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CHA P T E R 1
About this book

1.1 Structure of the book

We will start with the exploration of message passing. As we described in
Learning Object-Oriented Programming, Design and TDD with Pharo sending a
message is making a choice. The execution engine selects and executes for
us the correct method. Such mechanism is really powerful and we will ex-
plore what we can then do by just sending messages. To make sure that you
can read this book in isolation, I will reuse two chapters from Learning Object-
Oriented Programming, Design and TDD with Pharo available at http://books.
pharo.org: First the Crafting a simple embedded DSL with Pharo chapter and sec-
ond with the A little expression interpreter chapter.

• Reusing and extending the Crafting a simple embedded DSL with Pharo. We
will extend the Dice mini system to support more additions between
die and die handle. We will explore the notion of double dispatch. Dou-
ble dispatch is a subtle notion that requires time to master. Indeed
even when we believe that we fully understand it, our old deamons can
push us to blindly use conditionals when this is not needed.

• Reusing and extending A little expression interpreter, we will as a basis to
explore the Visitor design pattern. In fact the Visitor is a generalisa-
tion of double dispatch.

1.2 Typographic conventions

Pharo expressions or code snippets are represented either in the text as
'Hello' and 'Hello' reversed, or for more substantial snippets, as fol-
lows:

1
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About this book

'Hello'

When we want to show the result of evaluating an expression, we show the
result after three chevrons >>> on the next line, like so:

'Hello' reversed
>>> 'olleH'

Whenever we feel the text makes a point that is important or technical enough
to be highlighted, we will do so with a thick bar:

Note Important! This is a point that is worth drawing some more atten-
tion.

1.3 Thanks

I would like to thank the following persons for their feedback: Roelof Wobben.
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Getting started





CHA P T E R2
Crafting a simple embedded DSL

with Pharo

In this chapter you will develop a simple domain specific language (DSL) for
rolling dice. Players of games such as Dungeons & Dragons are familiar with
such DSL. An example of such DSL is the following expression: 2 D20 + 1
D6 which means that we should roll two 20-faces dice and one 6-faces die. It
is called an embedded DSL because the DSL uses the syntax of the language
used to implement it. Here we use the Pharo syntax to implement the Dun-
geons & Dragons rolling die language.

This little exercise shows how we can (1) simply reuse traditional operator
such as +, (2) develop an embedded domain specific language and (3) use
class extensions (the fact that we can define a method in another package
than the one of the class of the method).

2.1 Getting started

Using the code browser, define a package named Dice or any name you like.

Create a test

It is always empowering to verify that the code we write is always working as
we are defining it. For this purpose you should create a unit test. Remember
unit testing was promoted by K. Beck first in the ancestor of Pharo. Nowa-
days this is a common practice but it is always useful to remember our roots!

Define the class DieTest as a subclass of TestCase as follows:
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Crafting a simple embedded DSL with Pharo

faces:
roll
withFaces:

faces
Die

Figure 2-1 A single class with a couple of messages. Note that the method

withFaces: is a class method.

TestCase subclass: #DieTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Dice'

What we can test is that the default number of faces of a die is 6.

DieTest >> testInitializeIsOk
self assert: Die new faces equals: 6

If you execute the test, the system will prompt you to create a class Die. Do
it.

Define the class Die

The class Die inherits from Object and it has an instance variable, faces
to represent the number of faces one instance will have. Figure 2-1 gives an
overview of the messages.

Object subclass:
... Your solution ...

In the initialization protocol, define the method initialize so that it
simply sets the default number of faces to 6.

Die >> initialize
... Your solution ...

Do not hesitate to add a class comment.

Now define a method to return the number of faces an instance of Die has.

Die >> faces
^ faces

Now your tests should all pass (and turn green).

6



2.2 Rolling a die

Figure 2-2 Inspecting and interacting with a die.

2.2 Rolling a die

To roll a die you should use the method from Number atRandom which draws
randomly a number between one and the receiver. For example 10 atRan-
dom draws number between 1 to 10. Therefore we define the method roll:

Die >> roll
... Your solution ...

Now we can create an instance Die new and send it the message roll and
get a result. Do Die new inspect to get an inspector and then type in the
bottom pane self roll. You should get an inspector like the one shown in
Figure 2-2. With it you can interact with a die by writing expression in the
bottom pane.

2.3 Creating another test

But better, let us define a test that verifies that rolling a newly created dice
with a default 6 faces only returns value comprised between 1 and 6. This is
what the following test method is actually specifying.

DieTest >> testRolling
| d |
d := Die new.
10 timesRepeat: [ self assert: (d roll between: 1 and: 6) ]

Important Often it is better to define the test even before the code it tests.
Why? Because you can think about the API of your objects and a scenario
that illustrate their correct behavior. It helps you to program your solution.

7



Crafting a simple embedded DSL with Pharo

2.4 Instance creation interface

We would like to get a simpler way to create Die instances. For example we
want to create a 20-faces die as follows: Die withFaces: 20 instead of al-
ways having to send the new message to the class as in Die new faces: 20.
Both expressions are creating the same die but one is shorter.

Let us look at it:

• In the expression Die withFaces:, the message withFaces: is sent to
the class Die. It is not new, we constantly sent the message new to Die
to create instances.

• Therefore we should define a method that will be executed

Let us define a test for it.

DieTest >> testCreationIsOk
self assert: (Die withFaces: 20) faces equals: 20

What the test clearly shows is that we are sending a message to the class Die
itself.

Defining a class method

Define the class method withFaces: as follows:

• Click on the class button in the browser to make sure that you are edit-
ing a classmethod.

• Define the method as follows:

Die class >> withFaces: aNumber
"Create and initialize a new die with aNumber faces."
| instance |
instance := self new.
instance faces: aNumber.
^ instance

Let us explain this method

• The method withFaces: creates an instance using the message new.
Since self represents the receiver of the message and the receiver of
the message is the class Die itself then self represents the class Die.

• Then the method sends the message faces: to the instance and

• Finally returns the newly created instance.

Pay attention that a class method withFaces: is sent to a class, and an in-
stance method is sent to the newly created instance faces:. Note that the
class method could have also named faces: or any name we want, it does
not matter, it is executed when the receiver is the class Die.

8



2.4 Instance creation interface

If you execute it will not work since we did not yet create the method faces:.
Now is the time to define it. Pay attention that method faces: is sent to an
instance of the class Die and not the class itself. It is an instance method,
therefore make sure that you deselect the class button before editing it.

Die >> faces: aNumber
faces := aNumber

Now your tests should run. So even if the class Die could implement more
behavior, we are ready to implement a die handle.

Important A class method is a method executed in reaction to messages sent
to a class. It is defined on the class side of the class. In Die withFaces: 20,
the message withFaces: is sent to the class Die. In Die new faces: 20,
the message new is sent to the class Die and the message faces: is sent to
the instance returned by Die new.

[Optional] Alternate instance creation definition

In a first reading you can skip this section. The class method definition with-
Faces: above is strictly equivalent to the one below.

Die class >> withFaces: aNumber
^ self new faces: aNumber; yourself

Let us explain it a bit. self represents the class Die itself. Sending it the
message new, we create an instance and send it the faces: message. And
we return the expression. So why do we need the message yourself. The
message yourself is needed to make sure that whatever value the instance
message faces: returns, the instance creation method we are defining re-
turns the new created instance. You can try to redefine the instance method
faces: as follows:

Die >> faces: aNumber
faces := aNumber.
^ 33

Without the use of yourself, Die withFaces: 20 will return 33. With your-
self it will return the instance.

The trick is that yourself is a simple method defined on Object class: The
message yourself returns the receiver of a message. The use of ; sends the
message to the receiver of the previous message (here faces:). The mes-
sage yourself is then sent to the object resulting from the execution of the
expression self new (which returns a new instance of the class Die), as a
consequence it returns the new instance.

