
S.Ducasse

LSE

Stéphane Ducasse
Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/

Selected Design Patterns

1
S.Ducasse LSE

Goal
• What are patterns?

• Why?

• Patterns are not god on earth

• Example

2 S.Ducasse LSE

Design Patterns
• Design patterns are recurrent solutions to design

problems

• They are names

• Composite, Visitor, Observer...

• They are pros and cons

3

S.Ducasse LSE

Christoffer Alexander
“The Timeless Way of Building”, Christoffer Alexander,
Oxford University Press, 1979, ISBN 0195024028

More advanced than what is used in computer science
only the simple parts got used.

pattern languages were skipped.

From Architecture

4 S.Ducasse LSE

Why Patterns?
Smart

Elegant solutions that a novice would not think of

Generic
Independent on specific system type, language

Well-proven
Successfully tested in several systems

Simple
Combine them for more complex solutions

There are really stupid patterns (supersuper) in some
books so watch out!!!

5 S.Ducasse LSE

Reusable solutions to common problems
based on experiences from real systems

Names of abstractions above class and object level
a common vocabulary for developers

Handling of functional and non-functional aspects
separating interfaces/implementation, loose coupling
between parts, …

A basis for frameworks and toolkits
basic constructs to improve reuse

Education and training support

Patterns provide...

6

S.Ducasse LSE

Pattern name
Increase of design vocabulary

Problem description
When to apply it, in what context to use it

Solution description (generic !)
The elements that make up the design, their relationships,
responsibilities, and collaborations

Consequences
Results and trade-offs of applying the pattern

Elements in a Pattern

7 S.Ducasse LSE

Composite
• Compose objects into tree structures to represent

part-whole hierarchies.

• Composite lets clients treat individual objects and
compositions of objects uniformly

8
S.Ducasse LSE

Composite Intent
Intent: Compose objects into tree structures to
represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions of
objects uniformly

Component
operation

Composite
operation
add:
remove:

Leaf
operation

children

children
 do: [:each | each operation]

Client

9

S.Ducasse LSE

Composite Pattern Motivation

10 S.Ducasse LSE

Composite Pattern Applicability
Use the Composite Pattern when :

you want to represent part-whole hierarchies of objects

you want clients to be able to ignore the difference
between compositions of objects and individual objects.
Clients will treat all objects in the composite structure
uniformly

11 S.Ducasse LSE

Composite Pattern Possible Design

12

S.Ducasse LSE

Composite Pattern Participants
Component (Graphic)

declares the interface for objects in the composition

implements default behavior for the interface common to
all classes, as appropriate

declares an interface for accessing and managing its child
components

Leaf (Rectangle, Line, Text, ...)
represents leaf objects in the composition. A leaf has no
children

defines behavior for primitive objects in the composition

13 S.Ducasse LSE

Composite Pattern
Composite (Picture)

defines behaviour for components having children

stores child components

implements child-related operations in the Component
interface

Client
manipulates objects in the composition through the
Component interface

14 S.Ducasse LSE

Composite Pattern Collaborations
Clients use the Component class interface to interact
with objects in the composite structure.

Leaves handle requests directly.

Composites forward requests to its child components

Consequences
defines class hierarchies consisting of primitive and
composite objects.

Makes the client simple. Composite and primitive objects
are treated uniformly. (no cases)

Eases the creation of new kinds of components

Can make your design overly general

15

S.Ducasse LSE

An Alternate Structure
Again structure is not intent!

