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Goal
• What are patterns?

• Why?

• Patterns are not god on earth

• Example

2 S.Ducasse LSE

Design Patterns
• Design patterns are recurrent solutions to design 

problems

• They are names

• Composite, Visitor, Observer...

• They are pros and cons
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Christoffer Alexander
“The Timeless Way of Building”, Christoffer Alexander,  
Oxford University Press, 1979, ISBN 0195024028 

More advanced than what is used in computer science
only the simple parts got used.

pattern languages were skipped.

From Architecture
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Why Patterns?
Smart

Elegant solutions that a novice would not think of

Generic
Independent on specific system type, language

Well-proven
Successfully tested in several systems

Simple
Combine them for more complex solutions

There are really stupid patterns (supersuper) in some 
books so watch out!!!
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Reusable solutions to common problems
based on experiences from real systems

Names of abstractions above class and object level
a common vocabulary for developers

Handling of functional and non-functional aspects
separating interfaces/implementation, loose coupling 
between parts, …

A basis for frameworks and toolkits
basic constructs to improve reuse

Education and training support

Patterns provide...
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Pattern name
Increase of design vocabulary

Problem description
When to apply it, in what context to use it

Solution description (generic !)
The elements that make up the design, their relationships, 
responsibilities, and collaborations

Consequences
Results and trade-offs of applying the pattern

Elements in a Pattern
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Composite
• Compose objects into tree structures to represent 

part-whole hierarchies.  

• Composite lets clients treat individual objects and 
compositions of objects uniformly
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Composite Intent
Intent: Compose objects into tree structures to 
represent part-whole hierarchies.  Composite lets 
clients treat individual objects and compositions of 
objects uniformly

Component
operation

Composite
operation
add:
remove:

Leaf
operation

children

children
      do: [:each | each operation]

Client
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Composite Pattern Motivation
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Composite Pattern Applicability
Use the Composite Pattern when :

you want to represent part-whole hierarchies of objects

you want clients to be able to ignore the difference 
between compositions of objects and individual objects.  
Clients will treat all objects in the composite structure 
uniformly
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Composite Pattern Possible Design
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Composite Pattern Participants
Component (Graphic)

declares the interface for objects in the composition

implements default behavior for the interface common to 
all classes, as appropriate

declares an interface for accessing and managing its child 
components

Leaf (Rectangle, Line, Text, ...)
represents leaf objects in the composition.  A leaf has no 
children

defines behavior for primitive objects in the composition
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Composite Pattern
Composite (Picture)

defines behaviour for components having children

stores child components

implements child-related operations in the Component 
interface

Client
manipulates objects in the composition through the 
Component interface
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Composite Pattern Collaborations
Clients use the Component class interface to interact 
with objects in the composite structure. 

Leaves handle requests directly. 

Composites forward requests to its child components

Consequences
defines class hierarchies consisting of primitive and 
composite objects.

Makes the client simple.  Composite and primitive objects 
are treated uniformly. (no cases)

Eases the creation of new kinds of components

Can make your design overly general
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An Alternate Structure
Again structure is not intent!

Client

Component
children

operation

add:

remove:

children
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Queries...
• To be able to specify different queries over a repository

q1 := PropertyQuery property: #HNL with: #< value: 4.

q2 := PropertyQuery property: #NOM with: #> value: 10.

q3 := MatchName match: ‘*figure*’

• Compose these queries and treat composite queries as one 
query

• ! (e1 e2 e3 e4 ... en)((q1 and q2 and q4) or q3) -> (e2 e5)

• ! composer := AndComposeQuery with: (Array with: q1 with: q2 with: 

q3)
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A Possible Solution

AbstractQuery
runOn: aCollection
holdsOn: anElement

Matching
holdsOn: anElement

Composite
add: aQuery
remove: aQuery

And
holdsOn: anElement

Or
holdsOn: anElement

^ aCollection collect: [: each | 
                            self holdsOn: anElement]

^ anElement match: self pattern

^ (self right holdOn: anElement) 
      and: [(self left holdOn: anElement)]

^ (self right holdOn: anElement) 
      or: [(self left holdOn: anElement)]

18
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In Smalltalk
• Composite not only groups leaves but can also contain 

composites

• In Smalltalk add:, remove: do not need to be declared 
into Component but only on Composite. This way we 
avoid to have to define dummy behavior for Leaf

19
S.Ducasse LSE

Composite Variations
• Use a Component superclass to define the interface 

and factor code there.
• Consider implementing abstract Composite and Leaf (in 

case of complex hierarchy)
• Only Composite delegates to children
• Composites can be nested
• Composite sets the parent back-pointer (add:/remove:)
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Composite Variations
• Can Composite contain any type of child? (domain issues)

• Is the Composite’s number of children limited? 

