
S.Ducasse

LSE

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/

Essential OO Concepts

Stéphane Ducasse
stéphane.ducasse@univ-savoie.fr

1

S.Ducasse LSE

Outline
• OOP
• Objects, classes
• Inheritance
• Composition
• Comparison

2

S.Ducasse LSE

Object-Orientation
• Is a paradigm not a technology
• Reflects, simulates the real world
• Thinks in terms of organization
• Tries to

• Handle complexity

• Enhance reusability

• Minimize maintenance cost

3

S.Ducasse LSE

Evolution
• Procedures
• Structured Programming
• Fourth Generation Languages
• Object-Oriented Programming
• ???

4

S.Ducasse LSE

Traditional Point of View
• Focuses upon procedures
• Functionality is vested in procedures
• Data exists solely to be operated upon by procedures
• Procedures know about the structure of data
• Requires large number of procedures and procedure

names

5

S.Ducasse LSE

Data and Procedures

6

S.Ducasse LSE

Roadmap
• OOP
• Objects, classes
• Inheritance
• Composition
• Comparison

7

S.Ducasse LSE

What is OOP?
• An application is a collection of interacting entities

(objects)
• Objects are characterized by behavior and state
• Inter-object behavior needs to be coordinated
• Inter-object communication is the key to coordination

8

S.Ducasse LSE

Object-Oriented Viewpoint
• An application is a set of objects interacting by

sending messages
• The functionality of an object is described by its

methods, its data are stored in private variables
• An object’s functionality can be invoked by sending a

message
• Everything is an object

9

S.Ducasse LSE

State + Behavior + Identity

10

S.Ducasse LSE11

State + Behavior + Identity
• State: Objects it contains or refers to

• Ex: point location

• Behavior: an object understands a given set of
messages

• Identity: an object can be the same (of the same class)
than another one but it has still a different identity
(location in memory)

S.Ducasse LSE

Equality and Identity
• I want to eat the pizza that you are eating

• Equality: I want to eat the “same” kind of pizza

• Identity: I eat your pizza

12

S.Ducasse LSE

Data/Messages/Methods

Data

Messages

Methods

13

S.Ducasse LSE

What vs. How
• What: Messages

– Specify what behavior objects are to perform
– Details of how are left up to the receiver
– State information only accessed via messages

• How: Methods
– Specify how operation is to be performed
– Must have access to (contain or be passed) data
– Need detailed knowledge of data
– Can manipulate data directly

Data
Methods

Messages

14

S.Ducasse LSE

Message
• Sent to receiver object: receiver-object message
• A message may include parameters necessary for performing

the action
• In Smalltalk, a message-send always returns a result (an

object)
• Only way to communicate with an object and have it

perform actions

pt h w

aRectangle

aClient
…

aRectangle area
…

area

15

S.Ducasse LSE

Method
• Defines how to respond to a message
• Selected via method lookup technique
• Has name that is the same as message name
• Is a sequence of executable statements
• Returns an object as result of execution

pt h w

area

aRectangle

area
 ^ h * w

aClient
…

aRectangle area
…

area

16

S.Ducasse LSE

Object Encapsulation
• Technique for

• Creating objects with encapsulated state/behaviour

• Hiding implementation details

• Protecting the state information of objects

• Communicating/accessing via a uniform interface

• Puts objects in control
• Facilitates modularity, code reuse and maintenance

• External perspective 	vs. 	Internal perspective

• What	 	 	 vs. 	How

• Message 	 	 vs. 	Method

17

S.Ducasse LSE

Encapsulation at Work

pt h w

area
area

aRectangle

area
 ^ h * w

aClient
…

aRectangle area
…

area
area

aRectangle

area
 d := (pt2-pt1).

 ^ d x * d y

aClient
…

aRectangle area
…

pt1 pt2

18

S.Ducasse

Objects
Unique identity
Private state
Shared behavior among other similar objects

19

S.Ducasse LSE

Roadmap
• OOP
• Objects, classes
• Classes and Inheritance
• Composition
• Comparison

