
Avoid Null Checks

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goals

 Understanding the implication behind returning nil
 Looking at provider side
 Object initialization avoids nil propagation
 Looking at client side
 Null Object

M5S7 2 / 25

nil?

 Unique instance of the class UndefinedObject
 In Pharo, a real object, as anybody else
 Default value of uninitialized instance variables
 Still we should be careful when to use it

M5S7 3 / 25

Looking at provider side

 What is the impact of code generating nil?

M5S7 4 / 25

Example

Imagine an inferencer that looks for rules that correspond to a fact.

| inf |
inf := Inferencer new.
inf
addRule: #sunny −> #'sunglasses';
addRule: #sunny −> #'solar cream';
addRule: #rainy −> #'umbrella'.

inf rulesForFact: #sunny
> #(Fact (sunglasses) Fact(umbrella))

inf rulesForFact: #cloudy
> nil

M5S7 5 / 25

Example code

Inferencer >> rulesForFact: aFact
self noRule ifTrue: [^ nil]
^ self rulesAppliedTo: aFact

 Here rulesForFact: returns nil to indicate that there is no rules for a fact.
 What are the consequences?

M5S7 6 / 25

Consequences!

 Returning nil (e.g., ifTrue: [^ nil]) forces EVERY client to check for nil:

(inferencer rulesForFact: 'a')
ifNotNil: [:rules |
rules do: [:each | ...]

 Code ends up full of nil checks

M5S7 7 / 25

Solution: Return polymorphic objects

When possible, return polymorphic objects:
 when returning a collection, return an empty one
 when returning a number, return 0

M5S7 8 / 25

Solution: Return polymorphic objects

Inferencer >> rulesForFact: aFact
self noRule ifTrue: [^ #()]
^ self rulesAppliedTo: aFact

Your clients can just iterate and manipulate the returned value

(inferencer rulesForFact: 'a') do: [:each | ...]

M5S7 9 / 25

About nil

Limit the propagation of nil
 not having methods returning nil
 avoid storing nil in variables

M5S7 10 / 25

Initialize your object state

Avoid nil checks by initializing your variables:
 By default instance variables are initialized with nil
 The responsibility of an object is to correctly initialize its state

Archive >> initialize
super initialize.
members := OrderedCollection new

 When default values are not enough, provide a constructor method

M5S7 11 / 25

Sometimes you have to check...

 Sometimes you have to check some conditions before
doing an action

 When possible, you can turn the default case into an
object, a Null Object.

M5S7 12 / 25

Example

From the perspective of the client

ToolPalette >> nextAction
self selectedTool
ifNotNil: [:tool | tool attachHandles]

ToolPalette >> previousAction
self selectedTool
ifNotNil: [:tool | tool detachHandles]

Here we are forced to check that there is a selected tool.
 Why not having always one selected?
 Even one doing nothing?

M5S7 13 / 25

Example

attach
detach

Creation

Tool

attach
detach

NewNode

ToolPalette

 self selectedTool
 ifNotNil: [:tool | tool attachHandles

M5S7 14 / 25

Solution: Use NullObject

 A null object proposes a polymorphic API and
embeds default actions/values.

 Woolf, Bobby (1998). "Null Object". In Pattern
Languages of Program Design 3. Addison-Wesley.

Let us create a NoTool class whose behavior is to do
nothing.

M5S7 15 / 25

Solution: NoTool

AbstractTool << #NoTool

NoTool >> attachHandles
^ self

NoTool >> detachHandles
^ self

M5S7 16 / 25

Solution: Use NullObject

Initialize the ToolPalette with a NoTool instance.

ToolPalette >> initialize
self selectedTool: NoTool new

And we get no forced ifNil: tests anymore

ToolPalette >> nextAction
self selectedTool attachHandles

ToolPalette >> previousAction
self selectedTool detachHandles

M5S7 17 / 25

Solution: With initialization and NoTool

attach
detach

Creation

Tool

attach
detach

NewNode

ToolPalette

 self selectedTool attachHandles

attach
detach

NoTool

M5S7 18 / 25

NullObject pros

 Simplifies client code: real collaborators and null
objects offer the same API

 Encapsulates do nothing behavior
 Makes do nothing behavior reusable

M5S7 19 / 25

NullObject drawback

 Encapsulate null values: may be difficult to mix with
real objects

 A NullObject is not mutable into a real object
 All clients should agree on the same do-nothing

behavior

M5S7 20 / 25

Difficulty applying NullObject

Sometimes it is difficult to apply the NullObject
 Too large API
 Or would need too many NullObjects
 Unclear default "no behavior"

M5S7 21 / 25

null object vs. NullObject

Sometimes it is possible to get a specific instance initialized with null values
 NullTimeZone is instance of TimeZone but represents a null object
 Null values could be good default values: empty collections, zeros...

M5S7 22 / 25

For exceptional cases, use exceptions

For exceptional cases, replace nil by exceptions:
 avoid error codes because they require if in clients
 exceptions are handled in the correct layer
 i.e., by the client, or the client’s client, or ...

FileStream >> nextPutAll: aByteArray
canWrite ifFalse: [self cantWriteError].
...
FileStream >> cantWriteError
(CantWriteError file: file) signal

M5S7 23 / 25

Conclusion

 A message acts as a better if
 Avoid null checks, return polymorphic objects instead
 Initialize your variables
 If you can, create objects representing default behavior

M5S7 24 / 25

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