Client

Component
children

operation

add:

remove:

children

16 S.Ducasse LSE

Queries...
• To be able to specify different queries over a repository

q1 := PropertyQuery property: #HNL with: #< value: 4.

q2 := PropertyQuery property: #NOM with: #> value: 10.

q3 := MatchName match: ‘*figure*’

• Compose these queries and treat composite queries as one
query

• ! (e1 e2 e3 e4 ... en)((q1 and q2 and q4) or q3) -> (e2 e5)

• ! composer := AndComposeQuery with: (Array with: q1 with: q2 with:

q3)

17
S.Ducasse LSE

A Possible Solution

AbstractQuery
runOn: aCollection
holdsOn: anElement

Matching
holdsOn: anElement

Composite
add: aQuery
remove: aQuery

And
holdsOn: anElement

Or
holdsOn: anElement

^ aCollection collect: [: each |
 self holdsOn: anElement]

^ anElement match: self pattern

^ (self right holdOn: anElement)
 and: [(self left holdOn: anElement)]

^ (self right holdOn: anElement)
 or: [(self left holdOn: anElement)]

18

S.Ducasse LSE

In Smalltalk
• Composite not only groups leaves but can also contain

composites

• In Smalltalk add:, remove: do not need to be declared
into Component but only on Composite. This way we
avoid to have to define dummy behavior for Leaf

19
S.Ducasse LSE

Composite Variations
• Use a Component superclass to define the interface

and factor code there.
• Consider implementing abstract Composite and Leaf (in

case of complex hierarchy)
• Only Composite delegates to children
• Composites can be nested
• Composite sets the parent back-pointer (add:/remove:)

20
S.Ducasse LSE

Composite Variations
• Can Composite contain any type of child? (domain issues)

• Is the Composite’s number of children limited?

• Forward
– Simple forward. Send the message to all the children and merge the

results without performing any other behavior

– Selective forward. Conditionally forward to some children

– Extended forward. Extra behavior

– Override. Instead of delegating

21

S.Ducasse LSE

Other Patterns
• Composite and Visitors

• Visitors walks on structured objects

• Composite and Factories

• Factories can create composite elements

22 S.Ducasse LSE

Patterns...

23 S.Ducasse LSE

Creational Patterns
Instantiation and configuration of classes and objects

Structural Patterns
Usage of classes and objects in larger structures,
separation of interfaces and implementation

Behavioral Patterns
Algorithms and division of responsibility

Concurrency

Distribution

Security

Categories of Design Patterns

24

S.Ducasse LSE

Some Creational Patterns
Abstract factory
Builder

Factory Method

Prototype

Singleton

25 S.Ducasse LSE

Some Structural Patterns
Adapter

Bridge

Composite
Decorator

Façade

Flyweight

Proxy

26 S.Ducasse LSE

Some Behavioral Patterns
Chain of responsibility
Command

Interpreter

Iterator

Mediator

Memento

Observer

State

Strategy
Template Method

Visitor

27

S.Ducasse LSE

Alert!!! Patterns are invading
• Design Patterns may be a real plague!

• Do not apply them when you do not need them

• Design Patterns make the software more complex

– More classes

– More indirections, more messages

• Try to understand when NOT applying them!

28
S.Ducasse LSE

About Pattern Implementation
This is POSSIBLE implementation not a definitive one

Do not confuse structure and intent!!!

Patterns are about INTENT
 and TRADEOFFS

29 S.Ducasse LSE

Singleton

Ensure that a class has only
one instance, and provide a
global point of access to it

30

S.Ducasse LSE

The Singleton Pattern
• Intent: Ensure that a class has only one instance, and

provide a global point of access to it

• Problem: We want a class with a unique instance.

• Solution: We specialize the #new class method so that
if one instance already exists this will be the only one.
When the first instance is created, we store and return
it as result of #new.

31
S.Ducasse LSE

Singleton Possible Structure

32
S.Ducasse LSE

The Singleton Pattern
|aLan|
aLan := NetworkManager new
aLan == LAN new -> true
aLan uniqueInstance == NetworkManager new -> true
!! ! !

NetWorkManager class
! instanceVariableNames: 'uniqueInstance '

NetworkManager class>>new
 self error: ‘should use uniqueInstance’
!

NetworkManager class>>uniqueInstance
 uniqueInstance isNil
!! ifTrue: [uniqueInstance := self basicNew initialize].
! ^uniqueInstance

33

S.Ducasse LSE

The Singleton Pattern
• Providing access to the unique instance is not always

necessary.

