
S.Ducasse

LSE

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/

Some Advanced Points
on Classes

1
S.Ducasse LSE

Instantiation
• Basic class instantiation

2 S.Ducasse LSE

Object Instantiation
Objects can be created by:

- Direct Instance creation: new/new:

- Messages to instances that create other objects

- Class specific instantiation messages

3

S.Ducasse LSE

Rectangle

width
height
position
area
intersect:

100 200 33@128

150 150 50@100

class

width height positionclass

width height position

 nil nil nil

width height position

class

Object Creation
- When a class creates an object =

 allocating memory + marking it to

 be instance of that class

4 S.Ducasse LSE

Instance Creation with new

aClass new

returns a newly and UNINITIALIZED instance

! OrderedCollection new -> OrderedCollection ()

! Packet new -> aPacket

Default instance variable values are nil

nil is an instance of UndefinedObject and only
understands a limited set of messages

5
S.Ducasse LSE

Messages to Instances
Messages to Instances that create Objects

1 to: 6 ! ! ! (an interval)

1@2 ! ! (a point)

(0@0) extent: (100@100) ! (a rectangle)

#lulu asString ! ! (a string)

1 printString !! ! ! (a string)

3 asFloat ! ! (a float)

#(23 2 3 4) asSortedCollection !
! ! ! ! ! ! ! ! (a sortedCollection)

6

S.Ducasse LSE

Opening the Box

1 to: 6
creates an interval

Number>>to: stop
 "Answer an Interval from the receiver up to the argument,
 stop, with each next element computed by incrementing the
 previous one by 1."

!̂ Interval from: self to: stop by: 1

7
S.Ducasse LSE

Strings...
1 printString

Object>>printString
 "Answer a String whose characters are a description
 of the receiver."

!| aStream |
!aStream := WriteStream on: (String new: 16).
!self printOn: aStream.
!̂ aStream contents

8 S.Ducasse LSE

Instance Creation
1@2

creates a point

Number>>@ y

 "Answer a new Point whose x value is the receiver and

 whose y value is the argument."

!

 <primitive: 18>

! ^ Point x: self y: y

9

S.Ducasse LSE

Class-specific Messages
Array with: 1 with: 'lulu'

OrderedCollection with: 1 with: 2 with: 3

Rectangle fromUser -> 179@95 corner: 409@219

Browser browseAllImplementorsOf: #at:put:

Packet send: ‘Hello mac’ to: #mac

Workstation withName: #mac

10
S.Ducasse LSE

new and new:
• new:/basicNew: is used to specify the size of the

created instance

 ! ! Array new: 4 -> #(nil nil nil nil)

• new/new: can be specialized to define customized
creation

• basicNew/basicNew: should never be overridden

• #new/basicNew and new:/basicNew: are class methods

11
S.Ducasse LSE

Outline
• Indexed Classes

• Classes as Objects

• Class Instance Variables and Methods

• Class Variables

12

S.Ducasse LSE

Variable size instance
How do we represent objects whose size is variable
such an array

Array new: 10

Array new: 15

13 S.Ducasse LSE

Two Views on Classes
Named or indexed instance variables

Named: ‘addressee’ of Packet

Indexed: Array

Or looking at them in another way:
Objects with pointers to other objects

Objects with arrays of bytes (word, long)

!

Difference for efficiency reasons: arrays of bytes (like C
strings) are faster than storing an array of pointers, each
pointing to a single byte.

14 S.Ducasse LSE

Types of Classes
Indexed ! Named Definition Method!Examples

No!! Yes ! #subclass:...!! ! Packet

Yes!! Yes! #variableSubclass:!! Array

Yes!! No! #variableByteSubclass! ! String

Method related to class types: #isPointers, #isBits,
#isBytes, #isFixed, #isVariable, #kindOfSubclass

15

S.Ducasse LSE

Constraints
Classes defined using #subclass: support any kind of
subclasses

Classes defined using #variableSubclass: can only have:
variableSubclass: or variableByteSubclass: subclasses

pointer classes and byte classes don’t mix: e.g. only byte
subclasses of byte classes.

16 S.Ducasse LSE

Indexed Classes
For classes that need a variable number of instance
variables

ArrayedCollection variableSubclass: #Array

 ! instanceVariableNames: ''

 ! classVariableNames: ''

 ! poolDictionaries: ''

 ! category: 'Collections-Arrayed'

! Array new: 4 -> #(nil nil nil nil)

! #(1 2 3 4) class isVariable -> true

17 S.Ducasse LSE

Indexed Classes
Indexed variable is implicitly added to the list of
instance variables

Only one indexed instance variable per class

Access with #at: and #at:put:
(#at:put: answers the value, not the receiver)

Subclasses should also be indexed

18

S.Ducasse LSE

Index access
First access: anInstance at: 1

#size returns the number of indexed instance variables

Instantiated with #new: max

! ! ! |t|

! ! ! t := (Array new: 4).

