
© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.1

3. Reverse Engineering
• What and Why

• Setting Direction
+ Most Valuable First

• First Contact

+ Chat with the Maintainers

+ Interview during Demo

• Initial Understanding

+ Analyze the Persistent Data

+ Study Exceptional Entities

• Detailed Model Capture

+ Tie Code and Questions

+ Step through the Execution

+ Look for the Contracts

• Conclusion

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.2

What and Why ?

Definition
Reverse Engineering is the process of analysing a subject system

+ to identify the system’s components and their interrelationships and

+ create representations of the system in another form or at a higher

level of abstraction. — Chikofsky & Cross, ’90

Motivation
Understanding other people’s code

(cf. newcomers in the team, code reviewing,

original developers left, ...)

Generating UML diagrams is NOT reverse engineering

... but it is a valuable support tool
© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.3

The Reengineering Life-Cycle

(0) req. analysis
(1) model capture
issues
• scale
• speed
• accuracy
• politics

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection

(3) problem
resolution

(4) program transformation

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.4

Forces — Setting Direction

• Conflicting interests (technical, ergonomic,
economic, political)

• Presence/absence original developers

• Legacy architecture

• Which problems to tackle?

+ Interesting vs important problems?

+ Wrap, refactor or rewrite?

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.5

Setting Direction

Agree on Maxims

Set direction

Appoint a
Navigator

Speak to the
Round Table

Maintain
direction

Coordinate
direction

Most Valuable First

Where to start

Fix Problems,
Not Symptoms

If It Ain't Broke
Don't Fix It

What not to doWhat to do

Keep it Simple

How to do it

Principles & Guidelines for
Software project management

especially relevant for
reengineering projects

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.6

Most Valuable First

Problem: Which problems should you focus on first?

Solution: Work on aspects that are most valuable to
your customer

• Maximize commitment, early results; build
confidence

• Difficulties and hints:
+ Which stakeholder do you listen to?

+ What measurable goal to aim for?

+ Consult change logs for high activity

+ Play the Planning Game

+ Wrap, refactor or rewrite? — Fix Problems, not Symptoms

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.7

Forces — First Contact

• Legacy systems are large and complex
+ Split the system into manageable pieces

• Time is scarce
+ Apply lightweight techniques to assess feasibility

and risks

• First impressions are dangerous
+ Always double-check your sources

• People have different agendas
+ Build confidence; be wary of skeptics

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.8

First Contact

System experts

Chat with the
Maintainers

Interview
during Demo

Talk with
developers

Talk with
end users

Talk about it

Verify what
you hear

feasibility assessment
(one week time)

Software System

Read All the Code
in One Hour

Do a Mock
Installation

Read it Compile it

Skim the
Documentation

Read
about it

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.9

Chat with the Maintainers

Problem: What are the history and politics of
the legacy system?

Solution: Discuss the problems with the system
maintainers.

• Documentation will mislead you (various reasons)

• Stakeholders will mislead you (various reasons)

• The maintainers know both the technical and
political history

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.10

Chat with the Maintainers

Questions to ask:

• Easiest/hardest bug to fix in recent months?

• How are change requests made and evaluated?

• How did the development/maintenence team
evolve during the project?

• How good is the code? The documentation?

• Why was the reengineering project started?
What do you hope to gain?

The major problems of our work are no so much technological as
sociological.

—DeMarco and Lister, Peopleware ‘99

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.11

Read all the Code in One Hour

Problem: How can you get a first impression of the
quality of the source code?

Solution: Scan all the code in single, short session.
• Use a checklist (code review guidelines, coding styles etc.)

• Look for functional tests and unit tests

• Look for abstract classes and root classes that define
domain abstractions

• Beware of comments

• Log all your questions!

I took a course in speed reading and read “War and Peace” in
twenty minutes. It’s about Russia.

—Woody Allen

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.12

• Solution: interview during demo

- select several users

- demo puts a user in a positive

mindset

- demo steers the interview

Interview during Demo

Problem: What are the typical usage scenarios?

Solution: Ask the user!

• ... however

+ Which user ?

+ Users complain

+ What should you ask ?