• It depends on what we want to express. The difference
between #new and #uniqueInstance is that #new
potentially initializes a new instance, while
#uniqueInstance only returns the unique instance (there
is no initialization)

• Do we want to communicate that the class has a
singleton? new? defaultInstance? uniqueInstance?

34
S.Ducasse LSE

Implementation Issues
• Singletons may be accessed via a global variable (ex:

NotificationManager uniqueInstance notifier).
!! SessionModel>>startupWindowSystem
"" " “Private - Perform OS window system startup”
!! ! Notifier initializeWindowHandles.
!! ! ...
!! ! oldWindows := Notifier windows.
!! ! Notifier initialize.
!! ! ...
!! ! ^oldWindows

• Global Variable or Class Method Access
– Global Variable Access is dangerous: if we reassign Notifier we lose all

references to the current window.

– Class Method Access is better because it provides a single access
point. This class is responsible for the singleton instance (creation,
initialization,...).

35
S.Ducasse LSE

Implementation Issues
Persistent Singleton: only one instance exists and its
identity does not change (ex: NotifierManager in Visual
Smalltalk)

Transient Singleton: only one instance exists at any
time, but that instance changes (ex: SessionModel in
Visual Smalltalk, SourceFileManager, Screen in
VisualWorks)

Single Active Instance Singleton: a single instance
is active at any point in time, but other dormant
instances may also exist. Project in VisualWorks

36

S.Ducasse LSE

Implementation Issues
classVariable or class instance variable

classVariable
One singleton for a complete hierarchy

Class instance variable
One singleton per class

37 S.Ducasse LSE

Access?
In Smalltalk we cannot prevent a client to send a
message (protected in C++). To prevent additional
creation we can redefine new/new:

Object subclass: #Singleton
" instanceVariableNames: ‘uniqueInstance’

" classVariableNames: ‘’

" poolDictionaries: ‘’

Singleton class>>new
" self error: ‘Class ‘, self name, ‘ cannot create new
instances’

38 S.Ducasse LSE

Access using new: not good idea
Singleton class>>new

! ! ^self uniqueInstance

The intent (uniqueness) is not clear anymore! New is
normally used to return newly created instances. The
programmer does not expect this:

! ! ! |screen1 screen2|

! ! ! screen1 := Screen new.

! ! ! screen2 := Screen uniqueInstance

39

S.Ducasse LSE

Favor Instance Behavior
When a class should only have one instance, it could be
tempting to define all its behavior at the class level. But
this is not good:

Class behavior represents behavior of classes: “Ordinary
objects are used to model the real world. MetaObjects
describe these ordinary objects”

Do not mess up this separation and do not mix domain
objects with metaconcerns.

What’s happens if later on an object can have multiple
instances? You have to change a lot of client code!

40 S.Ducasse LSE

Time and not Scope
Singleton is about time not access

time: only one instance is available at the same time

access: can’t you add an instance to refer to the object?

Singleton for access are as bad as global variables

Often we can avoid singleton by passing/referring to
the object instead of favoring a global access point

It is worth to have one extra instance variable that
refers to the right object

41 S.Ducasse LSE

Visitor
Represent an operation to

 be performed on the

elements of an object structure
in a class separate from the
elements themselves. Visitor

lets you define a new operation
without changing the classes of
the elements on which it
operates.

42

S.Ducasse LSE

Intent: Represent an operation to be performed on
the elements of an object structure in a class separate
from the elements themselves. Visitor lets you define a
new operation without changing the classes of the
elements on which it operates.

Visitor Intent

43 S.Ducasse LSE

Visitor Possible Structure

44 S.Ducasse LSE

Whenever you have a number of items on which you
have to perform a number of actions, and

When you ‘decouple’ the actions from the items.

Examples:
the parse tree (ProgramNode) uses a visitor for the
compilation (emitting code on CodeStream)

GraphicsContext is a visitor for VisualComponents,
Geometrics, and some other ones (CharacterArray, ...)

Rendering documents

When to use a Visitor

45

S.Ducasse LSE

So all our problems are solved, no?

