
P A R T 3

■ ■ ■

Bringing Abstraction
into Play

In this part of the book you will learn how to define your own methods. This will enable

you to reuse sequences of messages, and you will be able to define complex methods out

of simpler ones.

4916_Ch12_CMP2 5/12/05 8:02 PM Page 133

4916_Ch12_CMP2 5/12/05 8:02 PM Page 134

Methods: Named
Message Sequences

Up to now, you have been using scripts to create robots and send them sequences of mes-
sages. Using scripts has the advantage of being a straightforward approach, but it has some
severe limitations. One of the major limitations is that a script cannot be called by another
script. This is a serious problem, because a script cannot be reused by other scripts. You have
to rewrite the same sequence of messages again and again.

Wouldn’t it be nice if one could define a kind of script whose sequence of messages could
be sent to any robot? In fact, this is possible, and such a sequence of messages is called a
method. (In the context of this book we will not go into the full power of methods, since that
would get us into the somewhat tricky subject of object-oriented programming.) A method is
a named script. The name of a method can be used in a script or even in another method to
invoke the method. Actually, there is nothing much new here: all the robot messages that you
have used so far represent methods that you could use with any robot!

In this chapter, you will learn how to define methods. You already know most of what you
need to write the code of a method. However, a method must be defined using a special editor
called a code browser. We will start by comparing a script and a method. Then we will define a
method, and finally, we will look in detail at what we have accomplished.

135

C H A P T E R 1 2

■ ■ ■

4916_Ch12_CMP2 5/12/05 8:02 PM Page 135

Scripts versus Methods
Let’s look at one of the scripts that you have already written, for example, Script 12-1, which
creates a robot and tells it to draw a square with side length 100 pixels.

Script 12-1. Pica draws a simple square.

| pica |
pica := Bot new.
4 timesRepeat:

[pica turnLeft: 90.
pica go: 100]

The problem with this script is that each time you need to draw a square of side length
100 you need to copy the three last lines of Script 12-1. Furthermore, if you want another robot
(for example, daly) to draw the square, you must change the name pica to daly everywhere.
This is illustrated by Script 12-2.

Script 12-2. Pica and daly each draw a simple square.

| pica daly |
pica := Bot new.
daly := Bot new.
daly jump: 200.
daly color: Color red.

4 timesRepeat:
[pica turnLeft: 90.
pica go: 100].

4 timesRepeat:
[daly turnLeft: 90.
daly go: 100].

For all these reasons, working with scripts is not easy. In fact, I suspect that the following
three statements reflect your personal experience with scripts:

• Writing long scripts is a painful task.

• Repeating long scripts is boring and error-prone.

• When one is copying complex scripts, the likelihood of making a programming error,
such as omitting a line, is high. (A programming error is an error in the logic of a pro-
gram. In contrast to syntax errors, which are caught quickly by the computer because
they are errors in program structure, programming errors can be quite difficult to catch.)

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES136

4916_Ch12_CMP2 5/12/05 8:02 PM Page 136

To overcome these difficulties, we would like to define a sequence of messages once and
for all, give the sequence a name, and then be able to send the named sequence as a single
message to any robot, just as we have been able to send predefined robot messages such as
go:, north, and jump:.

With this approach we could define a new method called square, and then write Script 12-3.
But don’t execute the script yet, because the method square has not yet been defined. Once you
have the method square, you will no longer have to copy and adapt the sequence of messages
defining a square. You can simply use it twice. The message send pica square will tell pica to
carry out the instructions encoded in the method square.

I hope that I have convinced you that defining methods will be worth the effort.

Script 12-3. Pica and daly draw squares using the method square.

| pica daly |
pica := Bot new.
daly := Bot new.
daly go: 200.
daly color: Color red.
pica square.
daly square

How Do We Define a Method?
In this section I will give you a cookbook recipe for creating a method. In Squeak you can
define methods on any object, but in this book you will define methods only for robots. To
help you out with this, I developed a specialized code browser named Class Bot Browser just
for defining methods for your robots. There is a Class Bot Browser in the working flap, or you
can always create one by dragging its thumbnail from the dark blue flap or via the menu
open….

Using a Class Bot Browser to define a method requires you to (1) choose or create a
method category, which is a kind of method folder; (2) type the method; and then (3) compile
it. These steps will be described in upcoming sections. But first let us have a detailed look at
the different parts of a Class Bot Browser.

