
Abstract

This document is a collection of Smalltalk exercises that have been developed over the years and that we
want to share with others. Note that this document is quite draft. All the sources will be collected and
identified clearly.

Smalltalk Exercises

Alexandre Bergel, University of Berne
Noury Bouraqadi, Ecole des Mines de Douai

Marcus Denker, University of Berne
Catherine Dezan, Université de Brest

St́ephane Ducasse, Université de Savoie
Bernard Pottier, Université de Brest

Roel Wuyts, Universit́e Libre de Bruxelles
And many others (please contact stef to update the list) Main Editor: S. Ducasse

October 4, 2005

Contents

I First Contact 3

1 Objects and expressions 4

2 Counter Example 7

3 Set, Dictionary et Bag 13
3.1 Collections non-ordonnées . 13
3.2 Set. .14

3.2.1 Cŕeation. .14
3.2.2 Acc̀es .14

3.3 Dictionary .14
3.3.1 Cŕeation et propríet́es h́eritées de Set. 15
3.3.2 Acc̀es, ajouts et suppressions. 15
3.3.3 It́erations .16

3.4 Bag .16
3.4.1 Ajouts et suppressions. 17
3.4.2 Énuḿerations. 17

3.5 Performances. .18
3.5.1 Boucle externe du test et formatage. 18
3.5.2 Boucle interne du test. 19
3.5.3 Bilan .19

4 SUnit Testing 20
4.1 Set. .20
4.2 Dictionary .20
4.3 Bag .20

5 Some Useful Tools in Squeak 21
5.1 SqueakMap Package Loader. 21
5.2 Monticello. .22
5.3 SqueakSource: the Squeak SourceForge. 22

6 Monticello 24
6.1 Packages in Monticello: PackageInfo. 24
6.2 Getting Started. .24
6.3 Elements of Monticello. 25
6.4 Repositories. .26
6.5 File Format .27
6.6 The Monticello Browser . 28
6.7 The Snapshot Browser. 28
6.8 More on PackageInfo. 29

1

II Seaside 30

7 Web dynamique avec Seaside 31
7.1 Compĺements sur Seaside. 31
7.2 Encore des compteurs !. 31
7.3 Śeparer l’interface du code ḿetier . 32
7.4 Une application un peu plus sophistiquée . 33

8 A Simple Application for Registering to a Conference 34
8.1 RegConf: An Application for Registering to a Conference. 34
8.2 Application Building Blocks . 35

8.2.1 The Entry Point:RCMain . 35
8.2.2 Getting User Information:RCGetUserInfo . 35
8.2.3 Getting Hotel Information:RCGetHotelInfo . 35
8.2.4 Payment:RCPayment . 36
8.2.5 Confimation:RCConfirmation . 36

8.3 Extensions. .36

III Object-Oriented Design 38

9 A Simple Application: A LAN simulation 39

10 Fundamentals on the Semantics of Self and Super 45
10.1 self. .45
10.2 super. .46

11 Object Responsibility and Better Encapsulation 47
11.1 Reducing the coupling between classes. 47

11.1.1 Current situation. 47
11.1.2 Solution. .47

11.2 A Question of Creation Responsibility. 48
11.3 Reducing the coupling between classes. 49

11.3.1 Current situation. 49
11.3.2 Solution. .49

11.4 A Question of Creation Responsibility. 49
11.5 Proposing a creational interface. 51
11.6 Forbidding the Basic Instance Creation. 51

11.6.1 Remarks and Analysis.. 52
11.7 Protecting yourself from your children. 52

12 Hook and Template Methods 53
12.1 Providing Hook Methods. 53

2

Part I

First Contact

3

1
Objects and expressions

This lesson is about reading and understanding Smalltalk expressions, and differentiating between different
types of messages and receivers. Note that in the expressions you will be asked to read and evaluate, you
can assume that the implementation of methods generally corresponds to what their message names imply
(i.e.,2 + 2 = 4).
Exercise 0 For each of the Smalltalk expressions below, fill in the answers:

3 + 4

• What is the receiver object?

• What is the message selector?

• What is/are the argument (s)?

• What is the message?

• What is the result returned by evaluating this expression?

Date today

• What is the receiver object?

• What is the message selector?

• What is/are the argument (s)?

• What is the message?

• What is the result returned by evaluating this expression?

anArray at: 1 put: ’hello’

• What is the receiver object?

• What is the message selector?

• What is/are the argument (s)?

• What is the message?

• What is the result returned by evaluating this expression?

Exercise 1 What kind of object does the literal expression’Hello, Dave’ describe?

Exercise 2 What kind of object does the literal expression#Node1 describe?

Exercise 3 What kind of object does the literal expression#(1 2 3) describe?

Exercise 4 What can one assume about a variable namedTranscript?

Exercise 5 What can one assume about a variable namedrectangle?

Exercise 6 Examine the following expression:

4

| anArray |
anArray := #(’first’ ’second’ ’third’ ’fourth’).
ˆanArray at: 2

What is the resulting value when it is evaluated (ˆ means return)? What happens if you remove the ˆ.
Explain

Exercise 7 Which sets of parentheses are redundant with regard to evaluation of the following expres-
sions:

((3 + 4) + (2 * 2) + (2 * 3))

(x isZero)
ifTrue: [....]

(x includes: y)
ifTrue: [....]

Exercise 8 Guess what are the results of the following expressions

6 + 4 / 2
1 + 3 negated
1 + (3 negated)
2 raisedTo: 3 + 2
2 negated raisedTo: 3 + 2

Exercise 9 Examine the following expression:

25@50

• What is the receiver object?

• What is the message selector?

• What is/are the argument (s)?

• What is the message?

• What is the result returned by evaluating this expression?

Exercise 10 Examine the following expression and write down the sequence of steps that the Smalltalk
system would take to execute the following expression:

Date today daysInMonth

Exercise 11 Examine the following expression and write down the sequence of steps that the Smalltalk
system would take to execute the following expression:

Transcript show: (45 + 9) printString

Exercise 12 Examine the following expression and write down the sequence of steps that the Smalltalk
system would take to execute the following expression:

5@5 extent: 6.0 truncated @ 7

Exercise 13 During lecture, we saw how to write strings to the Transcript, and how the messageprintString
could be sent to any non-string object to obtain a string representation. Now write a Smalltalk expression
to print the result of34 + 89 on the Transcript. Test your code !

5

Exercise 14 Examine the block expression:

| anArray sum |
sum := 0.
anArray := #(21 23 53 66 87).
anArray do: [:item | sum := sum + item].
sum

What is the final result of sum ? How could this piece of code be rewritten to use explicit array indexing
(with the methodat:) to access the array elements1? Test your version. Rewrite this code usinginject:into:

1Note this is how you would proceed with Java or C++

6

2
Counter Example

Main Author(s): Bergel, Ducasse, Wuyts

A Simple Counter

We want you to implement a simple counter that follows the small example given below. Please note that
we will ask you to define a test for this example.

| counter |
counter := SimpleCounter new.
counter increment; increment.
counter decrement.
counter value = 1

Creating your own class

In this part you will create your first class. In traditional Smalltalk environments a class is associated with
a category (a folder containing the classes of your project).

When we are using Store, categories are replaced by packages. Therefore in VisualWorks with Store
you define a package and define your class within this package. The steps we will do are the same ones
every time you create a class, so memorize them well. We are going to create a classSimpleCounter in a
package calledDemoCounter. Figure2.1 shows the result of creating such a package. Note that you all
will be versioning your code in the Store database -with the rest of the students of the lecture-, so every
package (each one belonging to different group of students) must have a different name. Therefore you
should prefix them with your initials or group name.

Creating a Package

In the System Browser, click on the lineLocal Image located in the left-most upper pane (left button of
the mouse) and selectNew ...Package. The system will ask you a name. You should writeDemoCounter,
postfixed with your initials or group name. This new package will be created and added to the list (see
Figure2.1).

With the package selected, as shown in Figure2.1, you can edit its properties by clicking theproperties
tab of the editor. Properties you will likely have to set one day are the dependencies on other packages
(for example, when you subclass a class from another package), post-load actions (an expression that is
executed after loading that package from Store, for example to initialize something) and pre-unload actions
(an expression that is executed just before unloading a package from your image, for example to close any
windows from an application). In the context of this exercise we do not need any of this, so leave the
properties alone for now.

Creating a Class

Creating a class requires five steps. They consist basically of editing the class definition template to specify
the class you want to create.Before you begin, make sure that only the packageDemoCounter is selected.
(See Figure2.1)

7

Figure 2.1: Your package is created.

1. Superclass Specification. First, you should replace the wordNameOfSuperclass with the word
Core.Object. Thus, you specify the superclass of the class you are creating. Note that this is not al-
ways the case thatObject is the superclass, since you may to inherit behavior from a class specializing
alreadyObject.

2. Class Name. Next, you should fill in the name of your class by replacing the wordNameOfClass
with the wordSimpleCounter. Take care that the name of the class starts with a capital letter and that
you do not remove the # sign in front ofNameOfClass.

3. Instance Variable Specification. Then, you should fill in the names of the instance variables of this
class. We need one instance variable calledvalue. You add it by replacing the wordsinstVarName1
andinstVarName2with the wordvalue. Take care that you leave the string quotes!

4. Class Variable Specification. As we do not need any class variable make sure that the argument for
the class instance variables is an empty string (classInstanceVariableNames: ”).

5. Compilation. That’s it! We now have a filled-in class definition for the classSimpleCounter. To
define it, we still have tocompile it. Therefore, select theacceptoption from the operate menu
(right-click button of the mouse). The classSimpleCounter is now compiled and immediately added
to the system.

As we are disciplined developers, we provide a comment toSimpleCounter class by clickingComment
tab of the class definition (in the figure2.1 the Comment is highlighted). You can write the following
comment:

SimpleCounter is a concrete class which supports incrementing
and decrementing a counter.

Instance Variables:

value <Integer>

Selectacceptto store this class comment in the class.

8

Defining protocols and methods

In this part you will use the System Browser to learn how to add protocols and methods.

Creating and Testing Methods

The class we have defined has one instance variablevalue. You should remember that in Smalltalk, every-
thing is an object, that instance variables are private to the object and that the only way to interact with an
object is by sending messages to it.

Therefore, there is no other mechanism to access the instance variables from outside an object than
sending a message to the object. What you can do is to define messages that return the value of the instance
variable of a class. Such methods are calledaccessors, and it is a common practice to always define and
use them. We start to create an accessor method for our instance variablevalue.

Remember that every method belongs to a protocol. These protocols are just a group of methods
without any language semantics, but convey important navigation information for the reader of your class.
Although protocols can have any name, Smalltalk programmers follow certain conventions for naming
these protocols. If you define a method and are not sure what protocol it should be in, first go through
existing code and try to find a fitting name.