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.13

First Project Plan
Use standard templates, including:

• project scope
+ see "Setting Direction"

• opportunities
+ e.g., skilled maintainers, readable source-code, documentation

• risks
+ e.g., absent test-suites, missing libraries, …

+ record likelihood (unlikely, possible, likely)
& impact (high, moderate, low) for causing problems

• go/no-go decision

• activities
+ fish-eye view

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.14

Forces — Initial Understanding

• Data is deceptive
+ Always double-check your sources

• Understanding entails iteration
+ Plan iteration and feedback loops

• Knowledge must be shared
+ “Put the map on the wall”

• Teams need to communicate
+ “Use their language”

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.15

Initial Understanding

understand !

higher-level model

Top down

Speculate about Design

Recover
design

Analyze the
Persistent Data

Study the
Exceptional

Entities

Recover
database

Bottom up

Identify
problems

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.16

Analyze the Persistent Data
Problem: Which objects represent valuable data?

Solution: Analyze the database schema

• Prepare Model
+ tables ! classes; columns ! attributes

+ candidate keys (naming conventions + unique indices)

+ foreign keys (column types + naming conventions
 + view declarations + join clauses)

• Incorporate Inheritance
+ one to one; rolled down; rolled up

• Incorporate Associations
+ association classes (e.g. many-to-many associations)

+ qualified associations

• Verification
+ Data samples + SQL statements

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.17

Example: One To One

Patient

id: char(5)

insuranceID: char(7)

insurance: char(5)

Salesman

id: char(5)

company: char(40)

Person

id: char(5)

name: char(40)

addresss: char(60)

Patient

insuranceID: char(7)

insurance: char(5)

Salesman

company: char(40)

Person

id: char(5)

name: char(40)

addresss: char(60)

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.18

Example: Rolled Down

Patient

id: char(5)

name: char(40)

addresss: char(60)

insuranceID: char(7)

insurance: char(5)

Salesman

id: char(5)

name: char(40)

addresss: char(60)

company: char(40)

Patient

insuranceID: char(7)

insurance: char(5)
Salesman

company: char(40)

Person

id: char(5)

name: char(40)

addresss: char(60)

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.19

Example: Rolled Up

Person

id: char(5)

name: char(40)

addresss: char(60)

insuranceID: char(7) «optional»

insurance: char(5) «optional»

company: char(40) «optional»

Patient

insuranceID: char(7)

insurance: char(5)

Salesman

company: char(40)

Person

id: char(5)

name: char(40)

addresss: char(60)

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.20

Example: Qualified Association

Patient

id: char(5)

…

Treatment

patientID: char(5)

date: date

nr: integer

comment: varchar(255)

Patient

id: char(5)

…

Treatment

comment: Text

date: Date

nr: Integer

1

1

addTreatment(d, n, t)

lookupTreatment(d, n)

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.21

Speculate about Design

Problem: How do you recover design from code?

Solution: Develop hypotheses and check them

• Develop a plausible class diagram and iteratively
check and refine your design against the actual
code.

Variants:

• Speculate about Business Objects

• Speculate about Design Patterns

• Speculate about Architecture

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.22

Study the Exceptional Entities

Problem: How can you quickly identify design problems?

Solution: Measure software entities and study the
anomalous ones

• Use simple metrics

• Visualize metrics to get an overview

• Browse the code to get insight into the anomalies

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.23

Visualizing Metrics

Use simple
metrics and
layout
algorithms.

(x,y) width

height colour

Visualize up
to 5 metrics
per node

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.24

Initial Understanding (revisited)

Top down

Speculate about Design

Analyze the
Persistent Data

Study the
Exceptional

Entities

understand !

higher-level model

Bottom up

ITERATION

Recover
design

Recover
database

Identify
problems

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.25

Forces — Detailed Model
Capture

• Details matter
+ Pay attention to the details!

• Design remains implicit
+ Record design rationale when you discover it!

• Design evolves
+ Important issues are reflected in changes to the

code!

