
Learning Object-Oriented

Programming, Design and TDD

with Pharo

Stéphane Ducasse

April 20, 2019

Copyright 2017 by Stéphane Ducasse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations ii

1 A simple network simulator 1

1.1 Packets are simple value objects . 2

1.2 Nodes are known by their address . 3

1.3 Links are one-way connections between nodes 4

1.4 Making our objects more understandable 6

1.5 Simulating the steps of packet delivery . 7

1.6 Sending a packet . 9

1.7 Transmitting across a link . 9

1.8 The loopback link . 10

1.9 Modeling the network itself . 12

1.10 Looking up nodes . 15

1.11 Looking up links . 15

1.12 Packet delivery with forwarding . 17

1.13 Introducing a new kind of node . 18

1.14 Other examples of specialized nodes . 19

1.15 Conclusion . 21

Bibliography 23

i

Illustrations

1-1 Two little networks composed of nodes and sending packets over links. . . . 2

1-2 Current API of our three main classes. 6

1-3 Navigating specific objects having a generic presentation. 7

1-4 Navigating objects offering a customized presentation. 8

1-5 Richer API. 10

1-6 A hub. 13

1-7 A possible extension: a more realistic network with a cycle between three

router nodes. 21

ii

CHA P T E R 1
A simple network simulator

In this chapter, we develop a simulator for a computer network, step by step
from scratch. The program starts with a simplistic model of a computer net-
work, made of objects that represent different parts of a local network such
as packets, nodes, workstations, routers and hubs.

At first, we will just simulate the different steps of packet delivery and have
fun with the system. In a second step we will extend the basic functionali-
ties by adding extensions such as a hub and different packet routing strate-
gies. Doing so, we will revisit many object-oriented concepts such as poly-
morphism, encapsulation, hooks and templates. Finally this system could be
refined to become an experiment platform to explore and understand dis-
tributed algorithms.

Basic definitions and a starting point

We need to establish the basic model; what does the description above tell
us? A network is a number of interconnected nodes, which exchange data
packets. We will therefore probably need to model the nodes, the connection
links, and the packets:

• Nodes have addresses, can send and receive packets;

• Links connect two nodes together, and transmit packets between them;

• A packet transports a payload and has the address of the node to which
it should be delivered; if we want nodes to be able to answer (after re-
ception), packets should also have the address of the node which origi-
nally sent it.

1

A simple network simulator

mac

pc 1

hub
pc 2

impr

impr2

mac2

pung

Figure 1-1 Two little networks composed of nodes and sending packets over

links.

1.1 Packets are simple value objects

Packets seem to be the simplest objects in our model: we need to create
them, and ask them about the data they contain, and that’s about it. Once
created, a packet object is merely a passive data structure: it will not change
its data, knows nothing of the surrounding network, and has no behavior
that we can really talk about.

Let’s start by defining a test class and a first test sketching what creating and
looking at packets would look like:

TestCase subclass: #KANetworkEntitiesTest
instanceVariableNames: ''
classVariableNames: ''
category: 'NetworkSimulator-Tests'

KANetworkEntitiesTest >> testPacketCreation
| src dest payload packet |
src := Object new.
dest := Object new.
payload := Object new.

packet := KANetworkPacket from: src to: dest payload: payload.

self assert: packet sourceAddress equals: src.
self assert: packet destinationAddress equals: dest.
self assert: packet payload equals: payload

By writing this unit test, we described how we think packets should be cre-
ated, using a from:to:payload: constructor message, and how it should be

2

1.2 Nodes are known by their address

accessed, using three messages sourceAddress, destinationAddress, and
payload. Since we have not yet decided what addresses and payloads should
look like, we just pass arbitrary objects as parameters; all that matters is that
when we ask the packet, it returns the correct object back.

Of course, if we now compile and run this test method, it will fail, because
the class KANetworkPacket has not been created yet, nor any of the four
above messages. You can either execute and let the system prompt you when
needed or we can define the class:

Object subclass: #KANetworkPacket
instanceVariableNames: 'sourceAddress destinationAddress payload'
classVariableNames: ''
category: 'NetworkSimulator-Core'

The class-side constructor method creates an instance, which it returns after
sending it an initialization message; nothing original as far as constructors
go:

KANetworkPacket class >> from: sourceAddress to: destinationAddress
payload: anObject
... Your code ...

