
© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.1

4. Design Extraction

• Why Extract Design? Why UML?

• Interpreting UML

• Tracks For Extraction

• Extraction of Intention

• Extraction For The Reusers

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.2

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2a) problem
detection

(3) problem
resolution

(4) Code Transformation

(1) model capture
(2) reverse engineering
issues
• Scale
• Beyond boxes and arrows

(2b) Reverse
Engineering

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.3

Why is Design Extraction Needed?

• Documentation inexistent, obsolete, or too
verbose

• Abstraction needed to understand applications

• Original programmers left

• Only the code available

• Why UML?
+ Standard

+ Communication based on a common language

+ Can support documentation if we are precise about
its interpretation

+ Extensible

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.4

Design Extraction

Design is not code with boxes and arrows

• Design extraction is not trivial

+ If you are serious about it, not a low level task!

• Design extraction should scale up

• Design extraction can be supported by computers but not
fully automated

• A critical view on hype: “we read your code and generate
design documents”

• Fertilize you with some basic techniques that may help
you

• Show that UML is not that simple and clear but still useful

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.5

UML (Unified Modelling Language)
• Successor of OOAD&D methods of late 80 &

early 90

• Unifies Booch, Rumbaugh (OMT) and Jacobson
[Booc98a] [Rumb99a]. Currently standardized
by OMG.

• UML is a modelling language and not a
methodology (no process)

• UML defines
+ a notation (the syntax of the modelling language)

+ a meta-model (eMof in UML 2.0) — a model that
defines the “semantics” of a model

+ what is well-formed, defined in itself but weakly!

Provider
-x
-y
-sety(val)
+bump()

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.6

Roadmap

• Why Extract Design? Why UML?

• Interpreting UML

• Tracks For Extraction

• Extraction of Intention

• Extraction For The Reusers

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.7

Three Essential Questions

When we extract design we should be
precise about:

+What are we talking about? Design or
implementation?

+What are the conventions of interpretation that
we are applying?

+What is our goal: documentation for
programmers, for framework users, high-level
views, essence, contracts?

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.8

Interpreting UML

• UML purists do not propose different levels of
interpretation, they refer to the UML semantics!

• Levels of interpretations are not part of UML but
they are necessary!

• What is the sense of representing subclassing
using generalization?

• So at a minimum we should have:

+ Clear level of interpretation + Clear conventions +
Clear goal + UML extensions: stereotypes

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.9

Levels of Interpretations: Perspectives

M. Fowler proposed 3 levels of interpretations
called perspectives [Fowl97a]:

+ Conceptual: we draw a diagram that represents the
concepts that are somehow related to the classes but
there is often no direct mapping.

+ Specification: we are looking at interfaces of object
not implementation, types rather than classes. Types
represent interfaces that may have many
implementations

+ Implementation: implementation classes

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.10

Attributes in Perspectives
• Syntax:

+ visibility attributeName: attributeType = defaultValue

+ E.g.: +name: String

• Conceptual:
+ Customer name ! Customer has a name

• Specification:
+ Customer class should provide a way to set and query the name

• Implementation:
+ Customer has an attribute that represents its name

• Possible Refinements: Attribute Qualification
+ Immutable: Value never change

+ Read-only: Client cannot change it

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.11

Operations in Perspectives
• Syntax:

+ visibility name (parameter-list):return-type

+ E.g.: + public, # protected, - private

• Conceptual:

+ principal functionality of the object. It is often described as a sentence

• Specification:

+ public methods on a type

• Implementation: methods

+ Operations approximate methods but are more like abstract methods

• Possible Refinements: Method qualification:

+ Query (does not change the state of an object)

+ Cache (does cache the result of a computation), Derived Value (depends
on the value of other values), Getter, Setter

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.12

Order
Customer

dateReceived
isPrepaid
number: String
price: Money

dispatch()
close()

* 1
name
address

creditRating(): String

OrderLine

Product
quantity: Integer
price: Money
isSatified: Boolean

* 1

*

1

Associations: Conceptual Perspective

• Associations represent conceptual relationships between classes

+ An Order has to come from a single Customer.

+ A Customer may make several Orders.

+ Each Order has several OrderLines that refers to a single Product.

+ A single Product may be referred to by several OrderLines.

