
S.Ducasse

LSE

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/

Some Points on Classes

1
S.Ducasse LSE

Outline
• Class definition

• Method definition

• Basic class instantiation

2 S.Ducasse LSE

A template is proposed by the browser:
Smalltalk defineClass: #NameOfClass

 ! superclass: #{NameOfSuperclass}

! indexedType: #none

! private: false

 ! instanceVariableNames: 'instVarName1
instVarName2'

 ! classInstanceVariableNames: ''

! imports: ''

! category: ''

Class Definition (VW)

3

S.Ducasse LSE

Fill the Template (VW)
Smalltalk defineClass: #Packet

 ! superclass: #{Object}

! indexedType: #none

! private: false

 ! instanceVariableNames: 'contents addressee
originator'

! classInstanceVariableNames: ''

 ! imports: ''

! category: 'LAN'

Automatically a class named “Packet class” is created. Packet
is the unique instance of “Packet class”. To see it, click on the
class button in the browser

4 S.Ducasse LSE

Class Definition: (Sq)
A template is proposed by the browser:

NameOfSuperclass subclass: #NameOfClass

 ! instanceVariableNames: 'instVarName1
instVarName2'

 ! classVariableNames: 'ClassVarName1
ClassVarName2'

 ! poolDictionaries: ''

 " category: 'CategoryName’

5 S.Ducasse LSE

Filling the Template (Sq)
Just fill this Template in:

! Object subclass: #Packet
! ! instanceVariableNames: 'contents
addressee originator '

! ! classVariableNames: ''

! ! poolDictionaries: ''

" " category: 'LAN-Simulation’

Automatically a class named “Packet class” is created.
Packet is the unique instance of Packet class. To see it,
click on the class button in the browser

6

S.Ducasse LSE

Named Instance Variables
 instanceVariableNames: 'instVarName1 instVarName2'
 ...
 instanceVariableNames: 'contents addressee originator '
! ...

• Begins with a lowercase letter
• Explicitly declared: a list of instance variables
• Name should be unique in the inheritance chain
• Default value of instance variable is nil
• Private to the instance: instance based (vs. C++ class-based)
• Can be accessed by all the methods of the class and its

subclasses
• Instance variables cannot be accessed by class methods.
• A client cannot directly access instance variables.
• The clients must use accessors to access an instance variable.

7
S.Ducasse LSE

Roadmap
• Class definition

• Method definition

• Basic class instantiation

8 S.Ducasse LSE

Method Definition
• Fill in the template. For example:

!! Packet>>defaultContents

"" “returns the default contents of a Packet”

"" ^ ‘contents no specified’

!! Workstation>>originate: aPacket
!! aPacket originator: self.

 self send: aPacket

• How to invoke a method on the same object? Send the message
to self

!! Packet>>isAddressedTo: aNode

"" “returns true if I’m addressed to the node aNode”

!! ^ self addressee = aNode name

9

S.Ducasse LSE

Accessing Instance Variables
Using direct access for the methods of the class
! ! Packet>>isSentBy: aNode
! ! ! ^ originator = aNode

! is equivalent to use accessors
! ! Packet>>originator
! ! ! ^ originator

! ! Packet>>isSentBy: aNode
! ! ! ^ self originator = aNode

Design Hint: Do not directly access instance variables
of a superclass from subclass methods. This way classes
are not strongly linked.

10
S.Ducasse LSE

Methods always return a Value
• Message = effect + return value

• By default, a method returns self

• In a method body, the ^ expression returns the value of the
expression as the result of the method execution.

!Node>>accept: thePacket

! self send: thePacket

This is equivalent to:

!Node>>accept: thePacket

! self send: thePacket.

! ^self

11
S.Ducasse LSE

Methods always return a value
• If we want to return the value returned by #send:

Node>>accept: thePacket

!̂ self send: thePacket.

• Use ^ self to notify the reader that something abnormal is
arriving

MyClass>>foo
"" …

^ self

12

S.Ducasse LSE

Some Naming Conventions
• Shared variables begin with an upper case letter
• Private variables begin with a lower case letter
• For accessors, use the same name as the instance

variable accessed:

!

Packet>>addressee

^ addressee

!Packet>>addressee: aSymbol

!addressee := aSymbol

13
S.Ducasse LSE

Some Naming Conventions
• Use imperative verbs for methods performing an action

like #openOn:, #close, #sleep

• For predicate methods (returning a boolean) prefix the
method with is or has

• Ex: isNil, isAddressedTo:, isSentBy:

• For converting methods prefix the method with as
• Ex: asString

14
S.Ducasse LSE

Roadmap
• Class definition

• Method definition

• Basic class instantiation

15

S.Ducasse LSE

Object Instantiation
Objects can be created by:

- Direct Instance creation: new/new:

- Messages to instances that create other objects

- Class specific instantiation messages

16
S.Ducasse LSE

Rectangle

width
height
position
area
intersect:

100 200 33@128

150 150 50@100

class

width height positionclass

width height position

 nil nil nil

width height position

class

Object Creation
- When a class creates an object =

 allocating memory + marking it to

 be instance of that class

17 S.Ducasse LSE

Instance Creation with new

aClass new

returns a newly and UNINITIALIZED instance

! OrderedCollection new -> OrderedCollection ()

! Packet new -> aPacket

Default instance variable values are nil

nil is an instance of UndefinedObject and only
understands a limited set of messages

18

S.Ducasse LSE

Messages to Instances
Messages to Instances that create Objects

1 to: 6 ! ! ! (an interval)

1@2 ! ! (a point)

(0@0) extent: (100@100) ! (a rectangle)

#lulu asString ! ! (a string)

1 printString !! ! ! (a string)

3 asFloat ! ! (a float)

#(23 2 3 4) asSortedCollection !
! ! ! ! ! ! ! ! (a sortedCollection)

19 S.Ducasse LSE

Opening the Box

1 to: 6
creates an interval

Number>>to: stop
 "Answer an Interval from the receiver up to the argument,
 stop, with each next element computed by incrementing the
 previous one by 1."

!̂ Interval from: self to: stop by: 1

20
S.Ducasse LSE

Strings...
1 printString

Object>>printString
 "Answer a String whose characters are a description
 of the receiver."

!| aStream |
!aStream := WriteStream on: (String new: 16).
!self printOn: aStream.
!̂ aStream contents

21

S.Ducasse LSE

Instance Creation
1@2

creates a point

Number>>@ y

 "Answer a new Point whose x value is the receiver and

 whose y value is the argument."

!

 <primitive: 18>

! ^ Point x: self y: y

22
S.Ducasse LSE

Class-specific Messages
Array with: 1 with: 'lulu'

OrderedCollection with: 1 with: 2 with: 3

Rectangle fromUser -> 179@95 corner: 409@219

Browser browseAllImplementorsOf: #at:put:

Packet send: ‘Hello mac’ to: #mac

Workstation withName: #mac

23
S.Ducasse LSE

new and new:
• new:/basicNew: is used to specify the size of the

created instance

 ! ! Array new: 4 -> #(nil nil nil nil)

• new/new: can be specialized to define customized
creation

• basicNew/basicNew: should never be overridden

• #new/basicNew and new:/basicNew: are class methods

24

S.Ducasse

Summary
How to define a class?

What are instance variables?

How to define a method?

Instances creation methods

25