! ! ! t at: 2 put: 'lulu'.

! ! ! t at: 1 -> nil

19 S.Ducasse LSE

Roadmap
• Indexed Classes

• Classes as Objects

• Class Instance Variables and Methods

• Class Variables

20 S.Ducasse LSE

The Meaning of is-a
A class defines the structure and the behavior of all its
instances.

Each instance possesses its own set of values.

Instances share the behavior defined in their class with
other instances via the instance of link.

21

S.Ducasse LSE

The Meaning of Is-a
• Every object is an instance of a class.
• When anObject receives a message,

the method is looked up in its class

• And it continues possibly in

its superclasses
• Every class is ultimately

a subclass of Object (except Object).

22

Object

Node

accept:

name

sendt:

node1

msg

1

2

go to the class

look in

the classes

S.Ducasse LSE

Lookup...

Object

Node

accept:

name

sendt:

node1

msg

1

2

go to the class

look in

the classes

23 S.Ducasse LSE

Remember: …
Example: macNode name

macNode is an instance of Workstation

=> name is looked up in the class Workstation

name is not defined in Workstation

=> lookup continues in Node

name is defined in Node

=> lookup stops + method executed

24

S.Ducasse LSE

Roadmap
• Indexed Classes

• Classes as Objects

• Class Instance Variables and Methods

• Class Variables

25 S.Ducasse LSE

Classes and Objects
• Classes are objects too

• The same principle is true for objects and classes

• Same lookup strategy

• Everything that works at instance levels works at class
level

• In some language classes are not objects, still
understanding it in Smalltalk will force you to really
understand what instance/inheritance means

26 S.Ducasse LSE

Class Responsibilities
• instance creation

• class information (inheritance link, instance variables,
method compilation...)

• Examples:

• Node allSubclasses -> OrderedCollection (WorkStation
OutputServer Workstation File)

• LanPrinter allInstances -> #()

• Node instVarNames -> #('name' 'nextNode')

• Workstation withName: #mac -> aWorkstation

• Workstation selectors -> IdentitySet (#accept:
#originate:)

• Workstation canUnderstand: #nextNode -> true

27

S.Ducasse LSE

A Class is an Object too…
• Every class (X) is the unique instance of its associated

metaclass named X class

• Example:

• Node is the unique instance of “Node class”

• Point is the unique instance of “Point class”

28

Node

accept:

name

send:

new

Node

class

new

instance of

S.Ducasse LSE

A Class is an Object too…
So messages sent to a class are looked up into the class
of the class

Node withName: #node1
Node is an instance of

" “Node class”

withName: is looked up

" in the class “Node class”

withName: defined in

" “Node class”

 lookup stops +

method executed

29

Node

accept:

name

new

Node

class

new

withName:

instance of

S.Ducasse LSE

Class Parallel Inheritance

30

Node class

new
withName: aString

instance of
Node

name
accept: aPacket
send: aPacket

Workstation

originate: aPacket
accept: aPacket

aWorkstation

Workstation

class

instance of

instance of

S.Ducasse LSE

Lookup and Class Methods

31

Node class
new
withName: aString

instance of

Node
name
accept: aPacket
send: aPacket

Workstation
originate: aPacket
accept: aPacket

aWorkstation

Workstation
class

instance of

Object class

Object

withName: 'BigMac'

instance of

name

S.Ducasse LSE

Class Parallel inheritance
• Workstation withName: #mac

• Workstation is an instance of Workstation class

=> withName: is looked up in the class Workstation
class

• withName: is not defined in Workstation class

=> lookup continues in the superclass of Workstation
class = Node class

• withName: is defined in Node class

=> lookup stops + method executed

32 S.Ducasse LSE

About the Buttons
Node class

new
withName: aString

Instance of
Node

accept: aPacket

33

S.Ducasse LSE

Where is new defined?
• Node new: #node1

– Node is an instance of Node class => new: is looked up in the class
Node class

– new: is not defined in Node class => lookup continues in the
superclass of Node class = Object class

– new: is not defined in Object class => lookup continues in the
superclass of Object classClass, ClassDescription, Behavior

– new: is defined in Behavior => lookup stops + method executed.

• This is the same for Array new: 4
– new: is defined in Behavior (the ancestor of Array class)

• Hint: Behavior is the essence of a class. ClassDescription represents the
extra functionality for browsing the class. Class supports poolVariable
and classVariable.

34
S.Ducasse LSE

Recap
• Everything is an object
• Each object is instance of one class
• A class (X) is also an object, the sole instance of its

associated metaclass named X class
• An object is a class if and only if it can create instances

of itself.
• A Metaclass is just a class whose instances are classes

– Point class is a metaclass as its instance is the class Point

35
S.Ducasse LSE

Roadmap
• Indexed Classes

• Classes as Objects

• Class Instance Variables and Methods

• Class Variables

36

S.Ducasse LSE

Class Methods
• As any object a (meta)class can have methods that represent

the behavior of its instance: a class
• Uniformity => Same rules as for normal classes
• No constraint: just normal methods
• Can only access instance variable of the class:

37
S.Ducasse LSE

Class Method Examples
• NetworkManager class>>new can only access

uniqueInstance class instance variable and not instance
variables (like nodes).

