body lookup:mbodyp(fJ−→τ K, τ ) = {(−→x )→ e}

[M B-SELF]
CJ−−−−−−−−−→α extends K −→

fd ∈ p fJ
−−−−−−−−−→
α′ extends K(

−−→
x′: ): = e ∈ {−→fd}

mbodyp(fJ−→τ ′ K, CJ−→τ K) = {[−→τ ′/−→α′ ][−→τ /−→α ](
−→
x′ )→ e}

[M B-SUPER]
CJ−−−−−−−−−→α extends K extends {−→K} −→

fd ∈ p f 6∈ {−−−−−−−→Fname(fd)}
mbodyp(fJ

−→
τ ′ K, CJ−→τ K) =

⋃

Ni∈{
−→
N}

mbodyp(fJ
−→
τ ′ K, [−→τ /−→α ]Ni)

[M B-OBJ] mbodyp(fJ−→τ K, Object) = ∅

Function/method name lookup:Fname(fd ) = f

Fname(fJ−−−−−−−−−→α extendsNK(−→x:τ ):τ = e) = f

Figure A.20: Dynamic Semantics of Acyclic Core Fortress with Field Definitions
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Environments

∆ ::=
−−−−−→
α <: N bound environment

Γ ::= −−→x : τ type environment

Program typing: ⊢ p : τ

[T-PROGRAM]
p =
−→
d e p; ∅; ∅ ⊢ −→d ok p; ∅; ∅ ⊢ e : τ acyclic(

−→
d )

⊢ p : τ

Acyclic type hierarchy:acyclic(
−→
d )

[ACYCLIC]

trait T J−−−−−−−−−→α extendsNK extends {−→M} end ∈ −→d 1 ≤ i ≤ |−→α |
(1) Mi 6= T J K implies p; ⊢ [−→τ /−→α ]

−→
M i 6<: T J−→τ K

(The type names excluding self-extensions form an acyclic hierarchy.)

(2) Mi = T J K implies Mj 6= T J K 1 ≤ j ≤ |−→M | i 6= j
(3) Mi = T J−→τ K implies (τi = αi) ∨ (τi = Ni) ∨ (τi = αj ∧ αi = Nj) 1 ≤ j ≤ |−→α | i 6= j

acyclic(
−→
d )

Definition typing: p; ∅; ∅ ⊢ d ok

[T-TRAITDEF]

∆ =
−−−−−→
α <: N p; ∆ ⊢ −→N ok p; ∆ ⊢ −→M ok p; ∆; self : T J−→α K ⊢ T ok

−→
fd

p ⊢ oneOwner (T )

p; ∅; ∅ ⊢ trait T J−−−−−−−−−→α extendsNK extends {−→M} −→fd end ok

[T-OBJECTDEF]

∆ =
−−−−−→
α <: N p; ∆ ⊢ −→N ok p; ∆ ⊢ −→τ ok p; ∆ ⊢ −→M ok

−→
vd =

−−−−−→
x′:τ ′ = e p; ∆;−−→x : τ x′1 : τ ′1 . . . x

′
i−1 : τ ′i−1 ⊢ x′i:τ ′i = ei ok 1 ≤ i ≤ n

p; ∆; self : OJ−→α K −−→x : τ
−−−→
x′ : τ ′ ⊢ O ok

−→
fd p ⊢ oneOwner (O)

p; ∅; ∅ ⊢ objectOJ−−−−−−−−−→α extendsNK(−→x:τ ) extends {−→M} −→fd end ok

One owner for all the visible methods:p ⊢ oneOwner (C)

[ONEOWNER]
∀f ∈ visiblep(C) . f only occurs once invisiblep(C)

p ⊢ oneOwner (C)

Method typing: p; ∆; Γ ⊢ C okfd

[T-M ETHODDEF]

CJ
−−−−−−−−−→
α′ extends K extends {−→K} ∈ p p ⊢ override(f, {−→M}, J−−−−−−−−−→α extendsNK −→τ → τ0)

∆′ = ∆
−−−−−→
α <: N p; ∆′ ⊢ −→N ok p; ∆′ ⊢ −→τ ok p; ∆′ ⊢ τ0 ok

p; ∆′; Γ −−→x : τ ⊢ e : τ ′ p; ∆′ ⊢ τ ′ <: τ0

p; ∆; Γ ⊢ C okfJ−−−−−−−−−→α extendsNK(−→x:τ):τ0 = e

Figure A.21: Static Semantics of Acyclic Core Fortress withField Definitions (I)
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Field typing: p; ∆; Γ ⊢ vd ok

[T-FIELDDEF]
p; ∆ ⊢ τ ok p; ∆; Γ ⊢ e : τ ′ p; ∆ ⊢ τ ′ <: τ

p; ∆; Γ ⊢ x: τ = e ok

Expression typing:p; ∆; Γ ⊢ ǫ : τ

[T-VAR] p; ∆; Γ ⊢ x : Γ(x)

[T-SELF] p; ∆; Γ ⊢ self : Γ(self)

[T-OBJECT]

object OJ−−−−−−−−−→α extends K (−−→:τ ) end ∈ p p; ∆ ⊢ OJ−→τ Kok

p; ∆; Γ ⊢ −→ǫ :
−→
τ ′′ p; ∆ ⊢ −→τ ′′ <: [−→τ /−→α ]

−→
τ ′

p; ∆; Γ ⊢ OJ−→τ K(−→ǫ ) : OJ−→τ K

[T-I NT-OBJECT]

objectOJ−−−−−−−−−→α extends K(
−−→
x′:τ ′)

−−−−−−−→
x′′:τ ′′ = end ∈ p−→

x1
−→
x2 =

−→
x′
−→
x′′

−→
ǫ1
−→
ǫ2 =

−→
ǫ′
−→
ǫ′′ p; ∆; Γ ⊢ OJ−→τ K(

−→
ǫ′ ) : OJ−→τ K

p; ∆; Γ
−−→
x′:τ ′

−−−→
x′′:τ ′′ ⊢ −→ǫ′′ : −→τ ′′′ p; ∆ ⊢ [−→τ /−→α ]

−→
τ ′′′ <: [−→τ /−→α ]

−→
τ ′′

p; ∆; Γ ⊢ OJ−→τ K{
−−−−−→
x1 7→ ǫ1;

−−−−−→
x2 7→ ǫ2} : OJ−→τ K

[T-FIELD ]

p; ∆; Γ ⊢ ǫ : τ0 bound∆(τ0) = OJ−→τoK
objectOJ−−−−−−−−−→α extends K(

−−→
x′:τ ′)

−−−−−−−→
x′′:τ ′′ = end ∈ p −→x =

−→
x′
−→
x′′ −→τ =

−→
τ ′
−→
τ ′′

p; ∆; Γ ⊢ ǫ. xi : [
−→
τo/−→α ]τi

[T-M ETHOD]

p; ∆; Γ ⊢ ǫ : τ0 mtypep;∆(f, bound∆(τ0)) = {J−−−−−−−−−→α extendsNK
−→
τ ′ → τ ′0}

p; ∆ ⊢ −→τ ok p; ∆ ⊢ −→τ <: [−→τ /−→α ]
−→
N

p; ∆; Γ ⊢ −→ǫ :
−→
τ ′′ p; ∆ ⊢ −→τ ′′ <: [−→τ /−→α ]

−→
τ ′

p; ∆; Γ ⊢ ǫ.fJ−→τ K(−→ǫ ) : [−→τ /−→α ]τ ′0

Subtyping: p; ∆ ⊢ τ <: τ

[S-OBJ] p; ∆ ⊢ τ <: Object

[S-REFL] p; ∆ ⊢ τ <: τ

[S-TRANS]
p; ∆ ⊢ τ1 <: τ2 p; ∆ ⊢ τ2 <: τ3

p; ∆ ⊢ τ1 <: τ3

[S-VAR] p; ∆ ⊢ α <: ∆(α)

[S-TAPP]
CJ−−−−−−−−−→α extends K extends {−→N } ∈ p

p; ∆ ⊢ CJ−→τ K <: [−→τ /−→α ]Ni

Figure A.22: Static Semantics of Acyclic Core Fortress withField Definitions (II)
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Well-formed types:p; ∆ ⊢ τ ok

[W-OBJ] p; ∆ ⊢ Object ok

[W-VAR]
α ∈ dom(∆)

p; ∆ ⊢ α ok

[W-TAPP]
CJ−−−−−−−−−→α extendsNK ∈ p p; ∆ ⊢ −→τ ok p; ∆ ⊢ −→τ <: [−→τ /−→α ]

−→
N

p; ∆ ⊢ CJ−→τ K ok

Method overriding: p ⊢ override(f, {−→N }, J−−−−−−−−−→α extendsNK −→τ → τ )

[OVERRIDE]

⋃

Li∈{
−→
L}

mtypep;∆(f, Li) = {J−−−−−−−−−→β extendsMK
−→
τ ′ → τ ′0}

−→
N = [−→α /−→β ]

−→
M −→τ = [−→α /−→β ]

−→
τ ′ p; ∆

−−−−−−−→
α <: {−→N } ⊢ τ0 <: [−→α /−→β ]τ ′0

p ⊢ override(f, {−→L }, J−−−−−−−−−→α extendsNK −→τ → τ0)

Method type lookup:mtypep;∆(f, τ) = {J−−−−−−−−−→α extendsNK −→τ → τ}

[M T-SELF]
CJ−−−−−−−−−→α extends K −→

fd ∈ p fJ−−−−−−−−−→β extendsMK(−−→:τ):τ ′0 = ∈ {−→fd}
mtypep;∆(f, CJ−→τ K) = {[−→τ /−→α ]J−−−−−−−−−→β extendsMK −→τ ′ → τ ′0}

[M T-SUPER]
CJ−−−−−−−−−→α extends K extends {−→K} −→

fd ∈ p f 6∈ {−−−−−−−→Fname(fd)}
mtypep;∆(f, CJ−→τ K) =

⋃

Ni∈{
−→
N}

mtypep;∆(f, [−→τ /−→α ]Ni)

[M T-OBJ] mtypep;∆(f, Object) = ∅

Auxiliary functions for methods:definedp / inheritedp / visiblep(C) = {−→f }

definedp(C) = {−−−−−−−→Fname(fd)} where C
−→
fd ∈ p

inheritedp(C) =
⊎

Ni∈{
−→
N}
{fi | fi ∈ visiblep(Ni), fi 6∈ definedp(C)} where CJ−−−−−−−−−→α extends K extends {−→N } ∈ p

visiblep(C) = definedp(C) ⊎ inheritedp(C)

Bound of type: bound∆(τ ) = τ

bound∆(α) = ∆(α)
bound∆(N) = N
bound∆(OJ−→τ K) = OJ−→τ K

Figure A.23: Static Semantics of Acyclic Core Fortress withField Definitions (III)
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Appendix B

Overloaded Functional Declarations

As mentioned in Chapter 33, this appendix proves that the restrictions discussed in Chapter 33 guarantee no undefined
nor ambiguous call at run time.

B.1 Proof of Coercion Resolution for Functions

This section proves that the restrictions discussed in the previous sections guarantee the static resolution of coercion
(described in Section 17.5) is well defined for functions (the case for methods is analogous).

Consider a static function callf (A) at some program pointZ and its corresponding dynamic function callf (X ). Let
Σ be the set of parameter types of function declarations off that are visible atZ and applicable to the static callf (A).
Let Σ′ be the set of parameter types of function declarations off that are visible atZ and applicable with coercion to
the static callf (A). Moreover, letσ′ be the subset ofΣ′ for which no type inΣ′ is more specific:

σ′ = {S ∈ Σ′ | ¬∃S′ ∈ Σ′ : S′ ⊳ S }.

We prove the following:
|Σ| = 0 and|Σ′| 6= 0 imply |σ′| = 1.

Informally, if no declaration is applicable to a static callbut there is a declaration that is applicable with coercion then
there exists a single most specific declaration that is applicable with coercion to the static call.

Lemma 1. Given an acyclic, irreflexive binary relationR on a setS, and a finite nonempty subsetA of S, the set
{a ∈ A|¬∃a′ ∈ A : (a′, a) ∈ R} is nonempty.

Proof. Consider the relationR onS as a directed acyclic graph. LetA represent a subgraph. Then the Lemma amounts
to proving that there exists a node in the graph represented by A with no edges pointing to it. This follows from the
fact thatA is finite and the graph is acyclic.

Lemma 2. If |Σ′| ≥ 1 then|σ′| ≥ 1.

Proof. Follows from Lemma 1 whereS is the set of all types,A is Σ′, and the relation⊳ is acyclic and irreflexive.

Lemma 3. If |Σ| = 0 then|σ′| ≤ 1.
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Proof. For the purpose of contradiction suppose there are two declarationsf (P) andf (Q) in σ′. Since bothf (P) and
f (Q) are applicable with coercion tof (A) and |Σ| = 0 there must exist a coercion from some typeP ′ to P and a
coercion from some typeQ ′ to Q such thatA � P ′ ∩Q ′. Therefore it is not the case thatP � Q . By the overloading
restrictions,P 6= Q and eitherP ⊳ Q or Q ⊳ P or for all P ′ ∈ S andQ ′ ∈ T eitherP ′ ♦ Q ′, or there is a declaration
f (P ′ ∩Q ′) visible atZ. If P ⊳Q or Q ⊳ P then we contradict our assumption. Otherwise, if there exists a declaration
f (P ′ ∩Q ′) visible atZ then this declaration is applicable tof (A) without coercion. This contradicts|Σ| = 0. If such
a declaration does not exist then it must be the case thatP ′ ♦ Q ′. Then bothf (P) andf (Q) can not be applicable to
the callf (A) which is a contradiction.

Theorem 1. If |Σ| = 0 and|Σ′| 6= 0 then|σ′| = 1.

Proof. Follows from Lemmas 2 and 3.

B.2 Proof of Overloading Resolution for Functions

This section proves that the restrictions placed on overloaded function declarations are sufficient to guarantee no
undefined nor ambiguous call at run time (the case for methodsis analogous).

Consider a static function callf (A) at some program pointZ and its corresponding dynamic function callf (X ). Let
∆ be the set of parameter types of function declarations off that are visible atZ and applicable to the dynamic call
f (X ). LetΣ be the set of parameter types of function declarations off that are visible atZ and applicable to the static
call f (A). Moreover, letσ be the subset ofΣ for which no type inΣ is more specific and letδ be the subset of∆ for
which no type in∆ is more specific:

σ = {S ∈ Σ | ¬∃S′ ∈ Σ : S′ ≺ S }
δ = {D ∈ ∆ | ¬∃D′ ∈ ∆ : D′ ≺ D }.

Below we prove:
|Σ| 6= 0 implies |σ| = 1, and
|Σ| 6= 0 implies |δ| = 1.

Informally, if any declaration is applicable to a static call then there exists a single most specific declaration that is
applicable to the static call and a single most specific declaration that is applicable to the corresponding dynamic call.

Lemma 4. Σ ⊆ ∆.

Proof. Notice thatX � A by type soundness. Iff (P) is applicable to the callf (A) thenA � P . Notice thatX � A

impliesX � P . Thereforef (P) is applicable to the callf (X ).

Lemma 5. If |∆| ≥ 1 then|δ| ≥ 1. Also, if |Σ| ≥ 1 then|σ| ≥ 1.

Proof. Follows from Lemma 1 whereS is the set of all types,A is ∆ andΣ respectively, and the relation≺ is acyclic
and irreflexive.

Lemma 6. If |Σ| ≥ 1 then|δ| ≥ 1.

Proof. Follows from Lemmas 4 and 5.

Lemma 7. |σ| ≤ 1. Also,|δ| ≤ 1.
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Proof. We prove this forδ, but the case forσ is identical. For the purpose of contradiction suppose there are two
declarationsf (P) andf (Q) in δ. Since bothf (P) andf (Q) are applicable without coercion to the callf (X ) we have
X � P ∩ Q . Therefore it is not the case thatP � Q . By the overloading restrictions,P 6= Q and eitherP ♦ Q or
there is a declarationf (P ∩ Q) visible atZ. Since it cannot be the case thatP ♦ Q there must exist a declaration
f (P ∩ Q) visible atZ. SinceP ∩ Q � P andP ∩ Q � Q we knowf (P ∩Q) is applicable without coercion to the
call f (X ). SinceP 6= Q eitherP ∩Q ≺ P or P ∩Q ≺ Q . Either case contradicts our assumption.

Theorem 2. If |Σ| 6= 0 then|σ| = 1. Also, if |Σ| 6= 0 then|δ| = 1.

Proof. Follows from Lemmas 5, 6 and 7.

Theorem 3. If σ = {S} andδ = {D} thenD � S.

Proof. If the declaration with parameter typeS and the declaration with parameter typeD satisfy the Subtype Rule
then the theorem is proved. Otherwise, by the definition ofσ we haveσ ⊆ Σ. ThereforeS ∈ Σ. By Lemma 4,S ∈ ∆.
Notice thatS,D ∈ ∆ impliesX � S andX � D. Therefore,S 6♦ D. By the More Specific Rule for Functions, there
must exist a declaration with parameter typeS ∩ D. BecauseX � (S ∩ D), (S ∩ D) ∈ ∆. Notice(S ∩ D) � S
and(S ∩ D) � D. By the definition ofδ, we have¬∃D′ ∈ ∆ : D′ ≺ D. In particular,(S ∩ D) 6≺ D. Therefore
(S ∩D) = D.
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Appendix C

Components and APIs

As mentioned in Chapter 22, we formally specify key functionality of the Fortress component system, and illustrate
how we can reason about the correctness of the system.

Components One important restriction on components is that no API may beboth imported and exported by the
same component. Formally, we introduce two functions on components,imp andexp, that return the imported and
exported APIs of the component, respectively. For any componentc, imp(c)∩exp(c) = ∅. This restriction is required
throughout to ground the semantics of operations on components, as discussed in Section 22.7.

APIs Other than its identity, the only relevant characteristic of an API a is the set of APIs that it uses, denoted by
uses(a). Because an APIa might expose types defined inuses(a), we require that a component that exportsa also
exports all APIs inuses(a) that it does not import. Formally, the following condition holds on the exported APIs of a
componentc:

a ∈ exp(c) ∧ a′ ∈ uses(a) =⇒ a′ ∈ imp(c) ∪ exp(c)

Link Given a setC = {c1, . . . , ck} of components, we define a partial functionlink(C ) that returns the component
resulting fromc1 throughck. If c = link(C ), thenexp(c) =

⋃

c′∈C exp(c′) andimp(c) =
⋃

c′∈C imp(c′)− exp(c).

The functionlink is partial because we do not allow arbitrary sets of components to be linked. In particular, Two
components cannot be linked if they export the same API.1 This restriction is made for the sake of simplicity; it allows
programmers to link a set of components without having to specify explicitly which constituent exporting an APIA
provides the implementation exported by the linked component, and which constituent connects to the constituents
that importA: only one component exportsA, so there is only one choice. Although we lose expressiveness with this
design, the user interface to link is vastly simplified, and it is rare that including multiple components that export a
given API in a set of linked components is even desirable. We discuss how even such rare cases can be supported in
Section 22.8.

For a compound component, in addition to the exported and imported APIs, we want to know what its constituents
are. So we introduce another functioncns, which takes a component and returns the set of its constituents. That
is, cns(link(C )) = C . It is an invariant of the system that for any compound componentC (i.e., cns(c) 6= ∅),
any API imported by any of its constituents is either imported by C or exported by one of its constituents (i.e.,
⋃

c′∈cns(c) imp(c′) ⊆ imp(c) ∪⋃

c′∈cns(c) exp(c′)). This property is crucial for executing components, as we discuss
below. A simple component (i.e., one produced directly by compilation) has no constituents (i.e.,cns(c) = ∅).