9



Crafting a simple embedded DSL with Pharo

faces:
roll

faces
Die

roll
addDie:
+ aDieHandle

dice
DieHandle

Figure 2-3 A die handle is composed of dice.

2.5 First specification of a die handle

Let us define a new class DieHandle that represents a die handle. Here is the
API that we would like to offer for now (as shown in Figure 2-3). We create a
new handle then add some dice to it.

DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself

Of course we will define tests first for this new class. We define the class
DieHandleTest.

TestCase subclass: #DieHandleTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Dice'

Testing a die handle

We define a new test method as follows. We create a new handle and add one
die of 6 faces and one die of 10 faces. We verify that the handle is composed
of two dice.

DieHandleTest >> testCreationAdding
| handle |
handle := DieHandle new

addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself.

self assert: handle diceNumber equals: 2.

In fact we can do it better. Let us add a new test method to verify that we can
even add two dice having the same number of faces.

DieHandleTest >> testAddingTwiceTheSameDice
| handle |
handle := DieHandle new.
handle addDie: (Die withFaces: 6).
self assert: handle diceNumber equals: 1.
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2.6 Defining the DieHandle class

Figure 2-4 Inspecting a DieHandle.

handle addDie: (Die withFaces: 6).
self assert: handle diceNumber equals: 2.

Now that we specified what we want, we should implement the expected
class and messages. Easy!

2.6 Defining the DieHandle class

The class DieHandle inherits from Object and it defines one instance vari-
able to hold the dice it contains.

Object subclass: ...
... Your solution ...

We simply initialize it so that its instance variable dice contains an instance
of OrderedCollection.

DieHandle >> initialize
... Your solution ...

Then define a simple method addDie: to add a die to the list of dice of the
handle. You can use the message add: sent to a collection.

DieHandle >> addDie: aDie
... Your solution ...

Now you can execute the code snippet and inspect it. You should get an in-
spector as shown in Figure 2-4

DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself

11



Crafting a simple embedded DSL with Pharo

Finally we should add the method diceNumber to the DieHandle class to be
able to get the number of dice of the handle. We just return the size of the
dice collection.

DieHandle >> diceNumber
^ dice size

Now your tests should run and this is a good moment to save and publish
your code.

2.7 Improving programmer experience

Now when you open an inspector you cannot see well the dice that compose
the die handle. Click on the dice instance variable and you will only get a list
of a Dice without further information. What we would like to get is some-
thing like a Die (6) or a Die (10) so that in a glance we know the faces a
die has.

DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself

This is the message printOn: that is responsible to provide a textual repre-
sentation of the message receiver. By default, it just prints the name of the
class prefixed with 'a' or 'an'. So we will enhance the printOn: method
of the Die class to provide more information. Here we simply add the num-
ber of faces surrounded by parenthesis. The printOn: message is sent with a
stream as argument. It is in this stream that we should add information. We
use the message nextPutAll: to add a number of characters to the stream.
We concatenate the characters to compose () using the message , comma
defined on collections (and that concatenate collections and strings).

Die >> printOn: aStream

super printOn: aStream.
aStream nextPutAll: ' (', faces printString, ')'

Now in your inspector you can see effectively the number of faces a die han-
dle has as shown by Figure 2-5 and it is now easier to check the dice con-
tained inside a handle (See Figure 2-6).

Optimization Remark.

Note that this implementation of printOn: is suboptimal since it is creating
a separate stream (during the invocation of faces printString) instead
of reusing the stream passed as argument. A better solution is to rewrite
printOn: as follows:

12



Figure 2-5 Die details.

Figure 2-6 A die handle with more information.



Crafting a simple embedded DSL with Pharo

Die >> printOn: aStream

super printOn: aStream.
aStream nextPutAll: ' ('.
aStream print: faces.
aStream nextPutAll: ')'

As an exercise we let you browse the methods printString on class Object
and print: on class Stream.

2.8 Rolling a die handle

Now we can define the rolling of a die handle by simply summing result of
rolling each of its dice. Implement the rollmethod of the DieHandle class.
This method must collect the results of rolling each dice of the handle and
sum them.

You may want to have a look at the method sum in the class Collection or
use a simple loop.

DieHandle >> roll
... Your solution ...

Now we can send the message roll to a die handle.

handle := DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself.

handle roll

Define a test to cover such behavior. Rolling a handle of n dice should be be-
tween n and the sum of the face number of each die.

DieHandleTest >> testRoll
... Your solution ...

2.9 About Dice and DieHandle API

It is worth to spend some times looking at the relationship between DieHan-
dle and Dice. A die handle is composed of dice. What is an important design
decision is that the API of the main behavior (roll) is the same for a die or a
die handle. You can send the message roll to a die or a die handle. This is an
important property.

Why? Because it means that from a client perspective, they can treat the re-
ceiver without having to take care about the kind of object it is manipulating.
A client just sends the message roll to an object and gets back a number (as
shown in Figure 2-7). The client is not concerned by the fact that the receiver

14



2.10 Handle’s addition

aDie(6)

aDieHandleroll

aDie (6)roll

aDie(10)
roll

client

client

Figure 2-7 A polymorphic API supports the Don’t ask, tell principle.

is composed out a simple object or a complex one. Such design decision sup-
ports the Don’t ask, tell principle.

Important Offering polymorphic API is a tenet of good object-oriented de-
sign. It enforces the Don’t ask, tell principle. Clients do not have to worry
about the type of the objects to which they talk to.

For example we can write the following expression that adds a die and a
dieHandle to a collection and collects the different values (we convert the
result into an array so that we can print it in the book).

| col |
col := OrderedCollection new.
col add: (Die withFaces: 20).
col add: (DieHandle new addDie: (Die withFaces: 4); yourself).
(col collect: [:each | each roll]) asArray
>>> #(17 3)

About composition

Composite objects such as document objects (a book is composed of chapters,
a chapter is composed of sections, a section is composed of paragraphs) often
have a more complex composition relationship than the composition be-
tween a die and a die handle. Often the composition is recursive in the sense
that an element can be the whole: for example, a diagram can be composed
of lines, circles, and other diagrams. We will see an example of such compo-
sition in the Expression Chapter 3.

2.10 Handle’s addition

Now what is missing is that possibility to add several handles together to
form a new one. Of course let’s write a test first to be clear on what we mean.

15
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DieHandleTest >> testSumOfHandles
| hd1 hd2 hd3 |
hd1 := DieHandle new addDie: (Die withFaces: 20); addDie: (Die

withFaces: 20); yourself.
hd2 := DieHandle new addDie: (Die withFaces: 10); addDie: (Die

withFaces: 10); yourself.
hd3 := hd1 + hd2.
self assert: hd3 diceNumber equals: 4.

We will define a method + on the DieHandle class. In other languages this
is often not possible or is based on operator overloading. In Pharo + is just a
message as any other, therefore we can define it on the classes we want.

Now we should ask ourself what is the semantics of adding two handles.
Should we modify the receiver of the expression or create a new one. We
preferred a more functional style and chose to create a third one.

The method + creates a new handle then adds the dice of the receiver to it,
and then one of the handles passed as argument to the message. Finally we
return it.

DieHandle >> + aDieHandle
... Your solution ...

Now we want to be able to execute the method (2 D20 + 1 D6) roll nicely
and start playing role playing games, of course. So let us see that.

2.11 Role playing syntax

Now we are ready to offer a syntax following practice of role playing game,
i.e., using 2 D20 to create a handle of two dice with 20 faces each. For this
purpose we will define class extensions: we will define methods in the class
Integer but these methods will be only available when the package Dice will
be loaded.

But first let us specify what we would like to obtain by writing a new test
in the class DieHandleTest. Remember to always take any opportunity to
write tests. When we execute 2 D20 we should get a new handle composed of
two dice and can verify that. This is what the method testSimpleHandle is
doing.

DieHandleTest >> testSimpleHandle
self assert: 2 D20 diceNumber equals: 2.

