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Goals

 Exercise dispatch
 Do not use conditionals!
 Implement:

> Stone new vs: Paper new
#paper
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Goals

ROCK PAPER

SCISSORS
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Stone Paper Scissors: one Test

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new vs: Paper new) equals: #paper
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The inverse too

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new vs: Paper new) equals: #paper

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Paper new vs: Stone new) equals: #paper
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Let us start

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new vs: Paper new) equals: #paper

Stone >> vs: anotherTool
^ ...
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Hint 1

 The solution does not contain an explicit condition (no if, no checks)
 Remember sending a message is making a choice: it selects the right method
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Hint 2: 3 classes

 Stone
 Paper
 Scissors
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More hints

 When we execute the method vs: we know the receiver of the message
 So we have already half of the solution
 Introduce another method playAgainstStone to make another choice
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Defining Paper » playAgainstStone

Stone >> vs: anotherTool
^ ... playAgainstStone

Paper >> playAgainstStone
^ ...
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Defining Paper » playAgainstStone

Stone >> vs: anotherTool
^ anotherTool playAgainstStone

Paper >> playAgainstStone
^ ...

M6S1 11 / 27



Paper playAgainstStone definition

Stone >> vs: anotherTool
^ anotherTool playAgainstStone

Paper >> playAgainstStone
^ #paper
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Stone new vs: Scissor new

Works for

> Stone new vs: Paper new
#paper

But not for

> Stone new vs: Scissor new
...

 How to fix this?
 Easy!
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Supporting aScissor as argument

Stone >> vs: aScissor
^ aScissor playAgainstStone

 So we should implement playAgainstStone on Scissor

Scissors >> playAgainstStone
^ ...
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Other playAgainstStone definitions

Scissors >> playAgainstStone
^ #stone

Stone >> playAgainstStone
^ #draw
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Full code of Stone

Stone >> vs: anotherTool
^ anotherTool playAgainstStone

Paper >> playAgainstStone
^ #paper

Scissors >> playAgainstStone
^ #stone

Stone >> playAgainstStone
^ #draw
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Stepping back

 While executing the method Stone»vs:, we know that the method is executed on
Stone class

 We send another message to the argument to select another method (here
playAgainstStone)

 Conclusion: Two messages to be able to select a method based on its receiver
AND argument
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Full code of Scissors

Scissors >> vs: anotherTool
^ anotherTool playAgainstScissors

Scissors >> playAgainstScissors
^ #draw

Paper >> playAgainstScissors
^ #scissors

Stone >> playAgainstScissors
^ #stone
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Full code of Paper

Paper >> vs: anotherTool
^ anotherTool playAgainstPaper

Scissors >> playAgainstPaper
^ #scissors

Paper >> playAgainstPaper
^ #draw

Stone >> playAgainstPaper
^ #paper
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Solution overview

vs: anElement
playAgainstScissors
playAgainStone
playAgainPaper

Stone

vs: 
playAgainstScissors
playAgainStone
playAgainPaper 

SPSElement

vs: anElement
playAgainstScissors
playAgainStone
playAgainPaper

Paper
vs: anElement
playAgainstScissors
playAgainStone
playAgainPaper

Scissors
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Double dispatch

 Two messages: vs: and one of playAgainstPaper, playAgainstStone or,
playAgainstScissors

 First the system selects the correct vs:
 Second it selects the second method
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Remark

 In this toy example we do not need to pass the argument during the double
dispatch

 But in general this is important as we want to do something with the first
receiver (as in Visitor Design Pattern)

Scissors >> playAgainstPaper
^ #scissors

will just be

Scissors >> playAgainstPaper: aScissors
^ #scissors
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With an argument

vs: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Stone

vs: 
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

SPSElement

vs: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Paper
vs: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Scissors

Paper >> vs: anotherTool
^ anotherTool playAgainstPaper: self
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Extending it...

ROCK

LIZZARD

PAPER

SCISSORS

SPOCK
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Extensible

 You can extend Stone, Paper, Scissors with Spock and Lizard without
changing any line of existing code.

 Implement it!
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Conclusion

 Powerful
 Modular
 Just sending an extra message to an argument and using late binding
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