1There is one exception to this rule: the special APIUpgradable , which is used during upgrades discussed below.
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Upgrade A predicateupg?takes two components and indicates whether the first can be upgraded with the second;
that is,upg?(ct, cr) returns true if and only ifct can be upgraded withcr. This predicate captures both the constraints
imposed by a component’sisValidUpgrade function and the conditions that guarantee the well-formedness of the
result. That is,

upg?(ct, cr) =⇒ ct.isValidUpgrade(cr)

∧ imp(cr) ⊆ exp(ct) ∪ imp(ct)

∧ exp(cr) ⊂ exp(ct)

∧ ∀c ∈ cns(ct).(exp(c) ⊆ exp(cr) ∨ exp(c) ∩ exp(cr) = ∅ ∨ upg?(c, cr))

Visible and Provided We introduce two new functions on components:vis, which returns the APIs of a component
that have not been hidden; andprov, which returns those visible APIs that are exported by some top-level constituent
of the component (or all the exported APIs of a simple component); we say these APIs areprovidedby the component.
We need to distinguish provided APIs because they can be imported by the top-level constituents of a component, and
thus by a replacement component in an upgrade, while other visible APIs cannot be. Thus, for a compound component
c, prov(c) = vis(c) ∩⋃

c′∈cns(c) exp(c′). For a simple componentc, prov(c) = vis(c) = exp(c).

Constrain If c is a compound component andA ⊂ exp(c) is a set of APIs such thata ∈ exp(c) ∧ a′ ∈ uses(a) ∩
A =⇒ a ∈ A, we definec′ = constrain(c,A) such thatexp(c′) = exp(c) − A and for any componentc′′,
upg?(c′, c′′) ⇐⇒ upg?(c, c′′) ∧ exp(c′) 6⊆ exp(c′′). The imp, vis, prov andcnsfunctions all have the same values
for c andc′. The extra condition on the upgrade compatibility simply captures the restriction we mentioned above,
that a replacement component should not export every API exported by the target.

Hide If c is a compound component andA ⊂ vis(c) is a set of APIs such thatexp(c) 6⊆ A anda ∈ vis(c) ∧ a′ ∈
uses(a) ∩ A =⇒ a ∈ A, we definec′ = hide(c,A) such thatvis(c′) = vis(c) − A, prov(c′) = prov(c) − A,
exp(c′) = exp(c)− A, and for any componentc′′, upg?(c′, c′′) ⇐⇒ upg?(c, c′′) ∧ exp(c′) 6⊆ exp(c′′) ∧ vis(c′′) ⊆
vis(c′). The additional clause inupg?(c′, c′′) (compared with that ofconstrain) reflects the hiding of the APIs: we
can no longer upgrade APIs that are hidden.

Upgrade The interplay between imported, exported, visible and provided APIs introduces subtleties. In particular,
the last of the three conditions imposed for well-formedness of upgrades is modified to state that for any constituent
that is not subsumed by a replacement component, either it can be upgraded with the replacement, or itsvisible
APIs are disjoint from the APIs exported by the replacement (i.e., it is unaffected by the upgrade). To maintain the
invariant that no two constituents export the same API, we need another condition, which was implied by the previous
condition when no APIs were constrained or hidden: if the replacement subsumes any constituents of the target, then
its exported APIs must exactly match the exported APIs of some subset of the constituents of the target. That is, if
upg?(ct, cr) ∧ ∃c ∈ cns(ct). exp(c) ⊆ exp(cr) thenexp(cr) =

⋃

c∈C exp(c) for someC ⊂ cns(ct). In practice,
this restriction is rarely a problem; in most cases, a user wishes to upgrade a target with a new version of a single
constituent component, where the APIs exported by the old and new versions are either an exact match, or there are
new APIs introduced by the new component that have no implementation in the target.
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Appendix D

Rendering of Fortress Identifiers

In order to more closely approximate mathematical notation, Fortress mandates standard rendering for various input
elements, particularly for numerals and identifiers, as specified in Section 5.17.

In this Appendix, we describe the detailed rules for rendering an identifier.

If an identifier consists of letters and possibly digits, butno underscores or other connecting punctuation, prime marks,
or apostrophes, then the rules are fairly simple:

(a) If the identifier consists of two ASCII capital letters that are the same, possibly followed by digits, then a single
capital letter is rendered double-struck, followed by full-sized (not subscripted) digits in roman font.

QQ is rendered as Q RR64 is rendered as R64
ZZ is rendered as Z ZZ512 is rendered as Z512

(b) Otherwise, if the identifier has more than two charactersand begins with a capital letter, then it is rendered in roman
font. (Such names are typically used as names of types in Fortress. Note that an identifier cannot consist entirely of
capital letters, because such a token is considered to be an operator.)

Integer is rendered as Integer Matrix is rendered as Matrix
TotalOrder is rendered as TotalOrder BooleanAlgebra is rendered as BooleanAlgebra

Fred17 is rendered as Fred17 R2D2 is rendered as R2D2

(c) Otherwise, if the identifier consists of one or more letters followed by one or more digits, then the letters are
rendered in italic and the digits are rendered as roman subscripts.

a3 is rendered as a3 foo7 is rendered as foo7
M1 is rendered as M1 z128 is rendered as z128

Ω13 is rendered as Ω13 myFavoriteThings1625 is rendered as myFavoriteThings1625

(d) The following names are always rendered in roman type outof respect for tradition:

sin cos tan cot sec csc
sinh cosh tanh coth sech csch
arcsin arccos arctan arccot arcsec arccsc
arsinh arcosh artanh arcoth arsech arcsch
arg deg det exp inf sup
lg ln log gcd max min

(e) Otherwise the identifier is simply rendered entirely in italic type.
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a is rendered as a foobar is rendered as foobar

length is rendered as length isInstanceOf is rendered as isInstanceOf

foo7a is rendered as foo7a l33tsp33k is rendered as l33tsp33k

If the identifier begins or ends with an underscore, or both, but has no other underscores or other connecting punctua-
tion, or prime marks, or apostrophes:

(f) If the identifier, ignoring its underscores, consists oftwo ASCII capital letters that are the same, possibly followed
by one or more digits, then a single capital letter is rendered in sans-serif (for a leading underscore), script (for a
trailing underscore), or italic san-serif (for both a leading and a trailing underscore), and any digits are rendered as
roman subscripts.

(g) Otherwise, the identifier without its underscores is rendered in boldface (for a leading underscore), roman (for a
trailing underscore), or bold italic (for both a leading anda trailing underscore); except that if the identifier, ignoring
its underscores, consists of one or more letters followed byone or more digits, then the digits are rendered as roman
subscripts regardless of the underscores.

m is rendered as m s is rendered as s
km is rendered as km kg is rendered as kg

V is rendered as V kW is rendered as kW
v is rendered as v foo13 is rendered as foo13

(Roman identifiers are typically used for names of SI dimensional units. See sections 6.1.1 and 6.2.1 of [24] for style
questions with respect to dimensions and units.)

These last two rules are actually special cases of the following general rules that apply whenever an identifier contains
at least one underscore, other connecting punctuation, prime mark, or apostrophe:

An identifier containing underscores is divided into portions by its underscores; in addition, any apostrophe, prime, or
double prime character separates portions and is also itself a portion.

(h) If any portion is empty other than the first or last, then the entire identifier is rendered in italics, underscores and
all.

Otherwise, the portions are rendered as follows. The idea isthat there is aprincipal portion that may be preceded
and/or followed by modifiers, and there may also be aface portion:

• If the first portion is not empty,script , fraktur , sansserif , or monospace , then the principal portion is
the first portion and there is no face portion.

• If the first portion isscript , fraktur , sansserif , or monospace , then the principal portion is the second
portion and the face portion is the first portion.

• If the first portion is empty and the second portion is notscript , fraktur , sansserif , or monospace , then
the principal portion is the second portion and there is no face portion.

• Otherwise the principal portion is the third portion and theface portion is the second portion.

If there is no face portion, the principal portion will be rendered in ordinary italics. However, if the first portion is
empty (that is, the identifier begins with a leading underscore), then the principal portion is to be rendered in roman
boldface. If the last portion is empty (that is, the identifier ends with a trailing underscore), then the principal portion
will be roman rather than italic, or bold italic rather than bold.

If there is a face portion, then that describes an alternate typeface to be used in rendering the principal portion. If there
is no face portion, but the principal portion consists of twocopies of the same letter, then it is rendered as a single
letter in a double-struck face (also known as “blackboard bold”), sans-serif, script, or italic sans-serif font according
to whether the first and last portions are (not empty, not empty), (empty, not empty), (not empty, empty), or (empty,
empty), respectively. Otherwise, if the first portion is empty (that is, the identifier begins with a leading underscore),
then the principal portion is to be rendered in a bold versionof the selected face, and if the last portion is empty (that
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is, the identifier ends with a trailing underscore), then theprincipal portion to be rendered in an italic (or bold italic)
version of the selected face. The bold and italic modifiers may be used only in combination with certain faces; the
following are the allowed combinations:

script

bold script

fraktur

bold fraktur

double-struck

sans-serif

bold sans-serif

italic sans-serif

bold italic sans-serif

monospace

If a combination can be properly rendered, then the principal portion is rendered but not any preceding portions or
underscores. If a combination cannot be properly rendered,then the principal portion and all portions and underscores
preceding it are rendered all in italics if possible, and otherwise all in some other default face.

If the principal portion consists of a sequence of letters followed by a sequence of digits, then the letters are rendered
in the chosen face and the digits are rendered as roman subscripts. Otherwise the entire principal portion is rendered
in the chosen face. The remaining portions (excepting the last, if it is empty) are then processed according to the
following rules:

• If a portion isbar , then a bar is rendered above what has already been rendered,excluding superscripts and
subscripts. For example,x_bar is rendered as̄x , x17_bar is rendered as̄x17 , x_bar_bar is rendered
as ¯̄x , and foo_bar is rendered asfoo . (Contrast this last withfoo_baz , which is rendered asfoo baz .)

• If a portion is vec , then a right-pointing arrow is rendered above what has already been rendered, exclud-
ing superscripts and subscripts. For example,v_vec is rendered as~v , v17_vec is rendered as~v17 , and
zoom_vec is rendered as−−−→zoom .

• If a portion ishat , then a hat is rendered above what has already been rendered,excluding superscripts and
subscripts. For example,x17_hat is rendered aŝx17 .

• If a portion isdot , then a dot is rendered above what has already been rendered,excluding superscripts and
subscripts; but if the preceding portion was alsodot , then the new dot is rendered appropriately relative to the
previous dot(s). Up to four dots will be rendered side-by-side rather than vertically. For example,a_dot is ren-
dered asȧ , a_dot_dot is rendered as̈a , a_dot_dot_dot is rendered as

...
a , a_dot_dot_dot_dot

is rendered as
....
a . Also, a_vec_dot is rendered aṡ~v .

• If a portion isstar , then an asterisk* is rendered as a superscript. For example,a_star is rendered asa∗ ,
a_star_star is rendered asa∗∗ , ZZ_star is rendered asZ∗ .

• If a portion issplat , then a number sign# is rendered as a superscript. For example,QQ_splat is rendered
as Q# .

• If a portion isprime , then a prime mark is rendered as a superscript.

• A prime character is treated the same asprime , and a double prime character is treated the same as two consec-
utiveprime portions. An apostrophe is treated the same as a prime character, but only if all characters following
it in the identifier, if any, are also apostrophes. For example, a’ is rendered asa′ , a13’ is rendered asa′13 ,
and a’’ is rendered asa′′ , but don’t is rendered asdon’t .

• If a portion issuper and another portion follows, then that other portion is rendered as a superscript in roman
type, and enclosed in parentheses if it is all digits.

344



• If a portion issub and another portion follows, then that other portion is rendered as a subscript in roman type,
and enclosed in parentheses if it is all digits, and precededby a subscript-separating comma if this portion was
immediately preceded by another portion that was rendered as a subscript.

• If a portion consists entirely of capital letters and would,if considered by itself as an identifier, be the name
of a non-letter Unicode character that would be subject to replacement by preprocessing, then that Unicode
character is rendered as a subscript. For example,id_OPLUS is rendered asid⊕ , ZZ_GT is rendered asZ> ,
and QQ_star_LE is rendered asQ∗≤ .

• If the portion is the last portion, and the principal portionwas a single letter (or two letters indicating a double-
struck letter), and none of the preceding rules in this list applies, it is rendered as a subscript in roman type. For
example,T_min is rendered asTmin . Note thatT_MAX is rendered simply asT MAX—because all its letters
are capital letters, it is considered to be an operator—butT_sub_MAX is rendered asTMAX .

• Otherwise, this portion and all succeeding portions are rendered in italics, along with any underscores that
appear adjacent to any of them.

Examples:

M is rendered as M M is rendered as M

v vec is rendered as ~v v vec is rendered as ~v
v1 is rendered as v1 v x is rendered as vx
v1 is rendered as v1 v x is rendered as vx

a dot is rendered as ȧ a dot dot is rendered as ä
a dot dot dot is rendered as

...
a a dot dot dot dot is rendered as

....
a

a dot dot dot dot dot is rendered as ˙....a p13’ is rendered as p′13
p’ is rendered as p′ p prime is rendered as p′

T min is rendered as Tmin T max is rendered as Tmax

foo bar is rendered as foo foo baz is rendered as foo baz

In this way, through the use of underscore characters and annotation portions delimited by underscores, the program-
mer can exercise considerable typographical control over the rendering of variable names; but if no underscores are
used, the rendering rules are quite simple.
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Appendix E

Support for Unicode Input in ASCII

As mentioned in Chapter 5, to facilitate the writing of Fortress programs using legacy, ASCII-based tools, Fortress
programs are subjected to two preprocessing steps. These steps are described in detail in this appendix.

E.1 Word Pasting across Line Breaks

Consider every line terminator in the program (processing them from left to right) such that the following conditions
are all true:

• the last non-whitespace character before the line terminator is an ampersand (&);

• the first non-whitespace character after the line terminator is an ampersand (&);

• a word character immediately precedes the first ampersand; and

• a word character immediately follows the second ampersand.

Then all the characters from the first ampersand to the secondampersand are removed from the program, including the
two ampersands. (Note that all the removed characters otherthan the two ampersands must be whitespace characters.)
(The purpose of this is to allow very long identifier names andnumeric tokens to be split across line boundaries.) For
example:

supercalifragilisticexpiali&
&docious = 0.142857142857142857&
&142857 TIMES &

GREEK_SMALL_LETTER_&
&UPSILON_WITH_DIALYTICA_AND_TONOS

becomes

supercalifragilisticexpialidocious = 0.14285714285714 2857&
&142857 TIMES &

GREEK_SMALL_LETTER_&
&UPSILON_WITH_DIALYTICA_AND_TONOS

becomes
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supercalifragilisticexpialidocious = 0.14285714285714 2857142857 TIMES &
GREEK_SMALL_LETTER_&

&UPSILON_WITH_DIALYTICA_AND_TONOS

becomes

supercalifragilisticexpialidocious = 0.14285714285714 2857142857 TIMES &
GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTICA_AND_TONOS

E.2 Preprocessing of Names of Unicode Characters

After a program encoded as a sequence of ASCII characters hasbeen processed for word pasting across line breaks
as described in the previous section, this step converts restricted words into corresponding Unicode characters. It also
converts some other characters, as discussed below.

First the program is analyzed to determine the boundaries ofstring literals and comments as follows: There are three
modes of processing: outside any comment or string literal,inside a string literal and inside a comment. Within a
comment, we also keep track of “nesting depth” (this is 0 whennot within a comment). All processing proceeds
from left to right. Outside any comment or string literal, encountering an unescaped string literal delimiter changes
processing to the mode for within a string literal (however,it is a static error if the string literal delimiter is the
right double quotation mark), and encountering the openingcomment delimiter “* ( ” changes processing to the mode
for within a comment, incrementing the nesting depth (to 1).All other characters are ignored, except to note they
are outside any comment or string literal. Within a string literal, all characters, including comment delimiters, are
ignored (except to note that they are within a string literal) except an unescaped string literal delimiter, which switches
processing back to the mode for outside any comment or stringliteral. Inside a comment, all characters, including
unescaped string delimiters, are ignored (except to note that they are within a comment) other than the two-character
opening and closing comment delimiters “( * ” and “* ) ”. Whenever the opening comment delimiter is encountered,
the nesting depth is incremented, and each time the closing comment delimiter is encountered, the nesting depth is
decremented, until it becomes 0. At that point, processing is changed again to the mode for outside any comment or
string literal. This step partitions the characters into those within string literals (including the string literal delimiters)
and those not within string literals. Note that character literal delimiters are ignored in this step. Thus, we require
string literal delimiters to be escaped within character literals.

The characters outside of string literals are partitioned into contiguous subsequences formed by the restricted words,
and all the characters between the restricted words and string literals separated by whitespace. That is, no subsequence
considered has any whitespace characters or ampersands (ampersands being part of whitespace). Each subsequence is
considered separately.

For a restricted word, the general rule is that we try to replace the restricted word with a single Unicode character that
it “names”. But we never do the replacement if the character is a printable ASCII character, a control character, or
a left or right double quotation mark (i.e., characters withcode points below U+009F, inclusive, or with code point
U+201C or U+201D). We call such charactersprotectedcharacters. Protecting the backslash and double quotation
mark characters is necessary to maintain the boundaries forstring literals, and protecting the printable ASCII characters
ensures that the ASCII conversion process is idempotent. Protecting the control characters makes sense because most
of them are forbidden from valid Fortress programs, and those that aren’t are available directly in ASCII.

There are four sources for determining whether a restrictedword is a “name” for a Unicode character. Because these
sources overlap in some cases, and not necessarily in compatible ways, the order in which we try these names is
important.

First, Fortress explicitly provides short ASCII names for many characters, especially ones that programmers might
be most commonly want. For operators, these names are given in Appendix F. For example, here are some common
ones:
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LE becomes ≤ GE becomes ≥ NE becomes 6=
BY becomes × TIMES becomes × CROSS becomes ×

DOT becomes · PRODUCT becomes
∏

SUM becomes
∑

CUP becomes ∪ CAP becomes ∩ SUBSET becomes ⊂
EMPTYSET becomes ∅ AND becomes ∧ OR becomes ∨

Note that some characters have more than one short name. Also, some non-operator characters also have short names,
particularly, the Greek letters and the special letters:

ALPHA becomes A alpha becomes α
BETA becomes B beta becomes β

GAMMA becomes Γ gamma becomes γ
DELTA becomes ∆ delta becomes δ

EPSILON becomes E epsilon becomes ǫ
ZETA becomes Z zeta becomes ζ

ETA becomes H eta becomes η
THETA becomes Θ theta becomes θ

IOTA becomes I iota becomes ι
KAPPA becomes K kappa becomes κ

LAMBDA becomes Λ lambda becomes λ
MU becomes M mu becomes µ
NU becomes N nu becomes ν
XI becomes Ξ xi becomes ξ

OMICRON becomes O omicron becomes o
PI becomes Π pi becomes π

RHO becomes P rho becomes ρ
SIGMA becomes Σ sigma becomes σ

TAU becomes T tau becomes τ
UPSILON becomes Υ upsilon becomes υ

PHI becomes Φ phi becomes φ
CHI becomes X chi becomes χ
PSI becomes Ψ psi becomes ψ

OMEGA becomes Ω omega becomes ω
BOTTOM becomes ⊥ TOP becomes ⊤

INF becomes ∞

A careful reader will note that Appendix F also gives the following short names for printable ASCII characters:

LT becomes < GT becomes > EQ becomes =

These names provide a certain level of compatibility with Fortran. However, they are only replaced by the correspond-
ing character only when they are delimited by whitespace characters (note, not ampersands) or the beginning or end
of the program. Thus, they cannot participate in further conversion.

The second source is the official Unicode 5.0 names, as specified by the Unicode Standard. However, recall that
restricted words consist of letters, digits and underscores only, while Unicode names may include hyphens and spaces.
Thus, we replace a restricted word if it is the Unicode 5.0 name of a character with hyphens and spaces replaced
by underscores. For any Unicode character other than the control characters, there is a unique official Unicode 5.0
name not shared by any other Unicode character. Since control characters are protected characters, they do not present
a problem in this regard. The third source is alternative names for characters specified by the Unicode Standard,
again we use the names with underscores in place of hyphens and spaces. With this source, however, some names
designate more than one character. In this case, we replace the restricted word with the character with a smallest code
point, unless that character is a protected character (in which case we replace the restricted word with the appropriate
unprotected character with the smallest code point, if any). Fourth, we consider the official Unicode 5.0 names and
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any alternative names, with underscores in place of hyphensand spaces, where any of the following substrings may
be omitted:

"LETTER_"
"DIGIT_"
"RADICAL_"
"NUMERAL_"

If there are multiple such substrings in a given name, any combination of them may be omitted. Again, if this process
yields multiple characters as possible replacement, the unprotected character with the smallest code point is used.