That constructor will need to pass the initialization parameters to the new
instance. It’s preferable to define a single initialization method that takes
all needed parameters at once, since it is only supposed to be called when
creating packets and should not be confused with a setter:

KANetworkPacket >> initializeSource: source destination: destination
payload: anObject
... Your code ...

Once a packet is created, all we need to do with it is to obtain its payload, or
the addresses of its source or destination nodes. Define the following getters:

KANetworkPacket >> sourceAddress
... Your code ...

KANetworkPacket >> destinationAddress
... Your code ...

KANetworkPacket >> payload
... Your code ...

Now our test should be running and passing. That’s enough for our admit-
tedly simplistic model of packets; we completely ignore the layers of the OSI
model, but it could be an interesting exercise to model them more precisely.

1.2 Nodes are known by their address

The first obvious thing we can say about a network node is that if we want
to be able to send packets to it, then it should have an address; let’s translate

3

A simple network simulator

that into a test:

KANetworkEntitiesTest >> testNodeCreation
| address node |
address := Object new.
node := KANetworkNode withAddress: address.
self assert: node address equals: address

Like before, to run this test to completion, we will have to define the KANet-
workNode class:

Object subclass: #KANetworkNode
instanceVariableNames: 'address'
classVariableNames: ''
category: 'NetworkSimulator-Core'

Then a class-side constructor method taking the address of the new node as
parameter:

KANetworkNode class >> withAddress: aNetworkAddress
^ self new

initializeAddress: aNetworkAddress;
yourself

The constructor relies on an instance-side initialization method, and the test
asserts that the address accessor works; define them:

KANetworkNode >> initializeAddress: aNetworkAddress
... Your code ...

KANetworkNode >> address
... Your code ...

Again, our simplistic tests should now pass.

1.3 Links are one-way connections between nodes

After nodes and packets, what about looking at links? In the real world, net-
work cables are bidirectional, but that’s because they have wires going both
ways. Here, we’re going to keep it simple and define links as simple one-way
connections; to make a two-way connection, we will just use two links, one in
each direction.

However, creating links that know their source and destination nodes is not
sufficient: nodes also need to know about their outgoing links, otherwise they
cannot send packets. Let us write a test to cover this.

KANetworkEntitiesTest >> testNodeLinking
| node1 node2 link |
node1 := KANetworkNode withAddress: #address1.
node2 := KANetworkNode withAddress: #address2.
link := KANetworkLink from: node1 to: node2.

4

1.3 Links are one-way connections between nodes

link attach.

self assert: (node1 hasLinkTo: node2)

This test creates two nodes and a link; after telling the link to attach itself, we
check that it did so: the source node should confirm that it has an outgoing
link to the destination node. Note that the constructor could have registered
the link with node1, but we opted for a separate message attach instead,
because it’s bad form to have a constructor change other objets; this way we
can build links between arbitrary nodes and still have control of when the
connection really becomes part of the network model. For symmetry, we
could have specified that node2 has an incoming link from node1, but that
ends up not being necessary, so we leave that out for now.

Again, we need to define the class of links:

Object subclass: #KANetworkLink
instanceVariableNames: 'source destination'
classVariableNames: ''
category: 'NetworkSimulator-Core'

A constructor that passes the two required parameters to an instance-side
initialization message:

KANetworkLink class >> from: sourceNode to: destinationNode
^ self new

initializeFrom: sourceNode to: destinationNode

As well as the initialization method and accessors:

KANetworkLink >> initializeFrom: sourceNode to: destinationNode
... Your code ...

KANetworkLink >> source
... Your code ...

KANetworkLink >> destination
... Your code ...

The attachmethod of a link should not (and cannot) directly modify the
source node, so it must delegate to it instead.

KANetworkLink >> attach
source attach: self

This is an example of separation of concerns: the link knows which node has
to do what, but only the node itself knows precisely how to do that. Here, if a
node knows about all its outgoing links, it means it has a collection of those,
and attaching a link adds it to that collection:

KANetworkNode >> attach: anOutgoingLink
outgoingLinks add: anOutgoingLink

5

A simple network simulator

withAddress:
attach: aLink
hasLinkTo: aNode

address
NetworkNode

from:ad1 to: ad2 payload: any

sourceAddress
destinationAddress
payload

NetworkPacket

from: asNode to: dNode
attach

source
destination

NetworkLink

Figure 1-2 Current API of our three main classes.