An important remark: Accessorscan be defined in protocolsaccessing or private. Use theaccessing
protocol when a client object (like an interface) really needs to access your data. Useprivate to clearly state
that no client should use the accessor. This is purely a convention. There is no way in Smalltalk to enforce
access rights likeprivate in C++ or Java. To emphasize that objects are not just data structure but provide
services that are more elaborated than just accessing data, put your accessors in aprivate protocol. As a
good practice, if you are not sure then define your accessors in aprivate protocol and once some clients
really need access, create a protocolaccessing and move your methods there. Note that this discussion
does not seem to be very important in the context of this specific simple example. However, this question
is central to the notion of object and encapsulation of the data. An important side effect of this discussion
is that you should always ask yourself when you, as a client of an object, are using an accessor if the object
is really well defined and if it does not need extra functionality.

Exercise 15 Decide in which protocol you are going to put the accessor forvalue. We now create the
accessor method for the instance variablevalue. Start by selecting the classDemoCounter in a browser,
and make sure theInstance tab is selected (in the figure2.1, the Instance tab is in the middle of the
window). Create a new protocol clicking the right-button of the mouse on the pane of methods categories,
and choosingNew, and give a name. Select the newly created protocol. Then in the bottom pane, the edit
field displays a method template laying out the default structure of a method. Replace the template with
the following method definition:

value
”return the current value of the value instance variable”

ˆvalue

This defines a method calledvalue, taking no arguments, having a method comment and returning the
instance variablevalue. Then chooseacceptin the operate menu (right button of the mouse) to compile the
method. You can now test your new method by typing and evaluating the next expression in a Workspace,
in the Transcript, or any text editorSimpleCounter new value.

To use a workspace, click on the ’noteblock’ icon of the launcher (last icon shown in Figure2.2).
This expression first creates a new instance ofSimpleCounter, and then sends the messagevalue to it

and retrieves the current value ofvalue. This should returnnil (the default value for noninitialised instance
variables; afterwards we will create instances wherevalue has a reasonable default initialisation value).

Exercise 16 Another method that is normally used besides theaccessormethod is a so-calledmutator
method. Such a method is used tochangethe value of an instance variable from a client. For example, the
next expression first creates a newSimpleCounter instance and then sets the value ofvalue to 7:

9

Figure 2.2: The Launcher of VisualWorks.

SimpleCounter new value: 7

This mutator method does not currently exist, so as an exercise write the methodvalue: such that,
when invoked on an instance ofSimpleCouter, thevalue instance variable is set to the argument given to
the message. Test your method by typing and evaluating the expression above.

Exercise 17 Implement the following methods in the protocoloperations.

increment
self value: self value + 1

decrement
self value: self value - 1

Exercise 18 Implement the following methods in the protocolprinting

printOn: aStream
super printOn: aStream.
aStream nextPutAll: ’ with value: ’,
self value printString.
aStream cr.

Now test the methodsincrement anddecrement but pay attention that the counter value is not initial-
ized. Try:

SimpleCounter new value: 0; increment ; value.

Note that the methodprintOn: is used when you print an object or click onself in an inspector.

Adding an instance creation method

When we create a new instance of the classSimpleCounter using the messagenew, we would like to
obtain a well initialized instance. To do so, we need to override the methodnew to add a call to an
initialization method (invoking aninitialize method is a very common practice! Ask for the senders of
initialize). Notice thatnew is always sent to a class. This means that we have to define the new method
on theclass side, not on theinstance side. To define an instance creation method like the methodnew you
should be on the class side, so you click on theClasstab (See in the figure2.1, theClassis situated in the
same level as theInstancetab).

Exercise 19 Define a new protocol calledinstance creation, and implement the methodnew as follows:

new "Create and return an initialized instance of SimpleCounter" |newInstance
|newInstance := super new. newInstance initialize. ˆnewInstance

10

This code returns a new and well initialized instance. We first create a new instance by calling the
normal creation method (super new), then we assign this new created instance into the temporary variable
callednewInstance. Then we invoke theinitialize method on this new created instance via the temporary
variable and finally we return it.

Note that the previous method body is strictly equivalent to the following one. Try to understand why
they are equivalent.

new ”Create and return an initialized instance of SimpleCounter”
ˆsuper new initialize

Adding an instance initialization method

Now we have to write an initialization method that sets a default value to thevalue instance variable.
However, as we mentioned theinitialize message is sent to the newly created instance. This means that the
initialize method should be defined at the instance side as any method that is sent to an instance ofSim-
pleCounter like increment anddecrement. Theinitialize method does not have specific and predefined
semantics; it is just a convention to name the method that is responsible to set up the instance variable
default values.

Therefore at the instance side, you should create a protocolinitialize-release, and create the following
method (the body of this method is left blank. Fill it in!).

initialize
”set the initial value of the value to 0”

Remark. As we already mentioned, theinitialize method is not automatically invoked by the method
new. We had to override the methodnew to call theinitialize method. This is a weakness of the Smalltalk
libraries, so you should always check if the class that you are creating inherits from anew method that
implements the call to theinitialize method. It is a good practice to add such a calling structure (new
calling initialize) in the root of the your class hierarchy. This way you share the calling structure and are
sure that theinitialize method is always called for all your classes.

Now create a new instance of classSimpleCounter. Is it initialized by default? The following code
should now work without problem:

SimpleCounter new increment

Another instance creation method

If you want to be sure that you have really understood the distinction between instance and class methods,
you should now define a different instance creation method namedwithValue:. This method receives an
integer as argument and returns an instance ofSimpleCounter with the specified value. The following
expression should return 20.

(SimpleCounter withValue: 19) increment ; value

A Difficult Point Let us just think a bit! To create a new instance we said that we should send messages
(like new andbasicNew) to a class. For example to create an instance ofSimpleCounter we sentnew
to SimpleCounter. As the classes are also objects in Smalltalk, they are instances of other classes that
define the structure and the behavior of classes. One of the classes that represents classes as objects is
Behavior. Browse the classBehavior. In particular,Behavior defines the methodsnew andbasicNew
that are responsible of creating new instances. If you did not redefine the new message locally to the class
of SimpleCounter, when you send the messagenew to the classSimpleCounter, the new method executed
is the one defined inBehavior. Try to understand why the methodsnewandbasicNeware on the instance
side on classBehavior while they are on the class side of your class.

11

Saving your Work

To save our work, simply publish your package. This will open a dialog where you can give a comment,
version numbers and blessing. After this is set, you can press Publish and your package will be stored
in the database of Store. From then on, other people can load it from there, in the same way that you
would use cvs or other multi-user versioning systems. Saving the image is also a way to save your working
environment, but publishing it saves the code in the database. You can of course both publish your package
(so that other people can load it, and that you can compare it with other versions, etc.)andsave your image
(so that next time that you start your image you are in the same working environment).

12

3
Set, Dictionary et Bag

Main Author(s): Bernard Pottier

3.1 Collections non-ordonńees

Leséléments de ces collections ne sont pas rangés selon un ordre prédictible : on ne peut pas accéder aux
éléments via une clé externe, tel qu’un index, ou un ordre connu. Cette propriét́e est líee au ḿecanisme
d’adressage ditassociatif, où la position d’uńelément dans la collection dépend de la valeur de cetélément
et de l’historique des accès (voir les explications en section??).

La hiérarchie de classes se présente de la manière suivante:

Object ()

Collection ()
Bag (’contents’)
Set (’tally’)

Dictionary ()
IdentitySet ()

• Set : collection garantissant l’unicité deśeléments.

• Dictionary : acc̀es par une clé, qui est en ǵeńeral un objet d’une classe détermińee. La cĺe garantit
l’unicit é.

• Bag : chaquéelément a un compteur associé,

Une premìere utilisation de ces collections est la mise en œuvre d’algorithmes très simples reposant
uniquement sur leurs propriét́es :

Trouver tous les mots apparus dans un texte

| bobyADit lesMotsDeBoby |
bobyADit := ’ta pa ta pa tapa tout dit tapa tout dit a ta dou dou’.
lesMotsDeBoby := bobyADit tokensBasedOn: Character space.
lesMotsDeBoby asSet asSortedCollection asArray

”#(’a’ ’dit’ ’dou’ ’pa’ ’ta’ ’tapa’ ’tout’)”

13

3.2 Set

3.2.1 Cŕeation

Les ensembles sont des collections dynamiques, qui grandissent en fonction des besoins. On crée de
nouveaux ensembles parSet new, ou, si on est capable d’apprécier correctement une taille idoine, parSet
new: nElements. Si on connait d́ejà leséléments, parce qu’ils sont rangés dans une autre collection, alors
on peut aussi instancier parSet withAll: une Collection.

L’algorithme (hachage) qui sertà la mise en œuvre des ensembles a de bonnes caractéristiques en temps
de recherche d’uńelément.

3.2.2 Acc̀es

L’usage simple de Set peutêtre ŕesuḿe de la manìere suivante :

• unSet add: unObjet,
unSet addAll: uneCollection, ajout dans l’ensemble.

• unSet includes: unObjet vrai ou faux selon queunObjet soit pŕesent ou absent.

• unSet remove: unObjet ou
unSet remove: un Objet ifAbsent: unBlocException.

Dans le premier cas, on enlèveunObjet deunSet, si cet objet existe. Sinon, on déclenche une erreur.

Si le programmeur n’est pas certain de la présence de l’objet cherché, il utilise la seconde forme en
passant un bloc d’exception, qui peutêtre vide. . .

• unSet size : nombre d’́eléments pŕesents dans l’ensemble,

• unSet capacity : capacit́e de stockage de l’ensemble. Plus le rapportcapacity/size est grand, plus
le temps d’acc̀es risque d’̂etre rapide.

3.3 Dictionary

Un Dictionnaire est un ensemble dont leséléments sont des instances de la classeAssociation, couplant
une cĺe (key), et une valeur (value). L’unicité d’une association dans un ensemble donné est garantie par
l’unicit é de la cĺe, propríet́e h́eritée de la classeSet.

Les instances de Association sont fréquemment cŕeéesà l’aide du message binaire-> . Par exemple,
#boulesRouges-> 40 associe l’entier 40 au symbole#boulesRouges.

La structure de donńees de dictionnaire implantée par la classeDictionary est int́eressantèa plusieurs
titres:

• Possibilit́e de d́esigner un objet par une clé souvent symbolique (Symbol, String, nombres. . .)

• Rapidit́e d’acc̀es, due au hachage (mêmes performances que les ensembles, voir en section3.5).

• Possibilit́e d’utiliser les dictionnaires comme des tables de hachage, et pour des clés toutà fait quel-
conques.

• Dynamicit́e de la collection qui grandit avec les besoins.

14

3.3.1 Cŕeation et propriétés h́erit ées de Set

On peut se reporter̀a la description donńee dansSet. Si on souhaite utiliserDictionary withAll: uneCol-
lection, il faut cependant retenir que tous leséléments deuneCollection doiventêtre des instances de la
classeAssociation. L’exemple qui suit montre comment ajouter un dictionnaireà un autre, comment créer
un dictionnaire initialiśe.

