
S.Ducasse

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/

1

Studying a Minimal
Object-Oriented Kernel

S.Ducasse

Food for thoughts
“L’idée de l’expérience ne remplace pas l’expérience”
Alain

“Give a man a fish; you have fed him for today. Teach a man
to fish; and you have fed him for a lifetime”

Therefore do not listen and do not do the exercises....

2 S.Ducasse

• Classes as objects

• Object and Class classes

• Semantics of inheritance

• Semantics of super and self

• Instantiation vs. Inheritance

• Allocation and Initialization

• Build your own language

Goals

S.Ducasse 4

• Classes as objects

• ObjVlisp in 5 postulates

• Instance Structure and Behavior

• Class Structure

• Message Passing

• Object allocation & Initialization

• Class creation

• Inheritance Semantics

• Bootstrapping

Outline

S.Ducasse

Meta Programming Context

5 S.Ducasse

“The difference between classes and objects has been

repeatedly emphasized. In the view presented here,
these concepts belong to different worlds: the program

text only contains classes; at run-time, only objects
exist. This is not the only approach. One of the

subcultures of object-oriented programming, influenced

by Lisp and exemplified by Smalltalk, views classes as
object themselves, which still have an existence
at run-time.”

B. Meyer Object-Oriented Software Construction

Classes as Objects?

S.Ducasse 7

• Abstract: a class cannot have any instance

• Set: a class that knows all its instances

• DynamicIVs: Lazy allocation of instance structure

• LazyAccess: only fetch the value if needed

• AutomaticAccessor: a class that defines automatically its accessors

• Released/Final: Class cannot be changed and subclassed

• Limited/Singleton: a class can only have a certain number of
instances

• IndexedIVs: Instances have indexed instance variables

• InterfaceImplementor: class must implement some interfaces

• MultipleInheritance: a class can have multiple superclasses

• Trace: Logs attribute accesses, allocation frequencies

• ExternalIVs: Instance variables stored into database

Some Class Properties

S.Ducasse 8

Trace: Logs method calls

PrePostConditions: methods with pre/post conditions

MessageCounting: Counts the number of times a
method is called

BreakPoint: some methods are not run

FinalMethods: Methods that cannot be specialized

At the Method Level

S.Ducasse 9

Metaclasses are one of the possible meta-entities
(method, instance variables, method combination,...)

allow the structural extension of the language

They may control
Inheritance

Internal representation of the objects (listes, vecteurs,
hash-table, ...)

Instance variable access

Separation of responsibilities
Ordinary objects are used to model real world

Metaobjects describe these ordinary objects

Meta/Base level functionality is not mixed

Metaclass Responsibilities

S.Ducasse 10

• Classes as objects

• ObjVlisp in 5 postulates

• Instance Structure and Behavior

• Class Structure

• Message Passing

• Object allocation & Initialization

• Class creation

• Inheritance Semantics

• Bootstrapping

Roadmap

S.Ducasse

• Minimal (only two classes)

• ObjVlisp self-described: definition of Object and Class

• Unified: Only one kind of object: a class is an object
and a metaclass is a class that creates classes

• Simple: can be implemented with less than 300 lines of
Scheme or 30 Smalltalk methods.

• Equivalent of Closette (Art of MOP example)

Why ObjVlisp?

11 S.Ducasse 12

• P1: object = <data, behavior>

• P3: Every object belongs to a class that specifies its
data (slots or instance variables) and its behavior.
Objects are created dynamically from their class.

• P4: Following P3, a class is also an object therefore
instance of another class its metaclass (that describes
the behavior of a class).

ObjVlisp Postulates (I)

S.Ducasse

ObjVLisp Postulates (II)

send: aPacket

accept

Workstation

mac1

| mac1 |
mac1 := Workstation new name: #mac1

new

methodDict

Class

P1 & P3

P4

an instance of Workstation

The class Workstation

The class Class

instance of

instance of

S.Ducasse 14

• A class is an object therefore instance of another class
its metaclass that is an object too instance of a
metametaclass that is an object too instance of
another a metametametaclass......

• To stop this potential infinite recursion

• Class is the initial class and metaclass

• Class is instance of itself and all other metaclasses are
instances of Class

Infinite Recursion

new

methodDict

Class

The class Class

instance of

S.Ducasse

• P2: Message passing is the only means to activate an
object

![object selector args]

ObjVlisp 2nd Postulate

mac1

| mac1 |

mac1 := Workstation new name: #mac1.

mac1 name

an instance of Workstation

name

S.Ducasse

• P5: A class can be defined as a subclass of one or many
other classes.