Verify that the test is not working! It is much more satisfactory to get a test
running when it was not working before. Now define the method D20 with a
protocol named *NameOfYourPackage ('*Dice’ if you named your package
'Dice'). The * (star) prefixing a protocol name indicates that the protocol
and its methods belong to another package than the package of the class.
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Here we want to say that while the method D20 is defined in the class Inte-
ger, it should be saved with the package Dice.

The method D20 simply creates a new die handle, adds the correct number of
dice to this handle, and returns the handle.

Integer >> D20
... Your solution ...

About class extensions

We asked you to place the method D20 in a protocol starting with a star and
having the name of the package ('*Dice') because we want this method to
be saved (and packaged) together with the code of the classes we already cre-
ated (Die, DieHandle,...) Indeed in Pharo we can define methods in classes
that are not defined in our package. Pharoers call this action a class exten-
sion: we can add methods to a class that is not ours. For example D20 is de-
fined on the class Integer. Now such methods only make sense when the
package Dice is loaded. This is why we want to save and load such meth-
ods with the package we created. This is why we are defining the protocol as
'*Dice'. This notation is a way for the system to know that it should save
the methods with the package and not with the package of the class Integer.

Now your tests should pass and this is probably a good moment to save your
work either by publishing your package and to save your image.

We can do the same for the default dice with different faces number: 4, 6,
10, and 20. But we should avoid duplicating logic and code. So first we will
introduce a new method D: and based on it we will define all the others.

Make sure that all the new methods are placed in the protocol '*Dice'. To
verify you can press the button Browse of the Monticello package browser
and you should see the methods defined in the class Integer.

Integer >> D: anInteger
... Your solution ...

Integer >> D4
^ self D: 4

Integer >> D6
^ self D: 6

Integer >> D10
^ self D: 10

Integer >> D20
^ self D: 20

We obtain a compact form to create dice and we are ready for the last part:
the addition of handles. We can write a new test named testSumming.
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DiceHandleTest >> testSumming

| handle |
handle := 2 D20 + 3 D10.
self assert: handle diceNumber equals: 5.

2.12 Conclusion

This chapter illustrates how to create a small DSL based on the definition of
some domain classes (here Dice and DieHandle) and the extension of core
class such as Integer. It also shows that we can create packages with all the
methods that are needed even when such methods are defined on classes
external (here Integer) to the package. It shows that in Pharo we can use
usual operators such as + to express natural models.
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CHA P T E R3
A little expression interpreter

In this chapter you will build a small mathematical expression interpreter.
For example you will be able to build an expression such as (3 + 4) * 5 and
then ask the interpreter to compute its value. You will revisit tests, classes,
messages, methods and inheritance. You will also see an example of expres-
sion trees similar to the ones that are used to manipulate programs. For ex-
ample, compilers and code refactorings as offered in Pharo and many mod-
ern IDEs are doing such manipulation with trees representing code. In addi-
tion, in the volume two of this book, we will extend this example to present
the Visitor Design Pattern.

3.1 Starting with constant expression and a test

We start with constant expression. A constant expression is an expression
whose value is always the same, obviously.

Let us start by defining a test case class as follows:

TestCase subclass: #EConstantTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'

We decided to define one test case class per expression class and this even if
at the beginning the classes will not contain many tests. It is easier to define
new tests and navigate them.

Let us write a first test making sure that when we get a value, sending it the
evaluatemessage returns its value.
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EConstantTest >> testEvaluate
self assert: (EConstant new value: 5) evaluate equals: 5

When you compile such a test method, the system should prompt you to get
a class EConstant defined. Let the system drive you. Since we need to store
the value of a constant expression, let us add an instance variable value to
the class definition.

At the end you should have the following definition for the class EConstant.

Object subclass: #EConstant
instanceVariableNames: 'value'
classVariableNames: ''
package: 'Expressions'

We define the method value: to set the value of the instance variable value.
It is simply a method taking one argument and storing it in the value in-
stance variable.

EConstant >> value: anInteger
value := anInteger

You should define the method evaluate: it should return the value of the
constant.

EConstant >> evaluate
... Your code ...

Your test should pass.

3.2 Negation

Now we can start to work on expression negation. Let us write a test and for
this define a new test case class named ENegationTest.

TestCase subclass: #ENegationTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'

The test testEvaluate shows that a negation applies to an expression (here
a constant) and when we evalute we get the negated value of the constant.

ENegationTest >> testEvaluate
self assert: (ENegation new expression: (EConstant new value: 5))

evaluate equals: -5

Let us execute the test and let the system help us to define the class. A nega-
tion defines an instance variable to hold the expression that it negates.
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3.3 Adding expression addition

Figure 3-1 A flat collection of classes (with a suspect duplication).

Object subclass: #ENegation
instanceVariableNames: 'expression'
classVariableNames: ''
package: 'Expressions'

We define a setter method to be able to set the expression under negation.

ENegation >> expression: anExpression
expression := anExpression

Now the evaluatemethod should request the evaluation of the expression
and negate it. To negate a number the Pharo library proposes the message
negated.

ENegation >> evaluate
... Your code ...

Following the same principle, we will add expression addition and multi-
plication. Then we will make the system a bit more easy to manipulate and
revisit its first design.

3.3 Adding expression addition

To be able to do more than constant and negation we will add two extra ex-
pressions: addition and multiplication and after we will discuss about our
approach and see how we can improve it.

To add an expression that supports addition, we start to define a test case
class and a simple test.

TestCase subclass: #EAdditionTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'
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A simple test for addition is to make sure that we add correctly two con-
stants.

EAdditionTest >> testEvaluate
| ep1 ep2 |
ep1 := (EConstant new value: 5).
ep2 := (EConstant new value: 3).
self assert: (EAddition new right: ep1; left: ep2) evaluate

equals: 8

You should define the class EAddition: it has two instance variables for the
two subexpressions it adds.

EExpression subclass: #EAddition
instanceVariableNames: 'left right'
classVariableNames: ''
package: 'Expressions'

Define the two corresponding setter methods right: and left:.

Now you can define the evaluatemethod for addition.

EAddition >> evaluate
... Your code ...

To make sure that our implementation is correct we can also test that we can
add negated expressions. It is always good to add tests that cover different
scenario.

EAdditionTest >> testEvaluateWithNegation
| ep1 ep2 |
ep1 := ENegation new expression: (EConstant new value: 5).
ep2 := (EConstant new value: 3).
self assert: (EAddition new right: ep1; left: ep2) evaluate

equals: -2

3.4 Multiplication

We do the same for multiplication: create a test case class named EMulti-
plicationTest, a test, a new class EMultiplication, a couple of setter
methods and finally a new evaluatemethod. Let us do it fast and without
much comments.

TestCase subclass: #EMultiplicationTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'

EMultiplicationTest >> testEvaluate
| ep1 ep2 |
ep1 := (EConstant new value: 5).
ep2 := (EConstant new value: 3).
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Figure 3-2 Expressions are composed of trees.

self assert: (EMultiplication new right: ep1; left: ep2) evaluate
equals: 15

Object subclass: #EMultiplication
instanceVariableNames: 'left right'
classVariableNames: ''
package: 'Expressions'

EMultiplication >> right: anExpression
right := anExpression

EMultiplication >> left: anExpression
left := anExpression

EMultiplication >> evaluate
... Your code ...

3.5 Stepping back

It is interesting to look at what we built so far. We have a group of classes
whose instances can be combined to create complex expressions. Each ex-
pression is in fact a tree of subexpressions as shown in Figure 3-2. The fig-
ure shows two main trees: one for the constant expression 5 and one for the
expression -5 + 3. Note that the diagram represents the number 5 as an
object because in Pharo even small integers are objects in the same way the
instances of EConstant are objects.
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Constant
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evaluate
  ^ value     
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  ^ expression evaluate negated  

evaluate
  ^ right evaluate + left evaluate  

evaluate
  ^ right evaluate * left evaluate  

Figure 3-3 Evaluation: one message and multiple method implementations.