La clé servant̀a adresser le dictionnaire est simplement un entier, la valeur est un caractère extrait d’une
chaine. On remplit le premier dictionnaire en notant les index des blancs et les index des ponctuations. Le
dictionnaire apparait alors comme un tableau “creux”.

testDico1
”self testDico1”

| dico1 dico2 vers |
dico1 := Dictionary new.
dico2 := Dictionary new.
vers := ’le petit homme de la jeunesse, a casse son lacet de soulier,’.
vers keysAndValuesDo:

[:index :car | car = $
ifTrue: [dico1 at: index put: car]
ifFalse: [car isLetter ifFalse: [dico1 at: index put: car]]].

dico1 addAll: dico2 associations. ”ajout d’un dictionnaire a un autre dictionnaire”
ˆDictionary withAll: dico1 associations ”creation d’un dictionnaire pre-rempli”

Parmi les messages hérités de la classeSet, se trouvent les oṕerations ensemblistes qui portent sur
les cĺes: intersection, union, soustraction. . . Dans le code ci-dessus, la soustraction des deux dictionnaires
serait simplement spécifiée pardico1 - dico2.

3.3.2 Acc̀es, ajouts et suppressions

Les ḿethodes les plus simples pour insérer, supprimer, tester sont les suivantes :

• unDictionnaire at: uneCle put: unObjet,
par exempledico at: #titi put: 12.

• unDictionnaire add: uneAssociation,
par exempledico add: #titi-> 12.

• unDictionnaire removeKey: uneCle,
par exempledico removeKey: #titi. Le résultat est la valeur associéeà la cĺe (12).

On dispose aussi de la varianteunDictionnaire removeKey: uneCle ifAbsent: unBloc.

• unDictionnaire includesKey: uneCle,
par exempledico includesKey: #titi rendraittrue dans le contexte ci-dessus.

• unDictionnaire includes: unObjet,
par exempledico includes: 12 rendraittrue, alors quedico includes: #titi rendraitfalse,

De mêmeunDictionnaire occurencesOf: unObjet, rend le nombre de fois où unObjet est apparu
en valeur de l’association.

• unDictionnaire keyAtValue: unObjet renvoie une cĺe assocíeeà une valeur, si toutefois cette valeur
existe. par exempledico keyAtValue: 12 rendrait#titi. . .

15

3.3.3 Itérations

On peut distinguer les itérations ǵeńerales, portant sur lesvaleursplutôt que sur les clés, les it́erations
portant sur les clés, et enfin celles qui portent sur le couple clé-valeur.

• unDico do: unBloc
itération sur toutes les valeurs, par exemple:

| dicoDesMots versDePrevert stream |
dicoDesMots := Dictionary new.
stream := WriteStream on: ’’.
versDePrevert := ’le petit homme qui dansait dans ma tete’.
(versDePrevert tokensBasedOn: $)

do: [:mot | dicoDesMots at: mot asSymbol put: mot size].
dicoDesMots do: [:longueurs | stream nextPutAll: longueurs printString; space].
ˆstream contents

” ’2 4 4 5 7 3 2 5 ’”

La transformation de la chaine de caractère en symbole (asSymbol) n’est pas indispensable.

• keysDo: itère sur les cĺes du dictionnaires:

...
dicoDesMots keysDo: [:mot | stream nextPutAll: mot; space].
ˆstream contents

” ’dans tete homme dansait qui ma petit le ’”

• keysAndValuesDo: permet d’acćeder simultańementà la cĺe età la valeur:

...
dicoDesMots keysAndValuesDo: [:mot :taille |

stream nextPutAll: mot, ’(’, taille printString,’)’; space].
..
” ’tete(4) homme(5) ma(2) petit(5) qui(3) le(2) dans(4) dansait(7) ’”

• collect: et fonctionne sur les valeurs associées aux cĺes.

| dicoDesMots versDePrevert |
dicoDesMots := Dictionary new.
versDePrevert := ’les sept eclats de glace de ton rire etoile’.
(versDePrevert tokensBasedOn: $)

do: [:mot | dicoDesMots at: mot size put: mot asSymbol].
ˆ dicoDesMots collect: [:mot | mot reverse]”

” OrderedCollection (’ed’ ’not’ ’erir’ ’ecalg’ ’eliote’)”

• select: unBloc, reject: unBloc opèrent sur les valeurs associées aux cĺes, mais renvoient un dictio-
nnaire.
...

ˆ dicoDesMots select: [:mot | mot size ¡= 4]
” Dictionary (2-> #de 3-> #ton 4-> #rire)”

3.4 Bag

Cette classe s’appuie surDictionary ou IdentityDictionary pour compter le nombre d’occurences d’un
élément. L’int́er̂et est triple: vitesse d’accès (due aux dictionnaires), comptage, et compacité de la structure
de donńees si le nombre des occurrences estélev́e.

16

3.4.1 Ajouts et suppressions

Les sacs (classeBag) ont un interface permettant d’ajouter ou d’enlever deséléments:

• unSac add: unObjet
Le compteur des occurences deunObjet est incŕement́e.

• unSac remove: unObjet
unSac remove: unObjet ifAbsent: aBlock
Le compteur des occurences deunObjet est d́ecŕement́e. Si ce compteur tombèa 0, l’objet disparait
du sac.

Dans la seconde version le bloc d’exception estévalúe au cas òu l’objet n’existe pas: enlever un objet
absent est une erreur.

• unSac addAll: uneCollection unSac removeAll: uneCollection
ajoute ou enl̀eve une collection d’objets.

• unSac add: newObject withOccurrences: n
unSac removeAllOccurrencesOf: anObject ifAbsent: aBlock
ajoute n occurences du même objet, ou enlève toutes les occurences d’un objet.

3.4.2 Énumérations

• do: collect: inject: . . . : Le principe utiliśe est d’́evaluer les blocs param̂etres pour chaquéelément
de l’ensemble. Par exemple, siunObjet apparait 10 fois dans le sac, il y aura 10évaluations du bloc
param̂etre.

Lorsque l’it́erateur renvoie une collection, celle-ci estégalement unBag. Dans l’exemple qui suit
voyelles est unBag qui ne comporte quefalse et true.

Compter les voyelles dans une chaine

| b voyelles |
b := Bag new.
b addAll: ’il pleut sans cesse sur Brest’.
voyelles := (b collect: [:lettre | lettre isVowel]).
voyelles occurrencesOf: true
”8”

• valuesAndCountsDo: unBloc : S’il est utile d’associer leśeléments et leurs compteurs associés,
on utilise ce message et on construit un blocà deux param̂etres (́elément et son compteur).

Imprimer par ordre croissant le nombre de caractères apparus dans une chaine

| stream sort |
stream := WriteStream on: (String new:200).
”preparation d’une collection comportant des Associations triees selon le champs value”
sort := SortedCollection new sortBlock: [:a1 :a2 | a1 value < a2 value].
’le petit homme qui chantait sans cesse’ asBag valuesAndCountsDo: [:v :c | sort add: v-> c].
sort do: [:association | stream nextPut: association key ; space.

stream nextPutAll: association value printString, ’ - ’].
stream contents

”’q 1 - p 1 - o 1 - l 1 - u 1 - n 2 - m 2 - h 2 - c 2 -
i 3 - a 3 - t 4 - s 4 - e 5 - 6 - ’”

17

3.5 Performances

On veut comparer les performances en insertion et suppression sur les collectionsSet, SortedCollection
etOrderedCollection. Dans un premier temps, on laisse l’ensemble grossir au fur età mesure des besoins,
en testant les 3 collections. Dans un second temps, on fixe d’emblée la taille de l’ensemblèa 4 fois la taille
deséléments. Dans les deux cas les objets insérés sont des nombres réels aĺeatoires.

3.5.1 Boucle externe du test et formatage

On y reconnait unstream enécriture sur une chaine de caractères, qui sera utiliśe pour produire une table
au format LaTeX (voir la table3.1).

Le bloceval poss̀ede deux param̂etres, l’un contient la classe sur laquelle on effectue le test de perfor-
mance, l’autre est un bloc servantà instancier cette classe. On repère les 6́evaluations de ce bloc en fin de
méthode.

Dans le bloc, le temps de calcul insertion/suppression est produit en expédiant le messagetestCollec-
tion: aClass creationBlock: aBlock times: nTimes. Ce message est décrit plus bas.

Il faut noter que l’on ŕep̀etenTimes fois les oṕerations et que les temps sont rendus dans uneOrdered-
Collection de taillenTimes.

testNew
”Test testNew”

| stream eval resultats nTimes |
nTimes := 3.
stream := WriteStream on: ’’.
stream nextPutAll: ’Classe & ’.
nTimes timesRepeat: [stream nextPutAll: ’add’, ’ & ’, ’remove’, ’& ’].
stream nextPutAll: ’add moy.’, ’ & ’, ’remove moy. ’, ’\\\hline ’; cr.
eval :=

[:aClass :aBlock |
| sumX sumY |
stream nextPutAll: aClass name, ’ & ’.
resultats := self

testCollection: aClass
creationBlock: aBlock
times: nTimes.

sumX := sumY := 0.
resultats

do:
[:point |
stream nextPutAll: point x printString, ’ & ’, point y printString, ’ & ’.
sumX := sumX + point x.
sumY := sumY + point y].

stream nextPutAll: (sumX // resultats size) printString, ’ & ’,
(sumY // resultats size) printString, ’\\\hline ’; cr].

eval value: Set value: [Set new].
eval value: SortedCollection value: [SortedCollection new].
eval value: OrderedCollection value: [OrderedCollection new].
eval value: Set value: [Set new: 8000].
eval value: SortedCollection value: [SortedCollection new: 8000].
eval value: OrderedCollection value: [OrderedCollection new: 8000].
ˆstream contents

18

3.5.2 Boucle interne du test

Ici, on effectue une série de mesures identiques sur une classe passée en param̂etre, que l’on instancie via
un blocégalement passé en param̂etre.

tRand est le temps de géńeration de 2000 nombres.tAdd est le temps d’insertion,tRemove, le temps
de suppression.

Le temps est́evalúe en millisecondes en utilisant le messageTime millisecondsToRun: unBloc. On
renvoie une collection de points comportant en abcisse le temps d’insertion, en ordonnée le temps de
suppression (par pure commodité).

testCollection: collClass creationBlock: aBlock times: n
| rand set2 tAdd tRemove tRand set1 resultats |
resultats := OrderedCollection new: n.
rand := Random new. ”Generateur de nombre aleatoire”
n

timesRepeat:
[set2 := aBlock value.
tRand := Time millisecondsToRun: [2000 timesRepeat: [rand next * 100]].
tAdd := Time millisecondsToRun: [2000 timesRepeat: [set2 add: rand next * 100]].
set1 := set2 copy asArray.
tRemove := Time millisecondsToRun: [set1 do: [:elt | set2 remove: elt]].
resultats add: tAdd - tRand @ tRemove].

ˆresultats

3.5.3 Bilan

Classe add remove add remove add remove add moy. remove moy.

