
S.Ducasse

LSE

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/

Abstract Classes

1 S.Ducasse LSE

Goal
• Abstract classes

• Examples

2 S.Ducasse LSE

Abstract Classes
• Should not be instantiated (abstract in Java)

• But can define complete methods.

• Defines a protocol common to a hierarchy of classes
that is independent from the representation choices.

• A class is considered as abstract as soon as one of the
methods to which it should respond to is not
implemented (can be a inherited one).

3

S.Ducasse LSE

Abstract Classes in Smalltalk
• Depending of the situation, override new to produce

an error.

• No construct: Abstract methods send the message self
subclassResponsibility

• Tools check this situation and exploit it.

• Abstract classes are not syntactically different from
instantiable classes, but a common convention is to
use class comments: So look at the class comment and
write in the comment which methods are abstract and
should be specialized.

4 S.Ducasse LSE

Example
Boolean>>not

"Negation. Answer true if the receiver is false, answer
false if the receiver is true."

 self subclassResponsibility

5 S.Ducasse LSE

Goal
• Abstract classes

• Examples

6

S.Ducasse LSE

Boolean

|

&

or:

and:

ifTrue:ifFalse:

False

|

&

or:

and:

ifTrue:ifFalse:

True

|

&

or:

and:

ifTrue:ifFalse:

truefalse

Boolean Objects
false and true are objects

described by classes

Boolean, True and False

7
S.Ducasse LSE

Conditional: messages to booleans
• aBoolean ifTrue: aTrueBlock ifFalse: aFalseBlock

• aBoolean ifFalse: aFalseBlock ifTrue: aTrueBlock

• aBoolean ifTrue: aTrueBlock

• aBoolean ifFalse: aFalseBlock

 (thePacket isAddressedTo: self)

 ifTrue: [self print: thePacket]

 ifFalse: [super accept: thePacket]

• Hint: Take care — true is the boolean value and True is
the class of true, its unique instance!

8
S.Ducasse LSE

Boolean

|

&

or:

and:

ifTrue:ifFalse:

False

|

&

or:

and:

ifTrue:ifFalse:

True

|

&

or:

and:

ifTrue:ifFalse:

Boolean Hierarchy
• How to implement in OO true and false without

conditional?

• Late binding: Let the receiver

decide!

• Same message on false and true

produces different results

S.Ducasse LSE

Example
“Class Boolean is an abstract class that implements
behavior common to true and false. Its subclasses are
True and False. Subclasses must implement methods for
logical operations &, not, controlling and:, or:, ifTrue:,
ifFalse:, ifTrue:ifFalse:, ifFalse:ifTrue:”

Boolean>>not
"Negation. Answer true if the receiver is false, answer
false if the receiver is true."

! self subclassResponsibility

10 S.Ducasse LSE

Not
false not -> true

true not -> false
Boolean>>not

"Negation. Answer true if the receiver is false, answer false if
the receiver is true.”

 self subclassResponsibility

False>>not
"Negation -- answer true since the receiver is false."

^true

True>>not
"Negation--answer false since the receiver is true."

^false

11 S.Ducasse LSE

| (Or)
• true | true -> true

• true | false -> true

• true | anything -> true

• false | true -> true

• false | false -> false

• false | anything -> anything

12

S.Ducasse LSE

Boolean>> | aBoolean
Boolean>> | aBoolean

"Evaluating disjunction (OR). Evaluate the argument.
Answer true if either the receiver or the argument is
true."

self subclassResponsibility

13 S.Ducasse LSE

False>> | aBoolean
false | true -> true

false | false -> false

false | anything -> anything

False>> | aBoolean

"Evaluating disjunction (OR) -- answer with the
argument, aBoolean."

^ aBoolean

14 S.Ducasse LSE

True>> | aBoolean
true | true -> true

true | false -> true

true | anything -> true

True>> | aBoolean

"Evaluating disjunction (OR) -- answer true since the
receiver is true."

^ self

15

S.Ducasse LSE

Boolean, True and False
Boolean

xor:
eqv:
storeOn:
and:
or:
ifTrue:ifFalse:
&
not
|

False

and:
or:
ifTrue:ifFalse:
&
not
|

True

and:
or:
ifTrue:ifFalse:
&
not
|

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

 self subclassResponsibility

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

 ^ trueAlternativeBlock value

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

 ^ falseAlternativeBlock value

16 S.Ducasse LSE

Abstract/Concrete
Abstract method
Boolean>>not

"Negation. Answer true if the receiver is false, answer false if the
receiver is true."

 self subclassResponsibility

Concrete method defined in terms of an abstract
method
Boolean>>xor: aBoolean

"Exclusive OR. Answer true if the receiver is not equivalent to
aBoolean."

! ^(self == aBoolean) not

When not is be defined in subclasses, xor: is
automatically defined

17 S.Ducasse LSE

Block Use in Conditional?
• Why do conditional expressions use blocks?

• Because, when a message is sent, the receiver and the
arguments of the message are always evaluated. Blocks
are necessary to avoid evaluating both branches.

18

S.Ducasse LSE

Implementation Note
Note that the Virtual Machine shortcuts calls to
boolean such as condition for speed reason.

Virtual machines such as VisualWorks introduced a kind
of macro expansion, an optimisation for essential
methods and Just In Time (JIT) compilation. A method is
executed once and afterwards it is compiled into native
code. So the second time it is invoked, the native code
will be executed.

19 S.Ducasse LSE

Magnitude
I'm abstract class that represents the objects that can
be compared between each other such as numbers,
dates, numbers.

My subclasses should implement
 < aMagnitude

 = aMagnitude

 hash

Here are some example of my protocol:
 3 > 4

 5 = 6

 100 max: 9

 7 between: 5 and: 10

20 S.Ducasse LSE

Magnitude
Magnitude>> < aMagnitude

^self subclassResponsibility

Magnitude>> = aMagnitude
! ^self subclassResponsibility

Magnitude>> hash
! ^self subclassResponsibility

21

S.Ducasse LSE

Magnitude
Magnitude>> <= aMagnitude

! ^(self > aMagnitude) not

Magnitude>> > aMagnitude

! ^aMagnitude < self

Magnitude>> >= aMagnitude

! ^(self < aMagnitude) not

Magnitude>> between: min and: max

! ^self >= min and: [self <= max]

22 S.Ducasse LSE

Date
Subclass of Magnitude

Date today < Date newDay: 15 month: 10 year: 1998

-> false

23 S.Ducasse LSE

Date
Date>>< aDate

 "Answer whether the argument, aDate, precedes

 the date of the rec."

!

 year = aDate year

 ! ifTrue: [^day < aDate day]

 ! ifFalse: [^year < aDate year]

24

S.Ducasse LSE

Date
Date>>= aDate

 "Answer whether the argument, aDate, is the

 same day as the receiver. "

!

 self species = aDate species

 ! ifTrue: [^day = aDate day & (year = aDate year)]

 ! ifFalse: [^false]

!

Date>>hash

 ! ^(year hash bitShift: 3) bitXor: day

25 S.Ducasse

What you should know
• What is an abstract class?
• What can we do with it?

26