Messages and methods

The implementation of the evaluatemessage is worth discussing. What we
see is that different classes understand the same message but execute differ-
ent methods as shown in Figure 3-3.

Note A message represents an intent: it represents what should be
done. A method represents a specification of how something should be
executed.

What we see is that sending a message evaluate to an expression is making
a choice among the different implementations of the message. This point is
central to object-oriented programming.

Note Sending a message is making a choice among all the methods with
the same name.

About common superclass

So far we did not see the need to have an inheritance hierarchy because
there is not much to share or reuse. Now adding a common superclass would
be useful to convey to the reader of the code or a future extender of the li-
brary that such concepts are related and are different variations of expres-
sion.

Design corner: About addition and multiplication model

We could have just one class called for example BinaryOperation and it can
have an operator and this operator will be either the addition or multiplica-
tion. This solution can work and as usual having a working program does not
mean that its design is any good.
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In particular having a single class would force us to start to write conditional
based on the operator as follows

BinaryExpression >> evaluate
operator = #+
ifTrue: [ left evaluate + right evaluate ]
ifFalse: [ left evaluate * right evaluate]

There are ways in Pharo to make such code more compact but we do not
want to use it at this stage. For the interested reader, look for the message
perform: that can execute a method based on its name.

This is annoying because the execution engine itself is made to select meth-
ods for us so we want to avoid to bypass it using explicit condition. In addi-
tion when we will add power, division, subtraction we will have to have more
cases in our condition making the code less readable and more fragile.

As we will see as a general message in this book, sending a message is mak-
ing a choice between different implementations. Now to be able to choose
we should have different implementations and this implies having different
classes.

Note Classes represent choices whose methods can be selected during
message passing. Having more little classes is better than few large ones.

What we could do is to introduce a common superclass between EAddition
and EMultiplication but keep the two subclasses. We will probably do it in
the future

3.6 Negated as a message

Negating an expression is expressed in a verbose way. We have to create ex-
plicitly each time an instance of the class ENegation as shown in the follow-
ing snippet.

ENegation new expression: (EConstant new value: 5)

We propose to define a message negated on the expressions themselves that
will create such instance of ENegation. With this new message, the previous
expression can be reduced too.

(EConstant new value: 5) negated

negated message for constants

Let us write a test to make sure that we capture well what we want to get.

EConstantTest >> testNegated
self assert: (EConstant new value: 6) negated evaluate equals: -6
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And now we can simply implement it as follows:

EConstant >> negated
^ ENegation new expression: self

negated message for negations

ENegationTest >> testNegationNegated
self assert: (EConstant new value: 6) negated negated evaluate

equals: 6

ENegation >> negated
^ ENegation new expression: self

This definition is not the best we can do since in general it is a bad practice
to hardcode the class usage inside the class. A better definition would be

ENegation >> negated
^ self class new expression: self

But for now we keep the first one for the sake of simplicity

negated message for additions

We proceed similarly for additions.

EEAdditionTest >> testNegated
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EAddition new right: ep1; left: ep2) negated

evaluate equals: -8

EAddition >> negated
Your code

negated message for multiplications

We proceed similarly for multiplications.

EMultiplicationTest >> testEvaluateNegated
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EMultiplication new right: ep1; left: ep2) negated

evaluate equals: -15

EMultiplication >> negated
... Your code ...

Now all your tests should pass. And it is a good moment to save your pack-
age.
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Figure 3-4 Code repetition is a bad smell.

3.7 Annoying repetition

Let us step back and look at what we have. We have a working situation but
again object-oriented design is to bring the code to a better level.

Similarly to the situation of the evaluatemessage and methods we see that
the functionality of negated is distributed over different classes. Now what
is annoying is that we repeat the exact same code over and over and this is
not good (see Figure 3-4). This is not good because if tomorrow we want to
change the behavior of negation we will have to change it four times while in
fact one time should be enough.

What are the solutions?

• We could define another class Negator that would do the job and each
current classes would delegate to it. But it does not really solve our
problem since we will have to duplicate all the message sends to call
Negator instances.

• If we define the method negated in the superclass (Object) we only
need one definition and it will work. Indeed, when we send the mes-
sage negated to an instance of EConstant or EAddition the system
will not find it locally but in the superclass Object. So no need to de-
fine it four times but only one in class Object. This solution is nice
because it reduces the number of similar definitions of the method
negated but it is not good because even if in Pharo we can add meth-
ods to the class Object this is not a good practice. Object is a class
shared by the entire system so we should take care not to add behavior
only making sense for a single application.

• The solution is to introduce a new superclass between our classes and
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Figure 3-5 Introducing a common superclass.

the class Object. It will have the same property than the solution with
Object but without poluting it (see Figure 3-5). This is what we do in
the next section.

3.8 Introducing Expression class

Let us introduce a new class to obtain the situation depicted by Figure 3-5.
We can simply do it by adding a new class:

Object subclass: #EExpression
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'

and changing all the previous definitions to inherit from EExpression in-
stead of Object. For example the class EConstant is then defined as follows.

EExpression subclass: #EConstant
instanceVariableNames: 'value'
classVariableNames: ''
package: 'Expressions'

We can also use for the first transformation the class refactoring Insert super-
class. Refactorings are code transformations that do not change the behavior
of a program. You can find it under the refactorings list when you bring the
menu on the classes. Now it is only useful for the first changes.

Once the classes EConstant, ENegation, EAddition, and EMultiplication
are subclasses of EEXpression, we should focus on the method negated.
Now the method refactoring Push up will really help us.

• Select the method negated in one of the classes

28



3.9 Class creation messages

• Select the refactoring Push up

The system will define the method negated in the superclass (EExpression)
and remove all the negated methods in the classes. Now we obtain the situa-
tion described in Figure 3-5. It is a good moment to run all your tests again.
They should all pass.

Now you could think that we can introduce a new class named Arithmetic-
Expression as a superclass of EAddition and EMultiplication. Indeed this
is something that we could do to factor out common structure and behav-
ior between the two classes. We will do it later because this is basically just a
repetition of what we have done.

3.9 Class creation messages

Until now we always sent the message new to a class followed by a setter
method as shown below.

EConstant new value: 5

We would like to take the opportunity to show that we can define simple
classmethods to improve the class instance creation interface. In this ex-
ample it is simple and the benefits are not that important but we think that
this is a nice example. With this in mind the previous example can now be
written as follows:

EConstant value: 5

Notice the important difference that in the first case the message is sent to
the newly created instance while in the second case it is sent to the class it-
self.

To define a class method is the same as to define an instance method (as we
did until now). The only difference is that using the code browser you should
click on the classSide button to indicate that you are defining a method that
should be executed in response to a message sent to a class itself.

Better instance creation for constants

Define the following method on the class EConstant. Notice the definition
now use EConstant class and not just EConstant to stress that we are
defining the class method.

EConstant class >> value: anInteger
^ self new value: anInteger

Now define a new test to make sure that our method works correctly.

EConstantTest >> testCreationWithClassCreationMessage
self assert: (EConstant value: 5) evaluate equals: 5
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Better instance creation for negations

We do the same for the class ENegation.

ENegation class >> expression: anExpression
... Your code ...

We write of course a new test as follows:

ENegationTest >> testEvaluateWithClassCreationMessage
self assert: (ENegation expression: (EConstant value: 5)) evaluate

equals: -5

Better instance creation for additions

For the addition we add a class method named left:right: taking two ar-
guments

EAddition class >> left: anInteger right: anInteger2
^ self new left: anInteger ; right: anInteger2

Of course, since we are test infested we add a new test.

EEAdditionTest >> testEvaluateWithClassCreationMessage
| ep1 ep2 |
ep1 := EConstant constant5.
ep2 := EConstant constant3.
self assert: (EAddition left: ep1 right: ep2) evaluate equals: 8

Better instance creation for multiplications

We let you do the same for the multiplication.