For this method to compile correctly, we will need to extend KANetworkNode
with the new instance variable outgoingLinks, and with the corresponding
initialization code:

KANetworkNode >> initialize
outgoingLinks := Set new.

And finally the unit test relied on a predicate method to define in KANetwor-
kNode:
KANetworkNode >> hasLinkTo: anotherNode

... Your code ...

The method hasLinkTo: should verify that there is at least one outgoing
links whose destination is the node passed as argument. We suggest to have
a look at the iterator anySatisfy: to express this logic.

Again, all the tests should now pass.

1.4 Making our objects more understandable

When programming we often make mistakes and it is important to help de-
veloper to address them. Let us put a breakpoint and try to understand the
objects.

KANetworkEntitiesTest >> testNodeLinking
| node1 node2 link |
node1 := KANetworkNode withAddress: #address1.
node2 := KANetworkNode withAddress: #address2.
link := KANetworkLink from: node1 to: node2.
link attach.
self halt.
self assert: (node1 hasLinkTo: node2)

Running the test will open a debugger as the one shown in Figure 1-3. We get
object but their textual representation is too generic to really help us.

The method printOn: is responsible to the printing of the object represen-
tation. We will then redefine this method for the different objects we have.

KANetworkNode >> printOn: aStream
aStream nextPutAll: 'Node ('.
aStream nextPutAll: address , ')'

6

1.5 Simulating the steps of packet delivery

Figure 1-3 Navigating specific objects having a generic presentation.

KANetworkLink >> printOn: aStream
aStream nextPutAll: 'Link'.
source
ifNotNil: [aStream

nextPutAll: ' ';
nextPutAll: source address].

destination
ifNotNil: [aStream

nextPutAll: ' -> ';
nextPutAll: destination address]

Now if we rerun the test we obtain a better user experience as shown in Fig-
ure 1-4: we can see the address of a node and the source and destination of a
link.

1.5 Simulating the steps of packet delivery

The next big feature is that nodes should be able to send and receive packets,
and links to transmit them.

KANetworkEntitiesTest >> testSendAndTransmit
| srcNode destNode link packet |
srcNode := KANetworkNode withAddress: #src.
destNode := KANetworkNode withAddress: #dest.

7

A simple network simulator

Figure 1-4 Navigating objects offering a customized presentation.

link := (KANetworkLink from: srcNode to: destNode) attach;
yourself.
packet := KANetworkPacket from: #address to: #dest payload:
#payload.

srcNode send: packet via: link.
self assert: (link isTransmitting: packet).
self deny: (destNode hasReceived: packet).

link transmit: packet.
self deny: (link isTransmitting: packet).
self assert: (destNode hasReceived: packet)

We create and setup two nodes, a link between them, and a packet. Now, to
control which packets get delivered in which order, we specify that it hap-
pens in separate, controlled steps. This will allow us to model packet delivery
precisely, to simulate latency, out-of-order reception, etc.:

• First, we tell the node to send the packet using the message send:via:.
At that point, the packet should be passed to the link for transmission,
but not completely delivered yet.

• Then, we tell the link to actually transmit the packet along using the
message transmit:, and thus the packet should be received by the
destination node.

8

1.6 Sending a packet

1.6 Sending a packet

To send a packet, the node emits it on the link:

KANetworkNode >> send: aPacket via: aLink
aLink emit: aPacket

For the simulation to be realistic, we do not want the packet to be delivered
right away; instead, emitting a packet really just stores it in the link, until
the user elects this packet to proceed using the transmit: message. Storing
packets requires adding an instance variable to KANetworkLink, as well as
specifying how this instance variable should be initialized.

