
S.Ducasse

LSE

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/

Elements of Design

1 S.Ducasse LSE

Elements of Design
• Instance initialization
• Enforcing the instance creation
• Instance / Class methods
• Instance variables / Class instance

variables
• Class initialization
• Law of Demeter
• Factoring Constants
• Abstract Classes
• Template Methods
• Delegation
• Bad Coding Style

2
S.Ducasse LSE

Instance initialization
• Automatic initialize

• Lazy initialize

• Proposing the right interface

• Providing default value

3

S.Ducasse LSE

Provider Responsibility
• This is the responsibility of the class to provide well-

formed object

• The client should not make assumptions or been
responsible to send specific sequence of messages to
get a working object

4 S.Ducasse LSE

Instance Initialization
• How to ensure that an instance is well initialized?

• Automatic initialize

• Lazy initialize

• Proposing the right interface

• Providing default value

5 S.Ducasse LSE

A First Implementation of Packet
Object subclass: #Packet
! instanceVariableNames: ‘contents addressee originator ‘

Packet>>printOn: aStream
" super printOn: aStream.

! aStream nextPutAll: ‘ addressed to: ‘; nextPutAll: self
addressee.

! aStream nextPutAll: ‘ with contents: ’; nextPutAll: self contents

Packet>>addressee
" ^addressee

Packet>>addressee: aSymbol
" addressee := aSymbol

6

S.Ducasse LSE

Packet class Definition

Packet class is automatically defined

" " Packet class

 " " instanceVariableNames: ''

Example of instance creation

" " Packet new

" " " addressee: #mac ;

! ! ! contents: ‘hello mac’

7 S.Ducasse LSE

Fragile Instance Creation
If we do not specify a contents, it breaks!

" |p|

" p := Packet new addressee: #mac.

" p printOn: aStream -> error

Problems of this approach:
responsibility of the instance creation relies on the
clients

A client can create packet without contents, without
address instance variable not initialized -> error (for
example, printOn:) -> system fragile

8 S.Ducasse LSE

Fragile Instance Creation Solutions

• Automatic initialization of instance variables

• Proposing a solid interface for the creation"

• Lazy initialization

9

S.Ducasse LSE

Assuring Instance Variable Initialization

• Problem: By default new class method returns
instance with uninitialized instance variables.

• Moreover, initialize method is not automatically called
by creation methods new/new:.

• Note that since Squeak 3.7 initialize is called
automatically at creation time (new)

• How to initialize a newly created instance ?

10 S.Ducasse LSE

The New/Initialize Couple
Define an instance method that initializes the instance
variables and override new to invoke it.
(1&2)! ! Packet class>>new “Class Method”

" " " ^ super new initialize" "

"

(3)! ! Packet>>initialize! “Instance Method”

 "" super initialize.

(4)! ! contents := ‘default message’

"

Packet new (1-2) => aPacket initialize (3-4) =>
returning aPacket but initialized!
Reminder: You cannot access instance variables from a class
method like new

11 S.Ducasse LSE

The New/Initialize Couple
Object>>initialize

! “do nothing. Called by new my subclasses !

 override me if necessary”

" ^ self

12

S.Ducasse LSE

Strengthen Instance Creation Interface

• Problem: A client can still create aPacket without
address.

• Solution: Force the client to use the class interface
creation.

• Providing an interface for creation and avoiding the
use of new: Packet send: ‘Hello mac’ to: #Mac

• First try:

Packet class>>send: aString to: anAddress
^ self new contents: aString ; addressee: anAddress

13 S.Ducasse LSE

Examples of Instance Initialization
step 1. SortedCollection sortBlock: [:a :b| a name < b
name]

SortedCollection class>>sortBlock: aBlock
 "Answer a new instance of SortedCollection such that its
 elements are sorted according to the criterion specified in
 aBlock."

" ^self new sortBlock: aBlock""

"

step 2. self new => aSortedCollection

step 3. aSortedCollection sortBlock: aBlock" "

step 4. returning the instance aSortedCollection

14 S.Ducasse LSE

Another Example
step 1. OrderedCollection with: 1

Collection class>>with: anObject

 "Answer a new instance of a Collection containing
 anObject."

