
S.Ducasse

LSE

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/

Object-Oriented
Programming

1

S.Ducasse LSE

Outline
• Context: Software MUST evolve

• OOP Modeling
• Objects
• Classes
• Inheritance

2

S.Ducasse LSE

0,041

0,182

0,174
0,603

Continuous Development

17.4% Corrective
(fixing reported errors)

18.2% Adaptive
(new platforms or OS)

60.3% Perfective
(new functionality)

The bulk of the maintenance cost is due to new functionality
⇒ even with better requirements, it is hard to predict new functions

data from [Lien78a]

4.1% Other

Relative Maintenance Effort
Between 50% and 75% of
global effort is spent on

“maintenance” !

3

S.Ducasse LSE

Lehman's Laws
A classic study by Lehman and Belady [Lehm85a] identified several

“laws” of system change.

Continuing change
A program that is used in a real-world environment must change, or
become progressively less useful in that environment.

Increasing complexity
As a program evolves, it becomes more complex, and extra resources
are needed to preserve and simplify its structure.

Those laws are still applicable to brand new
object-oriented applications

4

S.Ducasse LSE

Software is living…
• Early decisions may have been good at that time
• But the context changes
• Customers change
• Technology changes
• People change

• Successful software MUST evolve

5

S.Ducasse LSE

The Old Way
• Computer system consists of data and programs.
• Programs manipulate data.
• Programs organized by

• functional decomposition

• dataflow

• modules

6

S.Ducasse LSE

OOP
• Computer system consists of a set of objects.
• Objects are responsible for knowing and doing certain

things.
• Objects collaborate to carry out their responsibilities.
• Programs organized by classes, inheritance hierarchies

and subsystems

7

S.Ducasse LSE

Accidental vs. Essential Complexity

• Assembly is perfect to write 8k programs!
• But we need abstraction tools to model the

complexity of the world
• Object-oriented programming in only one way

• Reactive languages,

• Relational languages,

• Logic Languages, … are others

• OOP helps reducing the accidental complexity not the
essential

• Bad OO programs are also difficult to understand,
extend, and maintain

8

S.Ducasse LSE

Outline
• Context: Software MUST evolve

• OOP Modeling
• Objects
• Classes
• Inheritance

9

S.Ducasse LSE

What is an object, anyway?
Programming language view

An object-oriented system is characterized by
data abstraction
inheritance
polymorphism by late-binding of procedure calls

10

S.Ducasse LSE

Modeling
All phases of software life-cycle are modeling

analysis - modeling of problem
design - modeling of solution
implementation - making model run on a computer
maintenance - fixing/extending your model

11

S.Ducasse LSE

Modeling
Claim: people model the world with "objects"

objects and classes
relationships between objects
relationships between classes

Advantages of object-oriented software development
more natural - matches the way people think
single notation - makes it easy to move between software
phases

12

S.Ducasse LSE

Objects and Relationships
John is Mary's father.
Mary is John's daughter.
Bob is Mary's dog.
Mary is Bob's owner.
Ann is John's employer.
John is Ann's employee.

13

S.Ducasse LSE

Objects and Attributes
John's name is "John Patrick O'Brian".
John's age is 27.
John's address is 987 N. Oak St, Champaign IL 61820
What about John's employer? John's wife?
What is an attribute, and what is a relationship?

14

S.Ducasse LSE

Objects and Behavior
John goes on a trip.
John makes reservations.
John buys tickets.
John travels by airplane.
John checks into hotel.

15

S.Ducasse LSE

What is really an object?
• Anything we can talk about can be an object, including

relationships ("the husband of the first party", "first-
born son").

• What are we trying to model?
• “Models should be as simple as possible, but no

simpler”.
• Models are dictated by domains

16

S.Ducasse LSE

Some Examples
• Things that we can manipulate or see: Book, BD
• Things that we can conceptually see: Process,

Mortgage, InsuranceContract, Socket,
• Rôles: Mother, Teacher,
• Drivers, Algorithms
• Events and transactions
• Library elements: Color, Window, Text, Dictionary,