Object subclass: #KANetworkLink
instanceVariableNames: 'source destination packetsToTransmit'
classVariableNames: ''
category: 'NetworkSimulator-Core'

KANetworkLink >> initialize
packetsToTransmit := OrderedCollection new

KANetworkLink >> emit: aPacket
"Packets are not transmitted right away, but stored.
Transmission is explicitly triggered later, by sending
#transmit:."

packetsToTransmit add: aPacket

We also add a testing method to check whether a given packet is currently
being transmitted by a link:

KANetworkLink >> isTransmitting: aPacket
... Your code ...

1.7 Transmitting across a link

Transmitting a packet means telling the link’s destination node to receive
it. Nodes only consume packets addressed to them; fortunately this is what
will happen in our test, so we can worry about the alternative case later
(notYetImplemented is a special message that we can use in place of code
that we will have to write eventually, but prefer to ignore for now).

KANetworkNode >> receive: aPacket from: aLink
aPacket destinationAddress = address

ifTrue: [
self consume: aPacket.
arrivedPackets add: aPacket]

ifFalse: [self notYetImplemented]

9

A simple network simulator

withAddress:
attach: aLink
consume: aPacket
receive: aPacket from: aLink
send: aPacket via: aLink
hasLinkTo: aNode
hasReceived: aPacket

address
NetworkNode

from:ad1 to: ad2 payload: any

sourceAddress
destinationAddress
payload

NetworkPacket

from: asNode to: dNode
attach
transmit: aPacket
isTransmitting: aPacket

source
destination

NetworkLink

Figure 1-5 Richer API.

Consuming a packet represents what the node will do with it at the applica-
tion level; for now let’s just define an empty consume: method, as a place-
holder:

KANetworkNode >> consume: aPacket
"Default handling is to do nothing."

After consuming the packet, we remember it did arrive; this is mostly for
testing and debugging, but someday we might want to simulate packet losses
and re-emissions. Don’t forget to declare and initialize the arrivedPackets
instance variable, along with its accessor:

KANetworkNode >> hasReceived: aPacket
... Your code ...

Now we can implement the transmit: message. A link can not transmit
packets that have not been sent via it, and once transmitted, the packet
should not be on the link anymore. We should remove it from the link list
of package to be transmitted and tell the destination to receive it using the
message receive:from:.

KANetworkLink >> transmit: aPacket
"Transmit aPacket to the destination node of the receiver link."
... Your code ...

At that point all our tests should pass. Note that the message notYetImple-
mented is not called, since our tests do not yet require routing. Figure 1-5
shows that the API of our classes is getting richer than before.

1.8 The loopback link

On a real network, when a node wants to send a packet to itself, it does not
need any connection to do so. In real-world networking stacks, loopback
routing shortcuts the lower networking layers; however, this is finer detail
than we are modeling here.

Still, we want to model the fact that the loopback link is a little special, so
each node will store its own loopback link, separately from the outgoing

10

1.8 The loopback link

links. We start to define a test.

KANetworkEntitiesTest >> testLoopback
| node packet |
node := KANetworkNode withAddress: #address.
packet := KANetworkPacket from: #address to: #address payload:
#payload.

node send: packet.
node loopback transmit: packet.

self assert: (node hasReceived: packet).
self deny: (node loopback isTransmitting: packet)

The loopback link is implicitely created as part of the node itself. We also
introduce a new send: message, which takes the responsibility of selecting
the link to emit the packet. For triggering packet transmission, we have to
use a specific accessor to find the loopback link of the node.

First, we have to add yet another instance variable in nodes:

Object subclass: #KANetworkNode
instanceVariableNames: 'address outgoingLinks loopback
arrivedPackets'
classVariableNames: ''
category: 'NetworkSimulator-Core'

As with all instance variables, we have to remember to make sure it is cor-
rectly initialized; we thus modify initialize:

KANetworkNode >> initialize
... Your code ...

The accessor has nothing special:

KANetworkNode >> loopback
^ loopback

And finally we can focus on the send: method and automatic link selection.
The method send: should be more generic than the method send:via: and
will be one exposed as a public entry point.

This method has to rely on some routing algorithm to identify which links
will transmit the packet closer to its destination. Since some routing algo-
rithms select more than one link, we will implement routing as an iteration
method, which evaluates the given block for each selected link.