Set 514 946 503 908 507 920 508 924
SortedCollection 769 2983 805 1564 759 2787 777 2444
OrderedCollection 50 1574 41 2876 17 1568 36 2006

Set 267 361 244 353 264 349 258 354
SortedCollection 1380 2869 852 1551 1326 2846 1186 2422
OrderedCollection 49 1544 5 2887 53 1613 35 2014

Table 3.1: Performances comparées. Le premier groupe de tests porte sur des collections créées avecnew.
Le second groupe porte sur des ensembles portés, d’embĺeeà une capacité de 8000

• On peut constater que le coût du sous dimensionnement de la structure du départ peut̂etre important
: dans le cas de Set, cela compte pour un facteur 2.

• Si la structure est grande, le coût en suppression est réduit (le second Set est 4 fois trop grand, et on
remarque que les suppressions sontà peine plus lentes que les insertions). Dans le cas contraire, le
coût des suppressions peutêtre jusque deux fois pluśelev́e que celui des insertions.

L’explication se trouve dans la gestion des collisions et le nombre de celles-ci. . .

• l’accès en insertion sur lesOrderedCollection est tr̀es rapide, on ne peut pas en dire autant des
suppressions.

• lesSortedCollection marquent un avantage en recherche qui n’apparait pas ici.

19

4
SUnit Testing

Main Author(s): St́ephane Ducasse
For each class described in the Chapter on collection ”Set, Dictionary and Bag”, define unit tests for

each of the described behavior.

4.1 Set

Exercise 20 create a Unit test for each of the following methods

• aSet add: anObject andaSet addAll: aCollection,

• aSet includes: anObject

• aSet remove: un Objet andaSet remove: anObjet ifAbsent: aBlocException,

• aSet size andaSet capacity.

4.2 Dictionary

• aDictionary at: aKey put: anObject,

• aDictionary add: uneAssociation,

• aDictionary removeKey: aKey, aDictionary removeKey: aKey ifAbsent: aBloc,

• aDictionary includesKey: aKey,

• aDictionary includes: anObject,

• aDictionary occurencesOf: anObject,

• aDictionary keyAtValue: anObject,

• aDictionary do: aBloc,

• aDictionary keysDo: aBloc,

• aDictionary keysAndValuesDo: aBloc.

4.3 Bag

• aBag add: unObjet

• aBag remove: unObjet andaBag remove: unObjet ifAbsent: aBlock

• aBag addAll: aCollection andaBag removeAll: aCollection

• aBag add: anObject withOccurrences: n and aBag removeAllOccurrencesOf: anObject
ifAbsent: aBlock

20

5
Some Useful Tools in Squeak

Main Author(s): Bergel, Denker, Ducasse

5.1 SqueakMap Package Loader

Before starting the exercises provided in this booklet, you need to install some useful tools. These are
installable packages offered from the SqueakMap package loader. If you are behind a proxy, you need to
set it: in a workspace, evaluateHTTPSocket useProxyServerNamed: ’proxy.unibe.ch’ port: 80. To
open a SqueakMap package loader, click on the background, this will bring the so-called World Menu,
select open... SqueakMap Package Loader. You obtain a list of all the packages available in Squeak. We
suggest you to load the packages:

Figure 5.1: SqueakMap Package Loader on Shout

1. Monticello: Monticello is a package support for Squeak (normally already included in 3.7 full re-
lease).

2. Shout (syntax highlighter while typing),

3. KomHttpServer (web server): answer yes to the first two questions, and thenalwaysno,

4. Seaside (the dynamic web application framework): it asks you for a login and password,

5. Refactoring Browser for Squeak 3.7.

21

5.2 Monticello

Monticello is a CVS-like tool for Squeak. You can find the documentation at:http://www.wiresong.ca/Monticello/UserManual/.
Open Monticello using open... Monticello. Monticello allows you to save projects in various kind of
servers: http, ftp, file system, data bases, You can save your project on SqueakSource, if you want
(http://www.squeaksource.com).

By convention, the name of a package should be the same as a class-category. As in Smalltalk this is
possible to extend classes, you can associate a class extension with a package by putting a * followed by the
name of the package in the method category. For example in Figure5.3, the method namedstylerAbout-
ToStyle: is defined in the*Shout-Styling category, therefore it belongs to the packageShout-Styling.

You can browse the contents of a package by clicking on the browse button and in particular you can
see the extensions associated to a package. See the Monticello chapter.

Figure 5.2: Monticello

Figure 5.3: Browsing the changes associated to a package.

5.3 SqueakSource: the Squeak SourceForge

SqueakSource (www.squeaksource.com) is a free source forge like open-source code repository. You
can manage your squeak source there. For that you should define a project there and add it into your
Monticello list of repositories.

You can define a new repository in Monticello and publish automatically to this repository. For that
you should paste the project information specified in SqueakSource into the repository dialog as shown in
Figure5.5

22

Figure 5.4: SqueakSource is a source forge like server for Squeak.

Figure 5.5: Adding a repository to your monticello repository list.

23

6
Monticello

6.1 Packages in Monticello: PackageInfo

The PackageInfo system is a simple, lightweight way of organizing Smalltalk source: it is nothing more
than a naming convention, which uses (or abuses) the existing categorization mechanisms to group related
code. Let me give you an example: say that you are developing a framework named SqueakLink to facilitate
using relational databases from Squeak. You will probably have a series of system categories to contain all
of your classes (e.g., categorySqueakLink-Connections containing the classesOracleConnection,
MySQLConnection and PostgresConnection) (SqueakLink-Model containingDBTable, DBRow and
DBQuery) and so on. But not all of your code will reside in these classes - you may also have, for example,
a series of methods to convert objects into an SQL friendly format:Object�asSQL, String�asSQL and
Date�asSQL.

These methods belong in the same package as the classes inSqueakLink-Connections and
SqueakLink-Model . You mark this by placing those methods in a method category (ofObject, String,
Date, and so on) named*squeaklink (note the initial star). The combination of theSqueakLink-...
system categories and the*squeaklink method categories forms a package named ”SqueakLink”.

The rules, to be precise, are this: a package named ”Foo” contains

• All class definitions of classes in the system categoryFoo, or in system categories with names
starting with ”Foo-”.

• All method definitions in any class in method categories named*foo or with names starting with
*foo- .

• All methods in classes in the system categoryFoo, or in system categories with names starting with
Foo- , except those in method categories with names starting with* (which must belong to other
modules).

6.2 Getting Started

Installing The best way to install Monticello is via SqueakMap. Note however, that MC has two de-
pendencies, both are part of the standard image, so it’s usually not necessary to install them explicitly.
However, the update stream tends to lag behind the versions on SqueakMap, so it’s often a good idea to
upgrade them before installing MC.!

• PackageInfo groups classes and methods into packages using a simple naming convention. It became
part of the standard image in update 5250.

• MCInstaller provides a way to load Monticello Versions into an image that doesn’t have Monticello
installed. Since Monticello is self hosting, it’s used for bootstrapping. It’s present in images updated
through 5710 and later.

Creating a Working Copy Once Monticello is installed, the Monticello Browser will be available from
the ’open...’ menu. Open it by selecting World / open... / Monticello Browser.

The first thing you need to do is tell Monticello about the package you are interested in versioning. You
do this by creating a Working Copy.

24

From an .mcz version file Open a FileList and navigate to the version file. Click on the ’Load’ button to
load the package into your image.

From a version in a repository First connect to the repository, either local or remote, that contains the
verison you want to load. See below for details. Then open the repository: select the repository in the list
on the right-hand side of the Monticello Browser, and click the ’Open’ button. This will open a Repository
Inspector. Select your version and click the ’Load’ button.

From scratch Click on the ’+Package’ button, and enter the name of a PackageInfo package. It doesn’t
matter whether or not the code for the package already exists.

Once the Working Copy has been created, the name of the package will appear in the package list on the
left side of the Monticello Browser. If you loaded an existing version, the version name will be displayed in
parenthesis after the package name, otherwise the parenthesis will be empty, indicating that your working
copy has no ancestors.

Connecting to a Repository If you’ve already got a Working Copy, click on the package name on the left
side of the Monticello Browser, so that your repository will be associated with your package. To connect
to a repository, click on the ’+Repository’ button in the Monticello Browser. A pop-up menu will appear,
allowing you to select the type of repository you want to connect to.

The simplest repository type is ’directory.’ When you select this type of repository, Monticello will
open a FileList2 to allow you to select an existing directory in which to store versions. Other types of
repositories typically require more configuration, and will open a text pane to allow you to enter it.

Saving Changes Changes to your working copy are automatically logged in your changes file, so you
only need to create a new version of your package when you want to share the changes with others. Select
the package on the left side of the Monticello Browser and the repository to save to on the right, then click
the ’Save’ button. See Repositories for discussion of how to publish to shared repositories.

Merging Changes If you or some other developer have made changes to the same version of a package,
load one version as your working set and then select the repository containing the other version in the
Monticello Browser, open a Repository Browser and select the other version. Clicking the ’Merge’ button
will automatically load all non-conflicting changes from the other version. If you need to control which
changes to accept, you may instead click ’Changes’ to browse every difference.

6.3 Elements of Monticello

Packages Packages are the units of versioning used by Monticello; the classes and methods they contain
are recorded and versioned together. Monticello uses the packages defined by PackageInfo.

Snapshots A Snapshot is the state of a Package at a particular point in time

Versions A Version is a Snapshot of a Package and it’s associated metadata - author initials, the date and
time the snapshot was taken, and the Version’s ancestry - the list of Versions from which it is derived.

A Version is the standard currency of the system. You save them, load them, give them to others, merge
them, delete... you get the picture. Versions are often stored in mcz files - see File Format

Working Copies Each package in an image that is being versioned with Monticello has a Working Copy.
The Working Copy represents the Version of the package that is currently active in the image, and which
may be modified by the Smalltalk development tools.

25

Repositories These are places to store your Versions. Unlike CVS, in which a Package is associated
with one Repository, a Monticello Package can have Versions in many repositories. When adding a new
Repository to use, you can choose from SqueakMap Cache, FTP, HTTP (webdav), SqueakMap Release,
SMTP, or a directory somewhere on your hard drive (or network drive).

For example, if I have six versions of package Foo, I could have Foo versions 1-4 being on my local
harddrive, and 5-6 being on an ftp server. You could download version 5, make some changes and commit
a new version (7) to your WebDAV repository. I can download and merge that version with my own work
to produce version 8, which I save to my ftp repository.

This is a key element of Monticello’s distributed development model.

Package cache The package-cache is a local repository the Monticello uses to cache any package that is
loaded into a particular image in a directory. That means it is filled with .mcz files, whether it is a package
you create in your image, or one you download from somewhere else.

When you use images in different directories you will have multiple package-caches, and may hold
many of the same packages. If MC is loaded into an image which is subsequently moved, MC will continue
to use the package-cache in the directory the image was moved from. Otherwise MC creates a new package-
cache in the local directory. This can become a real mess and so some have used symlinks on unix systems
to centralize it.

Why cache packages at all? When a Version is loaded into the image, it is likely to become the ancestor
of new versions that are created as part of the development process. During merges, Monticello needs to
examine the Snapshots of these ancestors in order to detect conflicts. By caching these ancestors as it loads
them, MC reduces the chance that the necessary version will be unavailable - either because the repository
it’s in is no longer available or because it was loaded directly from a file and isn’t in any repository.