EMultiplication class >> left: anExp right: anExp2
... Your code ...

And another test to check that everything is ok.

EMultiplicationTest >> testEvaluateWithClassCreationMessage
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EMultiplication new left: ep1; right: ep2) evaluate

equals: 15

Run your tests! They should all pass.

3.10 Introducing examples as class messages

As you saw when writing the tests, it is quite annoying to repeat all the time
the expressions to get a given tree. This is especially the case in the tests
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related to addition and multiplication as the one below:

EEAdditionTest >> testNegated
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EAddition new right: ep1; left: ep2) negated

evaluate equals: -8

One simple solution is to define some class method returning typical in-
stances of their classes. To define a class method remember that you should
click the class side button.

EConstant class >> constant5
^ self new value: 5

EConstant class >> constant3
^ self new value: 3

This way we can define the test as follows:

EEAdditionTest >> testNegated
| ep1 ep2 |
ep1 := EConstant constant5.
ep2 := EConstant constant3.
self assert: (EAddition new right: ep1; left: ep2) negated

evaluate equals: -8

The tools in Pharo support such a practice. If we tag a class method with the
special annotation <sampleInstance> the browser will show a little icon
on the side and when we click on it, it will open an inspector on the new in-
stance.

EConstant class >> constant3
<sampleInstance>
^ self new value: 3

using the same idea we defined the following class methods to return some
examples of our classes.

EAddition class >> fivePlusThree
<sampleInstance>
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
^ self new left: ep1 ; right: ep2

EMultiplication class >> fiveTimesThree
<sampleInstance>
| ep1 ep2 |
ep1 := EConstant constant5.
ep2 := EConstant constant3.
^ EMultiplication new left: ep1 ; right: ep2
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What is nice with such examples is that

• they help documenting the class by providing objects that we can di-
rectly use,

• they support the creation of tests by providing objects that can serve
as input for tests,

• they simplify the writing of tests.

So think to use them.

3.11 Printing

It is quite annoying that we cannot really see an expression when we inspect
it. We would like to get something better than 'aEConstant' and 'anEAd-
dition' when we debug our programs. To display such information the de-
bugger and inspector send to the objects the message printString which by
default just prefix the name of the class with ’an’ or ’a’.

Let us change this situation. For this, we will specialize the method printOn:
aStream. The message printOn: is called on the object when a program or
the system send to the object the message printString. From that perspec-
tive printOn: is a system customisation point that developers can take ad-
vantage to enhance their programming experience.

Note that we do not redefine the method printString because it is more
complex and printString is reused for all the objects in the system. We
just have to implement the part that is specific to a given class. In object-
oriented design jargon, printString is a template method in the sense that
it sets up a context which is shared by other objects and it hosts hook meth-
ods which are program customisation points. printOn: is a hook method.
The term hook comes from the fact that code of subclasses are invoked in the
hook place (see Figure 3-6).

The default definition of the method printOn: as defined on the class Ob-
ject is the following: it grabs the class name and checks if it starts with a
vowel or not and write to the stream the ’a/an class’. This is why by default
we got 'anEConstant' when we printed a constant expression.

Object >> printOn: aStream
"Append to the argument, aStream, a sequence of characters that
identifies the receiver."
| title |
title := self class name.
aStream
nextPutAll: (title first isVowel ifTrue: ['an '] ifFalse: ['a
']);
nextPutAll: title
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    | title |
title := self class name.
aStream

nextPutAll: (title first isVowel ifTrue: ['an '] ifFalse: ['a ']);
nextPutAll: title

printOn: aStream

   aStream nextPutAll: value printString

printOn: aStream

   aStream nextPutAll: '- '.
aStream nextPutAll: expression printString

printOn: aStream

   ...                              

printOn: aStream

   ...                                

Figure 3-6 printOn: and printString a ”hooks and template” in action.

A word about streams

A stream is basically a container for a sequence of objects. Once we get a
stream we can either read from it or write to it. In our case we will write
to the stream. Since the stream passed to printOn: is a stream expecting
characters we will add characters or strings (sequence of characters) to it.
We will use the messages: nextPut: aCharacter and nextPutAll: aS-
tring. They add to the stream the arguments at the next position and fol-
lowing. We will guide you and it is simple. You can find more information
on the chapter about Stream in the book: Pharo by Example available at
http://books.pharo.org

Printing constant

Let us start with a test. Here we check that a constant is printed as its value.

EConstantTest >> testPrinting
self assert: (EConstant value: 5) printString equals: '5'

The implementation is then simple. We just need to put the value converted
as a string to the stream.

EConstant >> printOn: aStream
aStream nextPutAll: value printString
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Printing negation

For a negation we should first put a ’-’ and then recurvisely call the print-
ing process on the negated expression. Remember that sending the message
printString to an expression should return its string representation. At
least until now it will work for constants.

(EConstant value: 6) printString
>>> '6'

Here is a possible definition

ENegation >> printOn: aStream
aStream nextPutAll: '- '
aStream nextPutAll: expression printString

By the way since all the messages are sent to the same object, this method
can be rewritten as:

ENegation >> printOn: aStream
aStream
nextPutAll: '- ';
nextPutAll: expression printString

We can also define it as follows:

ENegation >> printOn: aStream
aStream nextPutAll: '- '.
expression printOn: aStream

The difference between the first solution and the alternate implementation
is the following: In the solution using printString, the system creates two
streams: one for each invocation of the message printString. One for print-
ing the expression and one for printing the negation. Once the first stream
is used the message printString converts the stream contents into a string
and this new string is put inside the second stream which at the end is con-
verted again as a string. So the first solution is not really efficient. With the
second solution, only one stream is created and each of the method just
put the needed string elements inside. At the end of the process, the single
printStringmessage converts it into a string.

Printing addition

Now let us write yet another test for addition printing.

EAdditionTest >> testPrinting
self assert: (EAddition fivePlusThree) printString equals: '( 5 +

3 )'.
self assert: (EAddition fivePlusThree) negated printString equals:

'- ( 5 + 3 )'
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Printing an addition is: put an open parenthesis, print the left expression,
put ’ + ’, print the right expression and put a closing parenthese in the stream.

EAddition >> printOn: aStream
... Your code ...

Printing multiplication

And now we do the same for multiplication.

EMultiplicationTest >> testPrinting
self assert: (EMultiplication fiveTimesThree) negated printString

equals: '- ( 5 * 3 )'

EMultiplication >> printOn: aStream
... Your code ...

3.12 Revisiting negated message for Negation

Now we can go back on negating an expression. Our implementation is not
nice even if we can negate any expression and get the correct value. If you
look at it carefully negating a negation could be better. Printing a negated
negation illustrates well the problem: we get two minuses instead of none.

(EConstant value: 11) negated
>> '- 11'

(EConstant value: 11) negated negated
>> '- - 11'

A solution could be to change the printOn: definition and to check if the ex-
pression that is negated is a negation and in such case to not emit the minus.
Let us say it now, this solution is not nice because we do not want to write
code that depends on explicitly checking if an object is of a given class. Re-
member we want to send message and let the object do some actions.

A good solution is to specialize the message negated so that when it is sent
to a negation it does not create a new negation that points to the receiver but
instead returns the expression itself, otherwise the method implemented in
EExpression will be executed. This way the trees created by a negatedmes-
sage can never have negated negation but the arithmetic values obtained are
correct. Let us implement this solution, we just need to implement a differ-
ent version of the method negated for ENegation.

Let us write a test! Since evaluating a single expression or a double negated
one gives the same results, we need to define a structural test. This is what
we do with the expression exp negated class = ENegation below.
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NegationTest >> testNegatedStructureIsCorrect
| exp |
exp := EConstant value: 11.
self assert: exp negated class = ENegation.
self assert: exp negated negated equals: exp.

Now you should be able to implement the negatedmessage on ENegation.

ENegation >> negated
... Your code ...