KANetworkNode >> send: aPacket
"Send aPacket, leaving the responsibility of routing to the
node."
self

linksTowards: aPacket destinationAddress
do: [:link | self send: aPacket via: link]

11

A simple network simulator

One of the simplest routing algorithm is flooding: just send the packet via
every outgoing link. Obviously, this is a waste of bandwidth, but it works
without any knowledge of the network topology beyond the list of outgoing
links.

However, there is one case where we know how to route the packet: if the
destination address matches the one of the current node, we can select the
loopback link. The logic of linksTowards:do: is then: compare the packet’s
destination address with the one of the node, if it is the same, we execute the
block using the loopback link, else we simply iterate on the outgoing links of
the receiver.

KANetworkNode >> linksTowards: anAddress do: aBlock
"Simple flood algorithm: route via all outgoing links.
However, just loopback if the receiver node is the routing
destination."
... Your code ...

Now we have the basic model working, and we can try more realistic exam-
ples.

1.9 Modeling the network itself

More realistic tests will require non-trivial networks. We thus need an ob-
ject that represents the network as a whole, to avoid keeping many nodes
and links in individual variables. We will introduce a new class KANetwork,
whose responsibility is to help us build, assemble then find the nodes and
links involved in a network.

Let’s start by creating another test class, to keep things in order:

TestCase subclass: #KANetworkTest
instanceVariableNames: 'net hub alone'
classVariableNames: ''
category: 'NetworkSimulator-Tests'

Since every test needs to rebuild the whole example network from scratch,
we specify so in the setUpmethod:

KANetworkTest >> setUp
self buildNetwork

Before anything else, let’s write a test that will pass once we’ve made progress;
we want to access network nodes given only their addresses. Here we check
that we get a hub node based on its address:

KANetworkTest >> testNetworkFindsNodesByAddress
self

assert: (net nodeAt: hub address ifNone: [self fail])
equals: hub

12

1.9 Modeling the network itself

mac

pc 1

hub

pc 2

impr

alone

ping

pong

Figure 1-6 A hub.

We will have to implement this nodeAt:ifNone: on our KANetwork class;
but first we need to decide how its instances are built. Let’s build network
net, with the main part connected in a star shape around a hub node; a pair
of nodes ping and pong are part of the network but not connected to hub,
and the alone node is just by itself, not even added to the network as shown
in Figure 1-6.

Expanding a network implies adding new connections and possibly new
nodes to it. If the net object understands a connect: aNode to: anoth-
erNodemessage, you should be able to build nodes and connect them into a
network that matches the figure.

KANetworkTest >> buildNetwork
alone := KANetworkNode withAddress: #alone.
net := KANetwork new.
hub := KANetworkNode withAddress: #hub.
#(mac pc1 pc2 prn)
do: [:addr |

| node |
node := KANetworkNode withAddress: addr.
net connect: node to: hub].

net connect: (KANetworkNode withAddress: #ping) to: (KANetworkNode
withAddress: #pong)

The name of the connect:to: message suggests that establishing the bidi-
rectional links is the responsibility of the net object. It also has to remember
enough info so we can inspect the network topology; we can simply store
nodes and links in a couple of sets, even though that representation is a little
redundant. Let’s define the class with two instance variables:

Object subclass: #KANetwork
instanceVariableNames: 'nodes links'
classVariableNames: ''
category: 'NetworkSimulator-Core'

13

A simple network simulator

Whenever we define an instance variable, initialization comes next:

KANetwork >> initialize
... Your code ...

Now we can give the network the possibility to create links. This method we
will use to add links to the network link collection.

KANetwork >> makeLinkFrom: aNode to: anotherNode
^ KANetworkLink from: aNode to: anotherNode

We add a low level method add: to add a node in a network.

KANetwork >> add: aNode
nodes add: aNode

To be able to test the network construction we add a little test message;

KANetwork >> doesRecordNode: aNode
^ nodes includes: aNode

Now, we can add isolated nodes to the network, even if it does not seem very
useful.

Connecting nodes.

Connecting nodes without ensuring that they are part of the network really
does not make sense. Therefore, when connecting nodes, we will first ensure
the nodes are added (by simply adding them in the node Set of the network),
then we create and attach links in both directions; finally we store both links.

Here is a test covering this aspect.

