Studying a Minimal
Object-Oriented Kernel

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/

S.Ducasse

t Food for thoughts

“L'idée de I'expérience ne remplace pas I'expérience”
Alain

“Give a man a fish; you have fed him for today. Teach a man
to fish; and you have fed him for a lifetime”

Therefore do not listen and do not do the exercises....

\
SDucasse 2 ttf)

Outline

Classes as objects

ObjVlisp in 5 postulates
Instance Structure and Behavior
Class Structure

Message Passing

Object allocation & Initialization
Class creation

Inheritance Semantics
Bootstrapping

S.Ducasse 4

Meta Programming Context

Na
/S “’\ Applications
~

Language

(\/’\/ L‘\ Applications
|
)

Language

eta Applications
Customization of
the language

i
Meta Language

Goals

e Classes as objects

e Object and Class classes

e Semantics of inheritance

e Semantics of super and self
L]

L]

L]

Instantiation vs. Inheritance
Allocation and Initialization
Build your own language

)
SDucasse ts

Some Class Properties

Abstract: a class cannot have any instance

Set:a class that knows all its instances

DynamiclVs: Lazy allocation of instance structure
LazyAccess: only fetch the value if needed
AutomaticAccessor:a class that defines automatically its accessors
Released/Final: Class cannot be changed and subclassed
Limited/Singleton: a class can only have a certain number of
instances

IndexedIVs: Instances have indexed instance variables
Interfacelmplementor: class must implement some interfaces
Multiplelnheritance: a class can have multiple superclasses
Trace: Logs attribute accesses, allocation frequencies
ExternallVs: Instance variables stored into database

S.Ducasse 7

Classes as Objects?

“The difference between classes and objects has been
repeatedly emphasized. In the view presented here,
these concepts belong to different worlds: the program
text only contains classes; at run-time, only objects
exist. This is not the only approach. One of the
subcultures of object-oriented programming, influenced
by Lisp and exemplified by Smalltalk, views classes as
object themselves, which still have an existence
at run-time””

B. Meyer Object-Oriented Software Construction

N\
S.Ducasse th5

t% S.Ducasse s ﬂ-%
At the Method Level
Trace: Logs method calls
PrePostConditions: methods with pre/post conditions
MessageCounting: Counts the number of times a
method is called
BreakPoint: some methods are not run
FinalMethods: Methods that cannot be specialized
tl-’s:é) S.Ducasse &%

Metaclass Responsibilities

Metaclasses are one of the possible meta-entities
(method, instance variables, method combination,...)
allow the structural extension of the language
They may control
Inheritance
Internal representation of the objects (listes, vecteurs,
hash-table, ...)
Instance variable access
Separation of responsibilities
Ordinary objects are used to model real world
Metaobjects describe these ordinary objects
Meta/Base level functionality is not mixed

S.Ducasse t‘-ﬁ

Roadmap

Classes as objects

ObjVlisp in 5 postulates
Instance Structure and Behavior
Class Structure

Message Passing

Object allocation & Initialization
Class creation

Inheritance Semantics
Bootstrapping

Why ObijVlisp?

e Minimal (only two classes)

e ObjVlisp self-described: definition of Object and Class

e Unified: Only one kind of object:a class is an object
and a metaclass is a class that creates classes

e Simple: can be implemented with less than 300 lines of
Scheme or 30 Smalltalk methods.

e Equivalent of Closette (Art of MOP example)

)
S Ducasse 0 s

ObjVlisp Postulates (1)

e P|: object = <data, behavior>

e P3: Every object belongs to a class that specifies its
data (slots or instance variables) and its behavior.
Objects are created dynamically from their class.

e P4: Following P3,a class is also an object therefore

instance of another class its metaclass (that describes
the behavior of a class).