Understanding method override

When we send a message to an object, the system looks for the correspond-
ing method in the class of the receiver then if it is not defined there, the
lookup continues in the superclass of the previous class.

By adding a method in the class ENegation, we created the situation shown
in Figure 3-7. We said that the message negated is overridden in ENegation
because for instances of ENegation it hides the method defined in the super-
class EExpression.

It works the following:

• When we send the message negated to a constant, the message is not
found in the class EConstant and then it is looked up in the class EEx-
pression and it is found there and applied to the receiver (the in-
stance of EConstant).

• When we send the message negated to a negation, the message is
found in the class ENegation and executed on the negation expression.

3.13 Introducing BinaryExpression class

Now we will take a moment to improve our first design. We will factor out
the behavior of EAddition and EMultiplication.

EExpression subclass: #EBinaryExpression
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'

EBinaryExpression subclass: #EAddition
instanceVariableNames: 'left right'
classVariableNames: ''
package: 'Expressions'

EBinaryExpression subclass: #EMultiplication
instanceVariableNames: 'left right'
classVariableNames: ''
package: 'Expressions'
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Figure 3-7 The message negated is overridden in the class ENegation.

Now we can use again a refactoring to pull up the instance variables left
and right, as well as the methods left: and right:.

Select the class EMuplication, bring the menu and select in the Refactoring
menu the instance variables refactoring Push Up. Then select the instance
variables.

Now you should get the following class definitions, where the instance vari-
ables are defined in the new class and removed from the two subclasses.

EExpression subclass: #EBinaryExpression
instanceVariableNames: 'left right'
classVariableNames: ''
package: 'Expressions'

EBinaryExpression subclass: #EAddition
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'

EBinaryExpression subclass: #EMultiplication
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions'

We should get a situation similar to the one of Figure 3-8. All your tests should
still pass.

Now we can move the same way the methods. Select the method left: and
apply the refactoring Pull Up Method. Do the same for the method right:.
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Figure 3-8 Factoring instance variables.

Creating a template and hook method

Now we can look at the methods printOn: of additions and multiplications.
They are really similar: Just the operator is changing. Now we cannot simply
copy one of the definitions because it will not work for the other. But what
we can do is to apply the same design point that implemented for printString
and printOn:: we can create a template and hooks that will be specialized in
the subclasses.

We will use the method printOn: as a template with a hook redefined in
each subclass.

Let define the method printOn: in EBinaryExpression and remove the
other ones from the two classes EAddition and EMultiplication.

EBinaryExpression >> printOn: aStream
aStream nextPutAll: '( '.
left printOn: aStream.
aStream nextPutAll: ' + '.
right printOn: aStream.
aStream nextPutAll: ' )'

Then you can do it manually or use the Extract Method Refactoring: This refac-
toring creates a new method from a part of an existing method and sends a
message to the new created method: select the ’ + ’ inside the method pane
and bring the menu and select the Extract Method refactoring, and when
prompt give the name operatorString.

Here is the result you should get:

38



3.14 What did we learn

Figure 3-9 Factoring instance variables and behavior.

EBinaryExpression >> printOn: aStream
aStream nextPutAll: '( '.
left printOn: aStream.
aStream nextPutAll: self operatorString.
right printOn: aStream.
aStream nextPutAll: ' )'

EBinaryExpression >> operatorString
^ ' + '

Now we can just redefine this method in the EMultiplication class to re-
turn the adequate string.

EMultiplication >> operatorString
^ ' * '

3.14 What did we learn

The introduction of the class EBinaryExpression is a rich experience in
terms of lessons that we can learn.

• Refactorings are more than simple code transformations. Usually refac-
torings pay attention that their application does not change the behav-
ior of programs. As we saw refactorings are powerful operations that
really help doing complex operations in a few action.

• We saw that the introduction of a new superclass and moving instance
variables or method to a superclass does not change the structure or
behavior of the subclasses. This is because (1) for the state, the struc-
ture of an instance is based on the state of its class and all its super-
classes, (2) the lookup starts in the class of the receiver and look in su-
perclasses.
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• While the method printOn: is by itself a hook for the method printString,
it can also play the role of a template method. The method opera-
torString reuses the context created by the printOn: method which
acts as a template method. In fact each time we do a self send we cre-
ate a hook method that subclasses can specialize.

3.15 About hook methods

When we introduced EBinaryExpression we defined the method opera-
torString as follows:

EBinaryExpression >> operatorString
^ ' + '

EMultiplication >> operatorString
^ ' * '

And you may wonder if it was worth to create a new method in the super-
class and so that such one subclass redefines it.

Creating hooks is always good

First creating a hook is also a good idea. Because you rarely know how your
system will be extended in the future. On this little example, we suggest you
to add raising to power, division and this can be done with one class and two
methods per new operator.

Avoid not documenting hooks

Second we could have just defined one method operatorString in each sub-
class and no method in the superclass EBinaryExpression. It would have
worked because EBinaryExpression is not meant to have direct instances.
Therefore there is no risk that a printOn: message is sent to one of its in-
stance and cause a error because no method operatorString is found.

The code would have looked like the following:

EAddition >> operatorString
^ ' + '

EMultiplication >> operatorString
^ ' * '

Now such design is not really good because as a potential extender of the
code, developers will have to guess reading the subclass definitions that they
should also define a method operatorString. A much better solution in that
case is to define what we can an abstract method in the superclass as follows:

EBinaryExpression >> operatorString
^ self subclassResponsibility
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Figure 3-10 Better design: Declaring an abstract method as a way to document a

hook method.

Using the message subclassResponsibility declares that a method is ab-
stract and that subclasses should redefine it explicitly. Using such an ap-
proach we get the final situation represented in Figure 3-10.

In the solution presented before (section 3.13) we decided to go for the sim-
plest solution and it was to use one of the default value (’ + ’) as a default defi-
nition for the hook in the superclass EExpression. It was not a good solution
and we did it on purpose to be able to have this discussion. It was not a good
solution since it was using a specific subclass. It is better to define a default
value for a hook in the superclass when this default value makes sense in the
class itself.

Note that we could also define evaluate as an abstract method in EExpres-
sion to indicate clearly that each subclass should define an evaluate.

3.16 Variables

Up until now our mathematical expressions are rather limited. We only ma-
nipulate constant-based expressions. What we would like is to be able to ma-
nipulate variables too. Here is a simple test to show what we mean: we de-
fine a variable named 'x' and then we can later specify that 'x' should take
a given value.

Let us create a new test class named EVariableTest and define a first test
testValueOfx.

EVariableTest >> testValueOfx
self assert: ((EVariable new id: #x) evaluateWith: {#x -> 10}

asDictionary) equals: 10.
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Some technical points

Let us explain a bit what we are doing with the expression {#x -> 10} as-
Dictionary. We should be able to specify that a given variable name is as-
sociated with a given value. For this we create a dictionary: a dictionary is a
data structure for storing keys and their associated value. Here a key is the
variable and the value its associated value. Let us present some details first.

Dictionaries

A dictionary is a data structure containing pairs (key value) and we can ac-
cess the value of a given key. It can use any object as key and any object as
values. Here we simply use a symbol #x since symbols are unique within the
system and as such we are sure that we cannot have two keys looking the
same but having different values.

| d |
d := Dictionary new
at: #x put: 33;
at: #y put: 52;
at: #z put: 98.

d at: y
>>> 52

The previous dictionary can be easily expressed more compactly using {#x
-> 33 . #y -> 52 . #z -> 98} asDictionary.

{#x -> 33 . #y -> 52 . #z -> 98} asDictionary at: #y
>>> 52

Dynamic Arrays

The expression { } creates a dynamic array. Dynamic arrays executes their
expressions and store the resulting values.

{2 + 3 . 6 - 2 . 7-2 }
>>> ==#(5 4 5)==

Pairs

The expression #x -> 10 creates a pair with a key and a value.

| p |
p := #x -> 10.
p key
>>> #x
p value
>>> 10
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Back to variable expressions

If we go a step further, we want to be able to build more complex expressions
where instead of having constants we can manipulate variables. This way we
will be able to build more advanced behavior such as expression derivations.

