
S.Ducasse

LSE

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/

The Taste of Smalltalk

1 S.Ducasse LSE

Goals
•Two examples:

•“hello world”

•a LAN simulator

•To give you an idea of:

•the syntax

•the elementary objects and classes

•the environment

•To provide the basis for all the lectures:

•all the code examples,

•constructs,

•design decisions, ...

2 S.Ducasse LSE

An Advice
You do not have to know everything!!!

• “Try not to care - Beginning Smalltalk programmers often
have trouble because they think they need to understand all
the details of how a thing works before they can use it. This
means it takes quite a while before they can master
Transcript show: ‘Hello World’. One of the great leaps in OO
is to be able to answer the question "How does this work?"
with "I don’t care"“. Alan Knight. Smalltalk Guru

• We will show you how to learn and find your way!

3

S.Ducasse LSE

Some Conventions
• Return Values

• 1 + 3 -> 4

• ! Node new -> aNode

• Method selector #add:

• Method scope conventions

• Instance Method defined in class Node:

• Node>>accept: aPacket

• Class Method defined in class Node (in the class of
the the class Node)

• Node class>>withName: aSymbol

• aSomething is an instance of the class Something

4 S.Ducasse LSE

Roadmap
• “hello world”

• Syntax

• a LAN simulator

5 S.Ducasse LSE

Hello World
Transcript show: ‘hello world’

• At anytime we can dynamically ask the system to evaluate an
expression. To evaluate an expression, select it and with the
middle mouse button apply doIt.

• Transcript is a special object that is a kind of standard
output.

• It refers to a TextCollector instance associated with the
launcher.

6

S.Ducasse LSE

Transcript show: ‘hello world’

7 S.Ducasse LSE

Everything is an Object
The workspace is an object.

The window is an object: it is an instance of ApplicationWindow.

The text editor is an object: it is an instance of ParagraphEditor.

The scrollbars are objects too.

‘hello word’ is an object: it is aString instance of String.

#show: is a Symbol that is also an object.

The mouse is an object.

The parser is an object: instance of Parser.

The compiler is also an object: instance of Compiler.

The process scheduler is also an object.

The garbage collector is an object: instance of MemoryObject.

Smalltalk is a consistent, uniform world written in itself. You can learn
how it is implemented, you can extend it or even modify it. All the code
is available and readable

8 S.Ducasse LSE

Smalltalk Object Model
• ***Everything*** is an object

! Only message passing
! Only late binding

• Instance variables are private to the object
• Methods are public
• Everything is a pointer

• Garbage collector
• Single inheritance between classes
• Only message passing between objects

9

S.Ducasse LSE

Roadmap
• Hello World

• First look at the syntax

• LAN Simulator

10 S.Ducasse LSE

Complete Syntax on a PostCard
exampleWithNumber: x

 “Illustrates every part of Smalltalk method syntax. It has unary, binary, and key
word messages, declares arguments and temporaries, accesses a global variable
(but not and instance variable), uses literals (array, character, symbol, string,
integer, float), uses the pseudo variable true false, nil, self, and super, and has
sequence, assignment, return and cascade. It has both zero argument and one
argument blocks.”

! |y|

! true & false not & (nil isNil) ifFalse: [self halt].

! y := self size + super size.

" #($a #a ‘a’ 1 1.0)

! ! do: [:each | Transcript

 show: (each class name);

 show: (each printString);

 show: ‘ ‘].

! ^ x < y

11 S.Ducasse LSE

Yes ifTrue: is sent to a boolean
Weather isRaining

 ifTrue: [self takeMyUmbrella]

 ifFalse: [self takeMySunglasses]

ifTrue:ifFalse is sent to an object: a boolean!

12

S.Ducasse LSE

Yes a collection is iterating on itself

#(1 2 -4 -86)

 do: [:each | Transcript show: each abs
printString ;cr]

> 1

> 2

> 4

> 86

Yes we ask the collection object to perform the
loop on itself

13 S.Ducasse LSE

DoIt, PrintIt, InspectIt and Accept
• Accept = Compile: Accept a method or a class

definition

• DoIt: send a message to an object

• PrintIt: send a message to an object + print the result
(#printOn:)

• InspectIt: send a message to an object + inspect the
result (#inspect)

14
S.Ducasse LSE

Objects send messages
• Transcript show: ‘hello world’

• The above expression is a message

• the object Transcript is the receiver of the message

• the selector of the message is #show:

• one argument: a string ‘hello world’

• Transcript is a global variable (starts with an uppercase
letter) that refers to the Launcher’s report part.