" | newCollection |
 newCollection := self new.

 newCollection add: anObject.

 ^newCollection

15

S.Ducasse LSE

Lazy Initialization
When some instance variables are:

- not used all the time

- consuming space, difficult to initialize because depending
on other

- need a lot of computation

Use lazy initialization based on accessors

Accessor access should be used consistently!

16 S.Ducasse LSE

Lazy Initialization Example
A lazy initialization scheme with default value

" Packet>>contents
 contents isNil" " "

 ifTrue: [contents := ‘no contents’]

" ^ contents

aPacket contents or self contents

A lazy initialization scheme with computed value

Dummy>>ratioBetweenThermonuclearAndSolar
" ratio isNil

 ifTrue: [ratio := self heavyComputation]

" ^ ratio

17 S.Ducasse LSE

Providing a Default Value
OrderedCollection variableSubclass: #SortedCollection
" instanceVariableNames: 'sortBlock '

" classVariableNames: 'DefaultSortBlock '

SortedCollection class>>initialize
" DefaultSortBlock := [:x :y | x <= y]

SortedCollection>>initialize
! "Set the initial value of the receiver's sorting algorithm
to a default.”

" sortBlock := DefaultSortBlock

18

S.Ducasse LSE

Providing a Default Value
SortedCollection class>>new: anInteger

" "Answer a new instance of SortedCollection. The

 default sorting is a <= comparison on elements. "

"

" ^ (super new: anInteger) initialize

SortedCollection class>>sortBlock: aBlock

" "Answer a new instance of SortedCollection such

 that its elements are sorted according to the

 criterion specified in aBlock. "

 ^ self new sortBlock: aBlock

19 S.Ducasse LSE

Invoking per Default the Creation Interface

OrderedCollection class>>new
" "Answer a new empty instance of
OrderedCollection."

" ^self new: 5

20 S.Ducasse LSE

Forbidding new?
Problem: We can still use new to create fragile
instances

Solution: new should raise an error!

"

Packet class>>new

" self error: 'Packet should only be created using
send:to:'

21

S.Ducasse LSE

Forbidding new Implications
But we still have to be able to create instance!

Packet class>>send: aString to: anAddres

 ^ self new contents: aString ; addressee: anAddress

=> raises an error

Packet class>>send: aString to: anAddress
" ^ super new contents: aString ; addressee: anAddress

" => BAD STYLE: link between class and superclass
dangerous in case of evolution

22 S.Ducasse LSE

Forbidding new
Solution: use basicNew and basicNew:

" Packet class>>send: aString to: anAddress

" " ^ self basicNew

" " " contents: aString ;

" " " addressee: anAddress

Conclusion: Never override basic* methods else you
will not be able to invoke them later

23 S.Ducasse LSE

How to Reuse Superclass Initialization?

A class>>new
" ^ super new doThat; andThat; end

B class>>forceClientInterface
" ^ self basicNew ???

Solution: Define the initialization behavior on the instance
side

A>>doThatAndThatEnd
" ^ self doThat; andThat; end

A class>>new
" ^ super new doThatAndThatEnd

B class>>forceClientInterface
" ^ self basicNew doThatAndThatEnd

"

24

S.Ducasse LSE

Different Self/Super
Do not invoke a super with a different method
selector. It’s bad style because it links a class and a
superclass.

This is dangerous in case the software evolves.

25 S.Ducasse LSE

Example
Packet class>>new

 self error: 'Packet should be created using send:to:'

"

Packet class>>send: aString to: anAddress

" ^ super new contents: aString ; addressee:
anAddress

Use basicNew and basicNew:

Packet class>>send: aString to: anAddress
 ^ self basicNew contents: aString ; addressee: anAddress

26 S.Ducasse LSE

Super is static!