• Forward
– Simple forward. Send the message to all the children and merge the 

results without performing any other behavior

– Selective forward. Conditionally forward to some children

– Extended forward. Extra behavior

– Override. Instead of delegating
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Other Patterns
• Composite and Visitors

• Visitors walks on structured objects

• Composite and Factories

• Factories can create composite elements
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Patterns...
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Creational Patterns
Instantiation and configuration of classes and objects

Structural Patterns
Usage of classes and objects in larger structures, 
separation of interfaces and implementation

Behavioral Patterns
Algorithms and division of responsibility

Concurrency

Distribution

Security

Categories of Design Patterns
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Some Creational Patterns
Abstract factory
Builder

Factory Method

Prototype

Singleton
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Some Structural Patterns
Adapter

Bridge

Composite
Decorator

Façade

Flyweight

Proxy
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Some Behavioral Patterns
Chain of responsibility
Command

Interpreter

Iterator

Mediator

Memento

Observer

State

Strategy
Template Method

Visitor
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Alert!!! Patterns are invading
• Design Patterns may be a real plague!

• Do not apply them when you do not need them

• Design Patterns make the software more complex

– More classes

– More indirections, more messages

• Try to understand when NOT applying them!
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About Pattern Implementation
This is POSSIBLE implementation not a definitive one

Do not confuse structure and intent!!!

Patterns are about INTENT 
                           and TRADEOFFS
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Singleton

Ensure that a class has only 
one instance, and provide a 
global point of access to it
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The Singleton Pattern
• Intent: Ensure that a class has only one instance, and 

provide a global point of access to it

• Problem: We want a class with a unique instance.

• Solution: We specialize the #new class method so that 
if one instance already exists this will be the only one. 
When the first instance is created, we store and return 
it as result of #new. 

31
S.Ducasse LSE

Singleton Possible Structure
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The Singleton Pattern
|aLan|
aLan := NetworkManager new
aLan == LAN new -> true
aLan uniqueInstance == NetworkManager new -> true
!! ! !

NetWorkManager class
!     instanceVariableNames: 'uniqueInstance '

NetworkManager class>>new
      self error: ‘should use uniqueInstance’ 
!

NetworkManager class>>uniqueInstance
    uniqueInstance isNil 
!! ifTrue: [ uniqueInstance := self basicNew initialize].
!   ^uniqueInstance
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The Singleton Pattern
• Providing access to the unique instance is not always 

necessary. 

• It depends on what we want to express. The difference 
between #new and #uniqueInstance is that #new 
potentially initializes a new instance, while 
#uniqueInstance only returns the unique instance (there 
is no initialization)

• Do we want to communicate that the class has a 
singleton? new? defaultInstance? uniqueInstance?
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Implementation Issues
• Singletons may be accessed via a global variable (ex: 

NotificationManager uniqueInstance notifier). 
!! SessionModel>>startupWindowSystem
"" " “Private - Perform OS window system startup”
!! ! Notifier initializeWindowHandles.
!! ! ...
!! ! oldWindows := Notifier windows.
!! ! Notifier initialize.
!! ! ...
!! ! ^oldWindows

• Global Variable or Class Method Access
– Global Variable Access is dangerous: if we reassign Notifier we lose all 

references to the current window.