If none of the above replaces the restricted word with a single Unicode character, then the following step is applied,
which transforms certain restricted words by replacing just parts of them with Unicode characters. If the restricted
word begins with the short name (i.e., the name in the table above) of a Greek letter followed by an underscore or a
digit, or ends with the short name of a Greek letter that is preceded by an underscore, or contains the short name of
a Greek letter with an underscore on each side of it, then the short name of the Greek letter is replaced by the Greek
letter itself. In the same manner, the word “micro” is replaced with the Unicode characterMICRO SIGNµ (U+00B5,
which looks just like the Greek lowercase muµ but is different). A special ad-hoc rule is that if a word-part being thus
replaced has an underscore to each side, and the underscore on the right is the last character of the restricted word,
then the underscore on the left is removed as the name is replaced; this is done for the sake of the abbreviations of
certain dimensional units, so that, for example,micro OMEGAwill be transformed intoµΩ , signifying micro-ohms,
andG OMEGAwill be transformed intoGΩ , signifying gigaohms.

Here are some other examples:

alpha becomes α OMEGA13 becomes Ω13
alpha hat becomes α hat theta elephant becomes θ elephant

OMEGA becomes Ω XI becomes Ξ

For the sequences of characters other than restricted words, each is converted from left to right, with the longest
possible substring being converted at once, with one exception: The sequence “(< ” is not converted if it is immediately
followed by any of the following characters: ‘<’, ’ | ’, ‘ / ’, ‘ \ ’, ‘ * ’, or ‘ . ’. That is, with this one exception, the longest
shorthand begining from the first character, if any, is converted first. Then, the longest shorthand beginning from the
second character of the string after replacement is converted, and so on. Here are the ASCII shorthands for some of
the characters we expect to be most frequently used:

[\ becomes J \] becomes K
-> becomes → => becomes ⇒
∼> becomes  |-> becomes 7→
>= becomes ≥ <= becomes ≤

=/= becomes 6=

Although the characters with string literals are generallynot subject to this step of ASCII conversion, They are if they
are part of a restricted-word escape sequence or a quoted-character escape sequence. See Section 5.10 for details.

Finally, if an ampersand is adjacent to a sequence of characters that is changed by this step of ASCII conversion (even
if the sequence was only partly changed, as long as the character adjacent to the ampersand is changed), or to two such
names, one on either side, the ampersand is removed after thetransformation,unlessthe ampersand is the first or last
non-whitespace character on the line.

The process is not iterative. It behaves as if all names are located in the program text,thenall the names are replaced
or transformed as described above,thenampersands that had been adjacent to replaced or transformed names are
removed. However, because we never replace sequences this step is idempotent, so applying the process again won’t
change the string again.

Here is a simple example. The expression:
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(GREEK_SMALL_LETTER_PHI GREEK_SMALL_LETTER_PSI +
GREEK_SMALL_LETTER_OMEGA GREEK_SMALL_LETTER_LAMBDA)

is converted to:

( φ ψ + ω λ)

where there are four identifiers in all. To get two identifiers, each consisting of two Greek letters, one may write

(GREEK_SMALL_LETTER_PHI&GREEK_SMALL_LETTER_PSI +
GREEK_SMALL_LETTER_OMEGA&GREEK_SMALL_LETTER_LAMBDA)

which is converted to:

( φψ + ωλ)

A comprehensive list of recognized Unicode operators with their names and abbreviations appears in Appendix F.
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Appendix F

Operator Precedence, Chaining, and
Enclosure

This appendix contains the detailed rules for which Unicode5.0 characters may be used as operators, which operators
form enclosing pairs, which operators may be chained, and what precedence relationships exist among the various
operators. (If no precedence relationship is stated explicitly for any given pair of operators, then there is no precedence
relationship between those two operators. Remember that precedence is not transitive in Fortress.)

In each of the character lists below, each line gives the Unicode codepoint, the full Unicode 5.0 name, an indication of
what the character looks like in TEX (if possible), then any alternate names or ASCII shorthandfor the character.

F.1 Bracket Pairs for Enclosing Operators

Here are the bracket pairs that may be used as enclosing operators. Note that there is one group of four brackets;
within that group, either left bracket may be paired with either right bracket to form an enclosing operator.

U+005B LEFT SQUARE BRACKET [ [

U+005D RIGHT SQUARE BRACKET ] ]

U+007B LEFT CURLY BRACKET { {

U+007D RIGHT CURLY BRACKET } }

U+2045 LEFT SQUARE BRACKET WITH QUILL [./
U+2046 RIGHT SQUARE BRACKET WITH QUILL /.]

U+2308 LEFT CEILING ⌈ |/
U+2309 RIGHT CEILING ⌉ \|

U+230A LEFT FLOOR ⌊ |\
U+230B RIGHT FLOOR ⌋ /|

U+27C5 LEFT S-SHAPED BAG DELIMITER |.\
U+27C6 RIGHT S-SHAPED BAG DELIMITER /.|

U+27E8 MATHEMATICAL LEFT ANGLE BRACKET 〈 <|
U+27E9 MATHEMATICAL RIGHT ANGLE BRACKET 〉 |>

U+27EA MATHEMATICAL LEFT DOUBLE ANGLE BRACKET 〈〈 <<|
U+27EB MATHEMATICAL RIGHT DOUBLE ANGLE BRACKET 〉〉 |>>
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U+2983 LEFT WHITE CURLY BRACKET {| {\
U+2984 RIGHT WHITE CURLY BRACKET |} \}

U+2985 LEFT WHITE PARENTHESIS (\
U+2986 RIGHT WHITE PARENTHESIS \)

U+2987 Z NOTATION LEFT IMAGE BRACKET (/
U+2988 Z NOTATION RIGHT IMAGE BRACKET /)

U+2989 Z NOTATION LEFT BINDING BRACKET <||
U+298A Z NOTATION RIGHT BINDING BRACKET ||>

U+298B LEFT SQUARE BRACKET WITH UNDERBAR [.\
U+298C RIGHT SQUARE BRACKET WITH UNDERBAR \.]

U+298D LEFT SQUARE BRACKET WITH TICK IN TOP CORNER [.//
U+298E RIGHT SQUARE BRACKET WITH TICK IN BOTTOM CORNER //.]

U+298F LEFT SQUARE BRACKET WITH TICK IN BOTTOM CORNER [.\\
U+2990 RIGHT SQUARE BRACKET WITH TICK IN TOP CORNER \\.]

U+2991 LEFT ANGLE BRACKET WITH DOT <.|
U+2992 RIGHT ANGLE BRACKET WITH DOT |.>

U+2993 LEFT ARC LESS-THAN BRACKET (<
U+2994 RIGHT ARC GREATER-THAN BRACKET >)

U+2995 DOUBLE LEFT ARC GREATER-THAN BRACKET ((>
U+2996 DOUBLE RIGHT ARC LESS-THAN BRACKET <))

U+2997 LEFT BLACK TORTOISE SHELL BRACKET [ * /
U+2998 RIGHT BLACK TORTOISE SHELL BRACKET / * ]

U+29D8 LEFT WIGGLY FENCE [/\/
U+29D9 RIGHT WIGGLY FENCE /\/]

U+29DA LEFT DOUBLE WIGGLY FENCE [/\/\/
U+29DB RIGHT DOUBLE WIGGLY FENCE /\/\/]

U+29FC LEFT-POINTING CURVED ANGLE BRACKET <|||
U+29FD RIGHT-POINTING CURVED ANGLE BRACKET |||>

U+300C LEFT CORNER BRACKET p </
U+300D RIGHT CORNER BRACKET q \>

U+300E LEFT WHITE CORNER BRACKET <</
U+300F RIGHT WHITE CORNER BRACKET \>>

U+3010 LEFT BLACK LENTICULAR BRACKET { * /
U+3011 RIGHT BLACK LENTICULAR BRACKET / * }

U+3018 LEFT WHITE TORTOISE SHELL BRACKET [//
U+3014 LEFT TORTOISE SHELL BRACKET [/
U+3015 RIGHT TORTOISE SHELL BRACKET /]
U+3019 RIGHT WHITE TORTOISE SHELL BRACKET //]

U+3016 LEFT WHITE LENTICULAR BRACKET {/
U+3017 RIGHT WHITE LENTICULAR BRACKET /}

F.2 Vertical-Line Operators

The following are vertical-line operators:
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U+007C VERTICAL LINE | |
U+2016 DOUBLE VERTICAL LINE ‖ ||
U+2AF4 TRIPLE VERTICAL BAR BINARY RELATION |||

F.3 Arithmetic Operators

F.3.1 Multiplication and Division

The following are multiplication operators. Note thatASTERISK OPERATORis always a multiplication operator;
ASTERISK is treated as a synonym forASTERISK OPERATORwhere appropriate, butASTERISKalso has other uses,
for example in the ASCII bracket encodings[ * / and/ * ] and{ * / and/ * } .

U+002A ASTERISK * *
U+00B7 MIDDLE DOT · DOT
U+00D7 MULTIPLICATION SIGN × TIMES BY
U+2217 ASTERISK OPERATOR ∗
U+228D MULTISET MULTIPLICATION

U+2297 CIRCLED TIMES ⊗ OTIMES
U+2299 CIRCLED DOT OPERATOR ⊙ ODOT
U+229B CIRCLED ASTERISK OPERATOR ⊛ CIRCLEDAST
U+22A0 SQUARED TIMES ⊠ BOXTIMES
U+22A1 SQUARED DOT OPERATOR � BOXDOT
U+22C5 DOT OPERATOR ·
U+29C6 SQUARED ASTERISK BOXAST
U+29D4 TIMES WITH LEFT HALF BLACK

U+29D5 TIMES WITH RIGHT HALF BLACK

U+2A2F VECTOR OR CROSS PRODUCT × CROSS
U+2A30 MULTIPLICATION SIGN WITH DOT ABOVE DOTTIMES
U+2A31 MULTIPLICATION SIGN WITH UNDERBAR

U+2A34 MULTIPLICATION SIGN IN LEFT HALF CIRCLE

U+2A35 MULTIPLICATION SIGN IN RIGHT HALF CIRCLE

U+2A36 CIRCLED MULTIPLICATION SIGN WITH CIRCUMFLEX ACCENT

U+2A37 MULTIPLICATION SIGN IN DOUBLE CIRCLE

U+2A3B MULTIPLICATION SIGN IN TRIANGLE TRITIMES

The following are division operators. Note thatDIVISION SLASH is always a division operator;SOLIDUS is treated
as a synonym forDIVISION SLASH where appropriate, butSOLIDUSalso has other uses, for example in the ASCII
bracket encodings(/ and/) and[/ and/] and{/ and/} .

U+002F SOLIDUS / /
U+00F7 DIVISION SIGN ÷ DIV
U+2215 DIVISION SLASH /
U+2298 CIRCLED DIVISION SLASH ⊘ OSLASH
U+29B8 CIRCLED REVERSE SOLIDUS

U+29BC CIRCLED ANTICLOCKWISE-ROTATED DIVISION SIGN

U+29C4 SQUARED RISING DIAGONAL SLASH BOXSLASH
U+29F5 REVERSE SOLIDUS OPERATOR \
U+29F8 BIG SOLIDUS

/

U+29F9 BIG REVERSE SOLIDUS
∖

U+2A38 CIRCLED DIVISION SIGN ODIV
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U+2AFD DOUBLE SOLIDUS OPERATOR // //
U+2AFB TRIPLE SOLIDUS BINARY RELATION ///

Note also thatper is treated as a division operator.

F.3.2 Addition and Subtraction

The following three operators have the same precedence and may be mixed.

U+002B PLUS SIGN + +
U+002D HYPHEN-MINUS − -
U+2212 MINUS SIGN −

They each have lower precedence than any of the following multiplication and division operators:

U+002A ASTERISK * *
U+002F SOLIDUS / /
U+00B7 MIDDLE DOT · DOT
U+00D7 MULTIPLICATION SIGN × TIMES
U+00F7 DIVISION SIGN ÷ DIV
U+2215 DIVISION SLASH /
U+2217 ASTERISK OPERATOR ∗
U+22C5 DOT OPERATOR ·
U+2A2F VECTOR OR CROSS PRODUCT × CROSS

The following two operators have the same precedence and maybe mixed.

U+2214 DOT PLUS ∔ DOTPLUS
U+2238 DOT MINUS −̇ DOTMINUS

They each have lower precedence than this multiplication operator:

U+2A30 MULTIPLICATION SIGN WITH DOT ABOVE DOTTIMES

The following two operators have the same precedence and maybe mixed.

U+2A25 PLUS SIGN WITH DOT BELOW

U+2A2A MINUS SIGN WITH DOT BELOW

The following two operators have the same precedence and maybe mixed.

U+2A39 PLUS SIGN IN TRIANGLE TRIPLUS
U+2A3A MINUS SIGN IN TRIANGLE TRIMINUS

They each have lower precedence than this multiplication operator:

U+2A3B MULTIPLICATION SIGN IN TRIANGLE TRITIMES

The following two operators have the same precedence and maybe mixed.

U+2295 CIRCLED PLUS ⊕ OPLUS
U+2296 CIRCLED MINUS ⊖ OMINUS

They each have lower precedence than any of the following multiplication and division operators:

U+2297 CIRCLED TIMES ⊗ OTIMES
U+2298 CIRCLED DIVISION SLASH ⊘ OSLASH
U+2299 CIRCLED DOT OPERATOR ⊙ ODOT
U+229B CIRCLED ASTERISK OPERATOR ⊛ CIRCLEDAST
U+2A38 CIRCLED DIVISION SIGN ODIV
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The following two operators have the same precedence and maybe mixed.

U+229E SQUARED PLUS ⊞ BOXPLUS
U+229F SQUARED MINUS ⊟ BOXMINUS

They each have lower precedence than any of these multiplication or division operators:

U+22A0 SQUARED TIMES ⊠ BOXTIMES
U+22A1 SQUARED DOT OPERATOR � BOXDOT
U+29C4 SQUARED RISING DIAGONAL SLASH BOXSLASH
U+29C6 SQUARED ASTERISK BOXAST

These are other miscellaneous addition and subtraction operators:

U+00B1 PLUS-MINUS SIGN ±
U+2213 MINUS-OR-PLUS SIGN ∓
U+2242 MINUS TILDE

U+2A22 PLUS SIGN WITH SMALL CIRCLE ABOVE
◦
+

U+2A23 PLUS SIGN WITH CIRCUMFLEX ACCENT ABOVE +̂

U+2A24 PLUS SIGN WITH TILDE ABOVE
∼
+

U+2A26 PLUS SIGN WITH TILDE BELOW +
∼

U+2A27 PLUS SIGN WITH SUBSCRIPT TWO +2

U+2A28 PLUS SIGN WITH BLACK TRIANGLE

U+2A29 MINUS SIGN WITH COMMA ABOVE
,

−
U+2A2B MINUS SIGN WITH FALLING DOTS

U+2A2C MINUS SIGN WITH RISING DOTS

U+2A2D PLUS SIGN IN LEFT HALF CIRCLE

U+2A2E PLUS SIGN IN RIGHT HALF CIRCLE

F.3.3 Miscellaneous Arithmetic Operators

The operatorsMAX, MIN, REM, MOD, GCD, LCM, CHOOSE, andper , none of which corresponds to a single Unicode
character, are considered to be arithmetic operators, having higher precedence than certain relational operators, as
described in a later section.

F.3.4 Set Intersection, Union, and Difference

The following are the set intersection operators:

U+2229 INTERSECTION ∩ CAP INTERSECT
U+22D2 DOUBLE INTERSECTION ⋓ CAPCAP
U+2A40 INTERSECTION WITH DOT

U+2A43 INTERSECTION WITH OVERBAR ∩
U+2A44 INTERSECTION WITH LOGICAL AND

U+2A4B INTERSECTION BESIDE AND JOINED WITH INTERSECTION

U+2A4D CLOSED INTERSECTION WITH SERIFS

U+2ADB TRANSVERSAL INTERSECTION

The following are the set union operators:
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U+222A UNION ∪ CUP UNION
U+228E MULTISET UNION ⊎ UPLUS
U+22D3 DOUBLE UNION ⋒ CUPCUP
U+2A41 UNION WITH MINUS SIGN

U+2A42 UNION WITH OVERBAR ∪
U+2A45 UNION WITH LOGICAL OR

U+2A4A UNION BESIDE AND JOINED WITH UNION

U+2A4C CLOSED UNION WITH SERIFS

U+2A50 CLOSED UNION WITH SERIFS AND SMASH PRODUCT

They each have lower precedence than any of the set intersection operators.

This is a miscellaneous set operator:

U+2216 SET MINUS \ SETMINUS

F.3.5 Square Arithmetic Operators

The following are the square intersection operators:

U+2293 SQUARE CAP ⊓ SQCAP
U+2A4E DOUBLE SQUARE INTERSECTION SQCAPCAP

The following are the square union operators:

U+2294 SQUARE CUP ⊔ SQCUP
U+2A4F DOUBLE SQUARE UNION SQCUPCUP

They each have lower precedence than either of the square intersection operators.

F.3.6 Curly Arithmetic Operators

The following is the curly intersection operator:

U+22CF CURLY LOGICAL AND f CURLYAND

The following is the curly union operator:

U+22CE CURLY LOGICAL OR g CURLYOR

It has lower precedence than the curly intersection operator.

F.4 Relational Operators

F.4.1 Equivalence and Inequivalence Operators

Every operator listed in this section has lower precedence than any operator listed in Section F.3.

The following are equivalence operators. They may be chained. Moreover, they may be chained with any other single
group of chainable relational operators, as described in later sections.
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U+003D EQUALS SIGN = = EQ
U+2243 ASYMPTOTICALLY EQUAL TO ≃ SIMEQ
U+2245 APPROXIMATELY EQUAL TO ∼=
U+2246 APPROXIMATELY BUT NOT ACTUALLY EQUAL TO

U+2247 NEITHER APPROXIMATELY NOR ACTUALLY EQUAL TO ≇
U+2248 ALMOST EQUAL TO ≈ APPROX
U+224A ALMOST EQUAL OR EQUAL TO ≅ APPROXEQ
U+224C ALL EQUAL TO

U+224D EQUIVALENT TO ≍
U+224E GEOMETRICALLY EQUIVALENT TO ≎ BUMPEQV
U+2251 GEOMETRICALLY EQUAL TO + DOTEQDOT
U+2252 APPROXIMATELY EQUAL TO OR THE IMAGE OF ;
U+2253 IMAGE OF OR APPROXIMATELY EQUAL TO :
U+2256 RING IN EQUAL TO ≖ EQRING
U+2257 RING EQUAL TO ⊜ RINGEQ
U+225B STAR EQUALS

U+225C DELTA EQUAL TO , EQDEL
U+225D EQUAL TO BY DEFINITION EQDEF
U+225F QUESTIONED EQUAL TO

U+2261 IDENTICAL TO ≡ EQV EQUIV
U+2263 STRICTLY EQUIVALENT TO SEQV ===
U+229C CIRCLED EQUALS

U+22CD REVERSED TILDE EQUALS ⋍
U+22D5 EQUAL AND PARALLEL TO

U+29E3 EQUALS SIGN AND SLANTED PARALLEL

U+29E4 EQUALS SIGN AND SLANTED PARALLEL WITH TILDE ABOVE

U+29E5 IDENTICAL TO AND SLANTED PARALLEL

U+2A66 EQUALS SIGN WITH DOT BELOW

U+2A67 IDENTICAL WITH DOT ABOVE

U+2A6C SIMILAR MINUS SIMILAR

U+2A6E EQUALS WITH ASTERISK

U+2A6F ALMOST EQUAL TO WITH CIRCUMFLEX ACCENT

U+2A70 APPROXIMATELY EQUAL OR EQUAL TO

U+2A71 EQUALS SIGN ABOVE PLUS SIGN

U+2A72 PLUS SIGN ABOVE EQUALS SIGN

U+2A73 EQUALS SIGN ABOVE TILDE OPERATOR

U+2A75 TWO CONSECUTIVE EQUALS SIGNS

U+2A76 THREE CONSECUTIVE EQUALS SIGNS

U+2A77 EQUALS SIGN WITH TWO DOTS ABOVE AND TWO DOTS BELOW

U+2A78 EQUIVALENT WITH FOUR DOTS ABOVE

U+2AAE EQUALS SIGN WITH BUMPY ABOVE

U+FE66 SMALL EQUALS SIGN

U+FF1D FULLWIDTH EQUALS SIGN

The following are inequivalence operators. They may not be chained.