A

foo

bar

C

foo ^ 50

^ 10

^ self foo

B

foo

bar

^ super foo

^ 100

With the super foo:
A new bar

-> 10

B new bar

-> 10

C new bar

-> 10

Without the super foo:
A new bar

-> 10

B new bar

-> 100

C new bar

-> 50

super shortcuts dynamic
calls

27

S.Ducasse LSE

Basic Design Mistakes

28 S.Ducasse LSE

A Class should have
Class Person {

String getName();

void setName(String name);

int getAge();

void setAge(int age);

Car getCar();

void setCar(Car car);

}

What do we see ?
A class should have one main responsibility and some
behavior not just holding state

Minimal access to its data!

29 S.Ducasse LSE

Confusing
Class City extends Place { … }

Class Jerusalem extends City implements Capital { … }

Class TelAviv extends City { … }

What is wrong here?

Confusing inheritance and instantiation

Too much inheritance?

30

S.Ducasse LSE

Do not expose implementation

31 S.Ducasse LSE

Do not overuse conversions
nodes asSet

removes all the duplicated nodes (if node knows how
to compare). But a systematic use of asSet to protect
yourself from duplicate is not good

nodes asSet asOrderedCollection
returns an ordered collection after removing duplicates

Look for the real source of duplication if you do not
want it!

32 S.Ducasse LSE

Hiding missing information
Dictionary>>at: aKey

This raises an error if the key is not found

Dictionary>>at: aKey ifAbsent: aBlock
Allows one to specify action aBlock to be done when
the key does not exist.

Do not overuse it:

nodes at: nodeId ifAbsent:[]

This is bad because at least we should know that the
nodeId was missing

33

S.Ducasse LSE

isNil
Avoid to return special results as nil

messages := self fetchMessages.

messages isNil

ifFalse: [messages dispatchFrom: self]

What if we would simply return an empty collection in

fetchMessages instead of nil?

Less conditional and ugly tests!!

34 S.Ducasse LSE

Say once and only once
• No Magic Number Duplicated

• Extract method

• Remove duplicated code

35 S.Ducasse LSE

Factorize Magic Numbers
Ideally you should be able to change your constants
without having any impact on the code!

For that
define a constant only once via accessor

provide testing method (hasNextNode)

default value using the constant accessor

36

S.Ducasse LSE

Factoring Out Constants
We want to encapsulate the way “no next node” is
coded. Instead of writing:
"

Node>>nextNode
" ^ nextNode

" NodeClient>>transmitTo: aNode
! ! aNode nextNode = ‘no next node’

" " " ...

37 S.Ducasse LSE

Factoring Out Constants
Write: "

"

" NodeClient>>transmitTo: aNode
" " aNode hasNextNode

" " "

" Node>>hasNextNode
" " ^ (self nextNode = self class noNextNode) not

" Node class>>noNextNode
! ! ^ ‘no next node’

38 S.Ducasse LSE

Default value between class and instance

If we want to encapsulate the way “no next node” is
coded and shared this knowledge between class and
instances.

Instead of writing:

 aNode nextNode isNil not

Write:

Node>>hasNextNode
" " ^ self nextNode = self noNextNode

Node>>noNextNode
" " ^self class noNextNode

Node class>>noNextNode
" " ^ #noNode

39

S.Ducasse LSE

Initializing without Duplicating
" " Node>>initialize
! ! ! accessType := ‘local’

" " " ...

" " Node>>isLocal
! ! ! ^ accessType = ‘local’

It’s better to write

" " Node>>initialize
" " " accessType := self localAccessType

" " Node>>isLocal
" " " ^ accessType = self localAccessType

" " Node>>localAccessType
! ! ! ^ ‘local’ 40 S.Ducasse LSE

Say something only once
Ideally you could be able to change the constant
without having any problems.

You may have to have mapping tables from model
constants to UI constants or database constants.

41 S.Ducasse LSE

Constants Needed at Creation Time
Node class>>localNodeNamed: aString
" " |inst|

" " inst := self new.

" " inst name: aString.