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES 137

4916_Ch12_CMP2 5/12/05 8:02 PM Page 137

A Class Bot Browser
Defining methods requires a new tool: the editor shown in Figure 12-1. This browser is actu-
ally a simplified version of the browser used by Smalltalk programmers. The browser consists
of three parts, or panes:

Categories. The upper left pane contains the category list. It shows the different method
categories. Method categories are just names that group methods together so that you
can find information faster. In Figure 12-1, the category turning is selected; it groups all
the operations having to do with robots’ directional changes. Other categories that group
other robot methods are also listed.

Methods. The upper right pane contains the method list. This list shows the method
names of the methods in the selected category. In Figure 12-1, five methods are listed:
pointAt:, turn:, turnLeft:, turnRight:, and turnTo:. The method named turn: is cur-
rently selected.

Method Definition. The bottom pane contains the code editor. It shows the definition of
the method whose name is selected together with optional comment text. This pane is
also the place where you can type the code of a new method.

Figure 12-1. A Class Bot Browser showing the definition (bottom pane) of the method turn:
(selected in the upper right pane) belonging to the category turning (selected in the upper
left pane).

List of categories (folder for methods)

Selected category

List of methods in the selected category

Selected method

Selected method definitionSelected method name and parameters
Method comment

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES138

4916_Ch12_CMP2 5/12/05 8:02 PM Page 138

Creating a New Method Category
Methods are grouped by categories. A category is defined by giving it a name. To define a
method, you either define a new category for it or select an existing category. Let’s create a
new category named regular polygons. Here is how it is done:

1. Click with the right mouse button (Alt-click or Option-click) on the category list.
A menu like the one in Figure 12-2 will pop up.

Figure 12-2. To create a new method category, open the category menu and select
add category.

2. Select the option add category of that menu.

3. Type the name of the category in the dialog box that appears, as shown in Figure 12-3.
You may choose any name for the category. Of course, meaningful names are better
then meaningless ones when you want to share your work with other people or find
your method again at a later date.

Figure 12-3. Enter a new category name in the dialog box and click the Accept button.

4. Click the Accept button to validate your choice.

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES 139

4916_Ch12_CMP2 5/12/05 8:02 PM Page 139

As shown in Figure 12-4, the name of the new category appears in the category pane and
is automatically selected. The editor is ready to accept a new method definition. It shows you
a reminder of how to define a method, which you can remove when you start typing your
method. You are now ready to define your first method.

Figure 12-4. The new category is ready.

Defining Your First Method
If the category to which you want to add your method is not selected, select it. Then type the
contents of Method 12-1 (following this paragraph) into the code editor pane. To do this,
select all the text in the code editor and start typing your method.

Method 12-1. A new method for drawing a square of side length 100

square
"Draw a square of side length 100 pixels"

4 timesRepeat:
[self go: 100.
self turnLeft: 90]

Defining a method is a three-step process:

1. Typing the method. Typing code into the code editor pane works exactly as with the
script editor. First delete the reminder text that is in the code editor pane. The easiest
way to do this is to point your mouse at the beginning of the editor pane before the
first character and click. This will select all of the code editor text. Once you finish
typing the new method, your code display pane should look like Figure 12-5.

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES140

4916_Ch12_CMP2 5/12/05 8:02 PM Page 140

2. Compiling the method. Click to bring up the menu for the code editor, as shown in the
figure, and select the option accept. Doing so causes the method definition to be com-
piled, that is, transformed into a representation that the computer can understand and
execute. A new method named square now appears in the method list. If you made a
mistake while typing the method, Squeak will report the error as it would for a script.

Figure 12-5. After typing in the method square, you compile it using the code editor menu.

If you defined the method correctly, you should be able to compile it without Squeak
reporting any errors. The browser will then reflect the fact that the compilation is com-
plete and that robots can now understand messages containing the new method by
showing the new method’s name in the method list (see Figure 12-6).

3. Testing the method. As the saying goes, the test of whether a pudding has been prop-
erly made is in tasting it. Likewise, you have not finished creating your new method
until you have tested it, because the method that you defined might not do what you
had in mind for it. Now you may execute Script 12-3. You should get one black square
and one red square.