• Code only exposes static structure
+ Study dynamic behaviour to extract detailed design

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.26

Detailed Model Capture

Expose the design
& make sure it stays exposed

Tie Code and Questions

Refactor to Understand

Keep track of
your understanding

Expose design

Step through the Execution

Expose collaborations

• Use Your Tools
• Look for Key Methods

• Look for Constructor Calls
• Look for Template/Hook Methods

• Look for Super Calls

Look for the Contracts

Expose contracts

Learn from the Past

Expose evolution

Write Tests

to Understand

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.27

Tie Code and Questions
Problem: How do you keep track of your understanding?

Solution: Annotate the code

• List questions, hypotheses, tasks and observations.

• Identify yourself!

• Use conventions to locate/extract annotations.

• Annotate as comments, or as methods

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.28

Refactor to Understand

Problem: How do you decipher cryptic code?

Solution: Refactor it till it makes sense

• Goal (for now) is to understand, not to reengineer

• Work with a copy of the code

• Refactoring requires an adequate test base
+ If this is missing, Write Tests to Understand

• Hints:
+ Rename attributes to convey roles

+ Rename methods and classes to reveal intent

+ Remove duplicated code

+ Replace condition branches by methods
© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.29

Step Through the Execution
Problem: How do you uncover the run-time architecture?

Solution: Execute scenarios of known use cases and step
through the code with a debugger

• Difficulties

+ OO source code exposes a class hierarchy, not the run-
time object collaborations

+ Collaborations are spread throughout the code

+ Polymorphism may hide which classes are instantiated

• Focussed use of a debugger can expose collaborations

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.30

Look for the Contracts

Problem: Which contracts does a class support?

Solution: Look for common programming idioms

• Look for “key methods”
+ Intention-revealing names

+ Key parameter types

+ Recurring parameter types represent temporary
associations

• Look for constructor calls

• Look for Template/Hook methods

• Look for super calls

• Use your tools!

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.31

Constructor Calls: Stored Result

public class Employee {
private String _name = "";
private String _address = "";
public File[] files = { };

…
public class File {

private String _description = "";
private String _fileID = "";

…

public void createFile (int position,
String description, String identification) {
files [position] = new File (description, identification);
}

Employee

_name

_address

File

_description

_fileID

1

*

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.32

Constructor Calls: "self"
Argument

public class Person {
private String _name = "";

…
public class Marriage {

private Person _husband, _wife;
public Marriage (Person husband,

Person wife) {
_husband = husband;
_wife = wife;}

…

Person::public Marriage marryWife (Person wife) {
return new Marriage (this, wife);

}

Person

_name

…

Marriage

_husband

_wife

1

1

1

1

Person

_name

…

Marriage

_husband

_wife

1 1

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.33

Hook Methods

public class PhoneDatabase {
...
protected Table fetchTable

(String tableSpec) {
//tableSpec is a filename; parse it as
//a tab-separated table representation
...};

public class ProjectDatabase
extends PhoneDataBase {

...
protected Table fetchTable (String tableSpec) {
//tableSpec is a name of an SQLTable;
//return the result of SELECT * as a table
...};

PhoneDatabase

fetchTable(tableSpec):

Table

ProjectDatabase

Hook Method

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.34

Template / Hook Methods
public class PhoneDatabase {

...
public void generateHTML

(String tableSpec,
HTMLRenderer aRenderer,
Stream outStream) {

Table table = this.fetchTable (tableSpec);
aRenderer.render (table, outStream);}

…};

public class HTMLRenderer {
...
public void render (Table table, Stream outStream) {
//write the contents of table on the given outStream
//using appropriate HTML tags

…}

PhoneDatabase

generateHTML(String,

HTMLRenderer,

Stream)

Template Method

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.35

Learn from the Past

Problem: How did the system get the way it is?

Solution: Compare versions to discover where code was
removed

• Removed functionality is a sign of design evolution

• Use or develop appropriate tools

• Look for signs of:

+ Unstable design — repeated growth and refactoring

+ Mature design — growth, refactoring and stability

© S. Demeyer, S. Ducasse, O. Nierstrasz Reverse Engineering.36

Conclusion

• Setting Direction + First Contact
! First Project Plan

• Initial Understanding + Detailed Model Capture
+ Plan the work … and Work the plan

+ Frequent and Short Iterations

• Issues
+ scale

+ speed vs. accuracy

+ politics