Well...
when to use a visitor

control over item traversal

choosing the granularity of visitor methods

implementation tricks

Applying the Visitor

46 S.Ducasse LSE

Use a Visitor:
when the operations on items change a lot.

Do not use a visitor:
when the items you want to visit change a lot.

Question: But how do we know what to choose up-
front?

When to Use a Visitor

47 S.Ducasse LSE

Language to deal with arithmetic expressions.

It supports one kind of number, and has +, *, (,)

We want to evaluate expressions, and print them.

Example:
 1 + 1

 result: 1 + 1 = 2

 ((4 * 2) * (3 + 5)) * 3

 result: (4 * 2 * (3 + 5)) * 3 = 192

...

Visitor Toy Example

48

S.Ducasse LSE

Visitor Toy Example: ParseTree

49 S.Ducasse LSE

Two solutions:
add methods for evaluating, printing, ... on Expression and
its subclasses

create a Visitor, add the visit methods on Expression and
its subclasses, and implement visitors for evaluation,
printing, ...

Implementing the Actions

50 S.Ducasse LSE

Visitor Toy Example Solution 1

51

S.Ducasse LSE

Visitor Toy Example 2

52 S.Ducasse LSE

So which solution to take?

In this case you might say:
printing is not easy

adding it directly on Expression clutters Expression (need
to add instance variables etc.)

therefore we can factor out the printing on a separate
class.

if we do this with a visitor we can then implement
evaluation there as well.

Toy Example: Discussion

53 S.Ducasse LSE

Smalltalk has class extensions:
method addition

method replacement

So ‘Decoupling’ actions from items can be done:
e.g., put all the printing methods together.

take care: works only for methods

makes it also really easy to package a visitor!

Note: this is a static solution!

Smalltalk’s class extensions

54

S.Ducasse LSE

Somewhere in the visitor, items are traversed.

Different places where the traversal can be
implemented:

in the visitor

on the items hierarchy

Controlling the traversal

55 S.Ducasse LSE

Traversal on the Visitor

Times
acceptVisitor:
...

Operation
left
right
acceptVisitor:
...

Expression
acceptVisitor:

Number
acceptVisitor:
...

Printer
visitNumber:
visitOperation:
visitPlus:
visitTimes:

Evaluator
visitNumber:
visitOperation:
visitPlus:
visitTimes:

Visitor
visitNumber:
visitOperation:
visitPlus:
visitTimes:

Plus
acceptVisitor:
...

aPlus left acceptvisitor: self.
self printPlus.
aPlus right acceptVisitor:
self.

aVisitor visitPlus: self | l r |
l := aPlus left acceptvisitor: self.
r := aPlus right acceptVisitor:
self.
^l + r

56 S.Ducasse LSE

Traversal on the Items

self left visit: aVisitor.
self right visit: aVisitor.
aVisitor visitPlus: self.

Times
acceptVisitor:
...

Operation
left
right
acceptVisitor:
...

Expression
acceptVisitor:

Number
acceptVisitor:
...

Printer
visitNumber:
visitOperation:
visitPlus:
visitTimes:

Visitor
visitNumber:
visitOperation:
visitPlus:
visitTimes:

Plus
acceptVisitor:
...

Evaluator
numberStack
visitNumber:
visitOperation:
visitPlus:
visitTimes:

self push: aNumber

^self sumStack

57

S.Ducasse LSE

Sometimes you can pass context information with the
visit methods

So visitors have more information for implementing
their operations

Granularity of Visit Methods

58 S.Ducasse LSE

Regular case: nothing special is going on

Granularity of Visit Methods

59 S.Ducasse LSE

Here methods allow finer control of variables
(#doTemporaryVariable)

Refined Granularity

60

S.Ducasse LSE

You can implement it as we have shown before.

But notice the general structure of the methods!

This can be taken as advantage:
code can be generated for a visitor.

the method can be performed/invoked

But take care:
only works when there is a full correspondence.

can make the code hard to understand.