U+2244 NOT ASYMPTOTICALLY EQUAL TO 6≃ NSIMEQ
U+2249 NOT ALMOST EQUAL TO 6≈ NAPPROX
U+2260 NOT EQUAL TO 6= =/= NE
U+2262 NOT IDENTICAL TO 6≡ NEQV
U+226D NOT EQUIVALENT TO 6≍
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F.4.2 Plain Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Sections F.3.1, F.3.2, and F.3.3.

The following are less-than operators. They may be mixed andchained with each other and with equivalence operators
(see Section F.4.1).

U+003C LESS-THAN SIGN < < LT
U+2264 LESS-THAN OR EQUAL TO ≤ <= LE
U+2266 LESS-THAN OVER EQUAL TO ≦
U+2268 LESS-THAN BUT NOT EQUAL TO �
U+226A MUCH LESS-THAN ≪ <<
U+2272 LESS-THAN OR EQUIVALENT TO .
U+22D6 LESS-THAN WITH DOT ⋖ DOTLT
U+22D8 VERY MUCH LESS-THAN ≪ <<<
U+22DC EQUAL TO OR LESS-THAN

U+22E6 LESS-THAN BUT NOT EQUIVALENT TO �
U+29C0 CIRCLED LESS-THAN

U+2A79 LESS-THAN WITH CIRCLE INSIDE

U+2A7B LESS-THAN WITH QUESTION MARK ABOVE

U+2A7D LESS-THAN OR SLANTED EQUAL TO

U+2A7F LESS-THAN OR SLANTED EQUAL TO WITH DOT INSIDE

U+2A81 LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE

U+2A83 LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE RIGHT

U+2A85 LESS-THAN OR APPROXIMATE

U+2A87 LESS-THAN AND SINGLE-LINE NOT EQUAL TO

U+2A89 LESS-THAN AND NOT APPROXIMATE

U+2A8D LESS-THAN ABOVE SIMILAR OR EQUAL

U+2A95 SLANTED EQUAL TO OR LESS-THAN

U+2A97 SLANTED EQUAL TO OR LESS-THAN WITH DOT INSIDE

U+2A99 DOUBLE-LINE EQUAL TO OR LESS-THAN

U+2A9B DOUBLE-LINE SLANTED EQUAL TO OR LESS-THAN

U+2A9D SIMILAR OR LESS-THAN

U+2A9F SIMILAR ABOVE LESS-THAN ABOVE EQUALS SIGN

U+2AA1 DOUBLE NESTED LESS-THAN

U+2AA3 DOUBLE NESTED LESS-THAN WITH UNDERBAR

U+2AA6 LESS-THAN CLOSED BY CURVE

U+2AA8 LESS-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL

U+2AF7 TRIPLE NESTED LESS-THAN

U+2AF9 DOUBLE-LINE SLANTED LESS-THAN OR EQUAL TO

U+FE64 SMALL LESS-THAN SIGN

U+FF1C FULLWIDTH LESS-THAN SIGN

The following are greater-than operators. They may be mixedand chained with each other and with equivalence
operators (see Section F.4.1).

U+003E GREATER-THAN SIGN > > GT
U+2265 GREATER-THAN OR EQUAL TO ≥ >= GE
U+2267 GREATER-THAN OVER EQUAL TO ≧
U+2269 GREATER-THAN BUT NOT EQUAL TO 	
U+226B MUCH GREATER-THAN ≫ >>
U+2273 GREATER-THAN OR EQUIVALENT TO &
U+22D7 GREATER-THAN WITH DOT ⋗ DOTGT
U+22D9 VERY MUCH GREATER-THAN ≫ >>>
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U+22DD EQUAL TO OR GREATER-THAN

U+22E7 GREATER-THAN BUT NOT EQUIVALENT TO �
U+29C1 CIRCLED GREATER-THAN

U+2A7A GREATER-THAN WITH CIRCLE INSIDE

U+2A7C GREATER-THAN WITH QUESTION MARK ABOVE

U+2A7E GREATER-THAN OR SLANTED EQUAL TO

U+2A80 GREATER-THAN OR SLANTED EQUAL TO WITH DOT INSIDE

U+2A82 GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE

U+2A84 GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE LEFT

U+2A86 GREATER-THAN OR APPROXIMATE

U+2A88 GREATER-THAN AND SINGLE-LINE NOT EQUAL TO

U+2A8A GREATER-THAN AND NOT APPROXIMATE

U+2A8E GREATER-THAN ABOVE SIMILAR OR EQUAL

U+2A96 SLANTED EQUAL TO OR GREATER-THAN

U+2A98 SLANTED EQUAL TO OR GREATER-THAN WITH DOT INSIDE

U+2A9A DOUBLE-LINE EQUAL TO OR GREATER-THAN

U+2A9C DOUBLE-LINE SLANTED EQUAL TO OR GREATER-THAN

U+2A9E SIMILAR OR GREATER-THAN

U+2AA0 SIMILAR ABOVE GREATER-THAN ABOVE EQUALS SIGN

U+2AA2 DOUBLE NESTED GREATER-THAN

U+2AA7 GREATER-THAN CLOSED BY CURVE

U+2AA9 GREATER-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL

U+2AF8 TRIPLE NESTED GREATER-THAN

U+2AFA DOUBLE-LINE SLANTED GREATER-THAN OR EQUAL TO

U+FE65 SMALL GREATER-THAN SIGN

U+FF1E FULLWIDTH GREATER-THAN SIGN

The following are miscellaneous plain comparison operators. They may not be mixed or chained.

U+226E NOT LESS-THAN ≮ NLT
U+226F NOT GREATER-THAN ≯ NGT
U+2270 NEITHER LESS-THAN NOR EQUAL TO � NLE
U+2271 NEITHER GREATER-THAN NOR EQUAL TO � NGE
U+2274 NEITHER LESS-THAN NOR EQUIVALENT TO 6.
U+2275 NEITHER GREATER-THAN NOR EQUIVALENT TO 6&
U+2276 LESS-THAN OR GREATER-THAN ≶
U+2277 GREATER-THAN OR LESS-THAN ≷
U+2278 NEITHER LESS-THAN NOR GREATER-THAN

U+2279 NEITHER GREATER-THAN NOR LESS-THAN

U+22DA LESS-THAN EQUAL TO OR GREATER-THAN ⋚
U+22DB GREATER-THAN EQUAL TO OR LESS-THAN R
U+2A8B LESS-THAN ABOVE DOUBLE-LINE EQUAL ABOVE GREATER-THAN

U+2A8C GREATER-THAN ABOVE DOUBLE-LINE EQUAL ABOVE LESS-THAN

U+2A8F LESS-THAN ABOVE SIMILAR ABOVE GREATER-THAN

U+2A90 GREATER-THAN ABOVE SIMILAR ABOVE LESS-THAN

U+2A91 LESS-THAN ABOVE GREATER-THAN ABOVE DOUBLE-LINE EQUAL

U+2A92 GREATER-THAN ABOVE LESS-THAN ABOVE DOUBLE-LINE EQUAL

U+2A93 LESS-THAN ABOVE SLANTED EQUAL ABOVE GREATER-THAN ABOVE SLANTED EQUAL

U+2A94 GREATER-THAN ABOVE SLANTED EQUAL ABOVE LESS-THAN ABOVE SLANTED EQUAL

U+2AA4 GREATER-THAN OVERLAPPING LESS-THAN

U+2AA5 GREATER-THAN BESIDE LESS-THAN

The following are not really comparison operators, but it isconvenient to list them here because they also have lower

359



precedence than any operator listed in Sections F.3.1, F.3.2, and F.3.3:

U+0023 NUMBER SIGN # #
U+003A COLON : :

F.4.3 Set Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Section F.3.4.

The following are subset comparison operators. They may be mixed and chained with each other and with equivalence
operators (see Section F.4.1).

U+2282 SUBSET OF ⊂ SUBSET
U+2286 SUBSET OF OR EQUAL TO ⊆ SUBSETEQ
U+228A SUBSET OF WITH NOT EQUAL TO ( SUBSETNEQ
U+22D0 DOUBLE SUBSET ⋐ SUBSUB
U+27C3 OPEN SUBSET

U+2ABD SUBSET WITH DOT

U+2ABF SUBSET WITH PLUS SIGN BELOW

U+2AC1 SUBSET WITH MULTIPLICATION SIGN BELOW

U+2AC3 SUBSET OF OR EQUAL TO WITH DOT ABOVE

U+2AC5 SUBSET OF ABOVE EQUALS SIGN

U+2AC7 SUBSET OF ABOVE TILDE OPERATOR

U+2AC9 SUBSET OF ABOVE ALMOST EQUAL TO

U+2ACB SUBSET OF ABOVE NOT EQUAL TO

U+2ACF CLOSED SUBSET

U+2AD1 CLOSED SUBSET OR EQUAL TO

U+2AD5 SUBSET ABOVE SUBSET

The following are superset comparison operators. They may be mixed and chained with each other and with equiva-
lence operators (see Section F.4.1).

U+2283 SUPERSET OF ⊃ SUPSET
U+2287 SUPERSET OF OR EQUAL TO ⊇ SUPSETEQ
U+228B SUPERSET OF WITH NOT EQUAL TO ) SUPSETNEQ
U+22D1 DOUBLE SUPERSET ⋑ SUPSUP
U+27C4 OPEN SUPERSET

U+2ABE SUPERSET WITH DOT

U+2AC0 SUPERSET WITH PLUS SIGN BELOW

U+2AC2 SUPERSET WITH MULTIPLICATION SIGN BELOW

U+2AC4 SUPERSET OF OR EQUAL TO WITH DOT ABOVE

U+2AC6 SUPERSET OF ABOVE EQUALS SIGN

U+2AC8 SUPERSET OF ABOVE TILDE OPERATOR

U+2ACA SUPERSET OF ABOVE ALMOST EQUAL TO

U+2ACCSUPERSET OF ABOVE NOT EQUAL TO

U+2AD0 CLOSED SUPERSET

U+2AD2 CLOSED SUPERSET OR EQUAL TO

U+2AD6 SUPERSET ABOVE SUPERSET

The following are miscellaneous set comparison operators.They may not be mixed or chained.

U+2284 NOT A SUBSET OF 6⊂ NSUBSET
U+2285 NOT A SUPERSET OF 6⊃ NSUPSET
U+2288 NEITHER A SUBSET OF NOR EQUAL TO * NSUBSETEQ
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U+2289 NEITHER A SUPERSET OF NOR EQUAL TO + NSUPSETEQ
U+2AD3 SUBSET ABOVE SUPERSET

U+2AD4 SUPERSET ABOVE SUBSET

U+2AD7 SUPERSET BESIDE SUBSET

U+2AD8 SUPERSET BESIDE AND JOINED BY DASH WITH SUBSET

F.4.4 Square Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Section F.3.5.

The following are square “image of” comparison operators. They may be mixed and chained with each other and with
equivalence operators (see Section F.4.1).

U+228F SQUARE IMAGE OF ⊏ SQSUBSET
U+2291 SQUARE IMAGE OF OR EQUAL TO ⊑ SQSUBSETEQ
U+22E4 SQUARE IMAGE OF OR NOT EQUAL TO

The following are square “original of” comparison operators. They may be mixed and chained with each other and
with equivalence operators (see Section F.4.1).

U+2290 SQUARE ORIGINAL OF ⊐ SQSUPSET
U+2292 SQUARE ORIGINAL OF OR EQUAL TO ⊒ SQSUPSETEQ
U+22E5 SQUARE ORIGINAL OF OR NOT EQUAL TO

The following are miscellaneous square comparison operators. They may not be mixed or chained.

U+22E2 NOT SQUARE IMAGE OF OR EQUAL TO 6⊑
U+22E3 NOT SQUARE ORIGINAL OF OR EQUAL TO 6⊒

F.4.5 Curly Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Section F.3.6.

The following are curly “precedes” comparison operators. They may be mixed and chained with each other and with
equivalence operators (see Section F.4.1).

U+227A PRECEDES ≺ PREC
U+227C PRECEDES OR EQUAL TO 4 PRECEQ
U+227E PRECEDES OR EQUIVALENT TO - PRECSIM
U+22B0 PRECEDES UNDER RELATION

U+22DE EQUAL TO OR PRECEDES 2 EQPREC
U+22E8 PRECEDES BUT NOT EQUIVALENT TO � PRECNSIM
U+2AAF PRECEDES ABOVE SINGLE-LINE EQUALS SIGN

U+2AB1 PRECEDES ABOVE SINGLE-LINE NOT EQUAL TO

U+2AB3 PRECEDES ABOVE EQUALS SIGN

U+2AB5 PRECEDES ABOVE NOT EQUAL TO

U+2AB7 PRECEDES ABOVE ALMOST EQUAL TO

U+2AB9 PRECEDES ABOVE NOT ALMOST EQUAL TO

U+2ABB DOUBLE PRECEDES

The following are curly “succeeds” comparison operators. They may be mixed and chained with each other and with
equivalence operators (see Section F.4.1).
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U+227B SUCCEEDS ≻ SUCC
U+227D SUCCEEDS OR EQUAL TO < SUCCEQ
U+227F SUCCEEDS OR EQUIVALENT TO % SUCCSIM
U+22B1 SUCCEEDS UNDER RELATION

U+22DF EQUAL TO OR SUCCEEDS 3 EQSUCC
U+22E9 SUCCEEDS BUT NOT EQUIVALENT TO � SUCCNSIM
U+2AB0 SUCCEEDS ABOVE SINGLE-LINE EQUALS SIGN

U+2AB2 SUCCEEDS ABOVE SINGLE-LINE NOT EQUAL TO

U+2AB4 SUCCEEDS ABOVE EQUALS SIGN

U+2AB6 SUCCEEDS ABOVE NOT EQUAL TO

U+2AB8 SUCCEEDS ABOVE ALMOST EQUAL TO

U+2ABA SUCCEEDS ABOVE NOT ALMOST EQUAL TO

U+2ABC DOUBLE SUCCEEDS

The following are miscellaneous curly comparison operators. They may not be mixed or chained.

U+2280 DOES NOT PRECEDE ⊀ NPREC
U+2281 DOES NOT SUCCEED ⊁ NSUCC
U+22E0 DOES NOT PRECEDE OR EQUAL 64
U+22E1 DOES NOT SUCCEED OR EQUAL 6<

F.4.6 Triangular Comparison Operators

The following are triangular “subgroup” comparison operators. They may be mixed and chained with each other and
with equivalence operators (see Section F.4.1).

U+22B2 NORMAL SUBGROUP OF ⊳
U+22B4 NORMAL SUBGROUP OF OR EQUAL TO E

The following are triangular “contains as subgroup” comparison operators. They may be mixed and chained with each
other and with equivalence operators (see Section F.4.1).

U+22B3 CONTAINS AS NORMAL SUBGROUP ⊲
U+22B5 CONTAINS AS NORMAL SUBGROUP OR EQUAL TO D

The following are miscellaneous triangular comparison operators. They may not be mixed or chained.

U+22EA NOT NORMAL SUBGROUP OF ⋪
U+22EB DOES NOT CONTAIN AS NORMAL SUBGROUP ⋫
U+22EC NOT NORMAL SUBGROUP OF OR EQUAL TO 5
U+22ED DOES NOT CONTAIN AS NORMAL SUBGROUP OR EQUAL 4

F.4.7 Chickenfoot Comparison Operators

The following are chickenfoot “smaller than” comparison operators. They may be mixed and chained with each other
and with equivalence operators (see Section F.4.1).

U+2AAA SMALLER THAN <− SMALLER
U+2AAC SMALLER THAN OR EQUAL TO ≤− SMALLEREQ

The following are chickenfoot “larger than” comparison operators. They may be mixed and chained with each other
and with equivalence operators (see Section F.4.1).

U+2AAB LARGER THAN −> LARGER
U+2AAD LARGER THAN OR EQUAL TO −≥ LARGEREQ
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F.4.8 Miscellaneous Relational Operators

The following operators are considered to be relational operators, having higher precedence than certain boolean
operators, as described in a later section.

U+2208 ELEMENT OF ∈ IN
U+2209 NOT AN ELEMENT OF /∈ NOTIN
U+220A SMALL ELEMENT OF ∈

U+220B CONTAINS AS MEMBER ∋ CONTAINS
U+220C DOES NOT CONTAIN AS MEMBER 6∋
U+220D SMALL CONTAINS AS MEMBER ∋

U+22F2 ELEMENT OF WITH LONG HORIZONTAL STROKE

U+22F3 ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22F4 SMALL ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22F5 ELEMENT OF WITH DOT ABOVE ∈̇
U+22F6 ELEMENT OF WITH OVERBAR ∈
U+22F7 SMALL ELEMENT OF WITH OVERBAR ∈

U+22F8 ELEMENT OF WITH UNDERBAR ∈
U+22F9 ELEMENT OF WITH TWO HORIZONTAL STROKES

U+22FA CONTAINS WITH LONG HORIZONTAL STROKE

U+22FB CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22FC SMALL CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22FD CONTAINS WITH OVERBAR ∋
U+22FE SMALL CONTAINS WITH OVERBAR ∋

U+22FF Z NOTATION BAG MEMBERSHIP

F.5 Boolean Operators

Every operator listed in this section has lower precedence than any operator listed in Section F.4.

The following are the Boolean conjunction operators:

U+2227 LOGICAL AND ∧ AND
U+27D1 AND WITH DOT

U+2A51 LOGICAL AND WITH DOT ABOVE ∧̇
U+2A53 DOUBLE LOGICAL AND

U+2A55 TWO INTERSECTING LOGICAL AND ∧∧
U+2A5A LOGICAL AND WITH MIDDLE STEM

U+2A5C LOGICAL AND WITH HORIZONTAL DASH

U+2A5E LOGICAL AND WITH DOUBLE OVERBAR

U+2A60 LOGICAL AND WITH DOUBLE UNDERBAR

The following are the Boolean disjunction operators:

U+2228 LOGICAL OR ∨ OR
U+2A52 LOGICAL OR WITH DOT ABOVE ∨̇
U+2A54 DOUBLE LOGICAL OR

U+2A56 TWO INTERSECTING LOGICAL OR ∨∨
U+2A5B LOGICAL OR WITH MIDDLE STEM

U+2A5D LOGICAL OR WITH HORIZONTAL DASH

U+2A62 LOGICAL OR WITH DOUBLE OVERBAR

U+2A63 LOGICAL OR WITH DOUBLE UNDERBAR
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They each have lower precedence than any of the Boolean conjunction operators.

The following are miscellaneous Boolean operators:

U+2192 RIGHTWARDS ARROW → -> IMPLIES
U+2194 LEFT RIGHT ARROW ↔ <-> IFF
U+22BB XOR ⊻
U+22BC NAND ⊼
U+22BD NOR ∨

F.6 Other Operators

Each of the following operators has no defined precedence relationships to any of the other operators listed in this
appendix.

U+0021 EXCLAMATION MARK ! !
U+0024 DOLLAR SIGN $ $
U+0025 PERCENT SIGN % %
U+003F QUESTION MARK ? ?