EExpression subclass: #EVariable
instanceVariableNames: 'id'
classVariableNames: ''
package: 'Expressions'

EVariable >> id: aSymbol
id := aSymbol

EVariable >> printOn: aStream
aStream nextPutAll: id asString

What we see is that we need to be able to pass bindings (a binding is a pair
key, value) when evaluating a variable. The value of a variable is the value of
the binding whose key is the name of the variable.

EVariable >> evaluateWith: aBindingDictionary
^ aBindingDictionary at: id

Your tests should all pass at this point.

For more complex expressions (the ones that interest us) here are two tests.

EVariableTest >> testValueOfxInNegation
self assert: ((EVariable new id: #x) negated
evaluateWith: {#x -> 10} asDictionary) equals: -10

What the second test shows is that we can have an expression and given a
different set of bindings the value of the expression will differ.

EVariableTest >> testEvaluateXplusY
| ep1 ep2 add |
ep1 := EVariable new id: #x.
ep2 := EVariable new id: #y.
add := EAddition left: ep1 right: ep2.

self assert: (add evaluateWith: { #x -> 10 . #y -> 2 }
asDictionary) equals: 12.

self assert: (add evaluateWith: { #x -> 10 . #y -> 12 }
asDictionary) equals: 22

Non working approaches

A non working solution would be to add the following method to EExpres-
sion
EEXpression >> evaluateWith: aDictionary

^ self evaluate

43



A little expression interpreter

However it does not work for at least the following reasons:

• It does not use its argument. It only works for trees composed out ex-
clusively of constant.

• When we send a message evaluateWith: to an addition, this message
is then turned into an evaluatemessage sent to its subexpression
and such subexpression do not get an evaluateWith: message but
an evaluate.

Alternatively we could add the binding to the variable itself and only provide
an evaluatemessage as follows:

(EVariable new id: #x) bindings: { #x -> 10 . #y -> 2 } asDictionary

But it fully defeats the purpose of what a variable is. We should be able to
give different values to a variable embedded inside a complex expression.

The solution: adding evaluateWith:

We should transform all the implementations and message sends from eval-
uate to evaluateWith: Since this is a tedious task we will use the method
refactoring Add Parameter. Since a refactoring applies itself on the complete
system, we should be a bit cautious because other Pharo classes implement
methods named evaluate and we do not want to impact them.

So here are the steps that we should follow.

• Select the Expression package

• Choose Browse Scoped (it brings a browser with only your package)

• Using this browser, select a method evaluate

• Select the Add Parameter refactoring: type evaluateWith: as method
selector and proceed when prompted for a default value Dictionary
new. This last expression is needed because the engine will rewrite all
the messages evaluate but evaluateWith: Dictionary new.

• The system is performing many changes. Check that they only touch
your classes and accept them all.

A test like the following one:

EConstant >> testEvaluate
self assert: (EConstant constant5) evaluate equals: 5

is transformed as follows:

EConstant >> testEvaluate
self assert: ((EConstant constant5) evaluateWith: Dictionary new)

equals: 5
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Figure 3-11 Variables and their evaluation.

Your tests should nearly all pass except the ones on variables. Why do they
fail? Because the refactoring transformed message sends evaluate but eval-
uateWith: Dictionary new and this even in methods evaluate.

EAddition >> evaluateWith: anObject
^ (right evaluateWith: Dictionary new) + (left evaluateWith:

Dictionary new)

This method should be transformed as follows: We should pass the binding
to the argument of the evaluateWith: recursive calls.

EAddition >> evaluateWith: anObject
^ (right evaluateWith: anObject) + (left evaluateWith: anObject)

Do the same for the multiplications.

ENegation >> evaluateWith: anObject
^ (expression evaluateWith: anObject) negated

Figure 3-11 shows the final situation.

3.17 Conclusion

This little exercise was full of learning potential. Here is a little summary of
what we explained and we hope you understood.

• A message specifies an intent while a method is a named list of execu-
tion. We often have one message and a list of methods with the same
name.

• Sending a message is finding the method corresponding to the mes-
sage selector: this selection is based on the class of the object receiving
the message. When we look for a method we start in the class of the
receiver and go up the inheritance link.
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• Tests are a really nice way to specify what we want to achieve and then
to verify after each change that we did not break something. Tests do
not prevent bugs but they help us building confidence in the changes
we do by identifying fast errors.

• Refactorings are more than simple code transformations. Usually refac-
torings pay attention their application does not change the behavior of
program. As we saw refactorings are powerful operations that really
help doing complex operation in a few action.

• We saw that the introduction of a new superclass and moving instance
variables or method to a superclass does not change the structure or
behavior of the subclasses. This is because (1) for the state, the struc-
ture of an instance is based on the state of its class and all its super-
classes, (2) the lookup starts in the class of the receiver and look in su-
perclasses.

• Each time we send a message, we create a potential place (a hook) for
subclasses to get their code definition used in place of the superclass’s
one.
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CHA P T E R4
Revisiting the Die DSL: a Case for

Double Dispatch

In Chapter 2, using the Die DSL we could only sum die handles together as in
2 D20 + 1 D4. In this new chapter we extend the Die DSL implementation
to support the sum of a die with another one or with a die handle (and vice
versa).

One of the challenges is that the message + should be able to manage differ-
ent types of receivers and arguments. The message will have either a die or
a die handle as receiver and arguments, so we should manage the following
possibilities: die + die handle, die + die, die handle + die handle, and die han-
dle + die. While this extension at first may look trivial, we will take it as a
way to explore double dispatch.

Double dispatch is a technic that avoids hardcoding type checks and also is
able to define incrementally the behavior handling all the possible cases.
Indeed double dispatch does not use any explicit conditionals and is the basis
of more advanced Design Patterns such as the Visitor.

Double dispatch is based on the Don’t ask, tell object-oriented principle ap-
plied twice. In the case of the +message, there is a first dispatch to select the
adequate method. Then a second dispatch happens when in this method a
new message is sent to the argument of the +message telling this argument
the way the current receiver should be summed. This description is clearly
too abstract so we will go over a full example to explain it.
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4.1 A little reminder

In a previous chapter you implemented a small DSL to add dice and manage
die handles. With this DSL, you could create dice and add them to a die han-
dle. Later on you could sum two different die handles and obtain a new one
following the ”Dungeons and Dragons” ruling book.

The following tests show these two behaviors: First the dice handle creation
and second the sum of die handles.

DieHandleTest >> testCreationAdding
| handle |
handle := DieHandle new
addDie: (Die faces: 6);
addDie: (Die faces: 10);
yourself.

self assert: handle diceNumber = 2

DieHandleTest >> testSummingWithNiceAPI
| handle |
handle := 2 D20 + 3 D10.
self assert: handle diceNumber = 5

The implementation of + was simple since we could only sum die handles
together. The method + creates a new handle, adds the dice of the receiver
and of the argument to the newly created handle and returns it.

DieHandle >> + aDieHandle
"Returns a new handle that represents the addition of the receiver

and the argument."
| handle |
handle := self class new.
self dice do: [ :each | handle addDie: each ].
aDieHandle dice do: [ :each | handle addDie: each ].
^ handle

4.2 New requirements

The first requirement we have is that we want to be able to add two dice to-
gether and of course we should obtain a die handle as illustrated by the fol-
lowing test.

We want to add two dice together:

(Die withFaces: 6) + (Die withFaces: 6)

The second requirement is that we want to be able to mix and add a die to a
die handle or vice versa as illustrated below:

2 D20 + (Die withFaces: 6)

(Die withFaces: 6) + 2 D20
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4.3 Turning requirements as tests

Since we are test-infested, we turn such expected behavior into automati-
cally testable expected behavior: we write them as tests.

