S.Ducasse

Inheritance Semantics
and Method Lookup

Stephane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/

&

Goal

® Inheritance
e Method lookup
e Self/super difference

S.Ducasse 2 t%

Inheritance

¢ Do not want to rewrite everything!
¢ Often we want small changes
® We would like to reuse and extend existing behavior

Rectangle

. : : idth
e Solution: class inheritance rf;ight

drea

e Each class defines or refines the definition A
of its ancestors

Colored
Rectangle
color
borderColor

S.Ducasse 3 t%

Inheritance

e New classes
e (Can add state and behavior:
e color, borderColor, borderWidth,
e totalArea

e Can specialize ancestor behavior
® intersect:

e Can use ancestor’s behavior and state

e Can redefine ancestor’s behavior
® area to return totalArea

S.Ducasse 4

&

Inheritance in Smalltalk

e Single inheritance

e Static for the instance variables

® At class creation time the instance variables are
collected from the superclasses and the class. No
repetition of instance variables.

e Dynamic for the methods

e late binding (all virtual) methods are looked up at run-
time depending on the dynamic type of the receiver.

S.Ducasse 5 t%

Message Sending

. receiver selector args

e Sending a message = looking up the method that
should be executed and executing it

¢ [ooking up a method: When a message (receiver
selector args) is sent, the method corresponding to
the message selector is looked up through the
inheritance chain.

S.Ducasse 6

&

Method Lookup

® [wo steps process

A

® The lookup starts in the CLASS of the RECEIVER.

¢ |[f the method is defined in the method dictionary, it is
returned.

e Otherwise the search continues in the superclasses of

the receiver's class. If no method is found and there is

no superclass to explore (class Obiject), this is an
ERROR

S.Ducasse 7 t%

Lookup: class and inheritance

Object |
e | 2.
sendt look In
nodZT\"”fhe classes
s~ go to the class

S.Ducasse

R

&

Some Cases

Object

T

Node
accept:
name

i

Workstation
accept:)
send: (2

S.Ducasse

Object

T

Node
accept:
nName «-i----

\
\
’2
/
/
/
I
\

Workstation | ©
accept: \
send: \

&

Method Lookup starts in Receiver Class

aB foo
(1) aB class => B
(2) Is foo defined in B?
(3) Foo is executed -> 50

aB bar

(1) aB class => B
(2) Is bar defined in B?
(3) Is bar defined in A?

(4) bar executed

(5) Self class => B

(6) Is foo defined in B

(7) Foo is executed -> 50

S.Ducasse

-
-

foo

/i4nstance of

aB

2T
TR

&

self **always™** represents the receiver

- A new foo @

- > 10 7 A1 ’\10
00 --
- B new foo bar ---___ ~
. > 10 T §§§§§§
- C new foo
. .>50 B
- A new bar
- => 10 ‘
- B new bar C
- ->10 foo =¥ A5O
- C new bar
. >50 /i4nstance of
aC

S.Ducasse t{%

When message is not found

- If no method is found and there is no superclass to
explore (class Object), a new method called
#doesNotUnderstand: is sent to the receiver, with a
representation of the initial message.

S.Ducasse

&

Graphically...

print; -~ v~

S.Ducasse

&

...in Smalltalk

- nodel print: aPacket

- node is an instance of Node

- print:is looked up in the class Node

- print: is not defined in Node > lookup continues in Object

- print:is not defined in Object => lookup stops +
exception

- message: nodel doesNotUnderstand: #(#print aPacket) is
executed

- nodel is an instance of Node so doesNotUnderstand: is
looked up in the class Node

- doesNotUnderstand: is not defined in Node => lookup
continues in Object

- doesNotUnderstand: is defined in Object => lookup
stops + method executed (open a dialog box)

S.Ducasse tt%

Graphically...

open debugger
________ Object v v
: T \\\ ~ \
doesNotUnderstand: :
! Node |
| accept: |2.. B
! name R
| sendt V)
“a / /,I / -
nodel / ‘
1 /1

print: -~

S.Ducasse

&

Roadmap

¢ Inheritance
e Method lookup
o Self/super difference

S.Ducasse 16 t%

How to Invoke Overridden Methods?

+ Solution: Send messages to super

* When a packet is not addressed to a workstation, we just want to
pass the packet to the next node, i.e., we want to perform the
default behavior defined by Node.

Workstation>>accept: aPacket

(aPacket isAddressedTo: self)
ifTrue:[Transcript show: 'Packet accepted by the Workstation ',
self name asString]
ifFalse: [super accept: aPacket]

Design Hint: Do not send messages to super with different
selectors than the original one. It introduces implicit dependency
between methods with different names.

S.Ducasse

&

The semantics of super

- Like self, super is a pseudo-variable that refers to the
receiver of the message.
- It is used to invoke overridden methods.

- When using self, the lookup of the method begins in the
class of the receiver.

- When using super, the lookup of the method begins in the

superclass of the class of the method containing the
super expression

S.Ducasse t&%

super changes lookup starting class

+ A new bar
- -> 10

- B new bar
- ->10+ 10
- C new bar
- ->50+50

S.Ducasse

- - - _

AN

{710

foo

/i4nstance of

aB

bar --___ i
~==|N super bar
+ self foo

i

&

super is NOT the superclass of the receiver

class

Suppose the WRONG hypothesis: “The semantics of
super is to start the lookup of a method in the
superclass of the receiver class”

| Node

|acc§§t

Workstation {
accept:

™ T
i supEraccepﬂifl

Colored
Workstation

mac
.

accept: ...

A
S.Ducasse 20 ﬂ.s(E)

super is NOT the superclass of the receiver
class

S.Ducasse

mac is instance of ColoredWorkStation " Node
Lookup starts in ColoredVVorkStation "accept:
Not found so goes up... x$

B

super accept:.q

Workstation {

accept: is defined in Workstation accept:

lookup stops f‘“

method accept: is executed
Workstation>>accept: does a super Colored ‘
send Workstation
Our hypothesis: start in the super of the X
class of the receiver mac
=> superclass of class of a ColoredWorkstation .-\ .7
is ... Workstation ! accept: ...

Therefore we look in workstation again!!!

21

&

What you should know

Inheritance of instance variables is made at class
definition time.
Inheritance of behavior is dynamic.

- self **always** represents the receiver.
Method lookup starts in the class of the receiver.

- super represents the receiver but method lookup
starts in the superclass of the class using it.

- Self is dynamic vs. super is static.

S.Ducasse

22

