
© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.1

5. Testing and Migration
• What and Why

+ Reengineering Life-Cycle

• Tests: Your Life Insurance !
+ Grow Your Test Base Incrementally

+ Use a Testing Framework
+ Record Business Rules as Tests

+ …

• Migration Strategies
+ Make a Bridge to the New Town

• Conclusion

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.2

What and Why ?
Definitions
• Restructuring refers to transforming a system from one

representation to another while remaining at the same abstraction
level. — Chikofsky & Cross, ’90

• Refactoring is the process of changing a software system in such a way
that it does not alter the external behavior of the code, yet improves
its internal structure — Fowler, ’99

Motivation
• Alter the source-code to

+ solve problems identified earlier

+ without introducing new defects

+ and while the system remains in operation

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.3

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(4) program transformation

(3) problem resolution
(4) program transformation
issues
• reliability
• time
• risk

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.4

Forces — Testing
• Many legacy systems don’t have tests
• Software changes introduce new bugs
• You can’t test everything
• Concurrency and user interfaces are hard to test
• Testing is usually everyone’s lowest priority
• Knowledge concentration poses high risk
• Customers pay for features, not tests
• Customers don’t want buggy systems
• Good programmers don’t need tests
• New tools and techniques are more fun than testing
• Testing is akin to street-cleaning

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.5

Tests: Your Life Insurance!

Write Tests to Enable Evolution

Grow Your Test
Base Incrementally

Manage tests
Use a Testing
Framework

Test the Interface,
Not the Implementation

Record Business
Rules as Tests

Design tests

• Test Fuzzy features
• Test Old Bugs
• Retest Persistent Problems

Write Tests
to Understand

Regression Test
after Every Change

Migration Strategies

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.6

Write Tests to Enable Evolution
Problem: How do you minimize the risks of change?

Solution: Introduce automated, repeatable, stored tests

Automated Tests

System Confidence Turnover Risk minimization

System documentation Architectural evolution

Long-term evolution

Automated tests are the foundation of reengineering

Confidence in Change

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.7

Grow Your Test Base Incrementally

Problem: When can you stop writing tests?
Solution: When your tests cover all the code!
… however

+ you're paid to reengineer, not to write tests
+ testing ALL the code is impossible
+ design documentation is out-of date

» semi-automated black-box testing is not an option

• Answer: Grow Your Test Base Incrementally
- first test critical components

(business value; likely to change; …)
- keep a snapshot of old system

(run new tests against old system)
- focus on business values
- test old bugs + new bugs that are reported

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.8

Use a Testing Framework
Problem: How do you encourage systematic testing?

Solution: Use a framework to structure your tests

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.9

Running tests

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.10

Write Tests to Understand
Problem: How to decipher code without

adequate tests or documentation?
Solution: Encode your hypotheses as test cases

• Exercise the code
• Formalize your reverse-engineering hypotheses

• Develop tests as a by-product

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.11

Record Business Rules as Tests
Problem: How do you keep your system in sync with the

business rules it implements?

A Solution: Good documentation + Good design
• … however

+ business rules are too complex to design well
+ documentation & design degrades when the rules change
+ business rules become implicit in code and minds

Solution: Record Business Rules as Tests
- canonical examples exist
- can be turned into input/output tests

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.12

Example: Payroll Business Rule
A person or couple gets an amount of money for
every child he, she or they raise. Basically parents
get CHF 150,- per month for every child younger
than 12 years, and CHF 180,- for every child
between 12 and 18 and for every child between 18
and 25 as long as the child is not working and is
still in the educational system. A single parent gets
the full 100% of this money as long as he or she is
working more than 50%. Couples get a percentage
of the money that is equal to the summed working
percentages of both partners.

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.13

Example: Payroll Test Case
"--- input-cases are extracted from a database"
singlePerson80WithOneKidOf5 := extract....
couplePerson40occupationWithOneKidOf5 := extract....
couplePerson100occupationWithOneKidOf5 := extract....
couplePersonWithOneKidOf14 := extract....

"--- tests compare expected output against actual output"
self assert: singlePerson80occupationWithOneKidOf5 moneyForKid

= 150.
self assert: couplePerson40occupationWithOneKidOf5 moneyForKid

= 150*4.
self assert: couplePerson100occupationWith2KidsOf5 moneyForKid

= 150*2.
self assert: couplePersonWithOneKidOf14 moneyForKid

= 180.

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.14

Other patterns
Retest Persistent Problems

+ Always tests these, even if you are making no changes
to this part of the system

Test Fuzzy Features
+ Identify and write tests for ambiguous or ill-defined

parts of the system

Test Old Bugs
+ Examine old problems reports, especially since the

last stable release
— DeLano and Rising, 1998

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.15

Forces — Migration

• Big-bang migration often fails

• Users hate change

• You need constant feedback to stay on track

• Users just want to get their work done

• The legacy data must be available during
the transition

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.16

Migration Strategies

Migrate Systems
Incrementally

Conserve
Familiarity

How
Use Profiler

before Optimizing

Build ConfidenceInvolve the Users
How Why

Why

Present the
Right Interface

Deprecate
Obsolete Interfaces

Distinguish Public
from Published Interfaces

Make a Bridge
to the New Town

Always Have a
Running Version

Regression Test
after Every Change

How

Tests, your
Life-Insurance

Prototype the
Target Solution

Where to

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.17

Make a Bridge to the New Town
Problem: How to migrate

data?
Solution: Convert the

underlying files/databases/…

... however
+Legacy and new system must

work in tandem

+Too much data; too many
unknown dependencies

+Data is manipulated by
components

Bridge

1:read() 2:write()

1.1:read()

1.2:write() 2.1:write()

Legacy
System

New System

Data Store

© S. Demeyer, S. Ducasse, O. Nierstrasz Migration.18

Conclusion

Avoid risk
+ small increments ("chicken little")
+ develop suite of regression tests

… at acceptable cost
+ Migration costs as much as new development !
+ But you avoid "hidden costs"

• team morale in maintenance team

• satisfying two customer bases