KANetworkTest >> testConnect
| netw hubb mac pc1 |
netw := KANetwork new.
hubb := KANetworkNode withAddress: #hub.
mac := KANetworkNode withAddress: #mac.
pc1 := KANetworkNode withAddress: #pc1.

netw connect: hubb to: mac.
self assert: (hubb hasLinkTo: mac).
self assert: (mac hasLinkTo: hubb).
self assert: (netw doesRecordNode: hubb).
self assert: (netw doesRecordNode: mac).

netw connect: hubb to: pc1.
self assert: (hubb hasLinkTo: pc1).
self assert: (mac hasLinkTo: hubb)

Now implement the connect:to: method; for concision, note that the at-
tachmethod we defined previously effectively returns the link.

14

1.10 Looking up nodes

KANetwork >> connect: aNode to: anotherNode
... Your code ...

The test testConnect should be green.

1.10 Looking up nodes

At this point, the test testNetworkFindsNodesByAddress should run through
setUp but fail in the unit test itself, because we still need to implement node
lookup. The base lookup should find the first node that has the requested ad-
dress, or evaluate a fall-back block (a perfect case for the detect:ifNone:
message):

KANetwork >> nodeAt: anAddress ifNone: noneBlock
... Your code ...

We can also make a convenience nodeAt: method for node lookup, that will
raise the predefined NotFound exception if it does not find the node. Let’s
first write a test which validates this behavior:

KANetworkTest >> testNetworkOnlyFindsAddedNodes
self

should: [net nodeAt: alone address]
raise: NotFound

Then we can simply express nodeAt: by delegating to nodeAt:ifNone:.
Note that raise an exception, you simply send the message signal to the ex-
ception class. Here we use the specific class method signalFor:in: defined
on the NotFound class.

KANetwork >> nodeAt: anAddress
^ self

nodeAt: anAddress
ifNone: [NotFound signalFor: anAddress in: self]

1.11 Looking up links

Next, we want to be able to lookup links between two nodes. Again we define
a new test:

KANetworkTest >> testNetworkFindsLinks
| link |
self

shouldnt: [link := net linkFrom: #pong to: #ping]
raise: NotFound.

self
assert: link source
equals: (net nodeAt: #pong).

self
assert: link destination

15

A simple network simulator

equals: (net nodeAt: #ping)

And we define the method linkFrom:to: returning the link between source
and destination nodes with matching addresses, and signalling NotFound if
no such link is found:

KANetwork >> linkFrom: sourceAddress to: destinationAddress
... Your code ...

Final check.

As a final check, let’s try some of the previous tests, first on the isolated
alone node, showing that loopback works even without a network connec-
tion:

KANetworkTest >> testSelfSend
| packet |
packet := KANetworkPacket

from: alone address
to: alone address
payload: #something.

self assert: (packet isAddressedTo: alone).
self assert: (packet isOriginatingFrom: alone).

alone send: packet.
self deny: (alone hasReceived: packet).
self assert: (alone loopback isTransmitting: packet).

alone loopback transmit: packet.
self deny: (alone loopback isTransmitting: packet).
self assert: (alone hasReceived: packet)

You can see that we used new convenience testing methods isAddressedTo:
and isOriginatingFrom: which help inspect the state of a simulated net-
work without explicitly comparing addresses. However, those methods should
not take part in network simulation code, since in the real world nodes can
never know their peers other than through their addresses.

KANetworkPacket >> isAddressedTo: aNode
^ destinationAddress = aNode address

KANetworkPacket >> isOriginatingFrom: aNode
^ sourceAddress = aNode address

The second test attempts transmitting a packet in the network, between the
directly connected nodes ping and pong:

KANetworkTest >> testDirectSend
| packet ping pong link |
packet := KANetworkPacket from: #ping to: #pong payload: #ball.
ping := net nodeAt: #ping.
pong := net nodeAt: #pong.

16

1.12 Packet delivery with forwarding

link := net linkFrom: #ping to: #pong.

ping send: packet.
self assert: (link isTransmitting: packet).
self deny: (pong hasReceived: packet).

link transmit: packet.
self deny: (link isTransmitting: packet).
self assert: (pong hasReceived: packet)

Both tests should pass with no additional work, since they just reproduce
what we already tested in KANetworkEntitiesTest and adding KANetwork
did not impact the established behavior of nodes, links, and packets.