ObjVlisp 5th Postulate

Object

accept:

name

Node

accept:

send:

Workstation

S.Ducasse 17

• Every object is instance of a class

• A class is an object instance of a metaclass (P4)

But all the objects are not classes

• Only one kind of objects without distinction between
classes and final instances.

• Sole difference is the ability to respond to the creation
message: new. Only a class knows how to deal with it.

A metaclass is only a class that generates classes.

Unifying Class/Instance

S.Ducasse 18

• Every object is instance of a class

• A class is an object instance of a metaclass (P4)

• But all the objects are not classes

• Only one kind of objects without distinction between
classes and final instances.

• Sole difference is the ability to respond to the creation
message: new. Only a class knows how to deal with it.

• A metaclass is only a class that generates classes

Metaclass

S.Ducasse 19

• Classes as objects

• ObjVlisp in 5 postulates

• Instance Structure and Behavior

• Class Structure

• Message Passing

• Object allocation & Initialization

• Class creation

• Inheritance Semantics

• Bootstrapping

RoadMap

S.Ducasse 20

• Instance variables

• an ordered sequence of instance variables defined by a
class

• shared by all instances

• values specific to each instance

• In particular, every object possesses an instance
variable class (inherited from Object) that points to its
class.

Instance Structure

mac1

/

some instances of Workstation

instance of

send: aPacket

accept

name

nextNode

Workstation

mac2

mac3

mac3

mac1

S.Ducasse 21

• Methods

• belongs to a class

• defines the behavior of all the instances of the class

• is stored into a dictionary that associates a key (the
method selector) and the method body

• To unify instances and classes, the method dictionary
of a class is the value of

the instance variable methodDict defined on the
metaclass Class.

Instance Behavior

S.Ducasse

Methods
• Let’s use a Smalltalk block

• name -> [:objself | objself unary: #name]

• no direct access to instance variables

22 S.Ducasse 23

• Classes as objects

• ObjVlisp in 5 postulates

• Instance Structure and Behavior

• Class Structure

• Message Passing

• Object allocation & Initialization

• Class creation

• Inheritance Semantics

• Bootstrapping

RoadMap

S.Ducasse 24

• A class possesses the instance variable class inherited
from Object that refers to its class (the metaclass that
creates it).

• Class value: an identifier of the class of the instance

• As an instance factory the metaclass Class possesses 4
instance variables that describe a class:

• name the class name

• superclass its superclass (we limit to single inheritance)

• i-v the list of its instance variables

• methodDict a method dictionary

Class as an Object

S.Ducasse

Class Node as Object

25

The class Node

Class

'Node'

Object

'name nextNode'

methods...

is instance of Class
named Node
inherits from Object
has instance variables
defines some methods

S.Ducasse

Class Point as Object

26

The class Point

Class

'Point'

Object

'x y'

methods...

is instance of Class
named Point
inherits from Object
has instance variables
defines some methods

S.Ducasse

The class Class

The class Class

Class

'Class'

Object

'name super i-v

methodDict'

methods...

is instance of Class
named Class
inherits from Object
has instance variables

defines some methods

S.Ducasse

Instances...

The class Class

Class

'Class'

Object

'class name super i-v

methodDict'

methods(new

allocate..)

instance of

Class

'Workstation'

Object

'class name nextNode'

methods(accept:

send:..

The class Workstation

Class

'Point'

Object

'class x y'

methods(distance:...)

The class Point

Workstation

mac1

/

some instances of Workstation

instance of

Workstation

mac2

mac3

instance of

S.Ducasse

• Initial metaclass

• Defines the behavior of all the metaclasses

• Defines the behavior of all the classes

The class Class

S.Ducasse 30

• Classes as objects

• ObjVlisp in 5 postulates

• Instance Structure and Behavior

• Class Structure

• Message Passing

• Object allocation & Initialization

• Class creation

• Inheritance Semantics

• Bootstrapping

RoadMap

S.Ducasse

• P2: Message passing is the only means to activate an

object

• P3: Every object belongs to a class that specifies its data

and its behavior

Message Passing

send: aPacket

accept:

send:

Workstation

mac1

accept:

send:

Workstation

mac1

S.Ducasse 32

• Message send = apply O lookup

• We lookup the method associated with the selector
of the message in the class of the receiver then we
apply it to the receiver

• [receiver selector args]

• apply (found method starting from the class of the
receiver) on the receiver and the args

• In functional style

• (apply (lookup selector (class-of receiver) receiver)
receiver args)

Message Passing (II)

S.Ducasse 33

• Classes as objects

• ObjVlisp in 5 postulates

• Instance Structure and Behavior

• Class Structure

• Message Passing

• Object allocation & Initialization

• Class creation

• Inheritance Semantics

• Bootstrapping

RoadMap

S.Ducasse 34

• Creation of instances of the class Point

• [Point new :x 24 :y 6]

• [Point new]

• [Point new :y 10 :y 15]

• Creation of the class Point instance of Class

• [Class new

 :name Point

 :super Object

 :i-v (x y)

 :methods (x ...display ...)

