Essential OO Concepts

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/

Stéphane Ducasse

stéphane.ducasse@univ-savoie.fr

S.Ducasse 1

Outline

e OOP
e Objects, classes
® Inheritance

e Composition
e Comparison

S.Ducasse 2 t%

Object-Orientation

Is a paradigm not a technology
Reflects, simulates the real world
Thinks in terms of organization
Tries to

e Handle complexity

e Enhance reusability

e Minimize maintenance cost

S.Ducasse 3

&

Evolution

Procedures

Structured Programming
Fourth Generation Languages
Object-Oriented Programming
m

$Ducasse 4 t%

Traditional Point of View

Focuses upon procedures

Functionality is vested in procedures

Data exists solely to be operated upon by procedures
Procedures know about the structure of data
Requires large number of procedures and procedure
names

S Ducasse s t%

Data and Procedures

Code

Data char* employes name (emp)
{result: char*;
ms.m;%ic (size_of(...)1;
Str_copy! SMP-first_pame, ...);
[str copyTemp—dact_name, ...;

return(result) }

oat yearly wage (emp)
M
result = (emp hourly_wage+8) ;

result = result*
working_days_in_year
return(result) }

rirst_name: chars
last_name char*
age int

sen Char*
date
position: char*
hourly_wage: float

— &)

Roadmap

e OOP

Objects, classes
Inheritance
Composition

L]
L]
L]
e Comparison

SDucasse 7 th(E)

What is OOP?

e An application is a collection of interacting entities
(objects)

e Objects are characterized by behavior and state

o Inter-object behavior needs to be coordinated

e Inter-object communication is the key to coordination

SDucasse 8 t%

Object-Oriented Viewpoint

- An application is a set of objects interacting by
sending messages

- The functionality of an object is described by its
methods, its data are stored in private variables

- An object’s functionality can be invoked by sending a
message

- Everything is an object

S.Ducasse t

State + Behavior + Identity State + Behavior + Identity Equality and ldentity

]

e e State: Objects it contains or refers to ® | want to eat the pizza that you are eating

e Ex:point location
e Equality: | want to eat the “same” kind of pizza
e Behavior: an object understands a given set of

messages e |dentity: | eat your pizza

e |dentity: an object can be the same (of the same class)
than another one but it has still a different identity
(location in memory)

-—@ﬁn‘?@J Lﬁ&d

S Ducasse 0 tl-sfji) S Ducasse " ﬂ-fs}) S Ducasse 2 1%
Data/Messages/Methods What vs. How Message
- What: Messages - Sent to receiver object: receiver-object message
Messages - Specify what behavior objects are to perform - A message may include parameters necessary for performing
- Details of how are left up to the receiver the action
- State information only accessed via messages + In Smalltalk, a message-send always returns a result (an
Methods - How: Methods object)
- Specify how operation is to be performed - Only way to communicate with an object and have it
- Must have access to (contain or be passed) data perform actions

- Need detailed knowledge of data
- Can manipulate data directly

Messages aClient area

aRectangle area
aRectangle

—) —) —)

Method Object Encapsulation Encapsulation at Work

- Defines how to respond to a message e Technique for ared
- Selected via method lookup technique o Creating objects with encapsulated state/behaviour aClient area—\._ P
- Has name that is the same as message name ¢ Hiding implementation details
- Is a sequence of executable statements ¢ Protecting the state information of objects aRectangle area
- Returns an object as result of execution e Communicating/accessing via a uniform interface aRectangle
e Puts objects in control
e Facilitates modularity, code reuse and maintenance area
areaq area ~ e External perspective vs. Internal perspective area .

aClient " area o What vs. How aClient —f B area
CThrw ® Message vs. Method d := (pt2-ptl).

aRecfar;;Ie area aRectangle area “dx*dy

aRectangle aRectangle

)

S Ducasse til-s(E) S Ducasse 17 tls/}) S Ducasse

Objects

Unique identity
Private state
Shared behavior among other similar objects

S.Ducasse 19

Class: Mold of Objects

- Describe state but not value of all the instances of the
class
- Position, width and height for rectangles
- Define behavior of all instances of the class

area Rectangle
A width * height

length, width, origin,
icolor,

borderSize,
lborderColor

larea

intersect:

center

Roadmap

¢ OOP

e Objects, classes

e Classes and Inheritance
e Composition

e Comparison

S.Ducasse 2 t%

Instances

e A particular occurrence of an object defined by a class
e Each instance has its own value for the instance