N\
SDucasse i tlsj)

=)
SDucasse 0 ts
P4
new
The class Class
instance of
The class Workstation
an instance of Workstation
—
I'mact |
mac1 := Workstation new name: #mac1
A\
S.Ducasse t'i‘)

Infinite Recursion

e A class is an object therefore instance of another class
its metaclass that is an object too instance of a
metametaclass that is an object too instance of
another a metametametaclass......

e To stop this potential infinite recursion
e Class is the initial class and metaclass
e Class is instance of itself and all other metaclasses are

instances of Class

instance of
new
The class Class
S.Ducasse 14 ﬂ-f)

ObjVlisp 2nd Postulate

* P2: Message passing is the only means to activate an
object

[object selector args]

,' & aninstance of Workstation

mac1 := Workstation new name: #mac1.
mac1 name

o)

S.Ducasse

ObjVlisp 5th Postulate

* P5: A class can be defined as a subclass of one or many
other classes.

i

Node
accept:
name

Workstation
accept:
send:

S.Ducasse

&

Unifying Class/Instance

e Every object is instance of a class

e A class is an object instance of a metaclass (P4)
But all the objects are not classes

e Only one kind of objects without distinction between
classes and final instances.

e Sole difference is the ability to respond to the creation
message: new. Only a class knows how to deal with it.
A metaclass is only a class that generates classes.

N\
SDucasse 17 ﬂ-f)

Metaclass

Every object is instance of a class

A class is an object instance of a metaclass (P4)

But all the objects are not classes

Only one kind of objects without distinction between
classes and final instances.

e Sole difference is the ability to respond to the creation
message: new. Only a class knows how to deal with it.
* A metaclass is only a class that generates classes

N\
S Ducasse 8 tl-sj)

RoadMap

Classes as objects

ObjVlisp in 5 postulates

Instance Structure and Behavior
Class Structure

Message Passing

Object allocation & Initialization

Class creation

Inheritance Semantics

Bootstrapping

=
S Ducasse e ts

Methods

e Let’s use a Smalltalk block
® name -> [:objself | objself unary: #name]

® no direct access to instance variables

&

S.Ducasse 2

Instance Structure

¢ Instance variables

e an ordered sequence of instance variables defined by a
class

e shared by all instances
e values specific to each instance

e In particular, every object possesses an instance
variable class (inherited from Object) that points to its
class.

some instances of Workstation

\
SDucasse 0 ttf)

RoadMap

e Classes as objects

e ObjVlisp in 5 postulates

e Instance Structure and Behavior
e Class Structure

® Message Passing

e Object allocation & Initialization
e Class creation

¢ Inheritance Semantics

e Bootstrapping

3

S.Ducasse 23 t

Instance Behavior

e Methods
® belongs to a class
o defines the behavior of all the instances of the class
e s stored into a dictionary that associates a key (the
method selector) and the method body

e To unify instances and classes, the method dictionary
of a class is the value of
the instance variable methodDict defined on the
metaclass Class.

N\
SDucasse 2 tlsj)

Class Node as Object

The class Node

Class| is instance of Class
‘Node'| named Node
Object| inherits from Object
'name nextNode'| has instance variables
methods...| defines some methods

S.Ducasse 25

&

Class as an Object

e A class possesses the instance variable class inherited
from Object that refers to its class (the metaclass that
creates it).

e Class value: an identifier of the class of the instance

e As an instance factory the metaclass Class possesses 4
instance variables that describe a class:
e name the class name

superclass its superclass (we limit to single inheritance)

i-v the list of its instance variables

methodDict a method dictionary

A\
$Ducasse 2 th5

Class Point as Object

The class Point

Class| is instance of Class
"Point'| Named Point

Object| inherits from Object
Xy' has instance variables
methods...| defines some methods

)
S Ducasse % (S5)

The class Class

The class Class

Class| is instance of Class
'Class'| named Class
Object| inherits from Object
'name super i-v| has instance variables
methodDict'
methods...] defines some methods

S.Ducasse

&

instance of
Class
'Class'
Object
‘class name super i-v
The class Class methodDict'
The class Workstation instance g

Class
‘Workstation'

Object

‘class name nextNode'
methods(accept:
send:.