!]

Object Creation

S.Ducasse 35

• Object Creation = initialisation O allocation

• Creating an instance is the composition of two
actions:

memory allocation: allocate method

object intialisation: initialize method

• (new aClass args) = (initialization (allocation aClass)
args)

• [aClass new args] =

 [[aClass allocate] initialize args]

• new creates an object: class or final instances

new is a class method

Object Creation: new

S.Ducasse 36

• Object allocation should return:

• Object with empty instance variables

• Object with an identifier to its class

• Done by the method allocate defined on the metaclass
Class

• allocate method is a class method

Object Allocation

S.Ducasse 37

[Point allocate]

-> #(Point nil nil) for x and y

[Workstation allocate]

->#(Workstation nil nil) for ‘name’ and ‘nextNode’

[Class allocate]

->#(Class nil nil nil....)

Allocation Examples

S.Ducasse 38

• Initialization allows one to specify the value of the
instance variables by means of keywords (:x ,:y)
associated with the instances variables

• [Point new :y 6 :x 24]

! -> [#(Point nil nil) initialize (:y 6 :x 24)]

! ->! #(Point 24 6)

• initialize: two steps

• get the values specified during the creation. (y -> 6, x ->
24)

• assign the values to the instance variables of the created
object.

Object Initialization

S.Ducasse 39

Lookup method in the class of the receiver then we
apply it to the receiver.

Metaclass Role

new

accept:

send:

Workstation

mac1

instance of
new

allocate

name

superclass

iv

methodDict

Class

instance of

accept:

send:

Workstation

instance of
new

allocate

name

superclass

iv

methodDict

Class

instance of

S.Ducasse 40

• Classes as objects

• ObjVlisp in 5 postulates

• Instance Structure and Behavior

• Class Structure

• Message Passing

• Object allocation & Initialization

• Class creation

• Inheritance Semantics

• Bootstrapping

RoadMap

S.Ducasse 41

Class Creation
Look in the class of the receiver

[Class new

 :name 'Node'

 :superclass Object

 :iv ('name' 'nextNode')

 :methods (send:)]

instance of
new
allocate

name
superclass
iv
methodDict

Class

accept:

send:

Workstation

instance of
new
allocate

name
superclass
iv
methodDict

Class

instance of

S.Ducasse

Instantiation Graph

Workstation

mac1

/

instance of

Workstation

mac2

mac3

instance of

send:
accept:

name
nextNode

Workstation

new
allocate

name
superclass
iv
methodDict

Class

distanceFrom:
...

x
y

Point

instance of

error:
class?
iv-ref

Object

S.Ducasse

• Class is the root of instantiaton graph

• Object is a class that represents the minimal behavior
of an object

• Object is a class so it is instance of Class

Instantiation Graph

S.Ducasse 44

• Classes as objects

• ObjVlisp in 5 postulates

• Instance Structure and Behavior

• Class Structure

• Message Passing

• Object allocation & Initialization

• Class creation

• Inheritance Semantics

• Bootstrapping

RoadMap

S.Ducasse

Two kinds of inheritance
• Static for the state

• subclasses get superclass state

• At compilation time

• Dynamic for behavior

• inheritance tree walked at run-time

45

S.Ducasse 46

• Static for the instances variables

• Done once at the class creation

• When C is created, its instances variables are the
union of the instance variables of its superclass with
the instance variables defined in C.

!

• final-instance-variables (C) =

 Union (Union (iv (super C)),

 local-instance-variables(C))

Instance Variable Inheritance

S.Ducasse 47

• Walks through the inheritance graph between classes
using the super instance variable

• lookup (selector class receiver):

! if the method is found! then return it

! else if receiver class == Object

! then [receiver error selector]

! else we lookup in the superclass of the class

• the error method can be specialized to handle the
error.

Method Inheritance

S.Ducasse 48

• Object is the root of the hierarchy.

• a Workstation is an object (should at least understand
the minimal behavior), so Workstation inherits from
Object

• a class is an object so Class inherits from Object

• In particular, class instance variable is inherited from
Object class.