6.4 Repositories

There are currently 8 types of repositories, each with different characteristics and uses. Repositories can
be read-only, write-only or read-write.

HTTP HTTP Repositories are often general purpose read-write repositories for day-to-day development
using a shared server. (Although the server can be configured for read-only access. Saving Versions via
HTTP uses the PUT method, wich must be enabled on the server.)

The nice thing about HTTP repositories is that it’s easy to link directly to specific versions from web
sites or SqueakMap. With a little configuration work on the HTTP server, HTTP repositories can be made
browseable by ordinary web browsers, WebDAV clients, etc.

FTP Similar to an HTTP repository, except that it uses an FTP server instead.

GOODS This repository type stores Versions in a GOODS object database. It’s a read-write repository,
so it makes a good ”working” repository where Versions can be saved and retreived. Because of the
transaction support, journaling and replication capabilities of GOODS, it is suitable for large repositories
used by many clients.

directory A directory repository stores Versions in a directory in the local filesystem. Since it requires
very little work to set up, it’s handy for private projects or disconnected development. The Versions in a
directory repository can be uploaded to a public or shared repository at a later time.

SMTP SMTP repositories are useful for sending Versions by mail. When creating an SMTP repository,
you specify an a destination email address. This could be the address of another developer - the package’s
maintainer, for example - or a mailing list such as squeak-dev. Any Versions save to the repository will be
emailed to this address.

26

SqueakMap Release This is a write-only repository used for publishing releases of a package to SqueakMap.
To configure the repository enter the name of the package on SqueakMap, your SM initials and your SM
password. Now any Versions saved to the repository will be uploaded to your SM account, and registered
as a new release with SqueakMap.

SqueakMap Cache When packages are installed through SqueakMap, the downloaded files are stored
in a cache. In order to make these files, which are often Versions in .mcz format, available to Monticello
for loading, merges etc, a SqueakMap Cache repository is created when these files are loaded for the first
time.

package-cache The package cache is a special repository that Monticello creates automatically. Like a
directory repository, the package cache stores files in a directory on your local filesystem. See Elements of
Monticello for more information.

6.5 File Format

Versions are often saved in binary files for storage in repositories, distribution to users etc. These files are
commonly call ’mcz files’ as they carry the extension .mcz.

Archive contents Mcz files are actually ZIP archives that follow certain conventions. Conceptually a
Version contains four things:

• Package. A Version is related to a particular Package. Each mcz file contains a member called
’package’ which contains information about the Version’s Package.

• VersionInfo. This is the meta-data about the Snapshot. It contains the author initials, date and time
the Snapshot was taken, and the ancestry of the Snapshot. Each mcz file contains a member called
’version’ which contains this information.

• Snapshot. A Snapshot is a record of the state of the package at a particular time. Each mcz file
contains a directory named ’snapshot/’. All the members in this directory contain definitions of
program elements, which when combined form the Snapshot. Current versions of Monticello only
create one member in this directory, called ’source.st’.

• Dependencies. A Version may depend on specific Versions of other packages. An mcz file may
contain a ’dependencies/’ directory with a member for each dependency. These members will be
named after the Package depended upon.

Source code encoding The member named ’snapshot/source.st’ contains a standard fileout of the code
that belongs to the package.

Metadata encoding The other memebers of the zip archive are encoded using S-expressions. Concep-
tually, the expressions represent nestable dictionaries. Each pair of elements in a list represent a key and
value. The following example needs little explaination:

(key1 ’value1’ key2 (sub1 ’sub value 1’))

Distributing mcz files The metadata for a Version ends up being fairly compact, so it’s not unreasonable
to distribute with a release. It’s also important that it be present if somebody decides to start hacking on
your Package. Then they can create a mcz with their Version of your package and it will have the correct
ancestry information, enabling you to easily and correctly merge it back into your work.

Stated another way, a Version doesn’t contain a full history of the source code. It’s a snapshot of the
code at a single point in time, with a UUID identifying that snapshot, and a record of the UUIDs of all the
previous snapshots it’s descended from. So it’s a great thing to distribute.

27

6.6 The Monticello Browser

The Monticello Browser is the central window of the interface. All versioning operations begin with the
Monticello Browser.

The browser contains two panes. The left pane contains the list of packages that have Working Copies
in the image. In parenthesis, the immediate ancestors of the Working Copies are also listed. Packages that
have been modified since they were loaded are displayed with an asterisk before their names. The list on
the right shows the repositories that are configured for the selected package. The buttons across the top are
enabled and disabled depending on the selections in the two panes; many commands require you to first
select a package and repository.

+Package The ’+Package’ button is used to create a Working Copy for a package. When you click on it,
Monticello will ask for the name of the Package you want to version, the same name that PackageInfo uses
to identify the package. Once the Working Copy has been created, the name of the package will appear in
the left pane.

The ’+Package’ button should only be used to create a Working Copy for a brand-new package, one
that has not previously versioned with Monticello. To create a Working Copy from an existing Version,
you should load the version from a repository or directly from an .mcz file using the FileList. See Getting
Started for details.

Browse The ’Browse’ button takes a Snapshot of the current state of the selected package and opens a
Snapshot Browser on it.

History The ’History’ button opens a History Browser on the Working Copy for the selected pacakge.

Changes The ’Changes’ button is used to display the changes made to the selected package since it was
last saved or loaded. Monticello first takes a Snapshot of the package and compares it to the package’s first
immediate ancestor. If any changes have been made, a Patch Browser is opened to display them.

Save The ’Save’ button is for saving new Versions of the selected package. It opens a dialog that allows
you to enter the name of the new version and a log message describing the changes made since the last
version. If you click ’accept,’ Monticello will take a Snapshot of the package and save it as a Version to the
selected repository.

+Repository The ’+Repository’ button is used to connect to a Repository. It opens a menu allowing
you to choose the type of repository you with to connect to, and depending on the repository type, a
configuration dialog for the connection.

Open The ’Open’ button opens a Repository Inspector on the selected repository. The is useful when
you need to find a specific Version to load, merge, browse etc.

6.7 The Snapshot Browser

The Snapshot browser is much like the standard Smalltalk System Browser except that it displays the
contents of a Snapshot, rather than the code that is active in the image. Since Snapshots are immutable, the
Snapshot browser does not allow editiing.

One difference between the Snapshot Browser and the familiar system browsers is that the Snapshot
browser uses the special system category ’*Extensions’ to categorize classes that do not belong to the
package, but which have extension methods that do.

28

6.8 More on PackageInfo

To get a feel for this, try filing the Refactoring Browser. The Refactoring Browser code uses PackageInfo’s
naming conventions, using ”Refactory” as the package name. In a workspace, create a model of this
package withrefactory := PackageInfo named: ’Refactory’.

It is now possible to introspect on this package; for example, refactory classes will return the long list
of classes that make up the Refactoring Browser. refactory coreMethods will return a list of MethodRef-
erences for all of the methods in those classes. refactory extensionMethods is perhaps one of the most
interesting queries: it will return a list of all methods contained in the Refactory package but not con-
tained within a Refactory class. This includes, for example,String�expandMacrosWithArguments: and
Behavior�parseTreeFor:.

Since the PackageInfo naming conventions are based on those used already by Squeak, it is possible
to use it to perform analysis even of code that has not explicitly adapted to work with it. For example,
(PackageInfo named: ’Collections’) externalSubclasses will return a list of all Collection subclasses outside
the Collections categories.

You can send fileOut to an instance of PackageInfo to get a changeset of the entire package. For more
sophisticated versioning of packages, see the Monticello project.

29

Part II

Seaside

30

7
Web dynamique avec Seaside

Main Author(s): N. Bouraqadi, Université Libre de Bruxelles,bouraqadi@ensm-douai.fr

7.1 Compĺements sur Seaside

Quelques messages pour géńerer du html. Le destinataire de ces messages est l’objet passé en param̀etre
de la ḿethoderenderOn: (instance deWAHtmlRender).

• text: ’chaine de caracteres’ affiche simplement la chane de caractères.

• heading: ’texte du titre’ level: niveau affiche un titre. Le deuxième param̀etre est un entier qui
correspond au niveau hiérarchique du titre (1 correspond au le plus grand)

• break introduit un retour̀a la ligne

• horizontalRule introduit une ligne horizontale

• form: [”definition de boutons, zones de saisies, ”] définit un formulaire au sens Html. Ńecessaire
pour avoir des boutons et autres zones de saisies dans une page Html. Reoit en paramètre un bloc
qui contient les messages de création des boutons, zones de saisie,

• textInputWithValue: valeurInitiale callback: [:valeur |”traitements”] crée une zone de saisie
simple (sans barre de défilement). La valeur initiale est celle qui est affichée au d́emarrage (nil pour
ne rien afficher). Le dernier argument est un bloc qui reçoit comme paramètre la valeur saisie (valeur)
dans le champ. Cette valeur peutêtre utiliśee dans le traitement défini par le bloc. Ce bloc est exécut́e
quand la touche ”Entrée” est presśee ou quand on clic sur un bouton du formulaire dans lequel se
trouve la zone de saisie.

• submitButtonWitAction: [”traitements”] text: ’titre du bouton’ ajoute un bouton qui a pour titre la
chane de caractères pasśee comme deuxième argument. Un clic sur le bouton provoque l’exécution
des traitements d́efinis dans le bloc passé comme premier param̀etre.

7.2 Encore des compteurs !

Il s’agit de ŕealiser encore un compteur, mais cette fois, il devraêtre accessible via le web (utilisation
de Seaside). De plus, il devraêtre personnalisable dans la mesure où l’utilisateur doit pouvoir modifier
directement la valeur du compteur et modifier l’incrément. Concr̀etement, vous devez définir une classe
CompteurPersonnalise sous-classe deWAComponent qui repŕesente une application Seaside.Comp-
teurPersonnalise sera munie de :

• deux champs (value et increment),

• une ḿethode d’initialisation (initialize),

• ainsi que la ḿethode de ǵeńeration du code html (renderOn:).

31

Figure 7.1: L’interface du compteur personnalisé

L’interface utilisateur doit̂etre analoguèa celle de la figure7.1. Deux champs de saisie permettent de
modifier la valeur du compteur et son incrément apr̀es clic sur le bouton ”Actualiser”. Le bouton ”Reset”
réinitialise le compteur (value miseà 0 etincrement misà 1). Enfin, le bouton ”Incŕementer/D́ecŕementer”
permet d’ajouter l’incŕement au compteur et donc de l’incrémenter si l’incŕement est positif ou de le
décŕementer dans le cas contraire.

7.3 Śeparer l’interface du code métier

La structure sugǵeŕee pour l’exercice préćedent n’est pas très propre. En effet, un m̂eme objet prend en
chargeà la fois le traitement (code ḿetier : incŕementer/d́ecŕementer, modification de l’incrément,) et
l’interface utilisateur. Ce choix de conception rend difficile leséventuelleśevolutions ou ŕeutilisation. En
particulier, si l’on souhaite changer d’interface utilisateur, voire de modèle de communication distante.