Implementation Tricks

61 S.Ducasse LSE

Using #perform:

62 S.Ducasse LSE

Strategy

Define a family of algorithms,

encapsulate each in a separate

class and define each class with

the same interface so that they

can be interchangeable.

Also Know as Policy

63

S.Ducasse LSE

Strategy Intent
• Define a family of algorithms, encapsulate each in a

separate class and define each class with the same
interface so that they can be interchangeable.

64 S.Ducasse LSE

Motivation
Many algorithms exist for breaking a stream into lines.
Hardwiring them into the classes that requires them
has the following problems:

Clients get more complex

Different algorithms can be used at different times

Difficult to add new algorithms at run-time

65 S.Ducasse LSE

Code Smells
Composition>>repair

 formatting == #Simple

 ifTrue: [self formatWihtSimpleAlgo]

 ifFalse: [formatting == #Tex

 ifTrue: [self formatWithTex]

 ]

66

S.Ducasse LSE

Alternative
Composition>>repair

 | selector |

 selector := (‘formatWith, formatting) asSymbol.

 self perform: selector

Still your class gets complex...

67 S.Ducasse LSE

Inheritance?
May not be the solution since:

- you have to create objects of the right class

- it is difficult to change the policy at run-time

- you can get an explosion of classes bloated with the
use of a functionality and the functionalities.

- no clear identification of responsibility

68 S.Ducasse LSE

Strategy Solution

69

S.Ducasse LSE

When
Many related classes differ only in their behavior

You have variants of an algorithm (space/time)

An algorithm uses data that the clients does not have to
know

70 S.Ducasse LSE

Structure

Composition>>repair

 formatter format: self

71 S.Ducasse LSE

Participants
Strategy (Compositor)

declares an interface common to all concrete strategies

Concrete Strategies
implement algorithm

Context
configure with concrete strategy

maintains a reference to the concrete strategy

may define an interface to let the strategy access data

72

S.Ducasse LSE

Collaborations (i)
Strategy and Context interact to implement the chosen
algorithm.

A context may pass all data required by the algorithm
to the strategy when the algorithm is called

GraphVisualizer>>graphIt

 grapher plot: data using: graphPane pen

Grapher>>plot: data using: aPen

! 73 S.Ducasse LSE

Context passes itself as argument
Also know as self-delegation...

GraphVisualizer>>graphIt

 grapher plotFor: self

BartChartGrapher>>plotFor: aGraphVisualizer

 |data|

 data := aGraphVisualizer data

74 S.Ducasse LSE

BackPointer
Grapher class>>for: aGraphVisualizer

 ^ self new graphVisualizer: aGraphVisualizer

BartChartGrapher>>plot

 ...

 graphVisualizer data..

 graphVisualizer pen

Grapher (Strategy) points directly to GraphVisualizer
(Context), so sharing strategy between different context may
be difficult, if sharing is needed then use self-delegation

75

S.Ducasse LSE

Collaboration (ii)
“A context forwards requests from its clients to its
strategy. Clients usually create and pass a
ConcreteStrategy object to the context; thereafter,
clients interact with the context exclusively. “ GOF

Not sure that the client has to choose...

76 S.Ducasse LSE

Consequences
Define a family of pluggable algorithms

Eliminates conditional statements

Clients can choose between several implementations

Clients must be aware of the different strategies

Increase the number of objects

Communication overhead between client and strategies

Weaken encapsulation of the client

77 S.Ducasse LSE

Domain-Specific Objects as Strategies

Strategies do not have to be limited to one single
algorithm

They may represent domain specific knowledge

Mortgage
FixedRateMortgage

OneYear...

78

S.Ducasse LSE

Known Uses
ImageRenderer in VW: “a technique to render an image
using a limited palette”

ImageRenderer
NearestPaint

OrderedDither

ErrorDiffusion

View-Controller

a view instance uses a controller object to handle and
respond to user input via mouse or keyboard.
Controllers can be changed at run-time

79 S.Ducasse LSE

Abstract Factory

Provide an interface for

creating families of related or

dependent objects without

specifying their concrete classes

Also known as: Kit

80 S.Ducasse LSE

Abstract Factory Intent
• Provide an interface for creating families of related or

dependent objects without specifying their concrete
classes

81

S.Ducasse LSE

Abstract Factory Motivation
You have an application with different looks and feels.