Observe that a method can be used and reused, as demonstrated by Script 12-3. This is
old news. Indeed, you have used this fact since the beginning of this book: message selectors
such as go: and turnLeft: are the names of methods defined in the same way as the method
square.

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES 141

4916_Ch12_CMP2 5/12/05 8:02 PM Page 141

What’s in a Method?
I asked you to type a method without much explanation. Now it is time to analyze the struc-
ture of the method.

A method is composed of a name, an optional method comment, and a method body (a
sequence of expressions), as shown in Figure 12-6. The method name can also contain parame-
ters (see Chapter 14), and the method body can also define local variables using vertical bars | |.

Figure 12-6. A method is composed of a name, an optional method comment,
and a method body.

Method name. A method name should always represent what the method does, not how
it does it. When you want somebody to open a door, you don’t explain all the physics and
mathematics involved. It is the same for methods.

■Important! A method name should always represent what the method does, not how it does it.

Method names without parameters, such as square, follow the same syntax as variable
names. They are composed of alphanumeric characters (letters and digits) and start with
a lowercase character. In our case, the method name is square.

Method comment. A comment consists of text enclosed between double quotes ("This
is a comment"). The text itself cannot contain any double quotes. However, a comment
can be as long as you like, and can continue over several lines.

In general, a comment explains the purpose and the effect of the method. It explains how
the method can be used, but not how the method does its job. Anyone who wants to know
how the method works can read the method’s body.

If the method name is clear enough, the comment may be omitted. In our case the
method comment is, "Draw a square of side length 100 pixels".

Method comment

Method body: a sequence
of expressions

Method name

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES142

4916_Ch12_CMP2 5/12/05 8:02 PM Page 142

Method body. After the comment comes the method definition itself, which is the
sequence of messages that are executed in response to a message. In our case, the
method body is as follows:

4 timesRepeat:
[self go: 100.
self turnLeft: 90]

■Important! A method is a named sequence of expressions. It is composed of a name, an optional
comment, and a sequence of expressions. Once a method for robots has been defined, any robot can
execute it in response to a message with the same name.

Scripts versus Methods: An Analysis
Let’s compare Method 12-2 with Script 12-4. You can see three significant differences: (1) The line
in the script declaring the variable pica is not in the method; (2) the line creating the robot is also
not in the method; (3) in the remainder of the method, the variable pica is replaced by self.

Script 12-4. Pica draws a simple square.

| pica |
pica := Bot new.
4 timesRepeat:

[pica turnLeft: 90.
pica go: 100]

Method 12-2. Instructions to any robot for drawing a simple square.

square
"Draw a square of side length 100 pixels"
4 timesRepeat:

[self go: 100.
self turnLeft: 90]

Remember that a robot method represents a sequence of expressions that can be sent to
any robot: The robot in the script referred to by the variable pica will not necessarily be the
receiver of the message square. The robot daly, or any other robot, could also be the receiver
of the message square, as we saw in Script 12-4.

Therefore, it is important in defining the method square not to refer to any particular
robot, since the message square will be sent to different robots at different times. Thus we
need a name that will stand for whatever robot happens to be the message receiver of the
message square. That is the purpose of self. Inside a method, self represents the object
receiving the message, because that object itself will be executing messages such as go:
and turnLeft:.

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES 143

4916_Ch12_CMP2 5/12/05 8:02 PM Page 143

The Variable “self”
In Chapter 8 I explained that a variable is just a named placeholder for an object. In particular,
I emphasized that the same variable could be used to point to different objects at different
times.

In the case of a method, the variable self points to whatever object has received the
message: when the expression pica square is executed, the variable self in the method
square refers to the robot named pica, and when the expression daly square is executed,
self refers to the robot named daly.

■Important! Inside a method, the variable self represents the object that has received the message
that led to the execution of that method. For example, when the expression pica square is executed,
pica receives the message square and executes the robot method of the same name. The word self
in the method now refers to the robot named pica, since pica is executing the method; when the expres-
sion daly square is executed, self refers to the robot named daly.

The word self in a method is a special sort of variable, because you cannot change its
value. Only Squeak can assign the value of self. That is why self is not declared between
vertical bars | |. Moreover, self can be used only inside a method definition.

■Important! When the code of a method needs to send a message to the receiver, the message is sent
to self. For example, in the method square, the robot executing the method needs to turn itself, so the
message turn: 90 is sent to self.