Workstation
mact
/

"
SDucasse ts

instance of

Workstation
mac2
mac3

some instances of Workstation

Message Passing

* P2:Message passing is the only means to activate an
object

* P3:Every object belongs to a class that specifies its data
and its behavior

[Workstation [Workstation |

‘ accept: ‘ accept: ‘*

send: send: .
N
7

.
\

send: aPacket

&

S.Ducasse

The class Class

« Initial metaclass
* Defines the behavior of all the metaclasses

* Defines the behavior of all the classes

N
S.Ducasse ﬂ-f)

RoadMap

e Classes as objects
e ObjVlisp in 5 postulates
e Instance Structure and Behavior
e Class Structure

® Message Passing
e Object allocation & Initialization
e Class creation

e Inheritance Semantics

e Bootstrapping

N\
SDucasse 0 tlsj)

Message Passing (ll)

Message send = apply O lookup

We lookup the method associated with the selector

of the message in the class of the receiver then we

apply it to the receiver

e [receiver selector args]

e apply (found method starting from the class of the
receiver) on the receiver and the args

In functional style

o (apply (lookup selector (class-of receiver) receiver)
receiver args)

&

S.Ducasse R t

RoadMap

e Classes as objects

e ObjVlisp in 5 postulates

e Instance Structure and Behavior
e Class Structure

® Message Passing
[]
[]
L]
L]

Object allocation & Initialization
Class creation

Inheritance Semantics

Bootstrapping

&)

S.Ducasse 33

Object Creation

e Creation of instances of the class Point
o [Point new :x 24ty 6]
e [Point new]
e [Point new :y 10y 15]
e Creation of the class Point instance of Class
e [Class new

:name Point
:super Object
fi-v (X y)
:methods (x ...display ...)
1
S.Ducasse 34 t%

Object Creation: new

e Object Creation = initialisation O allocation
Creating an instance is the composition of two
actions:
memory allocation: allocate method
object intialisation: initialize method
e (new aClass args) = (initialization (allocation aClass)
args)
e [aClass new args] =
[[aClass allocate] initialize args]
® new creates an object: class or final instances
new is a class method

N
S Ducasse 3 t‘f)

Object Allocation

e Object allocation should return:
e Object with empty instance variables
e Object with an identifier to its class

e Done by the method allocate defined on the metaclass
Class

e allocate method is a class method

S.Ducasse 36

&

Allocation Examples

[Point allocate]
-> #(Point nil nil) for x and y

[Workstation allocate]
->#(Workstation nil nil) for ‘name’ and ‘nextNode’

[Class allocate]
->#(Class nil nil nil....)

\
SDucasse v tlsf)

RoadMap

Classes as objects

ObjVlisp in 5 postulates
Instance Structure and Behavior
Class Structure

Message Passing

Object allocation & Initialization
Class creation

Inheritance Semantics
Bootstrapping

&)

S.Ducasse 40

Object Initialization

e Initialization allows one to specify the value of the
instance variables by means of keywords (:x ,y)
associated with the instances variables

e [Point new :y 6 :x 24]

-> [#(Point nil nil) initialize (y 6 :x 24)]
-> #(Point 24 6)

e initialize: two steps

e get the values specified during the creation. (y -> 6,x ->

24)
e assign the values to the instance variables of the created
object.
A\
SDucasse 3 (&)

Class Creation

Look in the class of the receiver

1 1
Class Class
name name
superclass superclass
iv N iv
instance of | methodDict , | instance of |methodDict
new \ new
allocate ’ allocate
| .
L, 54 ~
[Class new
:name 'Node'
:superclass Object

iiv ('name' 'nextNode')
:methods (send:)]

\
SDucasse 4\ ﬂ-f)

Metaclass Role

Lookup method in the class of the receiver then we

apply it to the receiver.

