Naming Smalltalk
Patterns

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/

S.Ducasse 1

S.Ducasse

Mainly from Smalltalk Best
Practice Patterns by K. Be
Excellent

Must read!

Coding Standards for Smalltalk

Variables have no types

Names can be any length
Operations named with keywords
Pretty printer

A\
S.Ducasse 4 t'wsf)

Names

S.Ducasse

Names should mean something.

Standard protocols

e Object (printOn:, =)

e Collection (do:, add;, at:put, size)
Standard naming conventions

Examples

ParagraphEditor>>highlight: aRectangle

self reverse: aRectangle
If you would replace highlight: by reverse:, the system
will run in the same way but you would reveal the
implementation of the method.

A\
S.Ducasse 7 t'-sf)

Examples

S.Ducasse

If we choose to name after HOW it accomplished its
task
Array>>linearSearchFor:,
Set>>hashedSearchFor:,
BTree>>treeSearchFor:

These names are not good because you have to know
the type of the objects.
Collection>>searchFor:
even better
Collection>>includes:

Coding Standards

e Standards

® improve communication
let code be the design
make code more habitable
change

N\
SDucasse 3 tlsj)

Intention Revealing Selector

e Readability of message send is more important than
readability of method

® Name should specify what method does, not how.

e aDoor open u
e and not el
e aDoor putPressureOnHandleThenPullWithRotation

A\
S.Ducasse 6 tlwsj)

Name your Method Well

Instead of:
setTypelList: aList
"add the aList elt to the Set of type taken by the variable"

typeList add: aList.
Write:

addTypelList: aList
"add the alList elt to the Set of type taken by the variable"
typeList add: aList.

N\
S.Ducasse 9 t'-sf)

Name Well your Methods

setType:aVal
"compute and store the variable type"
self addTypeList: (ArrayType with: aVal).
currentType := (currentType computeTypes: (ArrayType with: aVal))

Not precise, not good

computeAndStoreType: aVal

"compute and store the variable type"

self addTypeList: (ArrayType with: aVal).

currentType := (currentType computeTypes: (ArrayType with: aVal))
Precise, give to the reader a good idea of the
functionality and not about the implementation

Method Names

S.Ducasse "

&)

Method Names

o [f there is already a standard name, use it otherwise
follow these rules.

e Three kinds of methods
e change state of receiver
o change state of argument
e return value from receiver

SDucasse 0 t%
Change State of Receiver
e method name is verb phrase
e translateBy:
® add:
SDucasse B t%

Change State of Argument

e Verb phrase ending with preposition like on or to.
o displayOn:
e addTo:
e printOn:

S.Ducasse 14

SDucasse 2 t%
Return Value from Receiver
e Method name is noun phrase or adjective, a
description rather than a command
e translatedBy:
® size
o topleft
SDucasse s t%

Method Names

® Specialized names for specialized purposes.
e Double-dispatching methods

Accessing methods

Query methods

Boolean property setting

L]
L]
L]
e Converter methods

&

S.Ducasse 16

Accessing Methods

e Many instance variables have accessing methods,
methods for reading and writing them.

e Same name than the instance variables

o Accessing methods come in pairs.
® name, hame:
e width, width:

® X, X!

S.Ducasse 17

&)

When to use Accessing Methods

e Two opinions:
o Always, including an object’s own instance variable
e |azy initialization, subclassing is easier
e Only when you need to use it.
® better information hiding
e With the refactoring browser it is easy to transform
the class using or not accessing

&

S.Ducasse 18

Query Method

e Methods that return a value often describe the type of
the value because they are noun phrases.

e Query methods are not noun phrases, but are
predicates.

e How can we make the return type clear?

e Provide a method that returns a Boolean in the

“testing” protocol. Name it by prefacing the property
name with a form of “be” or “has”- is, was, will, has

SDucasse 10 [

Testing Methods

e Prefix every testing method with "is".

e isNil
e isControlWanted
e isEmpty
e hasBorder
N
SDucasse 0 ttf)

Converting Method

e Often you want to return the receiver in a new
format.

e Prepend "as" to the name of the class of object
returned.
e asSet (in Collection)
e asFloat (in Number)
e asComposedText (in Text)

N\
SDucasse 2 tlsj)

Classes

A\
S.Ducasse 2 t'wsf)

Simple Superclass Name

e What should we call the root of a hierarchy?
e Complex name conveys full meaning.
e Simple name is easy to say, type, extend.
e But need to show that subclasses are related.

\
SDucasse 2 ﬂ-f)

Simple Superclass Name

e Give superclasses simple names: two or (preferably)
one word
e Number
e Collection
e VisualComponent

A\
$Ducasse 2 th5

Qualified Subclass Name

e What should you call a subclass that plays a role
similar to its superclass?
e Unique name conveys most information
e Derived name communicates relationship to superclass

A\
S Ducasse 2% tl-s:)

Qualified Subclass Name

e Use names with obvious meaning. Otherwise,
prepend an adjective to most important superclass.
e OrderedCollection
e UndefinedObject
e CloneFigureCommand, CompositeCommand,
ConnectionCommand

)
S Ducasse % (S5)

N
SDucasse 7 tl-sf)

Variables: Roles vs. Types

e Types are specified by classes
e aRectangle
e aCollection

® aView
® Roles - how an object is used
® location
® employees
o topView
S.Ducasse 28 t%

Role Suggesting Instance Variable

® What should you name an instance variable?
e Type is important for understanding implementation.
But class comment can describe type.
® Role communicates intent, and this harder to understand
than type.

\
SDucasse » ttf)

Role Suggesting Instance Variable

e Name instance variables for the role they play. Make
the name plural if the variable is a collection.
e Point: X,y
o |Interval: start, stop, step
e Polyline: vertices

Type Suggesting Parameter Name

® Name of variable can either communicate type or
role.

e Keywords communicate their parameter's role, so
name of variable should give new information.

&

S.Ducasse 31

Type Suggesting Parameter Name

e Name parameters according to their most general
expected class, preceded by "a" or "an". If there is
more than one parameter with the same expected
class, precede the class with a descriptive word.

&

S.Ducasse R t

N\
SDucasse 0 ts
Temporaries
e Name temporaries after role they play.
e Use temporaries to:
e collect intermediate results
e reuse result of an expression
® name result of an expression
e Methods are simpler when they don't use
temporaries!
A\
S.Ducasse 3 tlwsj)

Conclusion

Names are important

Programming is about
communication
intention

Read the book:
Smalltalk Best Practice Patterns

Even if you will program in Java or C#!

When the program compiles this is the start not the
end...

S.Ducasse 34