How to avoid to hardcode all the specific widget classes
into the code so that you can change from Motifs to
MacOsX?

82 S.Ducasse LSE

Abstract Factory Motivation
Abstract factory introduce an interface for creating
each basic kind of widget

83 S.Ducasse LSE

Abstract Factory Applicability
a system should be independent of how its products
are created, composed, and represented

a system should be configured with one of multiple
families of products

a family of related product objects is designed to be
used together, and you need to enforce this constraint

you want to provide a class library of products, and you
want to reveal just their interfaces, not their
implementations

84

S.Ducasse LSE

Abstract Factory Structure

85 S.Ducasse LSE

Abstract Factory Participants
AbstractFactory (WidgetFactory)

declares an interface for operations that create abstract
product objects

ConcreteFactory (MotifWidgetFactory,
PMWidgetFactory)

implements the operations to create concrete product
objects

86 S.Ducasse LSE

Abstract Factory Participants
AbstractProduct (Window, ScrollBar)

defines a product object to be created by the
corresponding concrete factory

implements the AbstractProduct interface

Client
uses only interfaces declared by AbstractFactory and
AbstractProduct classes

87

S.Ducasse LSE

Implementation: Specifying the
Factory

MazeGame class>>createMazeFactory

 ^ (MazeFactory new

 addPart: Wall named: #wall;

 addPart: Room named: #room;

 addPart: Door named: #door;

 yourself)

 EnchantedMazeGame class>>createMazeFactory

 ^ (MazeFactory new

 addPart: Wall named: #wall;

 addPart: EnchantedRoom named: #room;

 addPart: DoorNeedingSpell named: #door;

 yourself)

88 S.Ducasse LSE

SingleFactory
MazeGame class>>createMazeFactory

 ^ (MazeFactory new

 addPart: Wall named: #wall;

 addPart: Room named: #room;

 addPart: Door named: #door;

 yourself)

 MazeGame class>>createEnchantedMazeFactory

 ^ (MazeFactory new

 addPart: Wall named: #wall;

 addPart: EnchantedRoom named: #room;

 addPart: DoorNeedingSpell named: #door;

 yourself)

89 S.Ducasse LSE

Implementation: Using the Factory
MazeFactory>>createMaze: aFactory

 | room1 room2 aDoor |

 room1 := (aFactory make: #room) number: 1.

 room2 := (aFactory make: #room) number: 2.

 aDoor := (aFactory make: #door) from: room1 to: room2.

 room1 atSide: #north put: (aFactory make: #wall).

 room1 atSide: #east put: aDoor.

 ...

 room2 atSide: #south put: (aFactory make: #wall).

 room2 atSide: #west put: aDoor.

 ^ Maze new addRoom: room1; addRoom: room2; yourself

MazeFactory>>make: partName

 ^ (partCatalog at: partName) new

90

S.Ducasse LSE

Abstract Factory Collaborations
Collaborations

Normally a single instance of ConcreteFactory is created
at run-time

AbstractFactory defers creation of product objects to its
ConcreteFactory subclass

91 S.Ducasse LSE

Consequences

It isolates concrete classes

It makes exchanging product families easy

It promotes consistency among products

Supporting new kinds of products is difficult (set of
products is somehow fixed)

The class factory “controls” what is created

92 S.Ducasse LSE

Using Prototypes
The concrete factory stores the prototypes to be cloned in a
dictionary called partCatalog.

 make: partName

 ^ (partCatalog at: partName) copy

The concrete factory has a method for adding parts to the
catalog.

 addPart: partTemplate named: partName

 partCatalog at: partName put: partTemplate

Prototypes are added to the factory by identifying them with a
symbol:

 aFactory addPart: aPrototype named: #ACMEWidget
93

S.Ducasse LSE

In Relations
Builder and Abstract Factory are closely related

But Builder is in charge of assembling parts

AbstractFactory is responsible of producing parts that
work together

94 S.Ducasse LSE

Known Uses
VisualWorks UILookPolicy

95 S.Ducasse LSE

Chain of Responsibility

Avoid coupling the sender of

a request to its receiver by

giving more than one object a

chance to handle the request.