U+0040 COMMERCIAL AT @ @
U+005E CIRCUMFLEX ACCENT ˆ ˆ
U+007E TILDE ˜ ˜
U+00A1 INVERTED EXCLAMATION MARK ¡
U+00A2 CENT SIGN CENTS
U+00A3 POUND SIGN

U+00A4 CURRENCY SIGN

U+00A5 YEN SIGN

U+00A6 BROKEN BAR

U+00AC NOT SIGN ¬ NOT
U+00B0 DEGREE SIGN ◦ DEGREES
U+00BF INVERTED QUESTION MARK ¿
U+203C DOUBLE EXCLAMATION MARK !! !!
U+2190 LEFTWARDS ARROW ← <-
U+2191 UPWARDS ARROW ↑ UPARROW
U+2193 DOWNWARDS ARROW ↓ DOWNARROW
U+2195 UP DOWN ARROW l UPDOWNARROW
U+2196 NORTH WEST ARROW տ NWARROW
U+2197 NORTH EAST ARROW ր NEARROW
U+2198 SOUTH EAST ARROW ց SEARROW
U+2199 SOUTH WEST ARROW ւ SWARROW
U+219A LEFTWARDS ARROW WITH STROKE 8 <-/-
U+219B RIGHTWARDS ARROW WITH STROKE 9 -/->
U+219C LEFTWARDS WAVE ARROW

U+219D RIGHTWARDS WAVE ARROW  LEADSTO
U+219E LEFTWARDS TWO HEADED ARROW

U+219F UPWARDS TWO HEADED ARROW

U+21A0 RIGHTWARDS TWO HEADED ARROW

U+21A1 DOWNWARDS TWO HEADED ARROW

U+21A2 LEFTWARDS ARROW WITH TAIL

U+21A3 RIGHTWARDS ARROW WITH TAIL

U+21A4 LEFTWARDS ARROW FROM BAR
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U+21A5 UPWARDS ARROW FROM BAR

U+21A7 DOWNWARDS ARROW FROM BAR

U+21A8 UP DOWN ARROW WITH BASE

U+21A9 LEFTWARDS ARROW WITH HOOK

U+21AA RIGHTWARDS ARROW WITH HOOK

U+21AB LEFTWARDS ARROW WITH LOOP

U+21AC RIGHTWARDS ARROW WITH LOOP

U+21AD LEFT RIGHT WAVE ARROW

U+21AE LEFT RIGHT ARROW WITH STROKE

U+21AF DOWNWARDS ZIGZAG ARROW

U+21B0 UPWARDS ARROW WITH TIP LEFTWARDS

U+21B1 UPWARDS ARROW WITH TIP RIGHTWARDS

U+21B2 DOWNWARDS ARROW WITH TIP LEFTWARDS

U+21B3 DOWNWARDS ARROW WITH TIP RIGHTWARDS

U+21B4 RIGHTWARDS ARROW WITH CORNER DOWNWARDS

U+21B5 DOWNWARDS ARROW WITH CORNER LEFTWARDS

U+21B6 ANTICLOCKWISE TOP SEMICIRCLE ARROW

U+21B7 CLOCKWISE TOP SEMICIRCLE ARROW

U+21B8 NORTH WEST ARROW TO LONG BAR

U+21B9 LEFTWARDS ARROW TO BAR OVER RIGHTWARDS ARROW TO BAR

U+21BA ANTICLOCKWISE OPEN CIRCLE ARROW

U+21BB CLOCKWISE OPEN CIRCLE ARROW

U+21BC LEFTWARDS HARPOON WITH BARB UPWARDS ↼ LEFTHARPOONUP
U+21BD LEFTWARDS HARPOON WITH BARB DOWNWARDS ↽ LEFTHARPOONDOWN
U+21BE UPWARDS HARPOON WITH BARB RIGHTWARDS ↾ UPHARPOONRIGHT
U+21BF UPWARDS HARPOON WITH BARB LEFTWARDS ↿ UPHARPOONLEFT
U+21C0 RIGHTWARDS HARPOON WITH BARB UPWARDS ⇀ RIGHTHARPOONUP
U+21C1 RIGHTWARDS HARPOON WITH BARB DOWNWARDS ⇁ RIGHTHARPOONDOWN
U+21C2 DOWNWARDS HARPOON WITH BARB RIGHTWARDS ⇂ DOWNHARPOONRIGHT
U+21C3 DOWNWARDS HARPOON WITH BARB LEFTWARDS ⇃ DOWNHARPOONLEFT
U+21C4 RIGHTWARDS ARROW OVER LEFTWARDS ARROW ⇄ RIGHTLEFTARROWS
U+21C5 UPWARDS ARROW LEFTWARDS OF DOWNWARDS ARROW

U+21C6 LEFTWARDS ARROW OVER RIGHTWARDS ARROW ⇆ LEFTRIGHTARROWS
U+21C7 LEFTWARDS PAIRED ARROWS ⇇ LEFTLEFTARROWS
U+21C8 UPWARDS PAIRED ARROWS ⇈ UPUPARROWS
U+21C9 RIGHTWARDS PAIRED ARROWS ⇉ RIGHTRIGHTARROWS
U+21CA DOWNWARDS PAIRED ARROWS � DOWNDOWNARROWS
U+21CB LEFTWARDS HARPOON OVER RIGHTWARDS HARPOON

U+21CC RIGHTWARDS HARPOON OVER LEFTWARDS HARPOON ⇋ RIGHTLEFTHARPOONS
U+21CD LEFTWARDS DOUBLE ARROW WITH STROKE :
U+21CE LEFT RIGHT DOUBLE ARROW WITH STROKE <
U+21CF RIGHTWARDS DOUBLE ARROW WITH STROKE ;
U+21D0 LEFTWARDS DOUBLE ARROW ⇐
U+21D1 UPWARDS DOUBLE ARROW ⇑
U+21D2 RIGHTWARDS DOUBLE ARROW ⇒ =>
U+21D3 DOWNWARDS DOUBLE ARROW ⇓
U+21D4 LEFT RIGHT DOUBLE ARROW ⇔ <=>
U+21D5 UP DOWN DOUBLE ARROW m
U+21D6 NORTH WEST DOUBLE ARROW

U+21D7 NORTH EAST DOUBLE ARROW

U+21D8 SOUTH EAST DOUBLE ARROW

U+21D9 SOUTH WEST DOUBLE ARROW
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U+21DA LEFTWARDS TRIPLE ARROW ⇚
U+21DB RIGHTWARDS TRIPLE ARROW ⇛
U+21DC LEFTWARDS SQUIGGLE ARROW

U+21DD RIGHTWARDS SQUIGGLE ARROW  
U+21DE UPWARDS ARROW WITH DOUBLE STROKE

U+21DF DOWNWARDS ARROW WITH DOUBLE STROKE

U+21E0 LEFTWARDS DASHED ARROW L99
U+21E1 UPWARDS DASHED ARROW

U+21E2 RIGHTWARDS DASHED ARROW 99K
U+21E3 DOWNWARDS DASHED ARROW

U+21E4 LEFTWARDS ARROW TO BAR

U+21E5 RIGHTWARDS ARROW TO BAR

U+21E6 LEFTWARDS WHITE ARROW

U+21E7 UPWARDS WHITE ARROW

U+21E8 RIGHTWARDS WHITE ARROW

U+21E9 DOWNWARDS WHITE ARROW

U+21EA UPWARDS WHITE ARROW FROM BAR

U+21EB UPWARDS WHITE ARROW ON PEDESTAL

U+21EC UPWARDS WHITE ARROW ON PEDESTAL WITH HORIZONTAL BAR

U+21ED UPWARDS WHITE ARROW ON PEDESTAL WITH VERTICAL BAR

U+21EE UPWARDS WHITE DOUBLE ARROW

U+21EF UPWARDS WHITE DOUBLE ARROW ON PEDESTAL

U+21F0 RIGHTWARDS WHITE ARROW FROM WALL

U+21F1 NORTH WEST ARROW TO CORNER

U+21F2 SOUTH EAST ARROW TO CORNER

U+21F3 UP DOWN WHITE ARROW

U+21F4 RIGHT ARROW WITH SMALL CIRCLE

U+21F5 DOWNWARDS ARROW LEFTWARDS OF UPWARDS ARROW

U+21F6 THREE RIGHTWARDS ARROWS

U+21F7 LEFTWARDS ARROW WITH VERTICAL STROKE

U+21F8 RIGHTWARDS ARROW WITH VERTICAL STROKE

U+21F9 LEFT RIGHT ARROW WITH VERTICAL STROKE

U+21FA LEFTWARDS ARROW WITH DOUBLE VERTICAL STROKE

U+21FB RIGHTWARDS ARROW WITH DOUBLE VERTICAL STROKE

U+21FC LEFT RIGHT ARROW WITH DOUBLE VERTICAL STROKE

U+21FD LEFTWARDS OPEN-HEADED ARROW

U+21FE RIGHTWARDS OPEN-HEADED ARROW

U+21FF LEFT RIGHT OPEN-HEADED ARROW

U+2201 COMPLEMENT ∁
U+2202 PARTIAL DIFFERENTIAL ∂ DEL
U+2204 THERE DOES NOT EXIST 6 ∃
U+2206 INCREMENT ∆
U+220F N-ARY PRODUCT

∏

PRODUCT
U+2210 N-ARY COPRODUCT

∐

COPRODUCT
U+2211 N-ARY SUMMATION

∑

SUM
U+2218 RING OPERATOR ◦ CIRC RING COMPOSE
U+2219 BULLET OPERATOR • BULLET
U+221A SQUARE ROOT

√
SQRT

U+221B CUBE ROOT CBRT
U+221C FOURTH ROOT FOURTHROOT
U+221D PROPORTIONAL TO ∝ PROPTO
U+2223 DIVIDES | DIVIDES
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U+2224 DOES NOT DIVIDE ∤
U+2225 PARALLEL TO ‖ PARALLEL
U+2226 NOT PARALLEL TO ∦ NPARALLEL
U+222B INTEGRAL

∫

U+222C DOUBLE INTEGRAL

U+222D TRIPLE INTEGRAL

U+222E CONTOUR INTEGRAL
∮

U+222F SURFACE INTEGRAL

U+2230 VOLUME INTEGRAL

U+2231 CLOCKWISE INTEGRAL

U+2232 CLOCKWISE CONTOUR INTEGRAL

U+2233 ANTICLOCKWISE CONTOUR INTEGRAL

U+2234 THEREFORE ∴
U+2235 BECAUSE ∵
U+2236 RATIO

U+2237 PROPORTION

U+2239 EXCESS

U+223A GEOMETRIC PROPORTION

U+223B HOMOTHETIC

U+223C TILDE OPERATOR ∼
U+223D REVERSED TILDE ∽
U+223E INVERTED LAZY S

U+223F SINE WAVE

U+2240 WREATH PRODUCT ≀ WREATH
U+2241 NOT TILDE ≁
U+224B TRIPLE TILDE

U+224F DIFFERENCE BETWEEN ≏ BUMPEQ
U+2250 APPROACHES THE LIMIT

.
= DOTEQ

U+2258 CORRESPONDS TO

U+2259 ESTIMATES

U+225A EQUIANGULAR TO

U+225E MEASURED BY

U+226C BETWEEN ≬
U+228C MULTISET

U+229A CIRCLED RING OPERATOR ⊚ CIRCLEDRING
U+229D CIRCLED DASH ⊖
U+22A2 RIGHT TACK ⊢ VDASH TURNSTILE
U+22A3 LEFT TACK ⊣ DASHV
U+22A6 ASSERTION ⊢
U+22A7 MODELS �
U+22A8 TRUE |=
U+22A9 FORCES 
U+22AA TRIPLE VERTICAL BAR RIGHT TURNSTILE �
U+22AB DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE

U+22AC DOES NOT PROVE 0
U+22AD NOT TRUE

U+22AE DOES NOT FORCE 1
U+22AF NEGATED DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE 3
U+22B6 ORIGINAL OF

U+22B7 IMAGE OF

U+22B8 MULTIMAP ⊸
U+22B9 HERMITIAN CONJUGATE MATRIX
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U+22BA INTERCALATE ⊺
U+22BE RIGHT ANGLE WITH ARC

U+22BF RIGHT TRIANGLE

U+22C0 N-ARY LOGICAL AND
∧

BIGAND ALL
U+22C1 N-ARY LOGICAL OR

∨

BIGOR ANY
U+22C2 N-ARY INTERSECTION

⋂

BIGCAP BIGINTERSECT
U+22C3 N-ARY UNION

⋃

BIGCUP BIGUNION
U+22C4 DIAMOND OPERATOR ⋄ DIAMOND
U+22C6 STAR OPERATOR ⋆ STAR
U+22C7 DIVISION TIMES >
U+22C8 BOWTIE ⊲⊳
U+22C9 LEFT NORMAL FACTOR SEMIDIRECT PRODUCT ⋉
U+22CA RIGHT NORMAL FACTOR SEMIDIRECT PRODUCT ⋊
U+22CB LEFT SEMIDIRECT PRODUCT ⋋
U+22CC RIGHT SEMIDIRECT PRODUCT ⋌
U+22D4 PITCHFORK ⋔
U+22EE VERTICAL ELLIPSIS

U+22EF MIDLINE HORIZONTAL ELLIPSIS

U+22F0 UP RIGHT DIAGONAL ELLIPSIS

U+22F1 DOWN RIGHT DIAGONAL ELLIPSIS

U+27C0 THREE DIMENSIONAL ANGLE

U+27C1 WHITE TRIANGLE CONTAINING SMALL WHITE TRIANGLE

U+27C2 PERPENDICULAR PERP
U+27D0 WHITE DIAMOND WITH CENTRED DOT

U+27D2 ELEMENT OF OPENING UPWARDS

U+27D3 LOWER RIGHT CORNER WITH DOT

U+27D4 UPPER LEFT CORNER WITH DOT

U+27D5 LEFT OUTER JOIN

U+27D6 RIGHT OUTER JOIN

U+27D7 FULL OUTER JOIN

U+27D8 LARGE UP TACK

U+27D9 LARGE DOWN TACK

U+27DA LEFT AND RIGHT DOUBLE TURNSTILE

U+27DB LEFT AND RIGHT TACK

U+27DC LEFT MULTIMAP

U+27DD LONG RIGHT TACK

U+27DE LONG LEFT TACK

U+27DF UP TACK WITH CIRCLE ABOVE

U+27E0 LOZENGE DIVIDED BY HORIZONTAL RULE

U+27E1 WHITE CONCAVE-SIDED DIAMOND

U+27E2 WHITE CONCAVE-SIDED DIAMOND WITH LEFTWARDS TICK

U+27E3 WHITE CONCAVE-SIDED DIAMOND WITH RIGHTWARDS TICK

U+27E4 WHITE SQUARE WITH LEFTWARDS TICK

U+27E5 WHITE SQUARE WITH RIGHTWARDS TICK

U+27F0 UPWARDS QUADRUPLE ARROW

U+27F1 DOWNWARDS QUADRUPLE ARROW

U+27F2 ANTICLOCKWISE GAPPED CIRCLE ARROW

U+27F3 CLOCKWISE GAPPED CIRCLE ARROW

U+27F4 RIGHT ARROW WITH CIRCLED PLUS

U+27F5 LONG LEFTWARDS ARROW

U+27F6 LONG RIGHTWARDS ARROW

U+27F7 LONG LEFT RIGHT ARROW
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U+27F8 LONG LEFTWARDS DOUBLE ARROW

U+27F9 LONG RIGHTWARDS DOUBLE ARROW

U+27FA LONG LEFT RIGHT DOUBLE ARROW

U+27FB LONG LEFTWARDS ARROW FROM BAR

U+27FC LONG RIGHTWARDS ARROW FROM BAR

U+27FD LONG LEFTWARDS DOUBLE ARROW FROM BAR

U+27FE LONG RIGHTWARDS DOUBLE ARROW FROM BAR

U+27FF LONG RIGHTWARDS SQUIGGLE ARROW

U+2900 RIGHTWARDS TWO-HEADED ARROW WITH VERTICAL STROKE

U+2901 RIGHTWARDS TWO-HEADED ARROW WITH DOUBLE VERTICAL STROKE

U+2902 LEFTWARDS DOUBLE ARROW WITH VERTICAL STROKE

U+2903 RIGHTWARDS DOUBLE ARROW WITH VERTICAL STROKE

U+2904 LEFT RIGHT DOUBLE ARROW WITH VERTICAL STROKE

U+2905 RIGHTWARDS TWO-HEADED ARROW FROM BAR

U+2906 LEFTWARDS DOUBLE ARROW FROM BAR

U+2907 RIGHTWARDS DOUBLE ARROW FROM BAR

U+2908 DOWNWARDS ARROW WITH HORIZONTAL STROKE

U+2909 UPWARDS ARROW WITH HORIZONTAL STROKE

U+290A UPWARDS TRIPLE ARROW

U+290B DOWNWARDS TRIPLE ARROW

U+290C LEFTWARDS DOUBLE DASH ARROW

U+290D RIGHTWARDS DOUBLE DASH ARROW

U+290E LEFTWARDS TRIPLE DASH ARROW

U+290F RIGHTWARDS TRIPLE DASH ARROW

U+2910 RIGHTWARDS TWO-HEADED TRIPLE DASH ARROW

U+2911 RIGHTWARDS ARROW WITH DOTTED STEM

U+2912 UPWARDS ARROW TO BAR

U+2913 DOWNWARDS ARROW TO BAR

U+2914 RIGHTWARDS ARROW WITH TAIL WITH VERTICAL STROKE

U+2915 RIGHTWARDS ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE

U+2916 RIGHTWARDS TWO-HEADED ARROW WITH TAIL

U+2917 RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH VERTICAL STROKE

U+2918 RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH DOUBLE VERTICALSTROKE

U+2919 LEFTWARDS ARROW-TAIL

U+291A RIGHTWARDS ARROW-TAIL

U+291B LEFTWARDS DOUBLE ARROW-TAIL

U+291C RIGHTWARDS DOUBLE ARROW-TAIL

U+291D LEFTWARDS ARROW TO BLACK DIAMOND

U+291E RIGHTWARDS ARROW TO BLACK DIAMOND

U+291F LEFTWARDS ARROW FROM BAR TO BLACK DIAMOND

U+2920 RIGHTWARDS ARROW FROM BAR TO BLACK DIAMOND

U+2921 NORTH WEST AND SOUTH EAST ARROW

U+2922 NORTH EAST AND SOUTH WEST ARROW

U+2923 NORTH WEST ARROW WITH HOOK

U+2924 NORTH EAST ARROW WITH HOOK

U+2925 SOUTH EAST ARROW WITH HOOK

U+2926 SOUTH WEST ARROW WITH HOOK

U+2927 NORTH WEST ARROW AND NORTH EAST ARROW

U+2928 NORTH EAST ARROW AND SOUTH EAST ARROW

U+2929 SOUTH EAST ARROW AND SOUTH WEST ARROW

U+292A SOUTH WEST ARROW AND NORTH WEST ARROW

U+292B RISING DIAGONAL CROSSING FALLING DIAGONAL
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U+292C FALLING DIAGONAL CROSSING RISING DIAGONAL

