
S.Ducasse

LSE

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/

About Software
Evolution

1 S.Ducasse LSE

Roadmap
• Goals

• Why Reengineering ?

• Lehman's Laws

• Object-Oriented Legacy

• Typical Problems

• common symptoms

• architectural problems
& refactoring opportunities

• Reverse and Reengineering

• Definitions

• Techniques

• Patterns

2 S.Ducasse LSE

Goals
We will try to convince you:

• Yes, Virginia, there are object-oriented legacy systems too!

• Reverse engineering and reengineering are essential
activities in the lifecycle of any successful software system.
(And especially OO ones!)

• There is a large set of lightweight tools and techniques to
help you with reengineering.

• Despite these tools and techniques, people must do job and
they represent the most valuable resource.

3

S.Ducasse LSE

What is a Legacy System ?
“legacy”: A sum of money, or a specified article, given to
another by will; anything handed down by an ancestor
or predecessor.!— Oxford English Dictionary

A legacy system is a piece of software that:
" is successful
" you have inherited, and
" is valuable to you.""

4 S.Ducasse LSE

Typical Legacy Problems
• Original developers not available

• Outdated development methods used

• Extensive patches and modifications have been made

• Missing or outdated documentation

• But MUST change for clients!!

5

⇒ so, further evolution and development may be

prohibitively expensive

S.Ducasse LSE

0,041

0,182

0,174
0,603

Continuous Development

17.4% Corrective
(fixing reported errors)

18.2% Adaptive
(new platforms or OS)

60.3% Perfective
(new functionality)

The bulk of the maintenance cost is due to new functionality
! even with better requirements, it is hard to predict new functions

data from [Lien78a]

4.1% Other

Relative Maintenance Effort
Between 50% and 75% of
global effort is spent on

“maintenance” !

6

S.Ducasse LSE

Lehman's Laws

A classic study by Lehman and Belady [Lehm85a] identified several
“laws” of system change.

Continuing change

A program that is used in a real-world environment must change, or
become progressively less useful in that environment.

Increasing complexity

As a program evolves, it becomes more complex, and extra resources
are needed to preserve and simplify its structure.

Those laws are still applicable to brand new
object-oriented applications

7 S.Ducasse LSE

What about Objects ?
Object-oriented legacy systems

= successful OO systems whose architecture and design no longer
responds to changing requirements

Compared to traditional legacy systems

The symptoms and the source of the problems are the same

The technical details and solutions may differ

OO techniques promise better

flexibility,

reusability,

maintainability

… ! they do not come for free

8 S.Ducasse LSE

(*) process-oriented structured methods, information engineering,

data-oriented methods, prototyping, CASE-tools – not OO !

Contradiction ? No!
• modern methods make it easier to change
... this capacity is used to enhance functionality!

Modern Methods & Tools ?
[Glas98a] quoting empirical study from Sasa Dekleva (1992)

Modern methods(*) lead to more reliable software

Modern methods lead to less frequent software repair

and ...

Modern methods lead to more total maintenance time

9

S.Ducasse LSE

How to deal with Legacy ?
New or changing requirements will gradually degrade original design
… unless extra development effort is spent to adapt the structure

New Functionality

Hack it in ?

• duplicated code
• complex conditionals
• abusive inheritance

• large classes/methods

First …
• refactor

• restructure
• reengineer

Take a loan on your software
! pay back via reengineering

Investment for the future
! paid back during maintenance

10 S.Ducasse LSE

Roadmap

• Goals

• Why Reengineering ?
• Lehman's Laws

• Object-Oriented Legacy

• Typical Problems
• common symptoms

• architectural problems
& refactoring opportunities

• Reverse and Reengineering
• Definitions

• Techniques

• Patterns

11 S.Ducasse LSE

Common Symptoms

Lack of Knowledge
• obsolete or no documentation

• departure of the original
developers or users

• disappearance of inside
knowledge about the system

• limited understanding of entire
system

• missing tests

Process symptoms
•! too long to turn things over to

production

•! need for constant bug fixes

•! maintenance dependencies

•! difficulties separating products

•! simple changes take too long

Code symptoms
• duplicated code

• code smells
• big build times

12

S.Ducasse LSE

Common Problems

Architectural
Problems

insufficient documentation
= non-existent or out-of-date

improper layering
= too few are too many layers

lack of modularity
= strong coupling

duplicated code
= copy, paste & edit code

duplicated functionality
= similar functionality
 by separate teams

Refactoring
opportunities

•! misuse of inheritance
= code reuse vs polymorphism

•! missing inheritance
= duplication, case-statements

•! misplaced operations
= operations outside classes

•! violation of encapsulation
= type-casting; C++ "friends"

•! class abuse
= classes as namespaces

13 S.Ducasse LSE

Some Case Studies

Different reengineering goals … but common themes and problems !