" " inst type: inst localAccessType

If you want to have the following creation interface

" Node class>>name: aString accessType: aType
" " ^self new name: aString ; accessType: aType

" Node class>>name: aString
" " ^self name: aString accessType: self
localAccessType

42

S.Ducasse LSE

Constants Needed at Creation Time
You need:

" Node class>>localAccessType
! ! ^ ‘local’

=> Factor the constant between class and instance level

" Node>>localAccessType
" " ^ self class localAccessType

=> You could also use a ClassVariable that is shared
between a class and its instances.

43 S.Ducasse LSE

Elements of Design
• Class initialization

44
S.Ducasse LSE

Class Methods - Class Instance Variables

• Classes (Packet class) represents class (Packet).

• Class instance variables are instance variables of class

• They should represent the state of class: number of
created instances, number of messages sent,
superclasses, subclasses....

• Class methods represent class behavior: instance
creation, class initialization, counting the number of
instances....

• If you weaken the second point: class state and
behavior can be used to define common properties
shared by all the instances

45

S.Ducasse LSE

Class Initialization
• How do we know that all the class behavior has been

loaded?

• At the end !

• Automatically called by the system at load time or
explicitly by the programmer.

• Used to initialize a classVariable, a pool dictionary or
class instance variables.

• ‘Classname initialize’ at the end of the saved files in
Squeak

• In postLoadAction: in VW

46 S.Ducasse LSE

Example of class initialization
Magnitude subclass: #Date

 instanceVariableNames: 'day year'

 classVariableNames:

 'DaysInMonth FirstDayOfMonth MonthNames

 SecondsInDay WeekDayNames’

47 S.Ducasse LSE

Date class>>initialize
Date class>>initialize

 "Initialize class variables representing the names of the months and

 days and the number of seconds, days in each month, and first day of

 each month. "

 MonthNames := #(January February March April May

 June July August September October November December).

 SecondsInDay := 24 * 60 * 60.

 DaysInMonth := #(31 28 31 30 31 30 31 31 30 31 30 31).

 FirstDayOfMonth := #(1 32 60 91 121 152 182 213 244 274 305
335).

 WeekDayNames := #(Monday Tuesday Wednesday Thursday Friday
Saturday Sunday)

48

S.Ducasse LSE

Sharing or not

• How can I share state and prepare

for instance specific state?

49 S.Ducasse LSE

Case Study: Scanner

Scanner new

" scanTokens: 'identifier keyword: 8r31 ''string''
embedded.period key:word: . '

"

" >

#(#identifier #keyword: 25 'string' 'embedded.period'
#key:word: #'.')

50 S.Ducasse LSE

A Case Study: The Scanner class

Class Definition

Object subclass: #Scanner
" instanceVariableNames: 'source mark prevEnd
hereChar token tokenType saveComments
currentComment buffer typeTable '

" classVariableNames: 'TypeTable '

" poolDictionaries: ''

" category: 'System-Compiler-Public Access'

51

S.Ducasse LSE

Scanner enigma
Why having an instance variable and a classVariable
denoting the same object (the scanner table)?

TypeTable is used to initialize once the table

typeTable is used by every instance and each instance
can customize the table (copying).

52 S.Ducasse LSE

Clever Sharing

53 S.Ducasse LSE

A Case Study: Scanner (II)
Scanner>>initialize"

" "Scanner initialize"

" | newTable |

" newTable := ScannerTable new: 255 withAll: #xDefault. "default"

" newTable atAllSeparatorsPut: #xDelimiter.

" newTable atAllDigitsPut: #xDigit.

" newTable atAllLettersPut: #xLetter.

" '!%&*+,-/<=>?@\~' do: [:bin | newTable at: bin asInteger put: #xBinary].

" "Other multi-character tokens"

" newTable at: $" asInteger put: #xDoubleQuote.

" ...

" "Single-character tokens"

" newTable at: $(asInteger put: #leftParenthesis.

" ...

" newTable at: $^ asInteger put: #upArrow. "spacing circumflex, formerly
up arrow"

" newTable at: $| asInteger put: #verticalBar.

" TypeTable := newTable
54

S.Ducasse LSE

A Case Study: Scanner (III)
Instances only access the type table via the instance variable that points
to the table that has been initialized once.