U+292D SOUTH EAST ARROW CROSSING NORTH EAST ARROW

U+292E NORTH EAST ARROW CROSSING SOUTH EAST ARROW

U+292F FALLING DIAGONAL CROSSING NORTH EAST ARROW

U+2930 RISING DIAGONAL CROSSING SOUTH EAST ARROW

U+2931 NORTH EAST ARROW CROSSING NORTH WEST ARROW

U+2932 NORTH WEST ARROW CROSSING NORTH EAST ARROW

U+2933 WAVE ARROW POINTING DIRECTLY RIGHT

U+2934 ARROW POINTING RIGHTWARDS THEN CURVING UPWARDS

U+2935 ARROW POINTING RIGHTWARDS THEN CURVING DOWNWARDS

U+2936 ARROW POINTING DOWNWARDS THEN CURVING LEFTWARDS

U+2937 ARROW POINTING DOWNWARDS THEN CURVING RIGHTWARDS

U+2938 RIGHT-SIDE ARC CLOCKWISE ARROW

U+2939 LEFT-SIDE ARC ANTICLOCKWISE ARROW

U+293A TOP ARC ANTICLOCKWISE ARROW

U+293B BOTTOM ARC ANTICLOCKWISE ARROW

U+293C TOP ARC CLOCKWISE ARROW WITH MINUS

U+293D TOP ARC ANTICLOCKWISE ARROW WITH PLUS

U+293E LOWER RIGHT SEMICIRCULAR CLOCKWISE ARROW

U+293F LOWER LEFT SEMICIRCULAR ANTICLOCKWISE ARROW

U+2940 ANTICLOCKWISE CLOSED CIRCLE ARROW

U+2941 CLOCKWISE CLOSED CIRCLE ARROW

U+2942 RIGHTWARDS ARROW ABOVE SHORT LEFTWARDS ARROW

U+2943 LEFTWARDS ARROW ABOVE SHORT RIGHTWARDS ARROW

U+2944 SHORT RIGHTWARDS ARROW ABOVE LEFTWARDS ARROW

U+2945 RIGHTWARDS ARROW WITH PLUS BELOW

U+2946 LEFTWARDS ARROW WITH PLUS BELOW

U+2947 RIGHTWARDS ARROW THROUGH X

U+2948 LEFT RIGHT ARROW THROUGH SMALL CIRCLE

U+2949 UPWARDS TWO-HEADED ARROW FROM SMALL CIRCLE

U+294A LEFT BARB UP RIGHT BARB DOWN HARPOON

U+294B LEFT BARB DOWN RIGHT BARB UP HARPOON

U+294C UP BARB RIGHT DOWN BARB LEFT HARPOON

U+294D UP BARB LEFT DOWN BARB RIGHT HARPOON

U+294E LEFT BARB UP RIGHT BARB UP HARPOON

U+294F UP BARB RIGHT DOWN BARB RIGHT HARPOON

U+2950 LEFT BARB DOWN RIGHT BARB DOWN HARPOON

U+2951 UP BARB LEFT DOWN BARB LEFT HARPOON

U+2952 LEFTWARDS HARPOON WITH BARB UP TO BAR

U+2953 RIGHTWARDS HARPOON WITH BARB UP TO BAR

U+2954 UPWARDS HARPOON WITH BARB RIGHT TO BAR

U+2955 DOWNWARDS HARPOON WITH BARB RIGHT TO BAR

U+2956 LEFTWARDS HARPOON WITH BARB DOWN TO BAR

U+2957 RIGHTWARDS HARPOON WITH BARB DOWN TO BAR

U+2958 UPWARDS HARPOON WITH BARB LEFT TO BAR

U+2959 DOWNWARDS HARPOON WITH BARB LEFT TO BAR

U+295A LEFTWARDS HARPOON WITH BARB UP FROM BAR

U+295B RIGHTWARDS HARPOON WITH BARB UP FROM BAR

U+295C UPWARDS HARPOON WITH BARB RIGHT FROM BAR

U+295D DOWNWARDS HARPOON WITH BARB RIGHT FROM BAR

U+295E LEFTWARDS HARPOON WITH BARB DOWN FROM BAR

U+295F RIGHTWARDS HARPOON WITH BARB DOWN FROM BAR
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U+2960 UPWARDS HARPOON WITH BARB LEFT FROM BAR

U+2961 DOWNWARDS HARPOON WITH BARB LEFT FROM BAR

U+2962 LEFTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITHBARB DOWN

U+2963 UPWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT

U+2964 RIGHTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB DOWN

U+2965 DOWNWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT

U+2966 LEFTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB UP

U+2967 LEFTWARDS HARPOON WITH BARB DOWN ABOVE RIGHTWARDS HARPOON WITH BARB DOWN

U+2968 RIGHTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITH BARB UP

U+2969 RIGHTWARDS HARPOON WITH BARB DOWN ABOVE LEFTWARDS HARPOON WITH BARB DOWN

U+296A LEFTWARDS HARPOON WITH BARB UP ABOVE LONG DASH

U+296B LEFTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH

U+296C RIGHTWARDS HARPOON WITH BARB UP ABOVE LONG DASH

U+296D RIGHTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH

U+296E UPWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT

U+296F DOWNWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT

U+2970 RIGHT DOUBLE ARROW WITH ROUNDED HEAD

U+2971 EQUALS SIGN ABOVE RIGHTWARDS ARROW

U+2972 TILDE OPERATOR ABOVE RIGHTWARDS ARROW

U+2973 LEFTWARDS ARROW ABOVE TILDE OPERATOR

U+2974 RIGHTWARDS ARROW ABOVE TILDE OPERATOR

U+2975 RIGHTWARDS ARROW ABOVE ALMOST EQUAL TO

U+2976 LESS-THAN ABOVE LEFTWARDS ARROW

U+2977 LEFTWARDS ARROW THROUGH LESS-THAN

U+2978 GREATER-THAN ABOVE RIGHTWARDS ARROW

U+2979 SUBSET ABOVE RIGHTWARDS ARROW

U+297A LEFTWARDS ARROW THROUGH SUBSET

U+297B SUPERSET ABOVE LEFTWARDS ARROW

U+297C LEFT FISH TAIL

U+297D RIGHT FISH TAIL

U+297E UP FISH TAIL

U+297F DOWN FISH TAIL

U+2980 TRIPLE VERTICAL BAR DELIMITER

U+2981 Z NOTATION SPOT

U+2982 Z NOTATION TYPE COLON

U+2999 DOTTED FENCE

U+299A VERTICAL ZIGZAG LINE

U+299B MEASURED ANGLE OPENING LEFT

U+299C RIGHT ANGLE VARIANT WITH SQUARE

U+299D MEASURED RIGHT ANGLE WITH DOT

U+299E ANGLE WITH S INSIDE

U+299F ACUTE ANGLE

U+29A0 SPHERICAL ANGLE OPENING LEFT

U+29A1 SPHERICAL ANGLE OPENING UP

U+29A2 TURNED ANGLE

U+29A3 REVERSED ANGLE

U+29A4 ANGLE WITH UNDERBAR

U+29A5 REVERSED ANGLE WITH UNDERBAR

U+29A6 OBLIQUE ANGLE OPENING UP

U+29A7 OBLIQUE ANGLE OPENING DOWN

U+29A8 MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UP AND RIGHT

U+29A9 MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UP AND LEFT
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U+29AA MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING DOWN AND RIGHT

U+29AB MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING DOWN AND LEFT

U+29AC MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING RIGHT AND UP

U+29AD MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING LEFT AND UP

U+29AE MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING RIGHT AND DOWN

U+29AF MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING LEFT AND DOWN

U+29B0 REVERSED EMPTY SET

U+29B1 EMPTY SET WITH OVERBAR

U+29B2 EMPTY SET WITH SMALL CIRCLE ABOVE

U+29B3 EMPTY SET WITH RIGHT ARROW ABOVE

U+29B4 EMPTY SET WITH LEFT ARROW ABOVE

U+29B5 CIRCLE WITH HORIZONTAL BAR

U+29B6 CIRCLED VERTICAL BAR

U+29B7 CIRCLED PARALLEL

U+29B9 CIRCLED PERPENDICULAR

U+29BA CIRCLE DIVIDED BY HORIZONTAL BAR AND TOP HALF DIVIDED BY VERTICAL BAR

U+29BB CIRCLE WITH SUPERIMPOSED X

U+29BD UP ARROW THROUGH CIRCLE

U+29BE CIRCLED WHITE BULLET

U+29BF CIRCLED BULLET

U+29C2 CIRCLE WITH SMALL CIRCLE TO THE RIGHT

U+29C3 CIRCLE WITH TWO HORIZONTAL STROKES TO THE RIGHT

U+29C5 SQUARED FALLING DIAGONAL SLASH

U+29C7 SQUARED SMALL CIRCLE

U+29C8 SQUARED SQUARE

U+29C9 TWO JOINED SQUARES

U+29CA TRIANGLE WITH DOT ABOVE

U+29CB TRIANGLE WITH UNDERBAR

U+29CC S IN TRIANGLE

U+29CD TRIANGLE WITH SERIFS AT BOTTOM

U+29CE RIGHT TRIANGLE ABOVE LEFT TRIANGLE

U+29CF LEFT TRIANGLE BESIDE VERTICAL BAR

U+29D0 VERTICAL BAR BESIDE RIGHT TRIANGLE

U+29D1 BOWTIE WITH LEFT HALF BLACK

U+29D2 BOWTIE WITH RIGHT HALF BLACK

U+29D3 BLACK BOWTIE

U+29D6 WHITE HOURGLASS

U+29D7 BLACK HOURGLASS

U+29DC INCOMPLETE INFINITY

U+29DD TIE OVER INFINITY

U+29DE INFINITY NEGATED WITH VERTICAL BAR

U+29DF DOUBLE-ENDED MULTIMAP

U+29E0 SQUARE WITH CONTOURED OUTLINE

U+29E1 INCREASES AS

U+29E2 SHUFFLE PRODUCT

U+29E6 GLEICH STARK

U+29E7 THERMODYNAMIC

U+29E8 DOWN-POINTING TRIANGLE WITH LEFT HALF BLACK

U+29E9 DOWN-POINTING TRIANGLE WITH RIGHT HALF BLACK

U+29EA BLACK DIAMOND WITH DOWN ARROW

U+29EB BLACK LOZENGE

U+29EC WHITE CIRCLE WITH DOWN ARROW
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U+29ED BLACK CIRCLE WITH DOWN ARROW

U+29EE ERROR-BARRED WHITE SQUARE

U+29EF ERROR-BARRED BLACK SQUARE

U+29F0 ERROR-BARRED WHITE DIAMOND

U+29F1 ERROR-BARRED BLACK DIAMOND

U+29F2 ERROR-BARRED WHITE CIRCLE

U+29F3 ERROR-BARRED BLACK CIRCLE

U+29F4 RULE-DELAYED

U+29F6 SOLIDUS WITH OVERBAR

U+29F7 REVERSE SOLIDUS WITH HORIZONTAL STROKE

U+29FA DOUBLE PLUS

U+29FB TRIPLE PLUS

U+29FE TINY

U+29FF MINY

U+2A00 N-ARY CIRCLED DOT OPERATOR
⊙

BIGODOT
U+2A01 N-ARY CIRCLED PLUS OPERATOR

⊕

BIGOPLUS
U+2A02 N-ARY CIRCLED TIMES OPERATOR

⊗

BIGOTIMES
U+2A03 N-ARY UNION OPERATOR WITH DOT BIGUDOT
U+2A04 N-ARY UNION OPERATOR WITH PLUS BIGUPLUS
U+2A05 N-ARY SQUARE INTERSECTION OPERATOR BIGSQCAP
U+2A06 N-ARY SQUARE UNION OPERATOR BIGSQCUP
U+2A07 TWO LOGICAL AND OPERATOR

U+2A08 TWO LOGICAL OR OPERATOR

U+2A09 N-ARY TIMES OPERATOR BIGTIMES
U+2A0A MODULO TWO SUM

U+2A10 CIRCULATION FUNCTION

U+2A11 ANTICLOCKWISE INTEGRATION

U+2A12 LINE INTEGRATION WITH RECTANGULAR PATH AROUND POLE

U+2A13 LINE INTEGRATION WITH SEMICIRCULAR PATH AROUND POLE

U+2A14 LINE INTEGRATION NOT INCLUDING THE POLE

U+2A1D JOIN ⋊⋉ JOIN
U+2A1E LARGE LEFT TRIANGLE OPERATOR

U+2A1F Z NOTATION SCHEMA COMPOSITION

U+2A20 Z NOTATION SCHEMA PIPING

U+2A21 Z NOTATION SCHEMA PROJECTION

U+2A32 SEMIDIRECT PRODUCT WITH BOTTOM CLOSED

U+2A33 SMASH PRODUCT

U+2A3C INTERIOR PRODUCT

U+2A3D RIGHTHAND INTERIOR PRODUCT

U+2A3E Z NOTATION RELATIONAL COMPOSITION

U+2A3F AMALGAMATION OR COPRODUCT

U+2A57 SLOPING LARGE OR

U+2A58 SLOPING LARGE AND

U+2A61 SMALL VEE WITH UNDERBAR

U+2A64 Z NOTATION DOMAIN ANTIRESTRICTION

U+2A65 Z NOTATION RANGE ANTIRESTRICTION

U+2A68 TRIPLE HORIZONTAL BAR WITH DOUBLE VERTICAL STROKE

U+2A69 TRIPLE HORIZONTAL BAR WITH TRIPLE VERTICAL STROKE

U+2A6A TILDE OPERATOR WITH DOT ABOVE

U+2A6B TILDE OPERATOR WITH RISING DOTS

U+2A6D CONGRUENT WITH DOT ABOVE

U+2ACDSQUARE LEFT OPEN BOX OPERATOR
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U+2ACE SQUARE RIGHT OPEN BOX OPERATOR

U+2AD9 ELEMENT OF OPENING DOWNWARDS

U+2ADA PITCHFORK WITH TEE TOP

U+2ADCFORKING

U+2ADDNONFORKING

U+2ADE SHORT LEFT TACK

U+2ADF SHORT DOWN TACK

U+2AE0 SHORT UP TACK

U+2AE1 PERPENDICULAR WITH S

U+2AE2 VERTICAL BAR TRIPLE RIGHT TURNSTILE

U+2AE3 DOUBLE VERTICAL BAR LEFT TURNSTILE

U+2AE4 VERTICAL BAR DOUBLE LEFT TURNSTILE

U+2AE5 DOUBLE VERTICAL BAR DOUBLE LEFT TURNSTILE

U+2AE6 LONG DASH FROM LEFT MEMBER OF DOUBLE VERTICAL

U+2AE7 SHORT DOWN TACK WITH OVERBAR

U+2AE8 SHORT UP TACK WITH UNDERBAR

U+2AE9 SHORT UP TACK ABOVE SHORT DOWN TACK

U+2AEA DOUBLE DOWN TACK

U+2AEB DOUBLE UP TACK

U+2AEC DOUBLE STROKE NOT SIGN

U+2AED REVERSED DOUBLE STROKE NOT SIGN

U+2AEE DOES NOT DIVIDE WITH REVERSED NEGATION SLASH

U+2AEF VERTICAL LINE WITH CIRCLE ABOVE

U+2AF0 VERTICAL LINE WITH CIRCLE BELOW

U+2AF1 DOWN TACK WITH CIRCLE BELOW

U+2AF2 PARALLEL WITH HORIZONTAL STROKE

U+2AF3 PARALLEL WITH TILDE OPERATOR

U+2AF5 TRIPLE VERTICAL BAR WITH HORIZONTAL STROKE

U+2AF6 TRIPLE COLON OPERATOR

U+2AFB TRIPLE SOLIDUS BINARY RELATION

U+2AFC LARGE TRIPLE VERTICAL BAR OPERATOR

U+2AFE WHITE VERTICAL BAR

U+2AFF N-ARY WHITE VERTICAL BAR
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Appendix G

Concrete Syntax

In this chapter, we describe the concrete syntax of Fortressprograms in BNF notation. This syntax is “human-readable”
in the sense that it does not describe uses of whitespaces andsemicolons exactly. Instead, they are described as follows.
Fortress has three different contexts influencing the whitespace-sensitivity of expressions:

statement Expressions immediately enclosed by a block expression arein a statement-like context. Multiple expres-
sions can appear on a line if they are separated (or terminated) by semicolons. If an expression can legally end
at the end of a line, it does; if it cannot, it does not. A prefix or infix operator that lacks its last operand prevents
an expression from ending. For example,

an = expression+
spanning+
four+
lines

a = oneLiner

four(); on(); one(); line();

nested An expression or list of expressions immediately enclosed by parentheses or braces is nested. Multiple ex-
pressions are separated by commas, and the end of a line does not end an expression. Because of this effect,
the meaning of a several lines of code can change if they are wrapped in parentheses. Parentheses can also be
used to ensure that a multiline expression is not terminatedprematurely without paying special attention to line
endings.

lhs = rhs

−aSeparateExpression

postProfit(revenue

−expenses)

pasted Fortress has special syntax for matrix pasting. Within square brackets, whitespace-separated expressions are
treated (depending on their type) as either matrix elementsor submatrices within a row. Because whitespace
is the separator, it also ends expressions where possible. In addition, newline-or-semicolon-separated rows are
pasted vertically along their columns. Higher-dimensional pasting is expressed with repeated semicolons, but
repeated newlines do not have the same effect.

id2a = [1 0; 0 1 ]
id2b = [1 0;

0 1 ]
id2c = [1 0

0 1 ]
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cube2 = [1 0; 0 1; ; 1− 1; 1 1 ]

A restricted form of the pasting syntax can also be used on theleft hand side of variable declarations to express
both declaration and submatrix decomposition.

[top
bot ] = X
[left right ] = Y
Z = [top · left top · right ;

bot · left bot · right ]

Section 6.5 describes matrix unpasting in detail and includes more examples.

CompilationUnit ::= Component
| Api

Component ::= component DottedId Import∗ Export∗ Decl∗ end

Api ::= api DottedId Import∗ AbsDecl∗ end

DottedId ::= Id ( . Id)∗

Import ::= import ImportFrom from DottedId
| import AliasedDottedIds

ImportFrom ::= * [ except Names]
| AliasedNames

Names ::= Name
| { NameList}

Name ::= Id
| opr Op

NameList ::= Name( , Name)∗

AliasedNames ::= AliasedName
| { AliasedNameList}

AliasedName ::= Id [ as DottedId]
| opr Op [ as Op]
| opr LeftEncloser RightEncloser[ as LeftEncloser RightEncloser]

AliasedNameList ::= AliasedName( , AliasedName)∗

AliasedDottedIds ::= AliasedDottedId
| { AliasedDottedIdList}

AliasedDottedId ::= DottedId[ as DottedId]
AliasedDottedIdList ::= AliasedDottedId( , AliasedDottedId)∗

Export ::= export DottedIds
DottedIds ::= DottedId

| { DottedIdList}
DottedIdList ::= DottedId( , DottedId)∗

Decl ::= TraitDecl
| ObjectDecl
| FnDecl
| VarDecl
| DimUnitDecl
| TypeAlias
| TestDecl
| PropertyDecl
| ExternalSyntax

TraitDecl ::= TraitHeader(MdDecl| AbsFldDecl| PropertyDecl)∗ end

TraitHeader ::= TraitMod∗ trait Id [StaticParams] [Extends] [Excludes] [Comprises] [Where]
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Extends ::= extends TraitTypes
Excludes ::= excludes TraitTypes
Comprises ::= comprises MayTraitTypes
TraitTypes ::= TraitType

| { TraitTypeList}
TraitTypeList ::= TraitType( , TraitType)∗

MayTraitTypes ::= {}
| TraitTypes

Where ::= where {WhereClauseList}
WhereClauseList ::= WhereClause( , WhereClause)∗

WhereClause ::= Id Extends
| TypeAlias
| NatConstranint
| IntConstranint
| BoolConstraint
| UnitConstraint
| TypeRefcoerces TypeRef
| TypeRefwidens TypeRef

ObjectDecl ::= ObjectHeader(MdDef | FldDef | PropertyDecl)∗ end

ObjectHeader ::= ObjectMod∗ object Id [StaticParams] [ ( [ObjectParams]) ] [Extends] FnClauses
ObjectParams ::= ObjectParam( ,ObjectParam)∗

| [ObjectParam( ,ObjectParam)∗ , ] ObjectVarargs
| [ObjectParam( ,ObjectParam)∗ , ] [ObjectVarargs, ] ObjectKeyword( ,ObjectKeyword)∗

ObjectVarargs ::= transient Id : TypeRef...
ObjectKeyword ::= ObjectParam= Expr
ObjectParam ::= FldMod∗ PlainParam

| transient PlainParam
FnDecl ::= AbsFnDecl

| FnDef
AbsFnDecl ::= FnMod∗ FnHeader

| Name: ArrowType
FnDef ::= FnMod∗ FnHeader= Expr
FnHeader ::= Id [StaticParams] ValParam[IsType] FnClauses

| OpHeader
OpHeader ::= opr Op [StaticParams] ValParam[IsType] FnClauses

| opr [StaticParams] ValParam Op[IsType] FnClauses
| opr [StaticParams] LeftEncloser ValParams RightEncloser[ := ValParam] [ IsType] FnClauses

ValParam ::= ParamId
| ( [ValParams])

ParamId ::= Id
|

ValParams ::= PlainParam( ,PlainParam)∗

| [PlainParam( ,PlainParam)∗ , ] Id : TypeRef...
| [PlainParam( ,PlainParam)∗ , ] [ Id : TypeRef... , ] PlainParam= Expr ( ,PlainParam= Expr)∗