Inheritance Graph

S.Ducasse

Inheritance Graph

send:
accept:

Workstation

new
allocate

name
superclass
iv
methodDict

Class

distanceFrom:
...

x
y

Point

error:
class?
iv-ref

Object

accept:

name
nextNode

Node

S.Ducasse

Lookup (I)

send:

accept:

Workstation

error:

class?

iv-ref

Object

name

accept:

name

nextNode

Node

send: aPacket

mac1

1

name

2

S.Ducasse

Lookup (II)

send:

accept:

Workstation

error:

class?

iv-ref

Object

name

accept:

name

nextNode

Node

coucou

mac1

[mac1 error: #coucou]
coucou

error:

S.Ducasse 52

• As self, super is a pseudo-variable that refers to the
receiver of the message.

• Used to invoke overriden methods.

Semantics of super

S.Ducasse

Dynamic vs. Static
• self is dynamic:

• Using self the lookup of the method begins in the class
of the receiver.

• Bound at execution-time

• super is static:

• Using super the lookup of the method begins in the
superclass of the class of the method containing the
super expression (not in the superclass of the receiver
class).

• Bound at compile-time

53 S.Ducasse

super is NOT the receiver class superclass

• Let us suppose the WRONG hypothesis: “The
semantics of super is to start the lookup of a method
in the superclass of the receiver class”

• ! ! ! agate accept: aPacket

• agate is an instance of DuplexWorkstation.

• ! accept: is looked up in the class
DuplexWorkstation

• accept: is not defined in DuplexWorkstation, so the
lookup continues in Workstation

54

S.Ducasse

Yes...Why?
accept: is defined in Workstation

lookup stops

method accept: is executed

Workstation>>accepts: does a super

send

Our hypothesis: start in the super of the

class of the receiver

=> superclass of class of a

ColoredWorkstation is ... Workstation

Therefore we look in workstation again!!!

55

accept:
aPacket

Node

accept:
aPacket

Workstation

aWorkstation (BigMac)

Colored

Workstation

accept: aPacket
super accept

S.Ducasse 56

• The class Object represents the common behavior
shared by all the objects:

• classes

• final instances.

• every object knows its class: instance variable class

• methods:

 - initialize (instance variable initialization)

 ! - error, class, metaclass?, class?

! Meta operations:

! - iv-set, iv-ref

Minimal Shared Behavior

S.Ducasse

A Simple Kernel

mac1

/

instance of

mac2

mac3

instance of

send:
accept:

name
nextNode

Workstation

new
allocate

Class

instance of
error:
class?
iv-ref

Object

distanceFrom:

x
y

Point

S.Ducasse 58

• Classes of objects

• ObjVlisp in 5 postulates

• Instance Structure and Behavior

• Class Structure

• Message Passing

• Object allocation & Initialization

• Class creation

• Inheritance Semantics

• Some points

• Bootstrapping

RoadMap

S.Ducasse 59

• initialize is defined on both classes Class and Object:

• on Object: values are extracted from initarg list and
assigned to the allocated instance

! ! ! [#(Point nil nil) initialize (:y 6 :x 24)]

! ! ! => #(Point 6 24)

• Initialize is lookup in class of #(Point nil nil) : Point

• Then in its superclass: Object

Class initialization

S.Ducasse 60

[Class new :name Point :super Object :i-v (x y)...]

[#(Class nil nil nil...) initialize (:name Point :super
Object :i-v (x y)...]

a class is an object

! [#(Class Point Object (x y) nil #(x: (mkmethod...) y:
(mkmethod ...)]

a class is at minimum a class inheritance of instance
variables,

! keyword definition,

! method compilation

! [#(Class Point Object (class x y) (:x :y) #(x: (...) y: (...)]

Class initialization

S.Ducasse 61

• The ObjVlisp 6th postulate is:

• class variable of anObject = instance variable of
anObject’s class

• So class variables are shared by all the instances of a
class.

About the 6th Postulate

S.Ducasse 62

• Semantically class variables are not instance variables
of object’class!

• Instance variable of metaclass should represent class
information not instance information shared at the
meta-level.

• Metaclass information should represent classes not
domain objects

•

Why the 6th is wrong!

S.Ducasse

Solution
A class possesses an instance variable that stores
structure that represents instance shared-variable and
their values.

63

S.Ducasse 64

• Classes as objects

• ObjVlisp in 5 postulates

• Instance Structure and Behavior

• Class Structure

• Message Passing

• Object allocation & Initialization

• Class creation

• Inheritance Semantics

• Some points

• Recap

• Bootstrapping

RoadMap

S.Ducasse 65

• Initial metaclass

• Reflective: its instance variable values describe instance
variables of any classes in the system (itself too)

• Defines the behavior of all the classes

• Inherits from Object class

• Root of the instantiation graph

• Instance variables: name, super, iv, methodDict

• Some Methods

• new, allocate, initialize (instance variable inheritance,
keywords, method compilation)

• class?, subclass-of?