• Default Instance Creation class method:

• new/new: and basicNew/basicNew: (see Direct Instance
Creation)

• Packet new

• Specific instance creation method

• Packet send: ‘Smalltalk is fun’ to: #lpr"

38 S.Ducasse LSE

Class Instance Variables
• Like any object, a class is an instance of a class that can have

instance variables that represent the state of a class.

• When Point defines the new instance variable z, the
instances of Point have 3 value (one for x, one for y, and one
for z)

• When a metaclass defines a new instance variable, then its
instance (a Class) gets a new value in addition to subclass,
superclasses, methodDict…

39

S.Ducasse LSE

The Singleton Pattern
• A class having only one instance
• We keep the instance created in an instance variable

WebServer class
 instanceVariableNames: 'uniqueInstance’

WebServer class>>new
 self error: 'You should use uniqueInstance to get the unique instance'

WebServer class>>uniqueInstance
 uniqueInstance isNil
 ifTrue: [uniqueInstance := self basicNew initialize].
 ^ uniqueInstance

40
S.Ducasse LSE

Singleton
• WebServer being an instance of WebServer class has

an instance variable named uniqueInstance.

• WebServer has a new value that is associated with
uniqueInstance

41 S.Ducasse LSE

Design Implications
• An instance variable of a class can be used to represent

information shared by all the instances of the class. However,
you should use class instance variables to represent the state
of the class (like the number of instances, ...) and not
information of its instance.

• Should use shared Variable instead (next Section).

42

S.Ducasse LSE

Advanced Classes
• Indexed Classes

• Classes as Objects

• Class Instance Variables and Methods

• Class Variables

43 S.Ducasse LSE

classVariable = Shared Variables
• How to share state between all the instances of a class:

Use a classVariable

• a classVariable is shared and directly accessible by all the
instances of the class and subclasses

• A pretty bad name: should have been called Shared Variables
(now fixed in VW)

• Shared Variable => begins with an uppercase letter

• a classVariable can be directly accessed in instance methods
and class methods

44
S.Ducasse LSE

classVariable = shared Variab. (Sq)

Magnitude subclass: #Date

 instanceVariableNames: 'julianDayNumber '

 classVariableNames: 'DaysInMonth FirstDayOfMonth MonthNames
SecondsInDay WeekDayNames '

 poolDictionaries: ''

 category: 'Kernel-Magnitudes'

45

S.Ducasse LSE

Date class>>initialize

!"Initialize class variables representing the names of the months and days and the
number of seconds, days in each month, and first day of each month."

!MonthNames := #(January February March April May June July August
September October November December).
!SecondsInDay := 24 * 60 * 60.
!DaysInMonth := #(31 28 31 30 31 30 31 31 30 31 30 31).
!FirstDayOfMonth := #(1 32 60 91 121 152 182 213 244 274 305 335).
!WeekDayNames := #(Monday Tuesday Wednesday Thursday Friday Saturday
Sunday).

46
S.Ducasse LSE

ClassVariable vs. Instance Variables

47
S.Ducasse LSE

48

S.Ducasse LSE

Class Instance Variables vs classVariables

• a classVariable is shared and directly accessible by all the
instances and subclasses

• Class instance variables, just like normal instance
variables, can be accessed only via class message and
accessors:
– an instance variable of a class is private to this class.

• Take care: when you change the value of a classVariable
the whole inheritance tree is impacted!

49
S.Ducasse LSE

Summary of Variable Visibility

NetworkManager>>detectNode: aBoolBlock

instance variables
nodes

class instance variables
uniqueInstance

classVariables
Domain

instance methods

class methods

NetworkManager class>>new
uniqueInstance isNil

ifTrue:[uniqueInstance := super new].

^uniqueInstance

^nodes detect: aBoolBlock

50
S.Ducasse LSE

ClassVariables...
• ClassVariables can be used in conjunction with instance

variables to cache some common values that can be
changed locally in the classes.

51

S.Ducasse LSE

Example
• in the Scanner class a table describes the types of the

characters (strings, comments, binary....). The original table is
stored into a classVariable, its value is loaded into the
instance variable. It is then possible to change the value of
the instance variable to have a different scanner.

Object subclass: #Scanner

!instanceVariableNames: 'source mark prevEnd hereChar
token tokenType buffer typeTable '

!classVariableNames: 'TypeTable '

!category: 'System-Compiler-Public Access'

52
S.Ducasse

What you should know
• Classes are objects too
• Class methods are just methods on objects that are

classes
• Classes are also represented by instance variables (class

instance variables)
• (Shared Variables) ClassVariables are shared among

subclasses and classes (metaclass)

53