Instantiation Graph

* Class is the root of instantiaton graph

* Object is a class that represents the minimal behavior
of an object

* Object is a class so it is instance of Class

&

S.Ducasse

RoadMap

e Classes as objects

e ObjVlisp in 5 postulates

e Instance Structure and Behavior
e Class Structure

® Message Passing

e Object allocation & Initialization
e Class creation

¢ Inheritance Semantics

e Bootstrapping

)
S.Ducasse 44 ﬂ-f)

—
Class Class
name name
superclass superclass
iv * i
instance of | methodDict | instance of |methodDict
new i new
allocate . allocate
|
—_ /‘
N
S Ducasse » ts
instance of Class
name
superclass
—>iv
methodDict
new \ Object
allocate P
class?
Workstation | instance of iv-ref
name
nextNode Point
send X
accept:
d instance of distanceFrom:
Workstation Workstation
mac1 mac2
! mac3
N\
S.Ducasse th5
e Static for the state
e subclasses get superclass state
e At compilation time
e Dynamic for behavior
e inheritance tree walked at run-time
N
S.Ducasse 4 t'-sf)

Instance Variable Inheritance

e Static for the instances variables

e Done once at the class creation

e When C is created, its instances variables are the
union of the instance variables of its superclass with
the instance variables defined in C.

e final-instance-variables (C) =

Union (Union (iv (super C)),
local-instance-variables(C))

S.Ducasse 46

&

Inheritance Graph

Object
error:
class?
iv-ref

Node
name _
nextNode | Point |
accept: X

y
distanceFrom:
Workstation

send:
accept:

&

S.Ducasse

Method Inheritance

e Walks through the inheritance graph between classes
using the super instance variable
o lookup (selector class receiver):
if the method is found then return it
else if receiver class == Object
then [receiver error selector]
else we lookup in the superclass of the class
e the error method can be specialized to handle the
error.

=)
$Duaasse o (&)

Lookup (1)

| Object |
error:
class?
iv-ref V\ [Node | \ 2 _
name) PN
[nextNode | \ .~ N
name R
accept: |V~ Workstation |
send: >
accept: 1) '/
|
4\ A | mact
4 7z
send: aPacket
P
e
name
N
S.Ducasse ﬂ-f)

Inheritance Graph

e Object is the root of the hierarchy.

aWorkstation is an object (should at least understand
the minimal behavior), so Workstation inherits from
Object

® aclass is an object so Class inherits from Object

e In particular, class instance variable is inherited from

Object class.
N
S Ducasse 1 ts
Object «--—" " N
«—-—-—. <
error: A\
class? \ ‘\ -
iv-ref AV Node ‘\ " RN N
: name " \.~/" N
\ nextNode \.~" N)
| name N Workstat AN \‘5rr0r,
[mac1 error: #coficou] Laccept: { Workstation | "\ N
1 send: coudau
! accept:)/
1 o
|
1 1
| e /'
! coucou
1 Prur 4
1 L\,
| S
N\
$Ducasse th5

Semantics of super

® As self, super is a pseudo-variable that refers to the
receiver of the message.

e Used to invoke overriden methods.

A\
SDucasse 2 tl-s:)

Dynamic vs. Static

o self is dynamic:

e Using self the lookup of the method begins in the class
of the receiver.

e Bound at execution-time

® super is static:

e Using super the lookup of the method begins in the
superclass of the class of the method containing the
super expression (not in the superclass of the receiver
class).

e Bound at compile-time

N
S.Ducasse 53 ﬂ'f)

super is NOT the receiver class superclass

® Let us suppose the WRONG hypothesis:“The
semantics of super is to start the lookup of a method
in the superclass of the receiver class”

. agate accept: aPacket

® agate is an instance of DuplexWorkstation.

