
S.Ducasse

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/

Naming Smalltalk
Patterns

1
S.Ducasse

Coding Standards
• Mainly from Smalltalk Best

Practice Patterns by K. Beck

• Excellent

• Must read!

2 S.Ducasse

Coding Standards
• Standards

• improve communication

• let code be the design

• make code more habitable

• change

3

S.Ducasse

Coding Standards for Smalltalk
• Variables have no types

• Names can be any length

• Operations named with keywords

• Pretty printer

4 S.Ducasse

Names
• Names should mean something.

• Standard protocols

• Object (printOn:, =)

• Collection (do:, add:, at:put:, size)

• Standard naming conventions

5 S.Ducasse

Intention Revealing Selector
• Readability of message send is more important than

readability of method

• Name should specify what method does, not how.

• aDoor open

• and not

• aDoor putPressureOnHandleThenPullWithRotation

6

S.Ducasse

Examples
ParagraphEditor>>highlight: aRectangle

! ! self reverse: aRectangle

If you would replace highlight: by reverse: , the system
will run in the same way but you would reveal the
implementation of the method.

7 S.Ducasse

Examples
If we choose to name after HOW it accomplished its
task

! Array>>linearSearchFor:,

 Set>>hashedSearchFor:,

 BTree>>treeSearchFor:

These names are not good because you have to know
the type of the objects.

Collection>>searchFor:

even better

 Collection>>includes:

8 S.Ducasse

Instead of:

! setTypeList: aList

! "add the aList elt to the Set of type taken by the variable"

! typeList add: aList.

Write:

! addTypeList: aList

! "add the aList elt to the Set of type taken by the variable"
! typeList add: aList.

Name your Method Well

9

S.Ducasse

setType: aVal

 "compute and store the variable type"

 self addTypeList: (ArrayType with: aVal).

 currentType := (currentType computeTypes: (ArrayType with: aVal))

Not precise, not good

computeAndStoreType: aVal

"compute and store the variable type"

self addTypeList: (ArrayType with: aVal).

currentType := (currentType computeTypes: (ArrayType with: aVal))

Precise, give to the reader a good idea of the
functionality and not about the implementation

Name Well your Methods

10 S.Ducasse

Method Names

11 S.Ducasse

Method Names
• If there is already a standard name, use it otherwise

follow these rules.

• Three kinds of methods

• change state of receiver

• change state of argument

• return value from receiver

12

S.Ducasse

Change State of Receiver
• method name is verb phrase

• translateBy:

• add:

13 S.Ducasse

Change State of Argument
• Verb phrase ending with preposition like on or to.

• displayOn:

• addTo:

• printOn:

14 S.Ducasse

Return Value from Receiver
• Method name is noun phrase or adjective, a

description rather than a command

• translatedBy:

• size

• topLeft

15

S.Ducasse

Method Names
• Specialized names for specialized purposes.

• Double-dispatching methods

• Accessing methods

• Query methods

• Boolean property setting

• Converter methods

16 S.Ducasse

Accessing Methods
• Many instance variables have accessing methods,

methods for reading and writing them.

• Same name than the instance variables

• Accessing methods come in pairs.

• name, name:

• width, width:

• x, x:

17 S.Ducasse

When to use Accessing Methods
• Two opinions:

• Always, including an object’s own instance variable

• lazy initialization, subclassing is easier

• Only when you need to use it.

• better information hiding

• With the refactoring browser it is easy to transform
the class using or not accessing

18

S.Ducasse

Query Method
• Methods that return a value often describe the type of

the value because they are noun phrases.

• Query methods are not noun phrases, but are
predicates.

• How can we make the return type clear?

• Provide a method that returns a Boolean in the
“testing” protocol. Name it by prefacing the property
name with a form of “be” or “has”- is, was, will, has

19 S.Ducasse

Testing Methods
• Prefix every testing method with "is".

• isNil

• isControlWanted

• isEmpty

• hasBorder

20 S.Ducasse

Converting Method
• Often you want to return the receiver in a new

format.

• Prepend "as" to the name of the class of object
returned.

• asSet (in Collection)

• asFloat (in Number)

• asComposedText (in Text)

21

S.Ducasse

Classes

22 S.Ducasse

Simple Superclass Name
• What should we call the root of a hierarchy?

• Complex name conveys full meaning.

• Simple name is easy to say, type, extend.

• But need to show that subclasses are related.

23 S.Ducasse

Simple Superclass Name
• Give superclasses simple names: two or (preferably)

one word

• Number

• Collection

• VisualComponent

24

S.Ducasse

Qualified Subclass Name
• What should you call a subclass that plays a role

similar to its superclass?

• Unique name conveys most information

• Derived name communicates relationship to superclass

25 S.Ducasse

Qualified Subclass Name
• Use names with obvious meaning. Otherwise,

prepend an adjective to most important superclass.

• OrderedCollection

• UndefinedObject

• CloneFigureCommand, CompositeCommand,
ConnectionCommand

26 S.Ducasse 27

S.Ducasse

Variables: Roles vs. Types
• Types are specified by classes

• aRectangle

• aCollection

• aView

• Roles - how an object is used

• location

• employees

• topView

28 S.Ducasse

Role Suggesting Instance Variable
• What should you name an instance variable?

• Type is important for understanding implementation.
But class comment can describe type.

• Role communicates intent, and this harder to understand
than type.

29 S.Ducasse

Role Suggesting Instance Variable
• Name instance variables for the role they play. Make

the name plural if the variable is a collection.

• Point: x, y

• Interval: start, stop, step

• Polyline: vertices

30

S.Ducasse

Type Suggesting Parameter Name
• Name of variable can either communicate type or

role.

• Keywords communicate their parameter's role, so
name of variable should give new information.

31 S.Ducasse

Type Suggesting Parameter Name
• Name parameters according to their most general

expected class, preceded by "a" or "an". If there is
more than one parameter with the same expected
class, precede the class with a descriptive word.

32 S.Ducasse

Temporaries
• Name temporaries after role they play.

• Use temporaries to:

• collect intermediate results

• reuse result of an expression

• name result of an expression

• Methods are simpler when they don't use
temporaries!

33

S.Ducasse

Conclusion
Names are important

Programming is about
communication

intention

…

Read the book:
Smalltalk Best Practice Patterns

Even if you will program in Java or C#!

When the program compiles this is the start not the
end…

34