Recap: Class class

S.Ducasse 66

• Defines the behavior shared by all the objects of the
system

• Instance of Class

• Root of the inheritance tree: all the classes inherit
directly or indirectly from Object

• Its instance variable: class

• Its methods:

• initialize (initialisation les variables d'instance), error,
class, metaclass?, class?, iv-set, iv-ref

Recap: Object class

S.Ducasse 67

• Metaclasses?

• ObjVlisp in 5 postulates

• Instance Structure and Behavior

• Class Structure

• Message Passing

• Object allocation & Initialization

• Class creation

• Inheritance Semantics

• Some points

• Recap

• Bootstrapping

RoadMap

S.Ducasse 68

• Mandatory to have Class instance of itself

• Be lazy: Use as much as possible of the system to
define itself

• Idea: Cheat the system so that it believes that Class
already exists as instance of itself and inheriting from
Object, then create Object and Class as normal
classes

Bootstrapping

S.Ducasse 69

• Manual creation of the instance that represents the
class Class with

• inheritance simulation (class instance variable from
Object class)

• only the necessary methods for the creation of the
classes (new and initialize)

• Creation of the class

• Object [Class new :name ‘Object’....]

• definition of all the method of Object

• Redefinition of Class

• [Class new :name ‘Class’ :super Object.....]

definition of all the methods of Class

Three Steps Bootstrap

S.Ducasse 70

• Metaclasses?

• ObjVlisp in 5 postulates

• Instance Structure and Behavior

• ...

• ...

• ...

• Examples

Examples

S.Ducasse 71

• The rule to define a new metaclass is to make it
inherit from a previous one

• Prb. Abstract classes should not create instances

• Sol. Redefine the new method

Abstract Classes

S.Ducasse 72

• [Class new

! :name Abstract

! :super Class

! :methods

 (new (lambda (self initargs) !

 (self error "Cannot create instance

 of class %s" self name))]

• Abstract is a class: It is instance of Class

• Abstract define class behavior: It inherits from Class

Metaclass Definition

S.Ducasse 73

• [Abstract new :name Node :super Object]

• [Node new]

-> Cannot create instance of class Node

• [Abstract new :name Abstract-Stack :super
Object]

Metaclass Use

S.Ducasse

Complete Picture

mac1

/

instance of

mac2

mac3

send:

accept:

Workstation

new

allocate

Classinstance of

error:

class?

Object

name

accept:

Node

new

Abstract

S.Ducasse

Method Lookup

mac1

/

instance of

mac2

mac3

send:

accept:

Workstation

new

allocate

Classinstance of

error:

class?

Object

name

accept:

Node

new

Abstract

new

new

S.Ducasse

• [Bobrow’83] D.Bobrow and M. Stefik: “The LOOPS Manual, Xerox Parc,
1983.

• [Goldberg’83] A. Goldberg and D. Robson: “Smalltalk-80: The Language”,
Addison-Welsey, 1983.

• [Cointe’87] P. Cointe: “Metaclasses are First Class: the ObjVlisp Model”,
OOPSLA’87.

• [Graube’89] N. Graube: “Metaclass compatibility”,OOPSLA'89, 1989.

• [Briot’89]J.-P. Briot and P. Cointe, “Programming with Explicit Metaclasses
inSmalltalk-80”, OOPSLA'89.

• [Danforth’94] S. Danforth and I. Forman: “Reflection on Metaclass
Programming in SOM”, OOPSLA’94.

• [Rivard’96] F. Rivard, “A New Smalltalk Kernel Allowing Both Explicit and
Implicit Metclass Programming” OOPSLA’96 Workshop Extending the
Smalltalk Language, 1996

• [Bouraqadi’98] M.N. Bouraqadi-Saadani, T. Ledoux and F. Rivard: “Safe
Metaclass Programming”, OOPSLA’98

References

S.Ducasse 77

Summary
Classes are objects too

Instantiation = initialize(allocate())

Class is the instantiation root

Object is the inheritance root

One single method lookup for classes and instances
first go to the class

then follow inheritance chain

super and self are referring to the message receiver but
super changes the method lookup

S.Ducasse LSE

License: CC-Attribution-ShareAlike 2.0

http://creativecommons.org/licenses/by-sa/2.0/

78