1.12 Packet delivery with forwarding

Until now, we only tested packet delivery between directly connected nodes;
let’s try sending a node so that the packet has to be forwarded through the
hub.

KANetworkTest >> testSendViaHub
| hello mac pc1 firstLink secondLink |
hello := KANetworkPacket from: #mac to: #pc1 payload: 'Hello!'.
mac := net nodeAt: #mac.
pc1 := net nodeAt: #pc1.
firstLink := net linkFrom: #mac to: #hub.
secondLink := net linkFrom: #hub to: #pc1.

self assert: (hello isAddressedTo: pc1).
self assert: (hello isOriginatingFrom: mac).

mac send: hello.
self deny: (pc1 hasReceived: hello).
self assert: (firstLink isTransmitting: hello).

firstLink transmit: hello.
self deny: (pc1 hasReceived: hello).
self assert: (secondLink isTransmitting: hello).

secondLink transmit: hello.
self assert: (pc1 hasReceived: hello).

If you run this test, you will see that it fails because of the notYetImple-
mentedmessage we left earlier in receive:from:; it’s time to fix that! When
a node receives a packet but is not the recipient, it should forward the packet:

17

A simple network simulator

KANetworkNode >> receive: aPacket from: aLink
aPacket destinationAddress = address

ifTrue: [
self consume: aPacket.
arrivedPackets add: aPacket]

ifFalse: [self forward: aPacket from: aLink]

Now we need to implement packet forwarding, but there is a trap. An easy
solution would be to simply send: the packet again: the hub would send the
packet to all its connected nodes, one of which happens to be pc1, the recipi-
ent, so all is good!

Wrong…

The packet would be also sent to other nodes than the recipient; what would
those nodes do when they receive a packet not addressed to them? Forward
it. Where? To all their neighbours, which would forward it again... so when
would the forwarding stop?

To fix this, we need hubs to behave differently from nodes. In reality, hubs
work at the lower layers of the OSI model, but our simplified model does not
have that level of detail. We can approximate this by saying that upon recep-
tion of a packet addressed to another node, a hub should forward the packet,
but a normal node should just ignore it.

Let’s first define an empty forward:from: method for nodes, then add a
new class for hubs, which will be modeled as nodes with an actual implemen-
tation of forwarding:

KANetworkNode >> forward: aPacket from: arrivalLink
"Do nothing. Normal nodes do not route packets."

1.13 Introducing a new kind of node

Now we define the class KANetworkHub that will be the recipient of hub spe-
cific behavior.

KANetworkNode subclass: #KANetworkHub
instanceVariableNames: ''
classVariableNames: ''
category: 'NetworkSimulator'

A hub does not have routing information, so all it can do is flood routing,
with a catch: the packet must not be sent back from where it arrived, be-
cause if that happens to be another hub the packet would bounce back and
forth indefinitely. We suggest to take advantage of the message linksTo-
wards:do: that performs an action for all given links to one address.

KANetworkHub >> forward: aPacket from: arrivalLink
... Your code ...

18

1.14 Other examples of specialized nodes

Now we can use a proper hub in our test, replacing the relevant line in KANet-
workTest >> buildNetwork, and check that the testSendViaHub unit test
passes.

hub := KANetworkHub withAddress: #hub.

You have now a nice basis for network simulation. In the following we will
present some possible extensions.

1.14 Other examples of specialized nodes

In this section we will present some extensions of the core to support differ-
ent scenarios. We will propose some tasks to make sure that the extensions
are fully working. In addition in this section we do not define tests and we
strongly encourage you to start to write tests. At the moment of the book
you should be ready to write your own tests and see their values to improve
your development process. So take this opportunity to practice.

Workstations counting received packets

We would like to know how many packets specific nodes are receiving. In
particular when a workstation consumes a packet, it simply increments a
packet counter.

Let’s start by subclassing KANetworkNode:

KANetworkNode subclass: #KANetworkWorkstation
instanceVariableNames: 'receivedCount'
classVariableNames: ''
category: 'NetworkSimulator-Nodes'

We need to initialize the receivedCount instance variable. Properly redefin-
ing initialize is enough, because the address is initialized separately in
the constructor method KANetworkNode >> withAddress:; however, it’s
really important not to forget the super initializemessage, because that
method does initialize the default node behavior.