– Class Method Access is better because it provides a single access 
point. This class is responsible for the singleton instance (creation, 
initialization,...).
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Implementation Issues
Persistent Singleton: only one instance exists and its 
identity does not change (ex: NotifierManager in Visual 
Smalltalk)

Transient Singleton: only one instance exists at any 
time, but that instance changes (ex: SessionModel in 
Visual Smalltalk, SourceFileManager, Screen in 
VisualWorks) 

Single Active Instance Singleton: a single instance 
is active at any point in time, but other dormant 
instances may also exist. Project in VisualWorks 
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Implementation Issues
classVariable or class instance variable

classVariable
One singleton for a complete hierarchy

Class instance variable
One singleton per class
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Access?
In Smalltalk we cannot prevent a client to send a 
message (protected in C++). To prevent additional 
creation we can redefine new/new: 

Object subclass: #Singleton
" instanceVariableNames: ‘uniqueInstance’

" classVariableNames: ‘’

" poolDictionaries: ‘’

Singleton class>>new
" self error: ‘Class ‘, self name, ‘ cannot create new 
instances’
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Access using new: not good idea
Singleton class>>new

! ! ^self uniqueInstance

The intent (uniqueness) is not clear anymore! New is 
normally used to return newly created instances. The 
programmer does not expect this:

! ! ! |screen1 screen2|

! ! ! screen1 := Screen new.

! ! ! screen2 := Screen uniqueInstance
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Favor Instance Behavior
When a class should only have one instance, it could be 
tempting to define all its behavior at the class level. But 
this is not good:

Class behavior represents behavior of classes: “Ordinary 
objects are used to model the real world. MetaObjects 
describe these ordinary objects”

Do not mess up this separation and do not mix domain 
objects with metaconcerns.

What’s happens if later on an object can have multiple 
instances? You have to change a lot of client code!
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Time and not Scope
Singleton is about time not access

time: only one instance is available at the same time

access: can’t you add an instance to refer to the object?

Singleton for access are as bad as global variables

Often we can avoid singleton by passing/referring to  
the object instead of favoring a global access point

It is worth to have one extra instance variable that 
refers to the right object

41 S.Ducasse LSE

Visitor
Represent an operation to

 be performed on the 

elements of an object structure 
in a class separate from the 
elements themselves. Visitor 

lets you define a new operation 
without changing the classes of 
the elements on which it 
operates.
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Intent: Represent an operation to be performed on 
the elements of an object structure in a class separate 
from the elements themselves. Visitor lets you define a 
new operation without changing the classes of the 
elements on which it operates.

Visitor Intent
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Visitor Possible Structure
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Whenever you have a number of items on which you 
have to perform a number of actions, and

When you ‘decouple’ the actions from the items.

Examples:
the parse tree (ProgramNode) uses a visitor for the 
compilation (emitting code on CodeStream)

GraphicsContext is a visitor for VisualComponents, 
Geometrics, and some other ones (CharacterArray, ...)

Rendering documents 

When to use a Visitor
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So all our problems are solved, no?

Well...
when to use a visitor

control over item traversal

choosing the granularity of visitor methods

implementation tricks

Applying the Visitor
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Use a Visitor:
when the operations on items change a lot.

Do not use a visitor:
when the items you want to visit change a lot.

Question: But how do we know what to choose up-
front?

When to Use a Visitor
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Language to deal with arithmetic expressions.

It supports one kind of number, and has +, *, (, )

We want to evaluate expressions, and print them.

Example:
 1 + 1

       result: 1 + 1 = 2

 ((4 * 2) * (3 + 5)) * 3 

       result: (4 * 2 * (3 + 5)) * 3 = 192

... 

   

Visitor Toy Example
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Visitor Toy Example: ParseTree
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Two solutions:
add methods for evaluating, printing, ... on Expression and 
its subclasses

create a Visitor, add the visit methods on Expression and 
its subclasses, and implement visitors for evaluation, 
printing, ...

Implementing the Actions
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Visitor Toy Example Solution 1
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Visitor Toy Example 2
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So which solution to take?

In this case you might say:
printing is not easy

adding it directly on Expression clutters Expression (need 
to add instance variables etc.)

therefore we can factor out the printing on a separate 
class.

if we do this with a visitor we can then implement 
evaluation there as well.

Toy Example: Discussion
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Smalltalk has class extensions:
method addition

method replacement

So ‘Decoupling’ actions from items can be done:
e.g., put all the printing methods together.

take care: works only for methods

makes it also really easy to package a visitor! 

Note: this is a static solution!

Smalltalk’s class extensions
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Somewhere in the visitor, items are traversed.

Different places where the traversal can be 
implemented:

in the visitor

on the items hierarchy

Controlling the traversal
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Traversal on the Visitor

Times
acceptVisitor:
...