PlainParam ::= ParamId[IsType]
| TypeRef

IsType ::= : TypeRef
FnClauses ::= [Throws] [Where] [Contract]
Throws ::= throws MayTraitTypes
Contract ::= [Requires] [Ensures] [ Invariant]
Requires ::= requires Expr+

Ensures ::= ensures (Expr+ [ provided Expr])+

Invariant ::= invariant Expr+
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VarDecl ::= Vars( = | := ) Expr
| VarWTypes
| VarWoTypes: TypeRef... [( = | := ) Expr]
| VarWoTypes: SimpleTupleType[( = | := ) Expr]

Vars ::= Var
| ( Var ( , Var)+ )

Var ::= VarMod∗ Id [IsType]
VarWTypes ::= VarWType

| ( VarWType( , VarWType)+ )
VarWType ::= VarMod∗ Id IsType
VarWoTypes ::= VarWoType

| ( VarWoType( , VarWoType)+ )
VarWoType ::= VarMod∗ Id
SimpleTupleType ::= ( TypeRef, TypeRefList)
TypeRefList ::= TypeRef( , TypeRef)∗

DimUnitDecl ::= dim Id [ = DimRef] [ default Unit]
| ( unit | SI unit ) Id+ [ : DimRef] [ = Expr]
| dim Id [ = DimRef] ( unit | SI unit ) Id+ [ = Expr]

TypeAlias ::= type Id [StaticParams] = TypeRef
TestDecl ::= test Id [ GeneratorList] = Expr
PropertyDecl ::= property [Id = ] [∀ ValParam] Expr
MdDecl ::= AbsMdDecl

| MdDef
AbsMdDecl ::= [ abstract ] MdMod∗ MdHeader
MdDef ::= MdMod∗ MdHeader= Expr

| Coercion
MdHeader ::= [(Id | self ) . ]Id [StaticParams]( [MdParams]) [IsType] FnClauses
MdParams ::= MdParam( ,MdParam)∗

| [MdParam( ,MdParam)∗ , ] Id : TypeRef...
| [MdParam( ,MdParam)∗ , ] [ Id : TypeRef... , ] MdParam= Expr ( ,MdParam= Expr)∗

MdParam ::= ParamId[IsType]
| self

| TypeRef
Coercion ::= [ widening ] coercion [StaticParams]( Id IsType) CoercionClauses= Expr
CoercionClauses ::= [Throws] [CoercionWhere] [Contract]
CoercionWhere ::= where { CoercionWhereClauseList}
CoercionWhereClauseList ::= CoercionWhereClause( , CoercionWhereClause)∗

CoercionWhereClause ::= WhereClause
| TypeRefwidens or coerces TypeRef

AbsFldDecl ::= AbsFldMod∗ Id IsType
FldDef ::= FldMod∗ Id [IsType] ( = | := ) Expr
UniversalMod ::= private | test
TraitMod ::= value | UniversalMod
ObjectMod ::= TraitMod
FnMod ::= atomic | io | UniversalMod
VarMod ::= var | UniversalMod
MdMod ::= getter | setter | FnMod
AbsFldMod ::= hidden | settable | wrapped | UniversalMod
FldMod ::= var | AbsFldMod
StaticParams ::= JStaticParamListK
StaticParamList ::= StaticParam( , StaticParam)∗
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StaticParam ::= Id [Extends] [ absorbs unit ]
| nat Id
| int Id
| bool Id
| dim Id
| unit Id [ : DimRef] [ absorbs unit ]
| opr Op
| ident Id

TypeRef ::= TraitType
| TupleType
| ArrowType
| BottomType
| ()
| ( TypeRef)
| DimType

TraitType ::= DottedId[JStaticArgListK]
| { TypeRef7→ TypeRef}
| 〈 TypeRef〉
| TypeRef[ [ArraySize] ]
| TypeRef[ MatrixSize]

ArraySize ::= Extent(, Extent)∗

Extent ::= NatRef
| NatRef# NatRef

MatrixSize ::= NatRef(× NatRef)+

TupleType ::= ( TypeRef( ,TypeRef)+)
| ( [TypeRef( ,TypeRef)∗ , ] TypeRef... )
| ( [TypeRef( ,TypeRef)∗ , ] [TypeRef... , ] Id = TypeRef( , Id = TypeRef)∗)

ArrowType ::= ArrowTypeRef→ ArrowTypeRef[Throws]
ArrowTypeRef ::= TypeRef(× TypeRef)∗

| TypeRef̂ Number
DimType ::= DimRef

| TypeRef DimRef| TypeRef· DimRef
| TypeRef/ DimRef | TypeRefper DimRef
| TypeRef UnitRef| TypeRef· UnitRef
| TypeRef/ UnitRef | TypeRefper UnitRef
| TypeRefin DimRef

DimRef ::= Unity
| DottedId
| DimRef DimRef| DimRef · DimRef
| DimRef / DimRef | DimRef per DimRef
| DimRef ˆ NatRef| 1 /DimRef | ( DimRef)
| DUPreOp DimRef| DimRef DUPostOp

UnitRef ::= dimensionless
| DottedId
| UnitRef UnitRef| UnitRef · UnitRef
| UnitRef / UnitRef | UnitRef per UnitRef
| UnitRef ˆ NatRef| 1/UnitRef | ( UnitRef)
| DUPreOp UnitRef| UnitRef DUPostOp

DUPreOp ::= square | cubic | inverse
DUPostOp ::= squared | cubed
StaticArgList ::= StaticArg( , StaticArg)∗
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StaticArg ::= TypeRef
| NatRef
| IntRef
| BoolRef
| DimRef
| UnitRef
| Op
| Id

NatRef ::= Number
| Id
| NatRef NatRef
| NatRef + NatRef
| NatRef · NatRef
| ( NatRef)

IntRef ::= NatRef
BoolRef ::= true

| false

| Id
| BoolRef AND BoolRef
| BoolRef OR BoolRef
| ( BoolRef)

Expr ::= Flow
| Value
| DottedName[JStaticArgListK]
| self

| Expr. Id
| Expr. Id[JStaticArgListK]( [ExprList])
| Expr Expr
| TraitType. coercion[JStaticArgListK]( Expr)
| Op Expr
| Expr Op[Expr]
| Expr AssignOp Expr
| Comprehension
| Expr as TypeRef
| Expr asif TypeRef
| UnitExpr

Flow ::= Do
| label Id Expr+ end Id
| exit [Id] [ with Expr]
| while Expr Do
| for GeneratorList Do
| Accumulator[[ GeneratorList] ] Expr
| if Expr then Expr+ ( elif Expr then Expr+)∗ [Else] end

| ( if Expr then Expr+ ( elif Expr then Expr+)∗ Else[ end ])
| case Expr [Op] of (Expr ⇒ Expr+)+ [Else] end

| case ( largest | smallest ) [Op] of (Expr ⇒ Expr+)+ end

| typecase TypecaseBindingsin (TypecaseTypeRefs⇒ Expr+)+ [Else] end

| atomic Expr
| tryatomic Expr
| spawn Expr
| throw Expr
| try Expr+ [ catch Id (TraitType⇒ Expr+)+] [ forbid TraitTypes] [ finally Expr+] end
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Value ::= Literal
| fn ValParam[IsType] [Throws] ⇒ Expr
| object [Extends] (FldDef | MdDef)∗ end

| Aggregate
| LeftEncloser ExprList RightEncloser

DottedName ::= DottedId
| opr Op

ExprList ::= Expr ( , Expr)∗

AssignOp ::= := | Op=
Do ::= do BlockElem∗ end

| do BlockElem+ also Do
| at Expr Do

BlockElem ::= Expr[ , GeneratorList]
| LocalVarFnDecl

GeneratorList ::= Generator( , Generator)∗

Generator ::= Id←Expr
| ( Id , IdList ) ←Expr
| Expr

IdList ::= Id ( , Id)∗

Accumulator ::=
∑ |∏ | BIG Op

Else ::= else Expr+

TypecaseBindings ::= Id
| Binding
| ( BindingList)

Binding ::= Id = Expr
BindingList ::= Binding( , Binding)∗

TypecaseTypeRefs ::= TypeRef
| ( TypeRefList)

Aggregate ::= { [ExprList] }
| { EntryList}
| 〈 [ExprList] 〉
| [ (Expr | ; )∗ ]
| ( Expr( ,Expr)+)
| ( [Expr( ,Expr)∗ , ] Expr... )
| ( [Expr( ,Expr)∗ , ] [Expr... , ] Id = Expr ( , Id = Expr)∗)

EntryList ::= Entry ( , Entry)∗

Entry ::= Expr 7→ Expr
Comprehension ::= { Expr | GeneratorList}

| { Expr 7→ Expr | GeneratorList}
| 〈 Expr | GeneratorList〉
| [ (ArrayComprehensionLeft| GeneratorList)+ ]

ArrayComprehensionLeft ::= Id 7→ Expr
| ( Id , IdList ) 7→ Expr

LocalVarFnDecl ::= LocalVarDecl
| Id ValParam[IsType] [Throws] = Expr

LocalVarDecl ::= LocalVars( = | := ) Expr
| LocalVarWTypes
| LocalVarWoTypes: TypeRef... [( = | := ) Expr]
| LocalVarWoTypes: SimpleTupleType[( = | := ) Expr]

LocalVars ::= LocalVar
| ( LocalVar ( , LocalVar)+ )

LocalVar ::= LocalVarWType
| LocalVarWoType
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LocalVarWTypes ::= LocalVarWType
| ( LocalVarWType( , LocalVarWType)+ )

LocalVarWType ::= [ var ] Id IsType
LocalVarWoTypes ::= LocalVarWoType

| ( LocalVarWoType( , LocalVarWoType)+ )
LocalVarWoType ::= [ var ] Id

| Unpasting
Unpasting ::= [ L-Elt (Paste L-Elt)∗ ]
L-Elt ::= Id [[ L-ArraySize] ]

| Unpasting
L-ArraySize ::= L-Extent(×L-Extent)∗

L-Extent ::= Expr
| Expr: Expr
| Expr# Expr

Paste ::= (Whitespace| ; )+

UnitExpr ::= UnitRef
| Expr UnitRef| Expr · UnitRef
| Expr / UnitRef | Expr per UnitRef
| Expr in UnitRef

ExternalSyntax ::= syntax OpenExpander Id CloseExpander= Expr
OpenExpander ::= Id | LeftEncloser
CloseExpander ::= Id | RightEncloser| end
AbsDecl ::= AbsTraitDecl

| AbsObjectDecl
| AbsFnDecl
| AbsVarDecl
| AbsDimUnitDecl
| AbsTypeAlias
| TestDecl
| PropertyDecl
| AbsExternalSyntax

AbsTraitDecl ::= TraitHeader(AbsMdDecl| AbsCoercion| ApiFldDecl| PropertyDecl)∗ end

AbsObjectDecl ::= ObjectHeader(AbsMdDecl| AbsCoercion| ApiFldDecl| PropertyDecl)∗ end

AbsCoercion ::= [ widening ] coercion [StaticParams]( Id IsType) CoercionClauses
ApiFldDecl ::= ApiFldMod∗ Id IsType
ApiFldMod ::= hidden | settable | UniversalMod
AbsVarDecl ::= VarWTypes

| VarWoTypes: TypeRef...
| VarWoTypes: SimpleTupleType

AbsDimUnitDecl ::= dim Id [ default Unit]
| ( unit | SI unit ) Id+ [ : DimRef]
| dim Id ( unit | SI unit ) Id+

AbsTypeAlias ::= type Id [StaticParams]
AbsExternalSyntax ::= syntax OpenExpander Id CloseExpander
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Appendix H

Generated Concrete Syntax

This grammar is automatically derived from a Fortress parser under development, and is included to help give insight
into how some syntactic features (white-space sensitivity, optional semicolons) are supported. A GLR parser-generator
is assumed. Some restrictions that could be enforced syntactically (e.g., which modifiers are allowed in which contexts)
are instead assumed to be checked in a later phase of the compiler, and some language features are not yet implemented.

compilation_unit
-> w api w
-> w component w
-> imports_opt

exports_opt
defs_opt w

api
-> "api" w

dotted
imports_opt
decls_opt
w "end"

component
-> "component" w

dotted
imports_opt
exports_opt
defs_opt w
"end"

dotteds
-> dotted
-> dotted w "," w dotteds

dotted
-> build_dotted

build_dotted
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-> IDENTIFIER
-> IDENTIFIER "." build_dotted

imports_opt
->
-> w imports

imports
-> import
-> import wr imports

import
-> "import" wr aliased_names
-> "import" wr import_ids

import_ids
-> " * " wr "from" wr dotted
-> "{" w ids w "}" wr "from" wr dotted

ids
-> id
-> id w "," w ids

id
-> IDENTIFIER

aliased_names
-> aliased_name
-> aliased_name w "," w aliased_names

aliased_name
-> dotted
-> dotted wr "as" wr dotted

exports_opt
->
-> w exports

exports
-> "export" wr dotteds
-> "export" wr dotteds w exports

decls_opt
->
-> w decls

decls
-> decl
-> decl br decls

decl
-> trait_decl
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-> fn_decl
-> object_decl
-> var_decl
-> def_or_decl

defs_opt
->
-> w defs

defs
-> def
-> def br defs

def
-> trait_def
-> fn_def
-> object_def
-> var_def
-> def_or_decl

var_decl
-> mods_opt id w is_type

var_def
-> mods_opt id is_type_opt w "=" w no_newline_expr
-> mods_opt id w ":" w type_ref w ":=" w no_newline_expr

is_type_opt
->
-> w is_type

is_type
-> ":" w type_ref

type_ref
-> arg_type w "->" w ret_type throws_opt
-> simple_type_ref

simple_type_ref
-> "(" ")"
-> dotted
-> simple_type_ref w "[\" w type_args w "\]"
-> type_ref w "[" w array_indices w "]"
-> type_ref "ˆ" nat_type
-> type_ref "ˆ" "(" w extent_range_minus_nat w ")"
-> type_ref "ˆ" "(" w extent_range w "BY" w extent_range w ")"
-> type_ref w "..."
-> "[" w type_ref w "|->" w type_ref w "]"
-> "unity"
-> type_ref sr type_ref
-> type_ref w div w type_ref
-> "(" w type_ref w ")"
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fn_decl
-> mods_opt
fn_header
is_ret_type_opt
throws_opt
where_opt
contract_opt

fn_def
-> mods_opt
fn_header
is_ret_type_opt
throws_opt
where_opt
contract_opt
w "=" w no_newline_expr

fn_header
-> id
type_params_opt
w params
-> id "." id
type_params_opt
w params
-> "opr" w op
type_params_opt
w params
-> "opr"
type_params_opt
w params
w op
-> "opr"
type_params_opt
w left_op_or_enc comma_sep_params_opt w right_op_or_enc
-> "opr"
type_params_opt
w "[" w comma_sep_params w "]"
w ":=" w "(" w param w ")"
-> "opr"
type_params_opt
w "[" w comma_sep_params w "]"

type_params_opt
->
-> w "[\" w comma_sep_type_params w "\]"

comma_sep_type_params
-> type_param
-> type_param w "," w comma_sep_type_params

type_param
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-> id extends_opt absorbs_opt
-> "nat" w id
-> "bool" w id
-> "dim" w id
-> "unit" w id absorbs_opt
-> "opr" w op
-> "ident" w id

absorbs_opt
->
-> w "absorbs" w "unit"

throws_opt
->
-> w "throws" w type_ref
-> w "throws" w type_ref_list

where_opt
->
-> w where

where
-> "where" w "{" w wcl: where_clause_list w "}"

where_clause_list
-> where_clause w "," w where_clause_list
-> where_clause

where_clause
-> type_alias
-> id w extends

contract_opt
-> requires_opt ensures_opt invariant_opt

requires_opt
->
-> w "requires" w "{" w comma_sep_exprs w "}"

ensures_opt
->
-> w "ensures" w

"{" prefix_ensures_clauses w ensures_clause w "}"

prefix_ensures_clauses
->
-> w provided_clause w "," prefix_ensures_clauses

provided_clause
-> comma_sep_exprs w "provided" w expr

ensures_clause
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-> provided_clause
-> comma_sep_exprs

invariant_opt
->
-> w "invariant" w "{" w comma_sep_exprs w "}"

trait_decl
-> mods_opt
"trait" w
id
type_params_opt
extends_opt
excludes_opt
comprises_opt
where_opt
fn_decls_or_property_opt
w "end"

trait_def
-> mods_opt
"trait" w
id
type_params_opt
extends_opt
excludes_opt
comprises_opt
where_opt
fn_def_or_decls_or_property_opt
w "end"

extends_opt
->
-> w extends

extends
-> "extends" w type_ref
-> "extends" w type_ref_list_nonempty

type_ref_list
-> type_ref_list_nonempty
-> "{" w "}"

type_ref_list_nonempty
-> "{" w type_refs w "}"

type_refs
-> type_ref
-> type_ref w "," w type_refs

excludes_opt
->
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-> w "excludes" w type_ref_list

comprises_opt
->
-> w "comprises" w type_ref
-> w "comprises" w "{" w "}"
-> w "comprises" w "{" w type_refs w "}"

fn_def_or_decls_or_property_opt
->
-> w fn_def_or_decls_or_property

fn_def_or_decls_or_property
-> fn_def_or_decl_or_property
-> fn_def_or_decl_or_property br fn_def_or_decls_or_pr operty

fn_def_or_decl_or_property
-> fn_def
-> fn_decl
-> property

fn_decls_or_property_opt
->
-> w fn_decls_or_property

fn_decls_or_property
-> fn_decl_or_property
-> fn_decl_or_property br fn_decls_or_property

fn_decl_or_property
-> fn_decl
-> property

fn_decls_opt
->
-> w fn_decls

fn_decls
-> fn_decl
-> fn_decl br fn_decls

object_decl
-> mods_opt

"object" w
id
type_params_opt
params_opt
extends_opt
throws_opt
where_opt
contract_opt
obj_decl_body_opt
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w "end"

object_def
-> mods_opt

"object" w
id
type_params_opt
params_opt
extends_opt
throws_opt
where_opt
contract_opt
obj_body_opt
w "end"

params_opt
->
-> w params

params
-> "(" w ")"
-> "(" w comma_sep_params w ")"

comma_sep_params_opt
->
-> w comma_sep_params

comma_sep_params
-> param
-> param w "," w comma_sep_params

param
-> mods_opt id is_type_opt default_value_opt

obj_body_opt
->
-> w obj_body

obj_body
-> obj_body_elem
-> obj_body_elem br obj_body

obj_body_elem
-> fn_def
-> var_def

obj_decl_body_opt
->
-> w obj_decl_body

obj_decl_body
-> obj_decl_body_elem
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-> obj_decl_body_elem br obj_decl_body

obj_decl_body_elem
-> fn_decl
-> var_decl
-> property

op_expr
-> op_expr_result

op_expr_result
-> opexpr_list

opexpr_list
-> op_expr_no_enc
-> enc op_expr_no_enc
-> enc

op_expr_no_enc
-> juxt_component
-> juxt_component wr expr_follows_expr_w
-> juxt_component op_follows_expr
-> juxt_component wr op_follows_expr_w
-> juxt_component enc_follows_expr
-> juxt_component wr enc_follows_expr_w
-> op
-> op expr_follows_op
-> op wr expr_follows_op_w
-> op op_follows_op
-> op wr op_follows_op_w
-> op enc_follows_op
-> op wr enc_follows_op_w

enc_follows_expr
-> enc expr_follows_op
-> enc wr expr_follows_expr_w
-> enc op_follows_op
-> enc wr op_follows_expr_w
-> enc wr enc_follows_expr_w
-> enc

enc_follows_expr_w
-> enc op_expr_no_enc
-> enc wr expr_follows_op_w
-> enc wr op_follows_op_w
-> enc wr enc_follows_op_w

enc_follows_op
-> enc op_expr_no_enc

enc_follows_op_w
-> enc op_expr_no_enc
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expr_follows_expr_w
-> juxt_component
-> juxt_component op_follows_expr
-> juxt_component wr op_follows_expr_w
-> juxt_component wr expr_follows_expr_w
-> juxt_component enc_follows_expr
-> juxt_component wr enc_follows_expr_w