Class: Factory of Objects

- Reuse behavior
=> Factor into class

+ Class:“Factory” object for creating new objects of the
same kind

- Template for objects that share common characteristics

Rectangle
length, width, origin,
lcolor,

borderSize,

borderColor

[area —) D
intersect:

lcenter generates l:l
sideNearestTo: ~

SDucasse th(E)

isideNearestTo:

S.Ducasse

variables
e All instances of a class share
the same methods Rectangle
length, width, origin,
color,
borderSize,
borderColor
LesW_ farea
Leet .t sV |intersect:
P ot center
400@10 300@20 sideNearestTo:
100 10
20 140

S.Ducasse

2

&)

Inheritance

e New classes
e Can add state and behavior
e Can specialize ancestor behavior
e Can use ancestor’s behavior and state
e Can hide ancestor’s behavior

e Direct ancestor = superclass
e Direct descendant = subclass

S.Ducasse 25

Rectangle

Bordered
borderColor

area
Intersect

Comparable Quantity Hierarchy

LimitedPrecision |~

LargeNegativelnteger | | LargePositivelnteger

S.Ducasse

€3

How to Share Specification?

e Do not want to rewrite everything!

e Often times want small changes

e Class hierarchies for sharing of definitions

e Each class defines or refines the definition of its
ancestors
=> inheritance

$Ducasse 2 t%

Polymorphism - Late binding

e Same message can be sent to different objects
o Different receivers react differently (different
methods)

e aCircle area
e aRectangle area

e aColoredWindow open
e aScheduledWindow open
aWindow open

S.Ducasse 27

)

Late binding: “Let’s the receiver decide”

Mapping of messages to methods deferred until run-
time (dynamic binding)

Allows for rapid incremental development without the
need to recompile the complete applications

Most traditional languages do this at compile time
(static binding)

SDucasse 8 th(E)

Example

A rectangle can be composed of
two points:
to represent its origin and extent
to represent its topleft and bottomleft corners
or 4 numbers

N origin
ectangle oo Point

Rectangle
anigin
extent
aea

$Ducasse 3 t%

Outline

e OOP

Objects, classes
Inheritance
Composition

L]
L]
L]
e Comparison

SDucasse 4 th(E)

Roadmap

e OOP

e Objects, classes
e Classes and Inheritance
e Composition
e Comparison
N
SDucasse » t‘sf)

Example (2)

Polyline has a list of vertices

[_Polyiine |
verticesDo 1 .
brionse Point
r:

laleBy:

[_Polyllne]
verices

verlicesDo
!

S Ducasse n tl-s’})

Graphical Editor

e Managing list of objects: square, rectangle, circle...
e Intersect, color, rotate translate....

e We want to know the total area of a list of figures

SDucasse 3 th/\‘E)

Composition

e An object is composed of other objects
in a part-of relationship

e The object uses its parts to implement its behavior
® The object can delegate to its parts

S.Ducasse 30

&

Composition vs. Inheritance

Inheritance supports extension: ColoredRectangle

But
static, properties are difficult to change dynamically
we have to change classes at run-time
explosion of classes
class with too much responsibilities

With composition
run-time changes are easier: plug another objects (with
the same interface)
but lot of objects

S.Ducasse 33

S

Procedural Solution

tArea
element class = Circle
then tArea := tArea + element.circleArea.
element class= Rectangle
then tArea := tArea + element.rectangleArea

Same for ...
intersect, color, rotate translate....

S.Ducasse 36

)

In Java for example Problems Object-Oriented Solution

public static long sumShapes(Shape shapes[]) { e Adding a kind of graphical element Circle>>area
long sum = 0; e Change all the methods area, intersect, rotate, A Float pi * r * r
for (int i=0; i<shapes.length; i++) { translate
switch (shapes[i].kind . .
w (shapes[1] O A e Always have to check what is the data | manipulate Rectangle>>area
/1 a class constant

case Shape.CIRCLE: A width * height
sum += shapes[i].circleArea();
break;

case Shape.RECTANGLE: XXX>>area
sum += shapes[i].rectangleArea();
break; elements do:
. Il nore cases

\ [:each | tArea := tArea + each area]

}
return sum;

}

S Ducasse tll-s(E) S Ducasse 3 t% S Ducasse

W

Advantages Recap Recap

e Adding a new graphical object does not require to OOP see the world as interacting objects - OOP is based on
change the list operations - Encapsulating data and procedures
e | do not have know the kind of objects I'm Objects - Inheritance
manipulating as soon as they all share a common Have their own state - Polymorphism
interface Share the behavior among similar objects - Late Binding
Classes: Factory of objects - OOP promotes
Define behavior of objects - Modularity
Describe the structure of objects - Reuse

Share specification via hierarchies

S.Ducasse 40 t% S.Ducasse 41 S.Ducasse

