
A double dispatch starter
Stone Paper Scissors

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org


Goals

 Exercise dispatch
 Do not use conditionals!
 Implement:

> Stone new vs: Paper new
#paper

M6S1 2 / 27



Goals

ROCK PAPER

SCISSORS

M6S1 3 / 27



Stone Paper Scissors: one Test

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new vs: Paper new) equals: #paper

M6S1 4 / 27



The inverse too

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new vs: Paper new) equals: #paper

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Paper new vs: Stone new) equals: #paper

M6S1 5 / 27



Let us start

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new vs: Paper new) equals: #paper

Stone >> vs: anotherTool
^ ...

M6S1 6 / 27



Hint 1

 The solution does not contain an explicit condition (no if, no checks)
 Remember sending a message is making a choice: it selects the right method

M6S1 7 / 27



Hint 2: 3 classes

 Stone
 Paper
 Scissors

M6S1 8 / 27



More hints

 When we execute the method vs: we know the receiver of the message
 So we have already half of the solution
 Introduce another method playAgainstStone to make another choice

M6S1 9 / 27



Defining Paper » playAgainstStone

Stone >> vs: anotherTool
^ ... playAgainstStone

Paper >> playAgainstStone
^ ...

M6S1 10 / 27



Defining Paper » playAgainstStone

Stone >> vs: anotherTool
^ anotherTool playAgainstStone

Paper >> playAgainstStone
^ ...

M6S1 11 / 27



Paper playAgainstStone definition

Stone >> vs: anotherTool
^ anotherTool playAgainstStone

Paper >> playAgainstStone
^ #paper

M6S1 12 / 27



Stone new vs: Scissor new

Works for

> Stone new vs: Paper new
#paper

But not for

> Stone new vs: Scissor new
...

 How to fix this?
 Easy!

M6S1 13 / 27



Supporting aScissor as argument

Stone >> vs: aScissor
^ aScissor playAgainstStone

 So we should implement playAgainstStone on Scissor

Scissors >> playAgainstStone
^ ...

M6S1 14 / 27



Other playAgainstStone definitions

Scissors >> playAgainstStone
^ #stone

Stone >> playAgainstStone
^ #draw

M6S1 15 / 27



Full code of Stone

Stone >> vs: anotherTool
^ anotherTool playAgainstStone

Paper >> playAgainstStone
^ #paper

Scissors >> playAgainstStone
^ #stone

Stone >> playAgainstStone
^ #draw

M6S1 16 / 27



Stepping back

 While executing the method Stone»vs:, we know that the method is executed on
Stone class

 We send another message to the argument to select another method (here
playAgainstStone)

 Conclusion: Two messages to be able to select a method based on its receiver
AND argument

M6S1 17 / 27



Full code of Scissors

Scissors >> vs: anotherTool
^ anotherTool playAgainstScissors

Scissors >> playAgainstScissors
^ #draw

Paper >> playAgainstScissors
^ #scissors

Stone >> playAgainstScissors
^ #stone

M6S1 18 / 27



Full code of Paper

Paper >> vs: anotherTool
^ anotherTool playAgainstPaper

Scissors >> playAgainstPaper
^ #scissors

Paper >> playAgainstPaper
^ #draw

Stone >> playAgainstPaper
^ #paper

M6S1 19 / 27



Solution overview

vs: anElement
playAgainstScissors
playAgainStone
playAgainPaper

Stone

vs: 
playAgainstScissors
playAgainStone
playAgainPaper 

SPSElement

vs: anElement
playAgainstScissors
playAgainStone
playAgainPaper

Paper
vs: anElement
playAgainstScissors
playAgainStone
playAgainPaper

Scissors

M6S1 20 / 27



Double dispatch

 Two messages: vs: and one of playAgainstPaper, playAgainstStone or,
playAgainstScissors

 First the system selects the correct vs:
 Second it selects the second method

M6S1 21 / 27



Remark

 In this toy example we do not need to pass the argument during the double
dispatch

 But in general this is important as we want to do something with the first
receiver (as in Visitor Design Pattern)

Scissors >> playAgainstPaper
^ #scissors

will just be

Scissors >> playAgainstPaper: aScissors
^ #scissors

M6S1 22 / 27



With an argument

vs: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Stone

vs: 
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

SPSElement

vs: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Paper
vs: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Scissors

Paper >> vs: anotherTool
^ anotherTool playAgainstPaper: self

M6S1 23 / 27



Extending it...

ROCK

LIZZARD

PAPER

SCISSORS

SPOCK

M6S1 24 / 27



Extensible

 You can extend Stone, Paper, Scissors with Spock and Lizard without
changing any line of existing code.

 Implement it!

M6S1 25 / 27



Conclusion

 Powerful
 Modular
 Just sending an extra message to an argument and using late binding

M6S1 26 / 27



Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