15

S.Ducasse LSE

Vocabulary Point
Message passing or sending a message is equivalent to

invoking a method in Java or C++

calling a procedure in procedural languages

applying a function in functional languages

of course the last two points must be considered under
the light of polymorphism

16 S.Ducasse LSE

Roadmap
• Hello World

• First look at the syntax

• LAN Simulator

17 S.Ducasse LSE

A LAN Simulator
A LAN contains nodes, workstations, printers, file
servers. Packets are sent in a LAN and each node treats
them differently.

mac
node3

node2

pcnode1

lpr

18

S.Ducasse LSE

Three Kinds of Objects
Node and its subclasses represent the entities that are
connected to form a LAN.

Packet represents the information that flows between
Nodes.

NetworkManager manages how the nodes are
connected

19 S.Ducasse LSE

LAN Design

Node

WorkstationPrinter

NetworkManager

Packet
addressee
contents
originator
isSentBy: aNode
isAddressedTo: aNode

name
accept: aPacket
send: aPacket
hasNextNode

originate: aPacket
accept: aPacket

print: aPacket
accept: aPacket

declareNode: aNode
undeclareNode: aNode
connectNodes: anArrayOfAddressees

nextNode

20
S.Ducasse LSE

Interactions Between Nodes

accept: aPacket

send: aPacket

nodePrinter aPacket node1

isAddressedTo: nodePrinter

accept: aPacket

print: aPacket

[true]

[false]

21

S.Ducasse LSE

Node and Packet Creation
! |macNode pcNode node1 printerNode node2 node3 packet|

! macNode := Workstation withName: #mac.

! pcNode := Workstation withName: #pc.

! node1 := Node withName: #node1.

! node2 := Node withName: #node2.

! node3 := Node withName: #node2.

! printerNode := Printer withName: #lpr.!

! macNode nextNode: node1.

! node1 nextNode: pcNode.

! pcNode nextNode: node2.

! node3 nextNode: printerNode.

! lpr nextNode: macNode.

!

! packet := Packet send: 'This packet travelled to' to: #lpr.

22 S.Ducasse LSE

Objects Send Messages
Message: 1 + 2

receiver : 1 (an instance of SmallInteger)

selector: #+

arguments: 2

Message: lpr nextNode: macNode
receiver: lpr (an instance of LanPrinter)

selector: #nextNode:

arguments: macNode (an instance of Workstation)

Message: Packet send: 'This packet travelled to' to:
#lpr

receiver: Packet (a class)

selector: #send:to:

arguments: 'This packet travelled to' and #lpr

23 S.Ducasse LSE

Transmitting a Packet
!| aLan packet macNode|
!...
!macNode := aLan findNodeWithAddress: #mac.
!packet := Packet send: 'This packet travelled to the printer' to:
#lpr.
!macNode originate: packet.
!! -> mac sends a packet to pc
!! -> pc sends a packet to node1
!! -> node1 sends a packet to node2
!! -> node2 sends a packet to node3
!! -> node3 sends a packet to lpr
!! -> lpr is printing
!! -> this packet travelled to lpr

24

S.Ducasse LSE

How to Define a Class?
• Fill the template:
!NameOfSuperclass subclass: #NameOfClass
!instanceVariableNames: 'instVarName1'
!classVariableNames: 'ClassVarName1 ClassVarName2'
!poolDictionaries: ''
!category: 'LAN'

25 S.Ducasse LSE

Packet
• For example to create the class Packet
Object subclass: #Packet
!instanceVariableNames: 'addressee originator
contents '
!classVariableNames: ''
!poolDictionaries: ''
!category: 'LAN'

26 S.Ducasse LSE

How to Define a Method?
message selector and argument names
! "comment stating purpose of message"

! | temporary variable names |

! statements

accept: thePacket
"If the packet is addressed to me, print it. Otherwise just
behave like a normal node."

! (thePacket isAddressedTo: self)
! ! ifTrue: [self print: thePacket]

 ifFalse: [super accept: thePacket]

27

S.Ducasse LSE

In Java

• In Java we would write

!void accept(thePacket Packet)

!/*If the packet is addressed to me, print it. Otherwise just
behave like a normal node.*/

!if (thePacket.isAddressedTo(this)){! ! this.print
(thePacket)}

!! else super.accept(thePacket)}

28
S.Ducasse

Summary
What is a message?

What is the message receiver?

What is the method selector?

How to create a class?

How to define a method?

29