Chain the receiving objects and

pass the request along the chain

 until an object handles it.

96

S.Ducasse LSE

Chain of Responsibility
Avoid coupling the sender of a request to its receiver
by giving more than one object a chance to handle the
request.

Chain the receiving objects and pass the request along
the chain until an object handles it.

97 S.Ducasse LSE

Motivation
The problem here is that the object that ultimately
provides the help isn't known explicitly to the object
(e.g., the button) that initiates the help request.

How to decouple senders and receivers?

By giving multiple objects a chance to handle a request.
The request gets passed along a chain of objects until
one of them handles it.

98 S.Ducasse LSE

Chain of Resp. Possible Structure

99

S.Ducasse LSE

Participants
Handler

defines an interface for handling requests

may implement the successor link

ConcreteHandler
handles requests it is responsible for

can access its successor

Client
initiates the request to a concreteHandler

100 S.Ducasse LSE

Dynamic
The first object in the chain receives the request and
either handles it or forwards it to the next candidate
on the chain, which does likewise.

The object that made the request has no explicit
knowledge of who will handle it

101 S.Ducasse LSE

Chain
Can be a linked list

But also a tree (cf. Composite Pattern)

Usually order can represent
specific to more general

priority: more important (security... in SmallWiki)

102

S.Ducasse LSE

Consequences (i)
Reduced coupling. The pattern frees an object from
knowing which other object handles a request.

An object only has to know that a request will be handled
"appropriately."

Both the receiver and the sender have no explicit
knowledge of each other, and an object in the chain
doesn't have to know about the chain's structure.

Simplify object interconnections. Instead of objects
maintaining references to all candidate receivers, they
keep a single reference to their successor

103 S.Ducasse LSE

Consequences (II)
Added flexibility in assigning responsibilities to
objects.

flexibility in distributing responsibilities among objects.

can add or change responsibilities for handling a request
by adding to or otherwise changing the chain at run-time.

! Receipt isn't guaranteed.
no guarantee it'll be handled: the request can fall off the
end of the chain without ever being handled.

A request can also go unhandled when the chain is not
configured properly.

104 S.Ducasse LSE

Differences with Decorator
A Decorator usually wraps the decorated object: clients
point to the decorator and not the object

A Decorator does not have to forward the same
message

A decorated object does not have to know that it is
wrapped

With a chain of responsibility, the client asks the first
chain objects explicitly.

105

S.Ducasse LSE

Variations
Do the work or pass? or both?
the DP says that the handler either does the work or
passes it to its successor but it can also do part of the
job (see OO recursion)

106 S.Ducasse LSE

OO Recursion: Hash, = and copy
Person>>= aPerson

 ^ self name = aPerson name

PersonName>>= aPersonName

 ^ (self firstName = aPersonName firstName)

 and: [(self lastName = aPersonName lastName)]

String>>= aString

 ...

107 S.Ducasse LSE

OO Recursion: Hash, = and copy
Person>>hash

 ^ self name hash

PersonName>>hash

 ^ self firstName hash bitXor: self lastName hash

108

S.Ducasse LSE

OO Recursion
With Chain of Responsibility you may recur from leave
to root, from most specific to more general.

Default in root, specific and recursion in leaves

With OO recursion, from composite (person) to
components (leaves)

Default in leave (String =)

109 S.Ducasse LSE

Smalltalk Specific
Automatic Forwarding with doesNotUnderstand:

can work

but can be dangerous

110 S.Ducasse

Wrap-up
Patterns are names

Patterns are about tradeoffs

Know when not to apply them

111