" " Scanner class>> new

" " " ^super new initScanner

" " Scanner>>initScanner

" " " buffer := WriteStream on: (String new: 40).

" " " saveComments := true.

" " " typeTable := TypeTable

A subclass just has to specialize initScanner without copying the
initialization of the table

" " MyScanner>>initScanner

" " " super initScanner

" " " typeTable := typeTable copy.

" " " typeTable at: $) asInteger put: #xDefault.

55 S.Ducasse LSE

A Simple Case...
• Introducing parametrization

56 S.Ducasse LSE

Parametrization Advantages
DialectStream>>initializeST80ColorTable
" "Initialize the colors that characterize the ST80 dialect"
" ST80ColorTable _ IdentityDictionary new.
" #((temporaryVariable blue italic)
" (methodArgument blue normal)
! …
" (setOrReturn black bold)) do:
" " [:aTriplet |
" " ST80ColorTable at: aTriplet first put: aTriplet allButFirst]

• Problems:

• Color tables hardcoded in method

• Changes Require compilation

• Client responsible of initialize invocation

• No run-time changes

57

S.Ducasse LSE

One Step
DialectStream>>initializeST80ColorTable
"ST80ColorTable := IdentityDictionary new.
!self defaultDescription do:
"" [:aTriplet |
 " " ST80ColorTable at: aTriplet first put: aTriplet
allButFirst]

DialectStream>>defaultDescription
 ^ #((temporaryVariable blue italic)
! (methodArgument blue normal)
" …
! (setOrReturn black bold))

Still requires subclassing and recompilation

58
S.Ducasse LSE

Composition-based Solution
DialectStream>>initializeST80ColorTableWith: anArray

""

" ST80ColorTable := IdentityDictionary new.

" anArray

" do: [:aTriplet | ST80ColorTable at: aTriplet first

"" " " " put: aTriplet allButFirst].

 self initialize

• In a Client
DialectStream initializeST80ColorTableWith:
" #(#(#temporaryVariable #blue #normal) …"

 #(#prefixKeyword #veryDarkGray #bold)

 #(#setOrReturn #red #bold))

59
S.Ducasse LSE

Methods are Units of Reuse
• Dynamic binding and methods

= reuse in subclasses

60

S.Ducasse LSE

Methods are Unit of Reuse

61
S.Ducasse LSE

Example: Forced to Duplicate!
Node>>computeRatioForDisplay
"|averageRatio defaultNodeSize|
"averageRatio := 55.
defaultNodeSize := self mainWindowCoordinate /
maximiseViewRatio.

"self window add:
"" (UINode new with:
"" " (self bandWidth * averageRatio / defaultWindowSize)

!…

• We are forced to copy the complete method!
SpecialNode>>computeRatioForDisplay
"|averageRatio defaultNodeSize|
"averageRatio := 55.
"defaultNodeSize := self mainWindowCoordinate + minimalRatio /
maximiseViewRatio.

"self window add:
"" (UINode new with: (self bandWidth * averageRatio / defaultWindowSize)
!…

62
S.Ducasse LSE

Self sends: Plan for Reuse
Node>>computeRatioForDisplay
" |averageRatio defaultNodeSize|

" averageRatio := 55.

" defaultNodeSize := self defaultNodeSize.

" self window add:

" " (UINode new with:

" " " (self bandWidth * averageRatio /
defaultWindowSize)

" ...

" Node>>defaultNodeSize
" ^self mainWindowCoordinate / maxiViewRatio

" SpecialNode>>defaultNodeSize
" ^ self mainWindowCoordinate+minimalRatio/
maxiViewRatio

63

S.Ducasse LSE

Do not Hardcode Constants
Node>>computeRatioForDisplay
"|averageRatio defaultNodeSize|
"averageRatio := 55.
"defaultNodeSize := self mainWindowCoordinate / maximiseViewRatio.
"self window add:
"" (UINode new with:
"" " (self bandWidth * averageRatio / defaultWindowSize).