Dans cet exercice, on se propose de faire la séparation entre code ḿetier et code d’interface et en illustrer
l’utilit é à l’aide d’un exemple simple. Cet exemple tourne autour d’une calculatrice arithmétique. Vous
définirez tout d’abord la classeCalculatrice qui dispose de deux champs qui représentent respectivement
l’opérande gauche et l’opérande droite. Munissez la classe d’accesseurs en lectureécritureà ces deux
champs, ainsi que de 4 méthodes pour réaliser les 4 oṕerations arithḿetiques. Bien entendu, ces quatre
méthodes :

• ne prennent pas de paramètres,

• effectuent le calcul en utilisant les champs représentant les deux opérandes,

• et retournent le ŕesultat du calcul

Définissez ensuite la classeCalculatriceWeb sous-classe deWAComponent qui repŕesente une ap-
plication Seaside.CalculatriceWeb permet l’utilisationà travers le web des opérations fournies parCal-
culatrice. Son interface s’apparenteà celle donńee par la figure7.2.

Vous allez maintenant exploiter la séparation entre code ḿetier et code d’interface utilisateur. En ef-
fet, vous allez ŕeutiliser la classeCalculatrice pour faire un nouveau compteur accessible via le web.
L’interface devrâetre identiquèa celle du compteur de l’exercice préćedent.

32

Figure 7.2: L’interface de la calculatrice.

7.4 Une application un peu plus sophistiqúee

Il s’agit ici de d́efinir un outil qui permet de ǵerer des tableaux blancs partagés via le web. Un tableau
blanc est une zone de texte que plusieurs utilisateurs peuvent modifier. Chaque tableau est caractériśe par
un nom et dispose d’une liste identifiants les utilisateurs qui ont le droit d’y accéder.

Chaque utilisateur dispose d’un identifiant et d’un mot de passe qu’il fournit pour se connecter. Une
fois connect́e il a le choix entre cŕeer un nouveau tableau ou modifier tableau existant. Les utilisateurs qui
ont acc̀esà un tableau peuvent en modifier le contenu ainsi que la liste des utilisateurs qui ont accès au
tableau.

33

8
A Simple Application for

Registering to a Conference

Main Author(s): A. Bergel, Universitaet Bern,bergel@iam.unibe.ch
The goal of this tutorial is to give you a feeling on creating a web application using Seaside. RegConf is

a tool intended to help people to register to a conference.

8.1 RegConf: An Application for Registering to a Conference

Four steps are necessary to complete a registration:

1. A participant has to enter some personal data such as firstname, name, the institute where she is
attached, and her email address.

2. Then some information about the hotel are required. For instance a room can be single or double in
an hotel ranked between 1 and 4 stars. A price has then to be computed.

3. Finally informations regarding the payment are required. Once the credit card number, the issue
date, and the type are entered,

4. A confirmation screen shows a summary of what was entered.

The flow of the application is described in the following figure.
The dashed rectangle designate the part of the application which isisolated. This means that once the

flow of the running application leaves this box, there is no way to come back in it, specially using the back
button.

Get personal
info Get hotel info Get Payment

info
Show

Confirmation

is cart number valid ?

yes

no

Isolation

Figure 8.1:

34

8.2 Application Building Blocks

8.2.1 The Entry Point: RCMain

The control flow of the application has to be described in a task’sgo method. This method also represent the
entry point of the application. Thus a name likeRCMain sounds appropriated (RC stands for RegConf).

Your job: Create a taskRCMain with ago method that describes the control flow of the application.

Your job: Start the web server on by executingWAKom startOn: 9090.

Your job: Create aninitialize method on the class side to register your application in Seaside under the
nameregconf.

8.2.2 Getting User Information: RCGetUserInfo

All the control flow is defined in the class you previously defined. Getting user information is implemented
as a normal seaside component (i.e., subclass ofWAComponent). Instance variables of this class should
reflect the structure of a user. Pressing thesubmitbutton returns to the caller component usinganswer:.
Fetching the participant’s informations can be done using text fields and submit button. Here is an example:

Your job: Write the methodrenderContentOn: in RCGetUserInfo.

Your job: Try your application using your favorite web browser. Make it point tohttp://localhost:9090/seaside/regconf.

The information passed around different states of the application can be contained in a dictionary. A
more advanced design would require a classUser for which an instance is passed around through.

8.2.3 Getting Hotel Information: RCGetHotelInfo

A list of choices is pleasant to fetch informations of the hotel.

35

Your job: Write the classRCGetHotelInfo

8.2.4 Payment:RCPayment

The payment is valid only if 16 number was provided and if the issue date is not over.

Your job: Write the classRCPayment

8.2.5 Confimation: RCConfirmation

Once the payment is done, it is nice to show a summary of what was done.

Your job: Write the classRCConfirmation

8.3 Extensions

Your job: Study the class MiniCalendar of Seaside. Create a calendar starting from today.Your job: Use

36

the mini calendar to add the possibility to say when and until which day the person wants to keep the room.

37

Part III

Object-Oriented Design

38

9
A Simple Application: A LAN

simulation

Main Author(s): Ducasse, Wuyts

Basic LAN Application

The purpose of this exercise is to create a basis for writing future OO programs. We work on an application
that simulates a simpleLocal Area Network (LAN) . We will create several classes:Packet, Node, Work-
station, andPrintServer. We start with the simplest version of a LAN, then we will add new requirements
and modify the proposed implementation to take them into account.

Creating the ClassNode

The classNode will be the root of all the entities that form aLAN. This class contains the common
behavior for all nodes. As a network is defined as a linked list of nodes, a Node should always know its
next node. A node should be uniquely identifiable with a name. We represent the name of a node using
a symbol (because symbols are unique in Smalltalk) and the next node using a node object. It is the node
responsibility to send and receive packets of information.

Node inherits from Object
Collaborators: Node and Packet
Responsibility:
name (aSymbol) - returns the name of the node.
hasNextNode - tells if a node has a next node.
accept: aPacket - receives a packet and process it.
By default it is sent to the next node.
send: aPacket - sends a packet to the next node.

Exercise 21 Create a new packageLAN, and create a subclass ofObject calledNode, with two instance
variables:name andnextNode.

Exercise 22 Create accessors and mutators for the two instance variables. Document the mutators to in-
form users that the argument passed toname: should be a Symbol, and the arguments passed tonextNode
should be a Node. Define them in aprivate protocol. Note that a node is identifiable via its name. Its
name is part of its public interface, so you should move the method name from theprivate protocol to the
accessing protocol (by drag’n’drop).

Exercise 23 Define a method calledhasNextNode that returns whether the node has a next node or not.

Exercise 24 Create an instance methodprintOn: that puts the class name and name variable on the
argumentaStream. Include my next node’s name ONLY if there is a next node (Hint: look at the method

39

printOn: from previous exercises or other classes in the system, and consider that the instance variable
name is a symbol andnextNode is a node). The expectedprintOn: method behavior is described by the
following code:

(Node new
name: #Node1 ;
nextNode: (Node new name: #PC1)) printString

Node named: Node1 connected to: PC1

Exercise 25 Create aclassmethodnew and aninstancemethodinitialize. Make sure that a new instance
of Node created with the new method usesinitialize (see previous exercise). Leaveinitialize empty for
now (it is difficult to give meaningful default values for thename andnextNode of Node. However,
subclasses may want to override this method to do something meaningful).

Exercise 26 A node has two basic messages to send and receive packets. When a packet is sent to a node,
the node has to accept the packet, and send it on. Note that with this simple behavior the packet can loop
infinitely in the LAN. We will propose some solutions to this issue later. To implement this behavior, you
should add a protocolsend-receive, and implement the following two methods -in this case, we provide
some partial code that you should complete in your implementation:

accept: thePacket
”Having received the packet, send it on. This is the default

behavior My subclasses will probably override me to do
something special”

. . .

send: aPacket
”Precondition: self have a nextNode”

”Display debug information in the Transcript, then
send a packet to my following node”

Transcript show:
self name printString,
’ sends a packet to ’,
self nextNode name printString; cr.

. . .

Creating the ClassPacket

A packet is an object that represents a piece of information that is sent from node to node. So the responsi-
bilities of this object are to allow us to define the originator of the sending, the address of the receiver and
the contents.

Packet inherits from Object
Collaborators: Node
Responsibility:
addressee returns the addressee of the node to which
the packet is sent.
contents - describes the contents of the message sent.
originator - references the node that sent the packet.

40

Figure 9.1: Definition ofaccept: method

Exercise 27 In theLAN, create a subclass ofObject calledPacket, with three instance variables:con-
tents, addressee, andoriginator. Create accessors and mutators for each of them in theaccessing
protocol (in that particular case the accessors represents the public interface of the object). The addressee
is represented as a symbol, the contents as a string and the originator has a reference to a node.

Exercise 28 Define the methodprintOn: aStream that puts a textual representation of a packet on its
argumentaStream.

Creating the ClassWorkstation

A workstation is the entry point for new packets onto the LAN network. It can originate packet to other
workstations, printers or file servers. Since it is kind of network node, but provides additional behavior,
we will make it a subclass ofNode. Thus, it inherits the instance variables and methods defined inNode.
Moreover, a workstation has to process packets that are addressed to it.

Workstation inherits from Node
Collaborators: Node, Workstation
and Packet
Responsibility: (the ones of node)
originate: aPacket - sends a packet.
accept: aPacket - perform an action on packets sent to the
workstation (printing in the transcript). For the other
packets just send them to the following nodes.

Exercise 29 In the packageLAN create a subclass ofNode calledWorkstation without instance vari-
ables.

41

Exercise 30 Define the methodaccept: aPacket so that if the workstation is the destination of the
packet, the following message is written into the Transcript. Note that if the packets are not addressed to
the workstation they are sent to the next node of the current one.

(Workstation new
name: #Mac ;
nextNode: (Printer new name: #PC1))

accept: (Packet new addressee: #Mac)

A packet is accepted by the Workstation Mac

Hints: To implement the acceptance of a packet not addressed to the workstation, you could copy and
paste the code of theNode class. However this is a bad practice, decreasing the reuse of code and the “Say
it only once” rules. It is better to invoke the default code that is currently overriden by usingsuper.

Exercise 31 Write the body for the methodoriginate: that is responsible for inserting packets in the
network in the method protocolsend-receive. In particular a packet should be marked with its originator
and then sent.

originate: aPacket
”This is how packets get inserted into the network.
This is a likely method to be rewritten to permit
packets to be entered in various ways. Currently,
I assume that someone else creates the packet and
passes it to me as an argument.”

. . .

Creating the classLANPrinter

Exercise 32 With nodes and workstations, we provide only limited functionality of a real LAN. Of
course, we would like to do something with the packets that are travelling around the LAN. Therefore,
you will now create a classLanPrinter, a special node that receives packets addressed to it and prints
them (on the Transcript). Note that we use the name LanPrinter to avoid confusion with the existing class
Printer in the namespace Smalltalk.Graphics (so you could use the name Printer in your namespace or the
Smalltalk namespace if you really wanted to). Implement the class LanPrinter.