. accept: is looked up in the class
DuplexWorkstation

e accept:is not defined in DuplexWorkstation, so the
lookup continues in Workstation

N
SDucasse 54 tl-s(E)

Yes...Why!?

accept: is defined in Workstation
lookup stops
method accept: is executed
Workstation>>accepts: does a super

accept: aPackel
super accept

send
Our hypothesis: start in the super of the 7

i Colored
class of the receiver
=> superclass of class of a —
ColoredWorkstation is ... Workstation aWorkstation (Bightac)

Therefore we look in workstation again!!!

\
SDucasse 55 tlsf)

RoadMap

Classes of objects

ObjVlisp in 5 postulates
Instance Structure and Behavior
Class Structure

Message Passing

Object allocation & Initialization
Class creation

Inheritance Semantics

Some points

Bootstrapping

&)

S.Ducasse 58

Minimal Shared Behavior

e The class Object represents the common behavior
shared by all the objects:
® classes
o final instances.
e every object knows its class: instance variable class
e methods:
- initialize (instance variable initialization)
- error, class, metaclass?, class?
Meta operations:
- iv-set, iv-ref

\
SDucasse 56 ttf)

Class initialization

e initialize is defined on both classes Class and Object:

e on Object: values are extracted from initarg list and
assigned to the allocated instance
[#(Point nil nil) initialize (ty 6 :x 24)]
=> #(Point 6 24)
e |Initialize is lookup in class of #(Point nil nil) : Point
e Then in its superclass: Object

\
SDucasse 59 ﬂ-f)

A Simple Kernel

Object

error:
class?
iv-ref

instance of

new
allocate

instapfe of

Point
name X
nextNode y
send: distanceFrom:
accept:

instance of

1053

S.Ducasse

About the 6th Postulate
The ObjVlisp 6th postulate is:

class variable of anObject = instance variable of
anObiject’s class

® So class variables are shared by all the instances of a
class.

S.Ducasse 6l

&

Class initialization

[Class new :name Point :super Object :i-v (x y)...]
[#(Class nil nil nil...) initialize (:name Point :super
Object :i-v (x y)...]
a class is an object
[#(Class Point Object (x y) nil #(x: (mkmethod...) y:
(mkmethod ...)]
a class is at minimum a class inheritance of instance
variables,
keyword definition,
method compilation
[#(Class Point Object (class x y) (:x :y) #(x: (...) y: (--)]

A\
$Ducasse o th5

Why the 6th is wrong!

e Semantically class variables are not instance variables
of object’class!

e Instance variable of metaclass should represent class
information not instance information shared at the
meta-level.

e Metaclass information should represent classes not
domain objects

N
S.Ducasse L ﬂ'f)

Solution

A class possesses an instance variable that stores
structure that represents instance shared-variable and
their values.

&

S.Ducasse 63

RoadMap

Classes as objects
ObjVlisp in 5 postulates

Class Structure
Message Passing

Class creation
Inheritance Semantics
Some points

Recap
Bootstrapping

S.Ducasse

Instance Structure and Behavior

Object allocation & Initialization

&)

Recap: Class class

Initial metaclass

Reflective: its instance variable values describe instance

variables of any classes in the system (itself too)

Defines the behavior of all the classes

Inherits from Object class

Root of the instantiation graph

Instance variables: name, super, iv, methodDict

Some Methods

® new, allocate, initialize (instance variable inheritance,
keywords, method compilation)

e class?, subclass-of?