Domain LOC
Reengineering

Goal

pipeline planning 55,000 extract design

user interface 60,000 increase flexibility

embedded switching 180,000 improve modularity

mail sorting 350,000 portability & scalability

network management 2,000,000 unbundle application

space mission 2,500,000 identify components

14 S.Ducasse LSE

Software is like SimCity!

15

S.Ducasse LSE

Software is living…
• Early decisions may have been good at that time

• But the context changes

• Customers change

• Technology changes

• People change

• Successful software MUST evolve

16 S.Ducasse LSE

Roadmap

• Goals

• Why Reengineering ?
• Lehman's Laws

• Object-Oriented Legacy

• Typical Problems
• common symptoms

• architectural problems
& refactoring opportunities

• Reverse and Reengineering
• Definitions

• Techniques

• Patterns

17 S.Ducasse LSE

Some Terminology
“Forward Engineering is the traditional process of moving from high-level

abstractions and logical, implementation-independent designs to the
physical implementation of a system.”

“Reverse Engineering is the process of analyzing a subject system to identify
the system’s components and their interrelationships and create
representations of the system in another form or at a higher level of
abstraction.”

“Reengineering ... is the examination and alteration of a subject system to
reconstitute it in a new form and the subsequent implementation of
the new form.”

 — Chikofsky and Cross [in Arnold, 1993]

18

S.Ducasse LSE

Goals of Reverse Engineering
Cope with complexity

need techniques to understand large, complex systems
Generate alternative views

automatically generate different ways to view systems
Recover lost information

extract what changes have been made and why
Detect side effects

help understand ramifications of changes
Synthesize higher abstractions

identify latent abstractions in software
Facilitate reuse

detect candidate reusable artifacts and components

 — Chikofsky and Cross [in Arnold, 1993]

19 S.Ducasse LSE

Reverse Engineering Techniques
• Redocumentation

pretty printers

diagram generators

cross-reference listing generators

• Design recovery
software metrics

browsers, visualization tools

static analyzers

dynamic (trace) analyzers

20 S.Ducasse LSE

Goals of Reengineering
• Unbundling

split a monolithic system into parts that can be separately marketed

• Performance
“first do it, then do it right, then do it fast” — experience shows this
is the right sequence!

• Port to other Platform
the architecture must distinguish the platform dependent modules

• Design extraction
to improve maintainability, portability, etc.

Exploitation of New Technology
i.e., new language features, standards, libraries, etc.

21

S.Ducasse LSE

Reengineering Techniques
• Restructuring

automatic conversion from unstructured to structured code

source code translation
— Chikofsky and Cross

• Data reengineering
integrating and centralizing multiple databases

unifying multiple, inconsistent representations

upgrading data models
— Sommerville, ch 32

• Refactoring

renaming/moving methods/classes etc.

22 S.Ducasse LSE

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection

(3) problem
resolution

(4) program transformation

• people centric
• lightweight

23 S.Ducasse LSE

O-O Reengineering Patterns

24

S.Ducasse LSE

Reverse engineering Patterns
Reverse engineering patterns encode expertise and

trade-offs in extracting design from source code,
running systems and people.
+ Even if design documents exist, they are typically out of sync

with reality.

Example: Interview During Demo

25 S.Ducasse LSE

Reengineering Patterns
Reengineering patterns encode expertise and trade-

offs in transforming legacy code to resolve problems
that have emerged.
+ These problems are typically not apparent in original design

but are due to architectural drift as requirements evolve

Example: Move Behaviour Close to Data

26 S.Ducasse LSE

A Map of Reengineering Patterns

Tests: Your Life Insurance

Detailed Model Capture

Initial Understanding

First Contact

Setting Direction

Migration Strategies

Detecting Duplicated Code

Redistribute
Responsibilities

Transform Conditionals
to Polymorphism

27

S.Ducasse

Summary
Software “maintenance” is really continuous

development

Object-oriented software also suffers from legacy

symptoms

Reengineering goals differ; symptoms don’t

Common, lightweight techniques can be applied to

keep software healthy

28 S.Ducasse LSE29