"...
• We are forced to copy the method!
SpecialNode>>computeRatioForDisplay
"|averageRatio defaultNodeSize|
"averageRatio := 55.
"defaultNodeSize := self mainWindowCoordinate / maximiseViewRatio.
"self window add:
"" (ExtendedUINode new with:
"" " (self bandWidth * averageRatio /
defaultWindowSize).

64
S.Ducasse LSE

Class Factories
Node>>computeRatioForDisplay
"|averageRatio |
"averageRatio := 55.
"self window add:
"" self UIClass new with:

"" " (self bandWidth * averageRatio / self
defaultWindowSize)
"...

"Node>>UIClass
"̂ UINode

"SpecialNode>>UIClass
"̂ ExtendedUINode

65
S.Ducasse LSE

Hook and Template

66

S.Ducasse LSE

Hook and Template Methods
• Hooks: place for reuse
• Template: context for reuse

67
S.Ducasse LSE

Hook and Template Methods

• Templates: Context reused by subclasses
• Hook methods: holes that can be specialized
• Hook methods do not have to be abstract, they may define

default behavior or no behavior at all.
• This has an influence on the instantiability of the superclass.

Abstract Class
templateMethod()
hookMethod1()
hookMethod2()

ConcreteClass

hookMethod1()
hookMethod2()

...
self hookMethod1.
...
self hookMethod2
....

68
S.Ducasse LSE

Hook / Template Example: Printing

Object>>printString
"Answer a String whose characters are a description of
the receiver."

| aStream |

aStream := WriteStream on: (String new: 16).

self printOn: aStream.

^aStream contents

69

S.Ducasse LSE

Hook
Object>>printOn: aStream

"Append to the argument aStream a sequence of
characters" that describes the receiver."

"

| title |

title := self class name.

aStream nextPutAll:
 ((title at: 1) isVowel ifTrue: ['an '] ifFalse: ['a ']).

aStream print: self class

70 S.Ducasse LSE

Overriding the Hook
Array>>printOn: aStream
""Append to the argument, aStream, the elements of the Array
"enclosed by parentheses."

"| tooMany |
"tooMany := aStream position + self maxPrint.
"aStream nextPutAll: '#('.
"self do: [:element |
"" aStream position > tooMany

 ifTrue: [aStream nextPutAll: '...(more)...)'."
 ^self].

" element printOn: aStream]
" separatedBy: [aStream space].
"aStream nextPut: $)

71
S.Ducasse LSE

Overriding
False>>printOn: aStream
" "Print false."

" aStream nextPutAll: 'false'

72

S.Ducasse LSE

Specialization of the Hook

The class Behavior that represents a class extends the
default hook but still invokes the default one.

Behavior>>printOn: aStream
" "Append to the argument aStream a statement of
which

" superclass the receiver descends from."

" aStream nextPutAll: 'a descendent of '.

" superclass printOn: aStream

73 S.Ducasse LSE

Another Example: Copying
Complex (deepCopy, veryDeepCopy...)

Recursive objects

Graph of connected objects

Each object wants a different copy of itself

No up-front solution

74 S.Ducasse LSE

Hook Example: Copying
Object>>copy

" Answer another instance just like the receiver.
Subclasses normally override the postCopy message, but
some objects that should not be copied override copy. "

^self shallowCopy postCopy

Object>>shallowCopy
"Answer a copy of the receiver which shares the

receiver's instance variables."

"

<primitive: 532>

"

75

S.Ducasse LSE

postCopy
Object>>postCopy
" "Finish doing whatever is required, beyond a
shallowCopy, to implement 'copy'. Answer the receiver.
This message is only intended to be sent to the newly
created instance. Subclasses may add functionality, but
they should always do super postCopy first. "

" ^self

76 S.Ducasse LSE

Sounds Trivial?

77

A

B

C

copy

copy

??

S.Ducasse LSE

Hook Specialisation

Bag>>postCopy
" "Make sure to copy the contents fully."

" | new |

" super postCopy.

" new := contents class new: contents capacity.

" contents keysAndValuesDo:

" " [:obj :count | new at: obj put: count].

" contents := new.

78

S.Ducasse LSE

Guidelines for Creating Template Methods

Simple implementation.
Implement all the code in one method.