expr_follows_op
-> juxt_component
-> juxt_component op_follows_expr
-> juxt_component wr op_follows_expr_w
-> juxt_component wr expr_follows_expr_w
-> juxt_component enc_follows_expr
-> juxt_component wr enc_follows_expr_w

expr_follows_op_w
-> juxt_component
-> juxt_component op_follows_expr
-> juxt_component wr op_follows_expr_w
-> juxt_component wr expr_follows_expr_w
-> juxt_component enc_follows_expr
-> juxt_component wr enc_follows_expr_w

op_follows_op
-> op wr expr_follows_op_w
-> op expr_follows_op
-> op wr op_follows_op_w
-> op op_follows_op
-> op enc_follows_op
-> op wr enc_follows_op_w

op_follows_op_w
-> op wr expr_follows_op_w
-> op expr_follows_op
-> op wr op_follows_op_w
-> op op_follows_op
-> op enc_follows_op
-> op wr enc_follows_op_w

op_follows_expr
-> op wr expr_follows_op_w
-> op expr_follows_op
-> op wr op_follows_op_w
-> op op_follows_op
-> op
-> op enc_follows_op
-> op wr enc_follows_op_w

op_follows_expr_w
-> op wr expr_follows_op_w
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-> op wr op_follows_op_w
-> op wr enc_follows_op_w

no_newline_op_expr
-> no_newline_op_expr_result

no_newline_op_expr_result
-> no_newline_opexpr_list

no_newline_opexpr_list
-> no_newline_op_expr_no_enc
-> enc no_newline_op_expr_no_enc
-> enc

no_newline_op_expr_no_enc
-> juxt_component
-> juxt_component sr no_newline_expr_follows_expr_w
-> juxt_component no_newline_op_follows_expr
-> juxt_component sr no_newline_op_follows_expr_w
-> juxt_component no_newline_enc_follows_expr
-> juxt_component sr no_newline_enc_follows_expr_w
-> op
-> op no_newline_expr_follows_op
-> op sr no_newline_expr_follows_op_w
-> op no_newline_op_follows_op
-> op sr no_newline_op_follows_op_w
-> op no_newline_enc_follows_op
-> op sr no_newline_enc_follows_op_w

no_newline_enc_follows_expr
-> enc no_newline_expr_follows_op
-> enc sr no_newline_expr_follows_expr_w
-> enc no_newline_op_follows_op
-> enc sr no_newline_op_follows_expr_w
-> enc sr no_newline_enc_follows_expr_w
-> enc

no_newline_enc_follows_expr_w
-> enc no_newline_op_expr_no_enc
-> enc sr no_newline_expr_follows_op_w
-> enc sr no_newline_op_follows_op_w
-> enc sr no_newline_enc_follows_op_w

no_newline_enc_follows_op
-> enc no_newline_op_expr_no_enc

no_newline_enc_follows_op_w
-> enc no_newline_op_expr_no_enc

no_newline_expr_follows_expr_w
-> juxt_component
-> juxt_component no_newline_op_follows_expr
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-> juxt_component sr no_newline_op_follows_expr_w
-> juxt_component sr no_newline_expr_follows_expr_w
-> juxt_component no_newline_enc_follows_expr
-> juxt_component sr no_newline_enc_follows_expr_w

no_newline_expr_follows_op
-> juxt_component
-> juxt_component no_newline_op_follows_expr
-> juxt_component sr no_newline_op_follows_expr_w
-> juxt_component sr no_newline_expr_follows_expr_w
-> juxt_component no_newline_enc_follows_expr
-> juxt_component sr no_newline_enc_follows_expr_w

no_newline_expr_follows_op_w
-> juxt_component
-> juxt_component no_newline_op_follows_expr
-> juxt_component sr no_newline_op_follows_expr_w
-> juxt_component sr no_newline_expr_follows_expr_w
-> juxt_component no_newline_enc_follows_expr
-> juxt_component sr no_newline_enc_follows_expr_w

no_newline_op_follows_op
-> op sr no_newline_expr_follows_op_w
-> op no_newline_expr_follows_op
-> op sr no_newline_op_follows_op_w
-> op no_newline_op_follows_op
-> op no_newline_enc_follows_op
-> op sr no_newline_enc_follows_op_w

no_newline_op_follows_op_w
-> op sr no_newline_expr_follows_op_w
-> op no_newline_expr_follows_op
-> op sr no_newline_op_follows_op_w
-> op no_newline_op_follows_op
-> op no_newline_enc_follows_op
-> op sr no_newline_enc_follows_op_w

no_newline_op_follows_expr
-> op sr no_newline_expr_follows_op_w
-> op no_newline_expr_follows_op
-> op sr no_newline_op_follows_op_w
-> op no_newline_op_follows_op
-> op
-> op no_newline_enc_follows_op
-> op sr no_newline_enc_follows_op_w

no_newline_op_follows_expr_w
-> op wr no_newline_expr_follows_op_w
-> op wr no_newline_op_follows_op_w
-> op sr no_newline_enc_follows_op_w

no_space_op_expr
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-> no_space_op_expr_result

no_space_op_expr_result
-> no_space_opexpr_list

no_space_opexpr_list
-> no_space_op_expr_no_enc
-> enc no_space_op_expr_no_enc
-> enc

no_space_op_expr_no_enc
-> juxt_component
-> juxt_component no_space_op_follows_expr
-> juxt_component no_space_enc_follows_expr
-> op
-> op no_space_expr_follows_op
-> op no_space_op_follows_op
-> op no_space_enc_follows_op

no_space_enc_follows_expr
-> enc no_space_expr_follows_op
-> enc no_space_op_follows_op
-> enc

no_space_enc_follows_op
-> enc no_space_op_expr_no_enc

no_space_expr_follows_op
-> juxt_component
-> juxt_component no_space_op_follows_expr
-> juxt_component no_space_enc_follows_expr

no_space_op_follows_op
-> op no_space_expr_follows_op
-> op no_space_op_follows_op
-> op no_space_enc_follows_op

no_space_op_follows_expr
-> op no_space_expr_follows_op
-> op no_space_op_follows_op
-> op
-> op no_space_enc_follows_op

expr
-> op_expr
-> tuple_expr
-> flow_expr
-> fn_expr
-> object_expr
-> assignment_expr
-> type_ascription_expr
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no_newline_expr
-> no_newline_op_expr
-> tuple_expr
-> no_newline_flow_expr
-> no_newline_fn_expr
-> object_expr
-> no_newline_assignment_expr
-> no_newline_type_ascription_expr

no_space_expr
-> no_space_op_expr
-> tuple_expr
-> no_space_flow_expr
-> object_expr
-> no_space_assignment_expr

type_ascription_expr
-> expr w "as" w type_ref

no_newline_type_ascription_expr
-> no_newline_expr s "as" w type_ref

asif_expr
-> expr w "asif" w type_ref

no_newline_asif_expr
-> no_newline_expr s "asif" w type_ref

no_newline_atomic_expr
-> "atomic" w no_newline_expr

atomic_expr
-> "atomic" w expr

no_newline_tryatomic_expr
-> "tryatomic" w no_newline_expr

tryatomic_expr
-> "tryatomic" w expr

no_newline_throw_expr
-> "throw" w no_newline_expr

throw_expr
-> "throw" w expr

no_newline_exit_expr
-> "exit" id_opt no_newline_with_opt

exit_expr
-> "exit" id_opt with_opt
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id_opt
->
-> w id

with_opt
->
-> w "with" w expr

no_newline_with_opt
->
-> w "with" w no_newline_expr

tuple_expr
-> "(" w expr w "," w comma_sep_exprs w ")"

object_expr
-> "object" extends_opt obj_body_opt w "end"

no_newline_fn_expr
-> "fn" w params is_ret_type_opt throws_opt w "=>" w

no_newline_expr

fn_expr
-> "fn" w params is_ret_type_opt throws_opt w "=>" w expr

no_newline_accumulator
-> "SUM" w "[" w generators w "]" w no_newline_expr
-> "PRODUCT" w "[" w generators w "]" w no_newline_expr
-> "BIG" w op_or_enc w "[" w generators w "]" w no_newline_exp r

accumulator
-> "SUM" w "[" w generators w "]" w expr
-> "PRODUCT" w "[" w generators w "]" w expr
-> "BIG" w op_or_enc w "[" w generators w "]" w expr

no_space_assignment_expr
-> no_space_expr ":=" no_space_expr
-> no_space_expr assign_op no_space_expr

no_newline_assignment_expr
-> no_newline_expr s ":=" w no_newline_expr
-> no_newline_expr s assign_op w no_newline_expr

assignment_expr
-> expr w ":=" w expr
-> expr w assign_op w expr

let_expr
-> let_mutable
-> let_immutable
-> let_fun
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let_fun
-> let_fun_list

let_fun_list
-> fn_def
-> fn_def br let_fun_list

let_mutable
-> "var" w lvals
-> "var" w lvals s "=" w no_newline_expr
-> "var" w lvals s ":=" w no_newline_expr
-> typed_lvals s ":=" w no_newline_expr

let_immutable
-> typed_lvals
-> lvals s "=" w no_newline_expr

tuple_lvals
-> "(" w ids w ")" s ":" s type_ref
-> "(" w ids w ")" s ":" s "(" w type_refs w ")"

lvals
-> lval
-> "(" w comma_sep_lvals w ")"
-> tuple_lvals

typed_lvals
-> typed_lval
-> "(" w comma_sep_typed_lvals w ")"
-> tuple_lvals

comma_sep_lvals
-> lval
-> lval w "," w comma_sep_lvals

comma_sep_typed_lvals
-> typed_lval
-> typed_lval w "," w comma_sep_typed_lvals

lval
-> typed_lval
-> id
-> unpasting

typed_lval
-> id s ":" s type_ref

unpasting
-> "[" w unpasting_elems w "]"

unpasting_elems
-> unpasting_elem
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-> unpasting_elem rect_separator unpasting_elems

unpasting_elem
-> unpasting
-> id
-> id s ":" w "[" w unpasting_dim w "]"

unpasting_dim
-> extent_range w "BY" w extent_range
-> extent_range w "BY" w unpasting_dim

comma_sep_exprs_opt
->
-> w comma_sep_exprs

comma_sep_exprs
-> expr
-> expr w "," w comma_sep_exprs

juxt_component
-> primary

exponentiation
-> primary exp exponent
-> primary exp_op

exponent
-> id
-> literal
-> parenthesized

primary
-> base_expr
-> type_application
-> bracket_expr
-> tight_juxtaposition
-> field_selection
-> exponentiation

type_application
-> primary "[\" w type_args w "\]"

bracket_expr
-> primary "[" comma_sep_exprs_opt w "]"

tight_juxtaposition
#Ambiguity -- favor KeywordsExpr parses

-> primary "(" w ")"
-> primary "(" w expr w ")"
-> primary tuple_expr
-> primary keyword_args
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args_opt
->
-> w comma_sep_exprs w ","

keyword_args
# Ambiguity -- favor parses with largest number of keywords

-> "(" args_opt w comma_sep_keywords w ")"

comma_sep_keywords
-> id w "=" w expr
-> id w "=" w expr w "," w comma_sep_keywords

field_selection
-> primary "." id

base_expr
-> parenthesized
-> matched_enclosing_operator
-> id
-> base_value_expr
-> comprehension

matched_enclosing_operator
-> not_yet_matched_enclosing_operator

not_yet_matched_enclosing_operator
-> left_op comma_sep_exprs_opt w right_op

left_op_or_enc
-> enc
-> left_op

right_op_or_enc
-> enc
-> right_op

left_op
-> left_op_literal

right_op
-> right_op_literal

left_op_literal
-> "LC"
-> "LF"
-> "<|"
-> "{"

right_op_literal
-> "RC"
-> "RF"
-> "|>"
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-> "}"

comprehension
-> set_comprehension
-> list_comprehension
-> map_comprehension
-> rect_comprehension

comprehension_rhs
-> expr
-> generator
-> expr w "," w comprehension_rhs
-> generator w "," w comprehension_rhs

set_comprehension
-> "{" w expr wr "|" wr comprehension_rhs w "}"

list_comprehension
-> "<|" w expr wr "|" wr comprehension_rhs w "|>"

map_comprehension
-> "[" w expr w "|->" w expr wr "|" wr comprehension_rhs w "]"

rect_comprehension
-> "[" w rect_comp_clauses w "]"

rect_comp_clauses
-> rect_comp_clause
-> rect_comp_clause br rect_comp_clauses

rect_comp_clause
-> "(" w comma_sep_exprs w ")" w "=" w expr wr

"|" wr comprehension_rhs

parenthesized
-> "(" w expr w ")"

base_value_expr
-> literal

literal
-> "(" w ")"
-> INT
-> FLOAT
-> STRING
-> CHAR
-> map_expr
-> rect_expr

rect_expr
-> "[" w rect_elements w "]"
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rect_elements
-> no_space_expr
-> no_space_expr rect_separator rect_elements

rect_separator
-> sr
-> nl
-> w semicolons w

semicolons
-> ";"
-> ";" semicolons

map_expr
-> "[" w comma_sep_entries w "]"

comma_sep_entries
-> entry
-> entry w "," w comma_sep_entries

entry
-> expr w "|->" w expr

no_space_flow_expr
-> label_expr
-> do_expr
-> for_expr
-> spawn_expr
-> if_expr
-> try_expr
-> case_expr
-> type_case_expr
-> while_expr

no_newline_flow_expr
-> label_expr
-> do_expr
-> for_expr
-> spawn_expr
-> if_expr
-> try_expr
-> case_expr
-> type_case_expr
-> while_expr
-> no_newline_accumulator
-> no_newline_atomic_expr
-> no_newline_tryatomic_expr
-> no_newline_throw_expr
-> no_newline_exit_expr

flow_expr
-> label_expr
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-> do_expr
-> for_expr
-> spawn_expr
-> if_expr
-> try_expr
-> case_expr
-> type_case_expr
-> while_expr
-> accumulator
-> atomic_expr
-> tryatomic_expr
-> throw_expr
-> exit_expr

label_expr
-> "label" w id w exprs w "end" w id

while_expr
-> "while" w expr w do_expr

type_case_expr
-> "typecase" w type_case

type_case
-> type_case_bindings w "in" w type_case_clauses w "end"
-> type_case_bindings w "in" w type_case_clauses br type_c ase_else w "end"

type_case_else
-> "else" w "=>" w exprs

type_case_type_refs
-> type_ref
-> "(" w type_refs w ")"

type_clause
-> type_case_type_refs w "=>" w exprs

type_case_clauses
-> type_clause
-> type_clause br type_case_clauses

type_case_bindings
-> id
-> bindings

bindings
-> binding
-> "(" w comma_sep_bindings w ")"

comma_sep_bindings
-> binding
-> binding w "," w comma_sep_bindings
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binding
-> id w "=" w expr

case_clauses
-> case_clause
-> case_clause br case_clauses

case_clause
-> no_newline_expr w "=>" w exprs

case_expr
-> "case" w case_prefix w "of" w case_suffix w "end"

case_prefix
-> expr
-> expr w op
-> "largest"
-> "smallest"

case_suffix
-> case_clauses
-> case_clauses w "else" w "=>" w exprs

try_expr
-> "try" w exprs catch_opt forbid_opt finally_opt w "end"

catch_opt
->
-> w "catch" w id w catch_clauses

forbid_opt
->
-> w "forbid" w type_ref_list

finally_opt
->
-> w "finally" w expr

catch_clauses
-> type_ref w "=>" w exprs
-> type_ref w "=>" w exprs br catch_clauses

if_expr
-> "if" w expr w "then" w exprs w "end"
-> "if" w expr w "then" w exprs w "else" w exprs w "end"
-> "if" w expr w "then" w exprs w else_clauses w "else" w exprs w "end"
-> "if" w expr w "then" w exprs w else_clauses w "end"

else_clauses
-> else_clause
-> else_clause w else_clauses
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else_clause
-> "elif" w expr w "then" w exprs

spawn_expr
-> "spawn" expr_opt w do_expr

expr_opt
->
-> w expr

for_expr
-> "for" w generators w do_expr

no_newline_generators
-> no_newline_generator
-> no_newline_generator s "," w no_newline_generators

generators
-> generator
-> generator w "," w generators

no_newline_generator
-> ids w "<-" w no_newline_expr

generator
-> ids w "<-" w expr

do_expr
-> "do" w exprs w "end"
-> "do" w "end"

block_elem
-> no_newline_expr
-> let_expr
-> no_newline_expr s "," w no_newline_generators

exprs
# Ambiguity -- favor LetExpr parses

-> block_elem
-> block_elem w ";"
-> block_elem br exprs

default_value_opt
->
-> w "=" w expr

is_ret_type_opt
->
-> w ":" w ret_type

ret_type
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-> type_ref
-> "(" w type_ref w "," w type_refs w ")"

arg_type
-> type_ref
-> named_arg
-> "(" w arg_types w ")"

arg_types
-> type_ref w "," w type_ref
-> named_arg
-> type_ref w "," w arg_types
-> named_arg w "," w named_arg_types

named_arg_types
-> named_arg
-> named_arg w "," w named_arg_types

named_arg
-> id w ":" w type_ref

array_indices
-> array_extent_ranges

array_extent_ranges
-> extent_range
-> extent_range w "," w array_extent_ranges

extent_range
-> nat_type
-> extent_range_minus_nat

extent_range_minus_nat
-> "#"
-> nat_type w "#" w nat_type
-> nat_type w "#"
-> "#" w nat_type

type_args
-> type_arg
-> type_arg w "," w type_args

type_arg
-> type_ref
-> nat_type
-> op

nat_type
-> INT
-> "-" INT
-> id
-> "(" w nat_type w ")"
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-> nat_type w "-" w INT
-> nat_type sr nat_type
-> nat_type w "+" w nat_type

bool_type
-> id
-> "(" w bool_type w ")"
-> bool_type w "AND" w bool_type
-> bool_type w "OR" w bool_type

mods_opt
->
-> mods w

mods
-> modifier
-> modifier wr mods

space_sep_ids
-> id
-> id wr space_sep_ids

assign_op
-> ASSIGNMENT_OPERATOR

exp_op
-> EXPONENT_OPERATOR

op
-> op_literal
-> div

exp
-> "ˆ"

div
-> "/"

op_literal
-> "#"
-> ":"
-> "="
-> " * "
-> "+"
-> "-"
-> "BY"
-> "<"
-> "<="
-> ">"
-> ">="
-> "in"
-> OPERATOR
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enc
-> enc_literal

op_or_enc
-> op
-> enc

enc_literal
-> "|"
-> "||"
-> "//"

def_or_decl
-> "dim" w id equal_ty_opt default_unit_opt
-> "dim" w id equal_ty_opt s unit_var
-> unit_var
-> type_alias
-> test
-> property

unit_var
-> unit_keyword w space_sep_ids is_type_opt eq_expr_opt

eq_expr_opt
->
-> w "=" w expr

unit_keyword
-> "unit"
-> "si_unit"

equal_ty_opt
->
-> w "=" w type_ref

default_unit_opt
->
-> w "default" w type_ref

type_alias
-> "type" w id w "[\" w ids w "\]" w "=" w type_ref
-> "type" w id w "=" w type_ref

test
-> "test" w id w "[" w generators w "]" w "=" w expr

property
-> "property" w id w "=" w "FORALL" w params w expr
-> "property" w "FORALL" w params w expr
-> "property" w id w "=" w w expr
-> "property" w expr
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modifier
-> "abstract"
-> "atomic"
-> "getter"
-> "hidden"
-> "io"
-> "private"
-> "pure"
-> "settable"
-> "setter"
-> "static"
-> "test"
-> "transient"
-> "value"
-> "var"
-> "wrapped"

w # Whitespace Optional
->
-> wr

wr # Whitespace Required
-> TOK_WHITESPACE w
-> TOK_NEWLINE w

s # Space Optional
->
-> sr

sr # Space Required
-> TOK_WHITESPACE s

nl # Required Newline embedded in whitespace
-> s TOK_NEWLINE w

br # Line break
-> nl
-> s ";" w
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