LanPrinter inherits from Node
Collaborators: Node and Packet
Responsibility:
accept: aPacket - if the packet is addressed to the
printer, prints the packet contents else sends the packet
to the following node.
print: aPacket - prints the contents of the packet
(into the Transcript for example).

Simulating the LAN

Implement the following two methods on the class side of the classNode, in a protocol calledexamples.
But take care: the code presented below hassome bugsthat you should find and fix!.

simpleLan
”Create a simple lan”
”self simpleLan”

42

— mac pc node1 node2 igPrinter —

”create the nodes, workstations, printers and fileserver”
mac := Workstation new name: #mac.
pc := Workstation new name: #pc.
node1 := Node new name: #node1.
node2 := Node new name: #node2.
node3 := Node new name: #node3.
igPrinter := Printer new name: #IGPrinter.

”connect the different nodes.”
mac nextNode: node1.
node1 nextNode: node2.
node2 nextNode: igPrinter.
igPrinter nextNode: node3.
node3 nextNode: pc.
pc nextNode: mac.

”create a packet and start simulation”
packet := Packet new

addressee: #IGPrinter;
contents: ’This packet travelled around

to the printer IGPrinter.

mac originate: packet.

anotherSimpleLan
”create the nodes, workstations and printers”

|mac pc node1 node2 igPrinter node3 packet |
mac:= Workstation new name: #mac.
pc := Workstation new name:#pc.
node1 := Node new name: #node1.
node2 := Node new name: #node2.
node3 := Node new name: #node3.
igPrinter := LanPrinter new name: #IGPrinter.

”connect the different nodes.”
mac nextNode: node1.
node1 nextNode: node2.
node2 nextNode:igPrinter.
igPrinter nextNode: node3.
node3 nextNode: pc.
pc nextNode: mac.

”create a packet and start simulation’’
packet := Packet new

addressee: #anotherPrinter;
contents: ’This packet travels around
to the printer IGPrinter’.

pc originate: packet.

As you will notice the system does not handle loops, so we will propose a solution to this problem in
the future. To break the loop, use eitherCtrl-Y or Ctrl-C , depending on your VisualWorks version.

43

Creating the ClassFileServer

Create the classFileServer, which is a special node that saves packets that are addressed to it (You should
just display a message on the Transcript).

FileServer inherits from Node
Collaborators: Node and Packet
Responsibility:
accept: aPacket - if the packet is addressed to the
file server save it (Transcript trace) else send the
packet to the following node.
save: aPacket - save a packet.

44

10
Fundamentals on the Semantics

of Self and Super

Main Author(s): Ducasse, Wuyts
This lesson wants you to give a better understanding ofself andsuper.

10.1 self

When the following message is evaluated:

aWorkstation originate: aPacket

The system starts to look up the methodoriginate: starts in the class of the message receiver: Work-
station. Since this class defines a methodoriginate:, the method lookup stops and this method is executed.

Following is the code for this method:

Workstation>>originate: aPacket

aPacket originator: self.
self send: aPacket

1. It first sends the messageoriginator: to an instance of classPacket with as argument self which
is a pseudo-variable that represents the receiver oforiginate: method. The same process occurs.
The methodoriginator: is looked up into the classPacket. As Packet defines a method named
originator:, the method lookup stops and the method is executed. As shown below the body of
this method is to assign the value of the first argument (aNode) to the instance variableoriginator.
Assignment is one of the few constructs of Smalltalk. It is not realized by a message sent but handle
by the compiler. So no more message sends are performed for this part oforiginator:.

Packet>>originator: aNode

originator := aNode

2. In the second line of the methodoriginate:, the messagesend: thePacket is sent toself. self
represents the instance that receives theoriginate: message.The semantics of self specifies that
the method lookup should start in the class of the message receiver.HereWorkstation. Since
there is no methodsend: defined on the classWorkstation, the method lookup continues in the
superclass ofWorkstation: Node. Node implements send:, so the method lookup stops and send:
is invoked

Node>>send: thePacket

self nextNode accept: thePacket

The same process occurs for the expressions contained into the body of the method send:.

45

10.2 super

Now we present the difference between the use ofself and super. self and super are both pseudo-
variables that are managed by the system (compiler). They both represents the receiver of the message
being executed. However, there is no use to pass super as method argument, self is enough for this.

The main difference between self and super is their semantics regarding method lookup.

• The semantics of self is to start the method lookupinto the class of the message receiver and to
continue in its superclasses.

• The semantics of super is to start the method look intothe superclass of class in which the method
being executed was defined and to continue in its superclasses.. Take care the semantics isNOT
to start the method lookup into the superclass of the receiver class, the system would loop with such
a definition (see exercise 1 to be convinced). Using super to invoke a method allows one to invoke
overridden method.

Let us illustrate with the following expression: the message accept: is sent to an instance of Worksta-
tion.

aWorkstation accept: (Packet new addressee: #Mac)

As explained before the method is looked up into the class of the receiver, here Workstation. The
method being defined into this class, the method lookup stops and the method is executed.

Workstation>>accept: aPacket

(aPacket addressee = self name)
ifTrue: [Transcript show: ’Packet accepted’, self name asString]
ifFalse: [super accept: aPacket]

Imagine that the test evaluates to false. The following expression is then evaluated.

super accept: aPacket

The method accept: is looked up in the superclass of the class in which the containing method accept:
is defined. Here the containing method is defined into Workstation so the lookup starts in the superclass of
Workstation: Node. The following code is executed following the rule explained before.

Node>>accept: aPacket

self hasNextNode
ifTrue: [self send: aPacket]

Remark. The previous example does not show well the vicious point in the super semantics: the
method look intothe superclass of class in whichor the method being executed was defined and not in
the superclass of the receiver class.

You have to do the following exercise to prove yourself that you understand well the nuance.

Exercise 33 Imagine now that we define a subclass of Workstation called AnotherWorkstation and that
this class does NOT defined a method accept:. Evaluate the following expression with both semantics:

anAnotherWorkstation accept: (Packet new addressee: #Mac)

You should be convinced that the semantics of super change the lookup of the method so that the lookup
(for the method via super) does NOT start in the superclass of the receiver class but in the superclass of the
class in which the method containing the super. With the wrong semantics the system should loop.

46

11
Object Responsibility and

Better Encapsulation

11.1 Reducing the coupling between classes

To be a good citizen you as an object should follow as much as possible the following rules:

• Be private. Never let somebody else play with your data.

• Be lazy. Let do other objects your job.

• Be focused. Do only one main task.

While these guidelines are not really formal, one of the main consequences is that this is the responsibil-
ity of an object to provide a well defined interface protecting itself from its clients. The other consequence
is that by delegating to other objects an object concentrates on a single task and responsibility. We now
look how such guidelines can help us to provide better objects in our example.

11.1.1 Current situation

The interface of the packet class is really weak. It just provides free access to its data. The main impact of
this weakness is the fact that the clients of the classPacket like Workstation relies on the internal coding
of thePacket as shown in the first line of the following method.

Workstation>>accept: aPacket

aPacket addressee = self name
ifTrue: [Transcript show: ’A packet is accepted by the Workstation ’, self name asString]
ifFalse: [super accept: aPacket]

As a consequence, if the structure of the class Packet would change, the code of its clients would have
to change too. Generalizing such a bad practice would lead to system that are badly coupled and being
really difficult to change to meet new requirements.

11.1.2 Solution.

This is the responsibility of a packet to say if the packet is addressed to a particular node or if it was sent
by a particular node.

• Define a method namedisAddressedTo: aNode in‘testing’ protocol that answers if a given packet
is addressed to the specified node.

• Define a method namedisOriginatedFrom: aNode in‘testing’ protocol that answers if a given
packet is originated from the specified node.

Once these methods are defined, change the code of all the clients of the classPacket to call them.

47

11.2 A Question of Creation Responsibility

One of the problem with the previous approach for creating the nodes and the packets is the following: it
is the responsibility of the client of the objects to create them well-formed. For example, it is possible to
create a node without specifying a name! This is a disaster for our LAN system (create an example method
3, and try it out). The same problem occurs with the packet: it is possible to create a packet without address
nor contents.

We will find a solution to these problems.

Exercise 34 Define a class method named withName: in the class Node (protocol ‘instance creation’)
that creates a new node and assign its name.

withName: aSymbol
....

Define a class method named withName:nextNode: in the classNode (protocol ‘instance creation’)
that creates a new node and assign its name and the next node in the LAN

withName: aSymbol nextNode: aNode
....

Note that the first method can simply invoke the second one.
Define a class method namedsend:to: in the class Packet (protocol ‘instance creation’) that creates a

new Packet with a contents and an address.

send: aString to: aSymbol
....

Now the problem is that we want to forbid the creation of non-well formed instances of these classes.
To do so, we will simply redefine the creation methodnew so that it will raise an error.

Exercise 35 Rewrite the new method of the classNode andPacket as the following:

new

self error: ‘you should invoke the method... to create a...’

However, you have just introduced a problem: the instance creation methods you just wrote in exercise
11 will not work anymore, because they callnew, and that calling results in an error ! The solution is to
rewrite them such as

Node class>>withName: aSymbol nextNode: aNode
ˆ self basicNew initialize name: aSymbol ; nextNode: aNode

Do the same for the instance creation methods in classPacket.

Exercise 36 Update and rerun your tests to make sure that your changes were correct.
Note that the previous code may break if a subclass specialize thenextNode: method does not return

the instance. To protect ourslef from possible unexpected extension we add yourself that returns the receiver
a the first cascaded message (herename:), here the newly created instance.

Node class>>withName: aSymbol nextNode: aNode
ˆ self basicNew initialize name: aSymbol ; nextNode: aNode ; yourself

48

11.3 Reducing the coupling between classes

To be a good citizen you as an object should follow as much as possible the following rules:

• Be private. Never let somebody else play with your private data.

• Be lazy. Let do other objects your job.

• Be focused. Do only one main task.

While these guidelines are not really formal, one of the main consequences is that this is the responsibil-
ity of an object to provide a well defined interface protecting itself from its clients. The other consequence
is that by delegating to other objects an object concentrates on a single task and responsibility. We now
look how such guidelines can help us to provide better objects in our example.

11.3.1 Current situation

The interface of thePacket class is really weak. It just provides free access to its data. The main impact of
this weakness is the fact that the clients of the classPacket like Workstation relies on the internal coding
of thePacket as shown in the first line of the following method.

Workstation>>accept: aPacket

aPacket addressee = self name
ifTrue: [Transcript show: ’A packet is accepted by the Workstation ’, self name asString]
ifFalse: [super accept: aPacket]

As a consequence, if the structure of the classPacket would change, the code of its clients would have
to change too. Generalizing such a bad practice would lead to system that are badly coupled and being
really difficult to change to meet new requirements.

11.3.2 Solution.

This is the responsibility of a packet to say if the packet is addressed to a particular node or if it was sent
by a particular node.