20

S.Ducasse LSE

Class: Factory of Objects
• Reuse behavior

=> Factor into class
• Class: “Factory” object for creating new objects of the

same kind
• Template for objects that share common characteristics

generates

21

S.Ducasse LSE

Class: Mold of Objects
• Describe state but not value of all the instances of the

class
– Position, width and height for rectangles

• Define behavior of all instances of the class
area
	 ^ width * height

22

S.Ducasse LSE

Instances
• A particular occurrence of an object defined by a class
• Each instance has its own value for the instance

variables
• All instances of a class share

 the same methods

23

400@10
100
20

300@20
10

140

S.Ducasse LSE

How to Share Specification?
• Do not want to rewrite everything!
• Often times want small changes
• Class hierarchies for sharing of definitions
• Each class defines or refines the definition of its

ancestors
=> inheritance

24

S.Ducasse LSE

Inheritance
• New classes

• Can add state and behavior

• Can specialize ancestor behavior

• Can use ancestor’s behavior and state

• Can hide ancestor’s behavior

• Direct ancestor = superclass
• Direct descendant = subclass

25

S.Ducasse LSE

Comparable Quantity Hierarchy

26

S.Ducasse LSE

Polymorphism - Late binding
• Same message can be sent to different objects
• Different receivers react differently (different

methods)

• aCircle area

• aRectangle area

• aColoredWindow open

• aScheduledWindow open

• aWindow open

27

S.Ducasse LSE

Late binding: “Let’s the receiver decide”
Mapping of messages to methods deferred until run-
time (dynamic binding)
Allows for rapid incremental development without the
need to recompile the complete applications
Most traditional languages do this at compile time
(static binding)

28

S.Ducasse LSE

Roadmap
• OOP
• Objects, classes
• Classes and Inheritance
• Composition
• Comparison

29

S.Ducasse LSE

Composition
• An object is composed of other objects

in a part-of relationship

• The object uses its parts to implement its behavior
• The object can delegate to its parts

30

S.Ducasse LSE

Example
A rectangle can be composed of

two points:
to represent its origin and extent
to represent its topleft and bottomleft corners

or 4 numbers

31

S.Ducasse LSE

Example (2)
Polyline has a list of vertices

32

S.Ducasse LSE

Agrégation
• L'agrégation est une association non symétrique, qui

exprime un couplage fort et une relation de
subordination.
Elle représente une relation de type "ensemble /
élément".

• Peut (mais pas nécessairement) exprimer :
• qu'une classe (un "élément") fait partie d'une autre

("l'agrégat"),

• qu'un changement d'état d'une classe, entraîne un
changement d'état d'une autre,

• qu'une action sur une classe, entraîne une action sur une
autre.

33

S.Ducasse LSE34

S.Ducasse LSE

Composition vs. Inheritance
Inheritance supports extension: ColoredRectangle

But
static, properties are difficult to change dynamically
we have to change classes at run-time
explosion of classes
class with too much responsibilities

With composition
run-time changes are easier: plug another objects (with
the same interface)
but lot of objects

35

S.Ducasse LSE

Outline
• OOP
• Objects, classes
• Inheritance
• Composition
• Comparison

36

S.Ducasse LSE

 Graphical Editor
• Managing list of objects: square, rectangle, circle...
• Intersect, color, rotate translate….

• We want to know the total area of a list of figures

37

S.Ducasse LSE

Procedural Solution
tArea
	 element class = Circle
	 	 then tArea := tArea + element.circleArea.
	 element class= Rectangle
	 	 then tArea := tArea + element.rectangleArea

 …

Same for ...
 intersect, color, rotate translate….

38

S.Ducasse LSE

In Java for example
public static long sumShapes(Shape shapes[]) {

long sum = 0;
for (int i=0; i<shapes.length; i++) {

	

switch (shapes[i].kind()) {
	

// a class constant

	

case Shape.CIRCLE:
	

	

 sum += shapes[i].circleArea();
	

	

 break;
	

case Shape.RECTANGLE:
	

	

 sum += shapes[i].rectangleArea();
	

	

 break;

	

	

 ... // more cases
	

	

 }

	

}
	

return sum;
}

39

S.Ducasse LSE

Problems
• Adding a kind of graphical element
• Change all the methods area, intersect, rotate,

translate…
• Always have to check what is the data I manipulate

40

S.Ducasse LSE

Object-Oriented Solution
Circle>>area
 ^ Float pi * r * r

Rectangle>>area
 ^ width * height

XXX>>area
 elements do:
		 [:each | tArea := tArea + each area]

41

S.Ducasse LSE

Advantages
• Adding a new graphical object does not require to

change the list operations
• I do not have know the kind of objects I’m

manipulating as soon as they all share a common
interface

42

S.Ducasse

Recap
OOP see the world as interacting objects

Objects
Have their own state
Share the behavior among similar objects

Classes: Factory of objects
Define behavior of objects
Describe the structure of objects
Share specification via hierarchies

43

S.Ducasse

Recap
• OOP is based on

– Encapsulating data and procedures
– Inheritance
– Polymorphism
– Late Binding

• OOP promotes
– Modularity
– Reuse

44