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.13

Order
Customer

* 1

Associations: Specification Perspective

• Associations represent responsibilities

• Implications:
+ One or more methods of Customer should tell what Orders a

given Customer has made.

+ Methods within Order will let me know which Customer placed
a given Order and what Line Items compose an Order

• Associations also imply responsibilities for updating the
relationship, such as:
+ specifying the Customer in the constructor for the Order

+ add/removeOrder methods associated with Customer

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.14

• No arrow = navigability in both directions or unknown

• Conceptual perspective: Orders know Customers but not inverse

• Specification perspective: responsibility
+ an Order has the responsibility to identify their Customer but Customer don’t

have to identify their orders

• Implementation perspective:
+ an Order points to a Customer, but a Customer doesn’t point to its Orders

Order
Customer

dateReceived
isPrepaid
number: String
price: Money

dispatch()
close()

* 1
name
address

creditRating(): String

OrderLine

Product
quantity: Integer
price: Money
isSatified: Boolean

* 1

*

1

Arrows: Navigability

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.15

Customer

Personal
Customer

Corporate Customer

creditRating(): String

remind()
billForMonth(Integer)

creditRating()
creditRating()

Generalization
UML semantics only supports generalization and

not inheritance.

• Conceptual:
+ What is true for an instance of a superclass is

true for a subclass (associations, attributes,
operations).

+ Corporate Customer is a Customer

• Specifications:
+ Interface of a subtype must include all elements from the

interface of a superclass.

• Implementation:
+ Generalization semantics is not inheritance. But we should

interpret it this way for representing extracted code.

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.16

Need for a Clear Mapping
• UML

+ language independent even if influenced by C++

+ fuzzy (navigability, package...)

• We should define how we interpret it

• Define some conventions

• Some C++ examples:

width:Integerstatic int width();

«public inherits»class Gomoku: public Boardgame { …

myMap: PiecePiece* myMap;

board(): BoardBoard board()

Board& operator =(const Board& other)
throw (const char*);

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.17

Private you said?! Which one?
Is it class-based (C++) or instance-based (Smalltalk)?

• in C++:
+ any public member is visible anywhere in the program

+ a private member may be used only by the class that defines it

+ a protected member may be used by the class that defines it or
its subclasses

+ Class-based private

• in Smalltalk:
+ instance variables C++ protected, methods are public

• In Java:
+ a protected member may be accessed by subclasses but also by any

other classes in the same package as the owing class

! protected is more public than package

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.18

Language Impact on Extraction
Attribute interpretation

• In C++ !

Piece* myPiece " aggregation or association

Piece& my Piece " aggregation or association

Piece myPiece " composition (copied so not shared)

• In Smalltalk and Java

Aggregation and composition are not easy to extract

Piece myPiece " attribute or association

or aggregation

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.19

Stereotypes: To Represent Conventions!

• Mechanism to specialize the semantics of the UML elements

• New properties are added to an element

• When a concept is missing or does not fit your needs select
a close element and extend it

• 40 predefined stereotypes (c = class, r = relation, o = operation, a =
attribute, d = dependency, g = generalization): metaclass (c), instance
(r), implementation class (c) constructor (o), destructor(o), friend (d),
inherits (g), interface (c), private (g), query (o), subclass (g), subtype (g),

• Do not push stereotypes to the limit or you will lose standards

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.20

Roadmap

• Why Extract Design? Why UML?

• Interpreting UML

• Tracks For Extraction

• Extraction of Intention

• Extraction For The Reusers

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.21

Design is not code with boxes

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.22

Association Extractions (i)
Goal: Explicit references to domain classes

• Domain Objects
+ Qualify as attributes only implementation attributes that are not

related to domain objects.

+ Value objects ! attributes and not associations,

+ Object by references ! associations

E.g.: String name ! an attribute

Order order ! an association

Piece myPiece (in C++) ! composition

• Define your own conventions
+ E.g.: integer x integer ! point attribute

• Two classes possessing attributes on each other
+ an association with navigability at both ends

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.23

Order Customer

dateReceived
isPrepaid
number: String
price: Money

dispatch()
close()

* 1 name
address

creditRating(): String

OrderLine

quantity: Integer
price: Money
isSatified: Boolean

*1

Convention Based Association Extraction

• Filtering based coding conventions or visibility

• In Java, C++ filter out private attributes
+ _*

• In Smalltalk depending on coding practices you may filter out

+ attributes

+ that have accessors and are not accessed into subclasses.