Operation
left
right
acceptVisitor:
...

Expression
acceptVisitor:

Number
acceptVisitor:
...

Printer
visitNumber:
visitOperation:
visitPlus:
visitTimes:

Evaluator
visitNumber:
visitOperation:
visitPlus:
visitTimes:

Visitor
visitNumber:
visitOperation:
visitPlus:
visitTimes:

Plus
acceptVisitor:
...

aPlus left acceptvisitor: self.
self printPlus.
aPlus right acceptVisitor: 
self.

aVisitor visitPlus: self | l r |
l := aPlus left acceptvisitor: self.
r := aPlus right acceptVisitor: 
self.
^l + r
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Traversal on the Items

self left visit: aVisitor.
self right visit: aVisitor.
aVisitor visitPlus: self.

Times
acceptVisitor:
...

Operation
left
right
acceptVisitor:
...

Expression
acceptVisitor:

Number
acceptVisitor:
...

Printer
visitNumber:
visitOperation:
visitPlus:
visitTimes:

Visitor
visitNumber:
visitOperation:
visitPlus:
visitTimes:

Plus
acceptVisitor:
...

Evaluator
numberStack
visitNumber:
visitOperation:
visitPlus:
visitTimes:

self push: aNumber

^self sumStack
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Sometimes you can pass context information with the 
visit methods

So visitors have more information for implementing 
their operations

Granularity of  Visit Methods
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Regular case: nothing special is going on

Granularity of Visit Methods
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Here methods allow finer control of variables 
(#doTemporaryVariable)

Refined  Granularity
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You can implement it as we have shown before.

But notice the general structure of the methods!

This can be taken as advantage:
code can be generated for a visitor.

the method can be performed/invoked

But take care:
only works when there is a full correspondence.

can make the code hard to understand.

Implementation Tricks
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Using #perform:
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Strategy

Define a family of algorithms, 

encapsulate each in a separate 

class and define each class with 

the same interface so that they

can be interchangeable.

Also Know as Policy
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Strategy Intent
• Define a family of algorithms, encapsulate each in a 

separate class and define each class with the same 
interface so that they can be interchangeable.
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Motivation
Many algorithms exist for breaking a stream into lines. 
Hardwiring them into the classes that requires them 
has the following problems:

Clients get more complex

Different algorithms can be used at different times

Difficult to add new algorithms at run-time
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Code Smells
Composition>>repair

     formatting == #Simple

          ifTrue: [ self formatWihtSimpleAlgo]

          ifFalse: [ formatting == #Tex

                         ifTrue: [self formatWithTex]

                     ....]
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Alternative
Composition>>repair

    | selector |

    selector := (‘formatWith, formatting) asSymbol.

    self perform: selector

Still your class gets complex...
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Inheritance?
May not be the solution since:

- you have to create objects of the right class

- it is difficult to change the policy at run-time

- you can get an explosion of classes bloated with the 
use of a functionality and the functionalities.

- no clear identification of responsibility
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Strategy Solution
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When
Many related classes differ only in their behavior

You have variants of an algorithm (space/time)

An algorithm uses data that the clients does not have to 
know
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Structure

Composition>>repair

     formatter format: self
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Participants
Strategy (Compositor)

declares an interface common to all concrete strategies

Concrete Strategies
implement algorithm 

Context
configure with concrete strategy

maintains a reference to the concrete strategy

may define an interface to let the strategy access data
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Collaborations (i)
Strategy and Context interact to implement the chosen 
algorithm. 

A context may pass all data required by the algorithm 
to the strategy when the algorithm is called 

GraphVisualizer>>graphIt

    ....

    grapher plot: data using: graphPane pen

Grapher>>plot: data using: aPen
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Context passes itself as argument
Also know as self-delegation...