\
SDucasse e ttf)

Recap: Object class

e Defines the behavior shared by all the objects of the
system

e Instance of Class

e Root of the inheritance tree: all the classes inherit
directly or indirectly from Object

e |ts instance variable: class

® |ts methods:

e initialize (initialisation les variables d'instance), error,
class, metaclass?, class?, iv-set, iv-ref

1053

S.Ducasse 66

RoadMap

Metaclasses?
ObjVlisp in 5 postulates

Class Structure
Message Passing

Class creation
Inheritance Semantics
Some points

Recap
Bootstrapping

S.Ducasse

Instance Structure and Behavior

Object allocation & Initialization

&

Bootstrapping

e Mandatory to have Class instance of itself

e Be lazy: Use as much as possible of the system to
define itself

e |dea: Cheat the system so that it believes that Class
already exists as instance of itself and inheriting from
Object, then create Object and Class as normal

Three Steps Bootstrap

e Manual creation of the instance that represents the
class Class with
e inheritance simulation (class instance variable from
Object class)
e only the necessary methods for the creation of the
classes (new and initialize)
e Creation of the class
e Object [Class new :name ‘Object’....]
e definition of all the method of Object
e Redefinition of Class
e [Class new :name ‘Class’ :super Object.....]
definition of all the methods of Class

o)

S.Ducasse 69

Examples

e Metaclasses?
e ObjVlisp in 5 postulates

e Instance Structure and Behavior

e Examples

S.Ducasse

&

classes
N
S Ducasse e ﬂ-f)
Abstract Classes
e The rule to define a new metaclass is to make it
inherit from a previous one
® Prb.Abstract classes should not create instances
e Sol. Redefine the new method
S Ducasse 7 t%

Metaclass Definition

e [Class new
:name Abstract
:super Class
:methods
(new (lambda (self initargs)
(self error "Cannot create instance
of class %s" self name))]
e Abstract is a class: It is instance of Class
e Abstract define class behavior: It inherits from Class

N
SDucasse n tl-s(E)

Metaclass Use

e [Abstract new :name Node :super Object]
e [Node new]

-> Cannot create instance of class Node
e [Abstract new :name Abstract-Stack :super

Object]
=)
SDucasse n ts
References
e [Bobrow'83] D.Bobrow and M. Stefik:“The LOOPS Manual, Xerox Parc,
1983.

¢ [Goldberg'83] A. Goldberg and D. Robson:“Smalltalk-80:The Language”,
Addison-Welsey, 1983.

e [Cointe’87] P. Cointe:“Metaclasses are First Class: the ObjVlisp Model”,
OOPSLA'87.

e [Graube’89] N. Graube:“Metaclass compatibility”,OOPSLA'89, 1989.

e [Briot'89]).-P. Briot and P. Cointe,“Programming with Explicit Metaclasses
inSmalltalk-80", OOPSLA'89.

e [Danforth’94] S. Danforth and I. Forman:“Reflection on Metaclass
Programming in SOM”, OOPSLA’94.

e [Rivard’96] F. Rivard,“A New Smalltalk Kernel Allowing Both Explicit and
Implicit Metclass Programming” OOPSLA’96 Workshop Extending the
Smalltalk Language, 1996

® [Bouraqadi’98] M.N. Bouraqadi-Saadani, T. Ledoux and F. Rivard:“Safe
Metaclass Programming”, OOPSLA’98

=
S.Ducasse t'i‘)

Complete Picture

f
instance o Class Abstract
new new
Sbpct 4/ allocate
error:
class?
Node
instance of
name
accept: v\ i
Workstation
send:
accept:
mac3
S.Ducasse ﬂ-f)

Classes are objects too

Instantiation = initialize(allocate())

Class is the instantiation root

Object is the inheritance root

One single method lookup for classes and instances
first go to the class
then follow inheritance chain

super and self are referring to the message receiver but

super changes the method lookup

S.Ducasse 77

Method Lookup

)
SDucasse ts

License: CC-Attribution-ShareAlike 2.0

http://creativecommons.org/licenses/by-sa/2.0/

@creative
commons

COMMONS DEED

You are fres

ispiay, an

Under the following conditions:

e o distibution, you must make clear to others the icense terms of

hese canditions can be waived fyou get permission from the copyright

$Ducasse . t%