Break into steps.
Comment logical subparts

Make step methods.
Extract subparts as methods

Call the step methods

Make constant methods, i.e., methods doing nothing
else than returning.

Repeat steps 1-5 if necessary on the methods created

79 S.Ducasse LSE

Inheritance vs. Composition

80 S.Ducasse LSE

Delegation of Responsibilities
New requirement: A document can be printed on
different printers for example lw100s or lw200s
depending on which printer is first encountered.

81

S.Ducasse LSE

Ad-hoc Solution
LanPrinter>>accept: aPacket
" (thePacket addressee = #*lw*)

" ifTrue: [self print: thePacket]

" ifFalse: [(thePacket isAddressedTo: self)

 ifTrue: [self print: thePacket]

" " ifFalse: [super accept: thePacket]]

Limits:
not general

brittle because based on a convention

adding a new kind of address behavior requires editing
the class Printer

82 S.Ducasse LSE

Create Object and Delegate

• An alternative solution: isAddressedTo: could be sent directly to the address
• With the current solution, the packet can still control the process if needed

accept: aPacket

send: aPacket

nodePrinter aPacket
node1

isAddressedTo: nodePrinter

accept: aPacket

print: aPacket

[true]

[false]

anAddress

83
S.Ducasse LSE

NodeAddress
NodeAddress is responsible for identifying the packet
receivers

Packet>>isAddressedTo: aNode
! ^ self address isAddressedTo: aNode address “was
name”

Object subclass: #NodeAddress
! instanceVariableNames: ‘id‘

NodeAddress>>isAddressedTo: aNodeAddress
" ^ self id = aNodeAddress id

Refactoring Remark: name was not a good name
anyway, and now it has become an address -> we
should rename it.

84

S.Ducasse LSE

Matching Address
For packets with matchable addresses

! Packet send: ‘lulu’ to: (MatchingAddress with: #*lw*)

" "

Address subclass: #MatchingAddress
! instanceVariableNames: ‘’

MatchingAddress>>isAddressedTo: aNodeAddress
" ^ self id match: aNodeAddress id

85 S.Ducasse LSE

Addresses
Object subclass: #Address
!instanceVariableNames: ‘id‘

Address>>isAddressedTo: anAddress

"̂ self subclassResponsibility

Address subclass: #NodeAddress

!instanceVariableNames: ‘‘

Address subclass: #MatchingAddress

!instanceVariableNames: ‘‘

Address
isAddressedTo:

NodeAddress
IsAddressedTo:

MatchingAddress
isAddressedTo:

86
S.Ducasse LSE

Trade-Off
Delegation Pros

No blob class: one class one responsibility

Variation possibility

Pluggable behavior without inheritance extension

Runtime pluggability

Delegation Cons
Difficult to follow responsibilities and message flow

Adding new classes = adding complexities (more names)

New object

87

S.Ducasse LSE

Inheritance vs. Composition
Inheritance is not a panacea

Require class definition

Require method definition

Extension should be prepared in advance

No run-time changes

Ex: editor with spell-checkerS, colorizerS, mail-
readerS….

No clear responsibility

Code bloated

Cannot load a new colorizers

88 S.Ducasse LSE

Delegating to other Objects

89

myEditor setColorizer: FastColorizer new.

myEditor setColorizer: AdvancedColorizer new.

Strategy design pattern

S.Ducasse LSE

Composition Analysis
Pros

Possibility to change at run-time

Clear responsibility

No blob

Clear interaction protocol

Cons
New class

Delegation

New classes

90

S.Ducasse LSE

Designing Classes...

91 S.Ducasse LSE

Designing Classes for Reuse
Encapsulation principle: minimize data representation
dependencies

Complete interface

No overuse of accessors

Responsibility of the instance creation

Loose coupling between classes

Methods are units of reuse (self send)

Use polymorphism as much as possible to avoid type
checking

Behavior up and state down

Use correct names for class

Use correct names for methods

92 S.Ducasse

Nothing magic

Think about it

Find your own heuristics

Taste, try and be critic

Be the force with you...

Summary

93