GraphVisualizer>>graphIt

     grapher plotFor: self 

BartChartGrapher>>plotFor: aGraphVisualizer

     |data|

     data := aGraphVisualizer data

     ....
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BackPointer
Grapher class>>for: aGraphVisualizer

    ^ self new graphVisualizer: aGraphVisualizer

BartChartGrapher>>plot

   ...

   graphVisualizer data..

   graphVisualizer pen

Grapher (Strategy) points directly to GraphVisualizer 
(Context), so sharing strategy between different context may 
be difficult, if sharing is needed then use self-delegation
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Collaboration (ii)
“A context forwards requests from its clients to its 
strategy. Clients usually create and pass a 
ConcreteStrategy object to the context; thereafter, 
clients interact with the context exclusively. “ GOF

Not sure that the client has to choose...
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Consequences
Define a family of pluggable algorithms

Eliminates conditional statements

Clients can choose between several implementations

Clients must be aware of the different strategies

Increase the number of objects

Communication overhead between client and strategies

Weaken encapsulation of the client
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Domain-Specific Objects as Strategies

Strategies do not have to be limited to one single 
algorithm

They may represent domain specific knowledge

Mortgage
FixedRateMortgage

OneYear...
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Known Uses
ImageRenderer in VW:  “a technique to render an image 
using a limited palette”

ImageRenderer
NearestPaint

OrderedDither

ErrorDiffusion

View-Controller

a view instance uses a controller object to handle and 
respond to user input via mouse or keyboard. 
Controllers can be changed at run-time
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Abstract Factory

Provide an interface for 

creating families of related or 

dependent objects without 

specifying their concrete classes

Also known as: Kit
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Abstract Factory Intent
• Provide an interface for creating families of related or 

dependent objects without specifying their concrete 
classes
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Abstract Factory Motivation
You have an application with different looks and feels.

How to avoid to hardcode all the specific widget classes 
into the code so that you can change from Motifs to 
MacOsX?
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Abstract Factory Motivation
Abstract factory introduce an interface for creating 
each basic kind of widget
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Abstract Factory Applicability
a system should be independent of how its products 
are created, composed, and represented

a system should be configured with one of multiple 
families of products

a family of related product objects is designed to be 
used together, and you need to enforce this constraint

you want to provide a class library of products, and you 
want to reveal just their interfaces, not their 
implementations

84
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Abstract Factory Structure
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Abstract Factory Participants 
AbstractFactory (WidgetFactory)

declares an interface for operations that create abstract 
product objects

ConcreteFactory (MotifWidgetFactory, 
PMWidgetFactory)

implements the operations to create concrete product 
objects
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Abstract Factory Participants
AbstractProduct (Window, ScrollBar)

defines a product object to be created by the 
corresponding concrete factory

implements the AbstractProduct interface

Client
uses only interfaces declared by AbstractFactory and 
AbstractProduct classes

87
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Implementation: Specifying the 
Factory

MazeGame class>>createMazeFactory

        ^ (MazeFactory new

               addPart: Wall named: #wall;

               addPart: Room named: #room;

               addPart: Door named: #door;

               yourself)

 EnchantedMazeGame class>>createMazeFactory

        ^ (MazeFactory new

                addPart: Wall named: #wall;

                addPart: EnchantedRoom named: #room;

                addPart: DoorNeedingSpell named: #door;

            yourself)
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SingleFactory
MazeGame class>>createMazeFactory

        ^ (MazeFactory new

               addPart: Wall named: #wall;

               addPart: Room named: #room;

               addPart: Door named: #door;

               yourself)

 MazeGame class>>createEnchantedMazeFactory

        ^ (MazeFactory new

                addPart: Wall named: #wall;

                addPart: EnchantedRoom named: #room;

                addPart: DoorNeedingSpell named: #door;

            yourself)
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Implementation: Using the Factory
MazeFactory>>createMaze: aFactory

        | room1 room2 aDoor |

        room1 := (aFactory make: #room) number: 1.

        room2 := (aFactory make: #room) number: 2.

        aDoor := (aFactory make: #door) from: room1 to: room2.

        room1 atSide: #north put: (aFactory make: #wall).

        room1 atSide: #east put: aDoor.

         ...

        room2 atSide: #south put: (aFactory make: #wall).

        room2 atSide: #west put: aDoor.