+ with name: *Cache.

+ attributes that are only used by private methods.

• If there are some coding conventions
class Order {

public Customer customer();

// single value

public Enumerator orderLines();

// multi-values

}

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.24

Operation Extraction

• You may not extract
+ accessors

+ operators, non-public methods,

+ simple instance creation methods (new in Smalltalk,
constructor with no parameters in Java)

+ methods already defined in superclass,

+ methods already defined in superclass that are not
abstract

+ methods that are responsible for the initialization,
printing of the objects

• Use company conventions to filter
+ Access to database, Calls for the UI, Naming patterns

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.25

Operation Extraction (ii)
If there are several methods with more or less the same intent

+ if you want to know that the functionality exists not all the details

+ select the method with the smallest prefix

If you want to know all the possibilities but not all the ways
you can invoke them

+ select the method with the most parameters

If you want to focus on important methods

+ categorize methods according to the number of times they are
referenced by clients

+ a hook method is not often called but is still important

• What is important to show: the creation interface

+ Smalltalk class methods in ‘instance creation’ category,

+ Non default constructors in Java or C++

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.26

Roadmap

• Why Extract Design? Why UML?

• Interpreting UML

• Tracks For Extraction

• Extraction of Intention

• Extraction For The Reusers

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.27

Design Patterns
Design Patterns reveal the intent so they are

definitely appealing for supporting
documentation [John92a] [Oden97a]

But
+ Difficult to identify design patterns from the code

[Brow96c, Wuyt98a, Prec98a]

+ What is the difference between a State and a Strategy
from the code point of view?

+ Need somebody who knows

+ Read the Code in one Hour

+ Lack of support for code annotation so difficult to
keep the use of patterns and the code evolution
[Flor97a]

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.28

DPs are NOT about Structure

• Adapter Intent: Convert the interface of a class into

another interface clients expect. Adapter lets classes

work together that couldn't otherwise because of

incompatible interfaces.

• This code structure IS NOT an Adapter: it may if the

relationship between B and C is about protocol

adaptation!

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.29

DPs are about Intent and
Pros/Cons

• DPs are not carved in stone

• They are vocabulary and intention

• They are tradeoffs

• Read the class names

• Read the comments

• Watch out for “DPs Magic Extracting
tools”

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.30

Roadmap

• Why Extract Design? Why UML?

• Interpreting UML

• Tracks For Extraction

• Extraction of Intention

• Extraction For The Reusers

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.31

domain

application

change
propagation

Evolution Impact Analysis: Reuse Contract

• How to identify the impact of changes?

• How to document for reusers/extenders?

• How to document framework?

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.32

Example

OrderedCollection

add(Element)
addAll(Collection)

CountingOrderedCollection

add(Element)
addAll(Collection)

increment

OrderedCollection

add(Element)
addAll(Collection)

CountingOrderedCollection

add(Element)
addAll(Collection)

increment

New Version

Not all the elements are counted

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.33

provider

contract

reuser

domain

application

Reuse Contracts: General Idea

Reuse Contracts [Stey96a] propose a methodology
to:
+ specify and qualify extensions

+ specify evolution

+ detect conflicts

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.34

Example

• Extend UML to specify which other methods a method
invokes (reuse contracts)

• In class Set
+ + addAll: (c Collection): Collection {invokes add}

OrderedCollection

add
addAll [add]

CountingOrderedCollection

add [increment]

increment

OrderedCollection

add
addAll

CountingOrderedCollection

add(Element) [increment]

increment

effort estimate

Refinement
add [+ increment]

Coarsening
addAll [- all]

addAll needs to be overrident too

© S. Demeyer, S. Ducasse, O. Nierstrasz Design Extraction.35

Lessons Learned
• You should be clear about:

+ Your goal (detailed or architectural design)

+ Conventions, like navigability,

+ Language mapping based on stereotypes

+ Level of interpretations

• For Future Development
+ Emphasize literate programming approach

+ Xunit-like approaches

+ Extract design to keep it synchronized

• UML as Support for Design Extraction
+ Often fuzzy

+ Do not support well dynamic/reflective languages

+ But UML is extensible, so define your own stereotype!