KANetworkWorkstation >> initialize
super initialize.
receivedCount := 0

Now we can redefine consume: accordingly:

KANetworkWorkstation >> consume: aPacket
receivedCount := receivedCount + 1

Define accessors and the printOn: method for debugging. Define a test for
the behavior of workstation nodes.

19

A simple network simulator

Printers accumulating printouts

When a printer consumes a packet, it prints it; we can model the output tray
as a list where packet payloads get queued, and the supply tray as the num-
ber of blank sheets it contains.

The implementation is very similar; we subclass KANetworkNode to redefine
the consume: method:

KANetworkNode subclass: #KANetworkPrinter
instanceVariableNames: 'supply tray'
classVariableNames: ''
category: 'NetworkSimulator-Nodes'

KANetworkPrinter >> consume: aPacket
supply > 0 ifTrue: [^ self "no paper, do nothing"].

supply := supply - 1.
tray add: aPacket payload

Initialization is a bit different, though; since the standard initializemethod
has no argument, the only sensible initial value for the supply instance vari-
able is zero:

KANetworkPrinter >> initialize
super initialize.
supply := 0.
tray := OrderedCollection new

We therefore need a way to pass the initial supply of paper available to a
fresh instance:

KANetworkPrinter >> resupply: paperSheets
supply := supply + paperSheets

For convenience, we can provide an extended constructor to create printers
with a non-empty supply in one message:

KANetworkPrinter class >> withAddress: anAddress initialSupply:
paperSheets
^ (self withAddress: anAddress)

resupply: paperSheets;
yourself

Define accessors and the printOn: method for debugging purpose. Define
some test methods for the behavior of printer nodes.

Servers answering requests

When a server node consumes a packet, it converts the payload to uppercase,
then sends that back to the sender of the request.

20

1.15 Conclusion

a1

A C

B

a2

c1b1

b2 b3

Figure 1-7 A possible extension: a more realistic network with a cycle between

three router nodes.

This is yet another subclass which redefines the consume: method, but this
time the node is stateless, so we have no initialization or accessor methods to
write:

KANetworkNode subclass: #KANetworkServer
instanceVariableNames: ''
classVariableNames: ''
category: 'NetworkSimulator-Nodes'

KANetworkServer >> consume: aPacket
| response |
response := aPacket payload asUppercase.
self send: (KANetworkPacket

from: self address
to: aPacket sourceAddress
payload: response)

Define a test for the behavior of server nodes.

1.15 Conclusion

In this chapter, we built a little network simulation system, step by step. We
showed the benefit of good protocol decompositions.

As a further extension, we suggest modeling a more realistic network with
cycles, as shown in Figure 1-7. Making this work properly will require re-
placing hubs with routers and flood routing with more realistic routing algo-
rithms.

Here is a possible setup for a new family of tests.

21

A simple network simulator

KARoutingNetworkTest >> buildNetwork
| routers |
net := KANetwork new.

routers := #(A B C) collect:
[:each | KANetworkHub withAddress: each].

net connect: routers first to: routers second.
net connect: routers second to: routers third.
net connect: routers third to: routers first.

#(a1 a2) do: [:addr |
net connect: routers first

to: (KANetworkNode withAddress: addr)].
#(b1 b2 b3) do: [:addr |

net connect: routers second
to: (KANetworkNode withAddress: addr)].

net connect: routers third
to: (KANetworkNode withAddress: #c1)

22

Bibliography

23

	Illustrations
	A simple network simulator
	Basic definitions and a starting point
	Packets are simple value objects
	Nodes are known by their address
	Links are one-way connections between nodes
	Making our objects more understandable
	Simulating the steps of packet delivery
	Sending a packet
	Transmitting across a link
	The loopback link
	Modeling the network itself
	Connecting nodes.

	Looking up nodes
	Looking up links
	Final check.

	Packet delivery with forwarding
	Introducing a new kind of node
	Other examples of specialized nodes
	Workstations counting received packets
	Printers accumulating printouts
	Servers answering requests

	Conclusion

	Bibliography