        ^ Maze new addRoom: room1; addRoom: room2; yourself

MazeFactory>>make: partName

        ^ (partCatalog at: partName) new
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Abstract Factory Collaborations
Collaborations

Normally a single instance of ConcreteFactory is created 
at run-time

AbstractFactory defers creation of product objects to its 
ConcreteFactory subclass
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Consequences

It isolates concrete classes

It makes exchanging product families easy

It promotes consistency among products

Supporting new kinds of products is difficult (set of 
products is somehow fixed)

The class factory “controls” what is created

92 S.Ducasse LSE

Using Prototypes
The concrete factory stores the prototypes to be cloned in a 
dictionary called partCatalog. 

    make: partName

        ^ (partCatalog at: partName) copy

The concrete factory has a method for adding parts to the 
catalog.

    addPart: partTemplate named: partName

        partCatalog at: partName put: partTemplate

Prototypes are added to the factory by identifying them with a 
symbol:

    aFactory addPart: aPrototype named: #ACMEWidget
93
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In Relations
Builder and Abstract Factory are closely related

But Builder is in charge of assembling parts

AbstractFactory is responsible of producing parts that 
work together
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Known Uses
VisualWorks UILookPolicy
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Chain of Responsibility

Avoid coupling the sender of 

a request to its receiver by 

giving more than one object a 

chance to handle the request. 

Chain the receiving objects and 

pass the request along the chain

 until an object handles it.
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Chain of Responsibility
Avoid coupling the sender of a request to its receiver 
by giving more than one object a chance to handle the 
request. 

Chain the receiving objects and pass the request along 
the chain until an object handles it.
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Motivation
The problem here is that the object that ultimately 
provides the help isn't known explicitly to the object 
(e.g., the button) that initiates the help request. 

How to decouple senders and receivers?

By giving multiple objects a chance to handle a request. 
The request gets passed along a chain of objects until 
one of them handles it.
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Chain of Resp. Possible Structure
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Participants
Handler

defines an interface for handling requests

may implement the successor link

ConcreteHandler
handles requests it is responsible for

can access its successor

Client 
initiates the request to a concreteHandler
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Dynamic
The first object in the chain receives the request and 
either handles it or forwards it to the next candidate 
on the chain, which does likewise. 

The object that made the request has no explicit 
knowledge of who will handle it

101 S.Ducasse LSE

Chain
Can be a linked list

But also a tree (cf. Composite Pattern)

Usually order can represent 
specific to more general

priority: more important (security... in SmallWiki)

102
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Consequences (i)
Reduced coupling. The pattern frees an object from 
knowing which other object handles a request. 

An object only has to know that a request will be handled 
"appropriately." 

Both the receiver and the sender have no explicit 
knowledge of each other, and an object in the chain 
doesn't have to know about the chain's structure. 

Simplify object interconnections. Instead of objects 
maintaining references to all candidate receivers, they 
keep a single reference to their successor
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Consequences (II)
Added flexibility in assigning responsibilities to 
objects. 

flexibility in distributing responsibilities among objects. 

can add or change responsibilities for handling a request 
by adding to or otherwise changing the chain at run-time. 

! Receipt isn't guaranteed. 
no guarantee it'll be handled: the request can fall off the 
end of the chain without ever being handled. 

A request can also go unhandled when the chain is not 
configured properly.
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Differences with Decorator
A Decorator usually wraps the decorated object: clients 
point to the decorator and not the object

A Decorator does not have to forward the same 
message

A decorated object does not have to know that it is 
wrapped

With a chain of responsibility, the client asks the first 
chain objects explicitly.

105
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Variations
Do the work or pass? or both?
the DP says that the handler either does the work or 
passes it to its successor but it can also do part of the 
job (see OO recursion)
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OO Recursion: Hash, = and copy
Person>>= aPerson

   ^ self name = aPerson name

PersonName>>= aPersonName

   ^ (self firstName = aPersonName firstName)

        and: [(self lastName = aPersonName lastName)]

String>>= aString

    ...
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OO Recursion: Hash, = and copy
Person>>hash

   ^ self name hash

PersonName>>hash

   ^ self firstName hash bitXor: self lastName hash
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OO Recursion
With Chain of Responsibility you may recur from leave 
to root, from most specific to more general.

Default in root, specific and recursion in leaves

With OO recursion, from composite (person) to 
components (leaves)

Default in leave (String =)
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Smalltalk Specific
Automatic Forwarding with doesNotUnderstand:

can work

but can be dangerous
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Wrap-up
Patterns are names

Patterns are about tradeoffs

Know when not to apply them
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