Date, Boolean....
• Organizations, processes

17

S.Ducasse LSE

RoadMap
• Context: Software MUST evolve

• OOP Modeling
• Objects
• Classes
• Inheritance

18

S.Ducasse LSE

State + Behavior + Identity

19

S.Ducasse LSE20

State + Behavior + Identity
• State: Objects it contains or refers to

• Ex: point location

• Behavior: an object understands a given set of
messages

• Identity: an object can be the same (of the same class)
than another one but it has still a different identity
(location in memory)

S.Ducasse LSE

Object

Data

Messages

Methods

21

S.Ducasse LSE

• What: Messages
– Specify what behavior objects are to perform
– Details of how are left up to the receiver
– State information only accessed via messages

• How: Methods
– Specify how operation is to be performed
– Must have access to (contain or be passed) data
– Need detailed knowledge of data
– Can manipulate data directly

Behavior + State + Control

Data
Methods

Messages

22

S.Ducasse LSE

Equality and Identity
• I want to eat the pizza that you are eating

• Equality: I want to eat the “same” kind of pizza

• Identity: I eat your pizza

23

S.Ducasse LSE

Encapsulation

24

S.Ducasse LSE25

Encapsulation
• Object protects its data

• We cannot access private data

• Object protects its implementation choice
• Clients use a public interface
• Object can change its implementation

S.Ducasse

Object Summary
Objects

have an identity
have attributes
have behavior
have relationships with other objects

Objects
protect their data
offer services, protect their implementation

26

S.Ducasse LSE

Roadmap
• Context: Software MUST evolve

• OOP Modeling
• Objects
• Classes
• Inheritance

27

S.Ducasse LSE

Classification
• We naturally put objects into classes that have similar

characteristics.
• John is a man.

• Mary is a woman.

• Bob is a dog.

• All women are people.

• All people are mammals.

28

S.Ducasse LSE

A Class generates Instances

29

S.Ducasse LSE

Classes: Factory of Objects
• Reuse behavior => Factor into class
• Class: “Factory” object for creating new objects of the

same kind
• Template for objects that share common

characteristics

30

S.Ducasse LSE

Class: Mold of Objects
• **Describe** state but not effective values of all the

instances of the class
– Position, width and length for rectangles

• **Define** behavior of all instances of the class

Rectangle>>area
^ width * height

31

S.Ducasse LSE

Instances
• A particular occurrence of an object defined by a class
• Each instance has its own value for the instance

variables
• All instances of a class share

 the same methods

32

400@10
100
20

300@20
10
140

S.Ducasse LSE

An example
• Let’s control robots....
• http://smallwiki.unibe.ch/botsinc/

33

S.Ducasse LSE

Instances Creation
• Asking a class to create an instance
• The Bot factory creates a new robot

34

S.Ducasse LSE

Instance Interaction
• We send messages to individual robots too

35

S.Ducasse LSE

Instances are autonomous...

36

S.Ducasse LSE

Instances vs. Classes
• The class Bot does not understand go: 100

• The class Bot understand new to create new robots

• aBot does not understand new

• aBot understands robot messages such as turn:, go:,
jump:, turnLeft:, color, lookLikeTriangle

37

S.Ducasse LSE

Roadmap
• Context: Software MUST evolve

• OOP Modeling
• Objects
• Classes
• Inheritance

38

S.Ducasse LSE

How to Share Specification?
• Do not want to rewrite everything!
• Often times want small changes
• Man are a specialization of People

• OOP language offers inheritance to reuse or specialize
classes

• Class hierarchies for sharing of definitions
• Each class defines or refines the definition of its

ancestors

39

S.Ducasse LSE

Inheritance
• New classes

• Can add state and behavior (ColoredRectangle)

• Can specialize ancestor behavior (GoldenRectangle)

• Can use ancestor’s behavior and state

• Can hide ancestor’s behavior

• Direct ancestor = superclass
• Direct descendant = subclass

40

S.Ducasse LSE

Comparable Quantity Hierarchy

41

S.Ducasse LSE

Summary
• Classes
• **Describes** the attributes, and relationships of a set

of objects
• Define the behavior of a set of objects
• Reuse, extend, specialize behavior from other classes
• Subclasses/superclasses form graph of generalizations

42

S.Ducasse

Summary
An object has a state, a behavior and a unique identity.
The structure and behavior of similar objects is shared
in their class
Instances of a class and objects are terms that cn be
exchanged
Classes as organized in generalisation/specialisation
hierarchy
What is an instance?
What is the difference between instantiation and
inheritance?

43

