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Goal
• Abstract classes

• Examples
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Abstract Classes
• Should not be instantiated (abstract in Java)

• But can define complete methods.

• Defines a protocol common to a hierarchy of classes 
that is independent from the representation choices.

• A class is considered as abstract as soon as one of the 
methods to which it should respond to is not 
implemented (can be a inherited one).
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Abstract Classes in Smalltalk
• Depending of the situation, override new to produce 

an error.

• No construct: Abstract methods send the message self 
subclassResponsibility

• Tools check this situation and exploit it.

• Abstract classes are not syntactically different from 
instantiable classes, but a common convention is to 
use class comments: So look at the class comment and 
write in the comment which methods are abstract and 
should be specialized.
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Example
Boolean>>not

"Negation.  Answer true if the receiver is false, answer  
false if the receiver is true."

    self subclassResponsibility
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Goal
• Abstract classes

• Examples
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Boolean Objects
false and true are objects 

described by classes 

Boolean, True and False
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Conditional: messages to booleans
• aBoolean ifTrue: aTrueBlock ifFalse: aFalseBlock 

• aBoolean ifFalse: aFalseBlock ifTrue: aTrueBlock 

• aBoolean ifTrue: aTrueBlock

• aBoolean ifFalse: aFalseBlock

 (thePacket isAddressedTo: self)

       ifTrue: [self print: thePacket] 

       ifFalse: [super accept: thePacket]

• Hint: Take care — true is the boolean value and True is 
the class of true, its unique instance!
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Boolean Hierarchy
• How to implement in OO true and false without 

conditional?

• Late binding: Let the receiver 

decide!

• Same message on false and true

produces different results
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Example
“Class Boolean is an abstract class that implements 
behavior common to true and false. Its subclasses are 
True and False. Subclasses must implement methods for 
logical operations &, not, controlling and:, or:, ifTrue:, 
ifFalse:, ifTrue:ifFalse:, ifFalse:ifTrue:”

Boolean>>not
"Negation.  Answer true if the receiver is false, answer  
false if the receiver is true."

!    self subclassResponsibility
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Not
false not -> true

true not -> false
Boolean>>not

"Negation.  Answer true if the receiver is false, answer  false if 
the receiver is true.”

   self subclassResponsibility

False>>not
"Negation -- answer true since the receiver is false."

^true

True>>not
"Negation--answer false since the receiver is true."

^false
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| (Or)
• true | true   -> true

• true | false   -> true

• true | anything -> true

• false | true -> true

• false | false -> false

• false | anything -> anything
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Boolean>> | aBoolean
Boolean>> | aBoolean 

"Evaluating disjunction (OR).  Evaluate the argument.  
Answer true if either the receiver or the argument is 
true."

self subclassResponsibility
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False>> | aBoolean
false | true -> true

false | false -> false

false | anything -> anything

False>> | aBoolean 

"Evaluating disjunction (OR) -- answer with the 
argument, aBoolean."

^ aBoolean
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True>> | aBoolean
true | true   -> true

true | false   -> true

true | anything -> true

True>> | aBoolean 

"Evaluating disjunction (OR) -- answer true since the 
receiver is true."

^ self
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Boolean, True and False
Boolean
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ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock 

            self subclassResponsibility

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock 

           ^ trueAlternativeBlock value

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock 

            ^ falseAlternativeBlock value
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Abstract/Concrete
Abstract method
Boolean>>not

"Negation.  Answer true if the receiver is false, answer  false if the 
receiver is true."

    self subclassResponsibility

Concrete method defined in terms of an abstract 
method
Boolean>>xor: aBoolean 

"Exclusive OR.  Answer true if the receiver is not  equivalent to 
aBoolean."

!    ^(self == aBoolean) not

When not is be defined in subclasses, xor: is 
automatically defined
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Block Use in Conditional?
• Why do conditional expressions use blocks? 

• Because, when a message is sent, the receiver and the 
arguments of the message are always evaluated. Blocks 
are necessary to avoid evaluating both branches.
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Implementation Note
Note that the Virtual Machine shortcuts calls to 
boolean such as condition for speed reason.

Virtual machines such as VisualWorks introduced a kind 
of macro expansion, an optimisation for essential 
methods and Just In Time (JIT) compilation. A method is 
executed once and afterwards it is compiled into native 
code. So the second time it is invoked, the native code 
will be executed.
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Magnitude
I'm abstract class that represents the objects that can 
be compared between each other such as numbers, 
dates, numbers.

My subclasses should implement
     < aMagnitude 

     = aMagnitude 

     hash

Here are some example of my protocol:
     3 > 4

     5 = 6

     100 max: 9

  7 between: 5 and: 10 
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Magnitude
Magnitude>> < aMagnitude 

^self subclassResponsibility

Magnitude>> = aMagnitude 
! ^self subclassResponsibility

Magnitude>> hash 
! ^self subclassResponsibility
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Magnitude
Magnitude>> <= aMagnitude 

!      ^(self > aMagnitude) not

Magnitude>> > aMagnitude 

!      ^aMagnitude < self

Magnitude>> >= aMagnitude 

!      ^(self < aMagnitude) not

Magnitude>> between: min and: max 

!      ^self >= min and: [self <= max]
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Date
Subclass of Magnitude

Date today < Date newDay: 15 month: 10 year: 1998

-> false
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Date
Date>>< aDate 

   "Answer whether the argument, aDate, precedes   

   the date of the rec."

!

       year = aDate year

      ! ifTrue: [^day < aDate day]

      ! ifFalse: [^year < aDate year]
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Date
Date>>= aDate 

   "Answer whether the argument, aDate, is the   

   same day as the receiver. "

!

       self species = aDate species

     ! ifTrue: [^day = aDate day & (year = aDate year)]

      ! ifFalse: [^false]

!

Date>>hash

   ! ^(year hash bitShift: 3) bitXor: day
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What you should know
• What is an abstract class?
• What can we do with it?
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