Method or Not: That Is the Question
At this stage, you may be tempted to go back and convert all the scripts you have written into
methods. This is not advisable, because not every script is worth turning into a method. In
general, you should define a method when you have a sequence of messages that is general
enough to be used several times.

Returning a Value
A method can also return a value by using the character ^, called a caret. When you type a
caret, Squeak prints an upward-pointing arrow (�) in the environment. Imagine that you
want to have a method that returns the greatest distance that a robot should be allowed to
move at one time. You could define the method maxDistance, shown in Method 12-3. In this
example, the method simply returns a number, but instead, you could have the method return
the result of a complex expression, perhaps involving where the robot is positioned on the
screen.

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES144

4916_Ch12_CMP2 5/12/05 8:02 PM Page 144

Method 12-3. This method returns a value.

maxDistance
"returns the maximum distance a robot should be able to move"
^ 100

If a method does not explicitly return a value, then it returns the message receiver by
default. Method 12-4 is equivalent to the method square defined previously. In fact, at the end
of every method there is an implicit expression ^ self if there is no explicit return expression.
However, in this book you do not have to worry about that.

Method 12-4. This equivalent version of the square method explicitly returns the message receiver.

squareEquivalent
"Draw a square of side length 100 pixels"
4 timesRepeat:

[self go: 100.
self turnLeft: 90].

^ self

In this book, you will not use this feature much, but it is important to know that a method
always returns a value.

Drawing Patterns
Now it is time to practice. As you have seen, it is quite easy to transform a script into a
method. Many seasoned programmers use scripts to test ideas. When they have proven the
feasibility of an idea in the form of a script, they move the code of the script into a method for
later reuse. The next exercise trains you to do exactly this. Let’s consider Script 12-5, which
draws an abstract “art nouveau” design.

Script 12-5. Pica draws a simple abstract pattern.

| pica |
pica := Bot new.
pica go: 100 ;

turnLeft: 90 ;
go: 100 ;
turnLeft: 90 ;
go: 50 ;

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES 145

4916_Ch12_CMP2 5/12/05 8:02 PM Page 145

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES146

turnLeft: 90 ;
go: 50 ;
turnLeft: 90 ;
go: 100 ;
turnLeft: 90 ;
go: 25 ;
turnLeft: 90 ;
go: 25 ;
turnLeft: 90 ;
go: 50

Experiment 12-1 (A Simple Abstract Design)

Create a method named pattern that produces the figure drawn by Script 12-5.

You now can use this method in a script to draw a more elaborate design that might be
used for an art nouveau picture frame.

Script 12-6. An art nouveau picture frame

| pica |
pica := Bot new.
4 timesRepeat: [pica pattern ; go: 50]

4916_Ch12_CMP2 5/12/05 8:02 PM Page 146

At this point, the astute reader might ask, Why don’t we create a method, named frame50,
for example, corresponding to that of Script 12-6? This is indeed possible, since any method
created for a robot can be reused by another robot method. Creating such methods is the topic
of the next chapter.

Experiment 12-2 (A Method for the Art Nouveau Picture Frame)

Create a method named frame50 that produces the design produced by Script 12-6.

Summary
• A method is a named sequence of expressions. It is composed of a name, a comment,

and a sequence of expressions. Once a method for robots has been defined, any robot
can execute it in response to a message with the same name.

• A method name should always represent what the method does, not how it does it.

• A new method for a robot is created using a Class Bot Browser, which is a special editor
for defining methods.

• Inside a method, the variable self represents the object that receives the message.
When the method’s code needs to send a message to the receiver, the message should
be sent to self.

Glossary
Method categories. A method category is a folder in which methods are sorted. Categories
help you to find methods more quickly.

Method. A method represents a sequence of expressions that an object can execute.
A method has a name. It is executed when an object receives a message having the
same name.

Class Bot Browser. A Class Bot Browser is a special tool for viewing and editing methods.

Comment. A comment is a piece of text surrounded by quotation marks that explains the
purpose of a method.

self. The variable self is predefined by Smalltalk. It always represents the receiver of the
message in a method definition.

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES 147

4916_Ch12_CMP2 5/12/05 8:02 PM Page 147

4916_Ch12_CMP2 5/12/05 8:02 PM Page 148