• Define a method namedisAddressedTo: aNode in ‘testing’ protocol that answers if a given packet
is addressed to the specified node.

• Define a method namedisOriginatedFrom: aNode in ‘testing’ protocol that answers if a given
packet is originated from the specified node.

Once these methods are defined, change the code of all the clients of the classPacket to call them. You
should note that a better interface encapsulates better the private data and the way they are represented.
This allows one to locate the change in case of evolution.

11.4 A Question of Creation Responsibility

One of the problems with the first approach for creating the nodes and the packets is the following: it is the
responsibility of the client of the objects to create them well-formed. For example, it is possible to create a
node without specifying a name! This is a disaster for our LAN system, the node would never reachable,
and worse the system would breaks because the assumptions that the name of a node is specified would not
hold anymore (insert an anonymous node in Lan and try it out). The same problem occurs with the packet:
it is possible to create a packet without address nor contents.

The solution to these problems is to give the responsibility to the objects to create well-formed in-
stances. Several variations are possible:

49

• When possible, providing default values for instance variable is a good way to provide well-defined
instances.

• It is also a good solution to propose a consistent and well-defined creation interface. For example
one can only provide an instance creation method that requires the mandatory value for the instance
and forbid the creation of other instances.

The classPacket . We investigate the two solutions for thePacket class. For the first solution, the
principle is that the creation method (new) should invoke aninitialize method. Implement this solution.
Just remember thatnew is sent to classes (a class method) and thatinitialize is sent to instances (instance
method). Implement the methodnew in a ‘instance creation’ protocol and initialize in a ‘initialize-release’
protocol.

Packet class>>new

. . .

Packet>>initialize
. . .

The only default value that can have a default value is contents, choose

contents = ‘no contents’

Ideally if each LAN would contain a default trash node, the default address and originator would point
to it. We will implement this functionality in a future lesson. Implement first your own solution.

Remarks and Analysis. Note that with this solution it would be convenient to know if a packet contents
is the default one or not. For this purpose you could provide the methodhasDefaultContents that tests
that. You can implement it in a clever way as shown below:

Instead of writing:

Packet>>hasDefaultContents

ˆ contents = ‘no contents’

Packet>>initialize
. . .

contents := ‘no contents’
. . .

You should apply the rule: ‘Say only once’ and define a new method that returns the default content
and use it as shown below:

Packet>>defaultContents

ˆ ‘no contents’

Packet>>initialize
. . .

contents := self defaultContent
. . .

Packet>>hasDefaultContent
ˆcontents = self defaultContents

With this solution, we limit the knowledge to the internal coding of the default contents value to only
one method. This way changing it does not affect the clients nor the other part of the class.

50

11.5 Proposing a creational interface

Packet. We now apply the second approach by providing a better interface for creating packet. For this
purpose we define a new creation method that requires a contents and an address.

Define aclassmethods namedsend:to: andto: in the classPacket (protocol ‘instance creation’) that
creates a newPacket with a contents and an address.

Packet class>>send: aString to: aSymbol

....

Packet class>>to: aSymbol

....

The classNode . Now apply the same techniques to the classNode. Note that you already implemented
a similar schema that the default value in the previous lessons. Indeed by default instance variable value is
nil and you already implemented the methodhasNextNode that to provide a good interface.
Define aclassmethod namedwithName: in the classNode (protocol ‘instance creation’) that creates a
new node and assign its name.

Node class>>withName: aSymbol

....

Define aclassmethod namedwithName:connectedTo: in the classNode (protocol ‘instance cre-
ation’) that creates a new node and assign its name and the next node in the LAN.

Node class>>withName: aSymbol connectedTo: aNode

....

Note that if to avoid to duplicate information, the first method can simply invoke the second one.

11.6 Forbidding the Basic Instance Creation

One the last question that should be discussed is the following one: should we or not let a client create an
instance without using the constrained interface? There is no general answer, it really depends on what we
want to express. Sometimes it could be convenient to create an uncompleted instance for debugging or user
interface interaction purpose.

Let us imagine that we want to ensure that no instance can be created without calling the methods we
specified. We simply redefine the creation method new so that it will raise an error. Rewrite thenew
method of the classNode andPacket as the following:

Node class>>new

self error: ‘you should invoke the method... to create a...’

However, you have just introduced a problem: the instance creation methods you just wrote in the pre-
vious exercise will not work anymore, because they callnew, and that calling results in an error! Propose
a solution to this problem.

51

11.6.1 Remarks and Analysis.

A first solution could be the following code:

Node class>>withName: aSymbol connectedTo: aNode

ˆ super new initialize name: aSymbol ; nextNode: aNode

However, even if the semantics permits such a call using super with a different method selector than the
containing method one, it is a bad practice. In fact it implies an implicit dependency between two different
methods in different classes, whereas the super normal use links two methods with the same name in two
different classes. It is always a good practice to invoke the own methods of an object by using self. This
conceptually avoids to link the class and its superclass and we can continue to consider the class as self
contained.

The solution is to rewrite the method such as:

Node class>>withName: aSymbol connectedTo: aNode

ˆ self basicNew initialize name: aSymbol ; nextNode: aNode

In Smalltalk there is a convention that all the methods starting with ‘basic’ should not be overridden.
basicNew is the method responsible for always providing an newly created instance. You can for example
browse all the methods starting with ‘basic*’ and limit yourself toObject andBehavior.

You can do the same for the instance creation methods in classPacket.

11.7 Protecting yourself from your children

The following code is a possible way to define an instance creation method for the classNode.

Node class>>withName: aSymbol

ˆ self new name: aSymbol

We create a new instance by invoking new, we assign the name of the node and then we return it. One
possible problem with such a code is that a subclass of the classNode may redefine the method name:
(for example to have a persistent object) and return another value than the receiver (here the newly created
instance). In such a case invoking the method withName: on such a class would not return the new instance.
One way to solve this problem is the following:

Node class>>withName: aSymbol

| newInstance |
newInstance := self new.
NewInstance name: aSymbol.
ˆ newInstance

This is a good solution but it is a bit too much verbose. It introduces extra complexity by the the extra
temporary variable definition and assignment. A good Smalltalk solution for this problem is illustrated by
the following code and relies on the use of the yourself message.

Node class>>withName: aSymbol

ˆ self new name: aSymbol ; yourself

yourself specifies that the receiver of the first message involved into the cascade (name: here and not
new) is return. Guess what is the code of the yourself method is and check by looking in the library if your
guess is right.

52

12
Hook and Template Methods

Main Author(s): Ducasse and Wuyts
In this chapter you will learn how to introduce hooks and template methods to favor extensibility. First

we look at the current situation and introduce changes step by steps.

12.1 Providing Hook Methods

Current situation. The solution proposed for printing aNode displays the following stringNode named:
Node1 connected to: PC1 obtained by executing the following expression:

(Node withName: #Node1 connectedTo: (Node new name: #PC1)) printString

A straightforward way to implement theprintOn: method on the classNode is the following code:

Node>>printOn: aStream

aStream nextPutAll: ’Node named: ’, self name asString.
self hasNextNode

ifTrue: [aStream nextPutAll: ’ connected to: ’, self nextNode name]

However, with such an implementation the printing of all kinds of nodes is the same.

New Requirements. To help in the understanding of the LAN we would like that depending on the
specific class of node we obtain a specific printing like the following ones:

(Workstation withName: #Mac connectedTo: (LanPrinter withName:
#PC1) printString

Workstation Mac connected to Printer PC1

(LanPrinter withName: #Pr1 connectedTo: (Node withName: #N1)
printString

Printer Pr1 connected to Node N1

Define the methodtypeNamethat returns a string representing the name of the type of node in the
‘printing’ protocol. This method should be defined in Node and all its subclasses.

(LanPrinter withName: #PC1) typeName

‘Printer’

(Node withName: #N1) typeName
‘Node’

53

Define the methodsimplePrintString on the classNode to provide more information about a node as
show below:

(Workstation withName: #Mac connectedTo: (LanPrinter withName:
#PC1)) simplePrintString

‘Workstation Mac’

(LanPrinter withName: #PC1) simplePrintString

‘Printer PC1’

Then modify theprintOn: method of the classNode to produce the following output:

(self withName: #Mac connectedTo: (LanPrinter new name:
#PC1))

‘Node Mac connected to Printer PC1’

Remark: The methodtypeName is called ahookmethod. This reflects the fact that it allows the sub-
classes to specialize the behavior of the superclass, here the printing of a all the different kinds of nodes.
The methodsimplePrintString, even if in our case is rather simple, is called a template method. This name
reflects the fact that the method specifies the context in which hook methods will be called and how they
will fit into the template method to produce the expected result.

Note that for abstract classes hook methods can be abstract too, one other case the hook method can
propose a default behavior.

The Smalltalk class library contains a lot of such hooks that allows an easy customization of the pro-
posed behavior. The proposed requirement already exists in the system.

Exercise 37 Study the methodprintOn: on the classObject. Check its implementors and senders.

Exercise 38 Study the methodcopy on the classObject. Check its implementors and senders. What do
you think about the methodpostCopy check its senders and implementors.

missing compiler td of bernard, actalk, objVlisp implementations

54

	I First Contact
	Objects and expressions
	Counter Example
	Set, Dictionary et Bag
	Collections non-ordonnées
	Set
	Création
	Accès

	Dictionary
	 Création et propriétés héritées de Set
	Accès, ajouts et suppressions
	Itérations

	Bag
	Ajouts et suppressions
	Énumérations

	Performances
	Boucle externe du test et formatage
	Boucle interne du test
	Bilan

	SUnit Testing
	Set
	Dictionary
	Bag

	Some Useful Tools in Squeak
	SqueakMap Package Loader
	Monticello
	SqueakSource: the Squeak SourceForge

	Monticello
	Packages in Monticello: PackageInfo
	Getting Started
	Elements of Monticello
	Repositories
	File Format
	The Monticello Browser
	The Snapshot Browser
	More on PackageInfo

	II Seaside
	Web dynamique avec Seaside
	Compléments sur Seaside
	Encore des compteurs !
	Séparer l'interface du code métier
	Une application un peu plus sophistiquée

	A Simple Application for Registering to a Conference
	RegConf: An Application for Registering to a Conference
	Application Building Blocks
	The Entry Point: RCMain
	Getting User Information: RCGetUserInfo
	Getting Hotel Information: RCGetHotelInfo
	Payment: RCPayment
	Confimation: RCConfirmation

	Extensions

	III Object-Oriented Design
	A Simple Application: A LAN simulation
	Fundamentals on the Semantics of Self and Super
	self
	super

	 Object Responsibility and Better Encapsulation
	Reducing the coupling between classes
	Current situation
	Solution.

	A Question of Creation Responsibility
	Reducing the coupling between classes
	Current situation
	Solution.

	A Question of Creation Responsibility
	Proposing a creational interface
	Forbidding the Basic Instance Creation
	 Remarks and Analysis.

	Protecting yourself from your children

	 Hook and Template Methods
	Providing Hook Methods