We want to add two dice together:

DieTest >> testAddTwoDice
| hd |
hd := (Die withFaces: 6) + (Die withFaces: 6).
self assert: hd dice size = 2.

The second requirement is that we want to be able to mix and add a die to a
die handle or vice versa as illustrated by the two following tests:

DieTest >> testAddingADieAndHandle
| hd |
hd := (Die faces: 6)
+
(DieHandle new

addDie: 6;
yourself).

self assert: hd dice size equals: 2

DieHandleTest >> testAddingAnHandleWithADie
| handle res |
handle := DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself.

res := handle + (Die withFaces: 20).
self assert: res diceNumber equals: 3

Now we are ready to implement such requirements.

4.4 The first implementation

The first solution is to explicitly type check the argument to decide what to
do.

DieHandle >> + aDieOrADieHandle

^ (aDieOrADieHandle class = DieHandle)
ifTrue: [ | handle |

handle := self class new.
self dice do: [ :each | handle addDie: each ].
aDieOrADieHandle dice do: [ :each | handle addDie: each ].
handle ]

ifFalse: [ | handle |
handle := self class new.
self dice do: [ :each | handle addDie: each ].
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handle addDie: aDieOrADieHandle.
handle ]

Die >> + aDieOrADieHandle
| selfAsDieHandle |
selfAsDieHandle := DieHandle new addDie: self.
^ selfAsDieHandle + aDieOrADieHandle

The problem of this solution is that it does not scale. As soon as we will have
other kinds of arguments we will have to check more and more cases. You
may think that this is just a spurious argument. But when you have a model
that has around 35 different kinds of nodes as in Pillar, the document pro-
cessing system used to produce this book, this kind of testing logic becomes a
nightmare to maintain and extend.

4.5 Sketching double dispatch

We can do better. The logic of the solution we have in mind is quite simple
but it may be destabilizing at first. Let us sketch it.

• When we execute a method we know its receiver and the kind of re-
ceiver we have: it can be a die or a die handle. The method dispatch
will select the correct method at runtime. Imagine that we have two
+methods for each class Die and DieHandle. When a given method +
will be executed, we will know the exact kind of the receiver. For ex-
ample, when the method + defined on the class Die will be executed,
we will know that the receiver is a die (instance of this class). Simi-
larly when the method + defined on the class DieHandle will be exe-
cuted, we will know that the message receiver is a die handle. This is
the power of method dispatch: it selects the right method based on the
message receiver.

• Then the idea is to tell the argument that we want to sum it with that
given receiver. It means that each +method on a different class has
just to send a different message based on the fact that the receiver was
a die or a die handle to its argument and let the method dispatch to
act once again. After this second dispatch, the correct method will be
selected.

But let us makes this really concrete.

4.6 Adding two dice

Let us step back and start by supporting the sum of two dice. This is rather
simple we create and return a die handle to which we add the receiver and
the argument.
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4.7 Adding a die and a die or a handle

Die >> + aDie

^ DieHandle new
addDie: self;
addDie: aDie; yourself

Our first test should pass testAddTwoDice. But this solution does not sup-
port the fact that the argument can be either a die or a die handle.

4.7 Adding a die and a die or a handle

Now we want to handle the fact that we can add a die or a die handle to the
receiver as illustrated by the test testAddingADieAndHandle.

DieTest >> testAddingADieAndHandle
| hd |
hd := (Die withFaces: 6)
+
(DieHandle new

addDie: 6;
yourself).

self assert: hd dice size equals: 2

The previous method + is definitively what we want to do when we have two
dice. So let us rename it as sumWithDie: so that we can invoke it later.

Die >> sumWithDie: aDie

^ DieHandle new
addDie: self;
addDie: aDie; yourself

Now what we can do is to implement + as follows. Notice that we named the
argument aDicable because we want to convey that the argument can be
either a die or a die handle.

Die >> + aDicable
^ aDicable sumWithDie: self

We tell the argument aDicable (which can be a die or a die handle) that
we want to add a die to it (we know that self in this method is a Die be-
cause this is the method of this class that is executed). When rewritting the +
method, we switched self and aDicable to send the new message sumWith-
Die: to the argument (aDicable). This switch kicks a new method dispatch
and we finally have a double dispatch (one of + and one for sumWithDie:).

In our two tests testAddTwoDice and testAddingADieAndHandle we know
that the receiver is a die because the method is defined in the class of Die. At
this point the test testAddTwoDice should pass because we are adding two
dice as shown in Figure 4-1.

53



Revisiting the Die DSL: a Case for Double Dispatch

+ aDicable
sumWithDie: aDie

Die
sumWithDie: aDie

DieHandle

+ aDicable
   ^ aDicable sumWithDie: self

: aDie(6) : aDie(10) +

sumWithDie: aDie
      
     ^ DieHandle new 

addDie: self; 
addDie: aDie;

                yourself

sumWithDie: aDie

   | handle |
   handle := self class new.
   self dice do: [ :each | handle addDie: each ].
   handle addDie: aDie.
   ^ handle

Message 1

Message 2

Figure 4-1 Summing two dice and be prepared for more.

4.8 When the argument is a die handle

Now we still have to find a solution for the case where the argument to the
message + is a die handle. In fact, the argument will receive the message
sumWithDie:. Therefore if we define a method with that name in the class
DieHandle it will be executed when the argument of message + is a die han-
dle.

We know how to sum a die with a die handle: we simply create a new die
handle, add all the die of the previous die handle to the new one and add the
argument too.

So we just have to define the method sumWithDie: to the class DieHandle
implementing this logic.

DieHandle >> sumWithDie: aDie
| handle |
handle := self class new.
self dice do: [ :each | handle addDie: each ].
handle addDie: aDie.
^ handle

Now we are able to sum a die with a die handle as shown in Figure 4-2. The
test testAddingADieAndHandle should now pass.

4.9 Stepping back

You may ask why this is working. We defined two methods sumWithDie:
one on class Die and one on the class DieHandle and when the method + on
class Die will send the message sumWithDie: to either a die or a die handle,
the message dispatch will select the correct method sumWithDie: for us as
shown in Figure 4-3.
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4.10 Now a DieHandle as receiver

+ aDicable
sumWithDie: aDie

Die
sumWithDie: aDie

DieHandle

+ aDicable
   ^ aDicable sumWithDie: self

: aDie(6) : 2 D20 +

sumWithDie: aDie
      
     ^ DieHandle new 

addDie: self; 
addDie: aDie;

                yourself

sumWithDie: aDie

   | handle |
   handle := self class new.
   self dice do: [ :each | handle addDie: each ].
   handle addDie: aDie.
   ^ handle

Message A

Message B

Figure 4-2 Summing a die and a dicable.

+ aDicable
sumWithDie: aDie

Die
sumWithDie: aDie

DieHandle

+ aDicable
   ^ aDicable sumWithDie: self

: aDie(6) : aDie(10) +

: aDie(6) : 2 D20 +

sumWithDie: aDie
      
     ^ DieHandle new 

addDie: self; 
addDie: aDie;

                yourself

sumWithDie: aDie

   | handle |
   handle := self class new.
   self dice do: [ :each | handle addDie: each ].
   handle addDie: aDie.
   ^ handle

Message 1

Message 2

Message A

Message B

Figure 4-3 Summing a die and a dicable

4.10 Now a DieHandle as receiver

Our solution does not handle the case where the receiver is a die handle. This
is what we will address now. Now we are ready to apply the same pattern
than before but for the case where the receiver is a die handle. We will just
say to the argument of the message + that we want to sum it with a die handle
this time.

We know how to sum two die handles, it is the code we already defined in the
previous chapter. We rename the +method as sumWithHandle: to be able to
invoke it while redefining the method +. Basically this method creates a new
handle, then adds the dice of the receiver and the argument to it and returns
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+ aDicable
sumWithDie: aDie
sumWithDieHandle: 
aDieHandle

Die
+ aDicable
sumWithDie: aDie
sumWithDieHandle: 
aDieHandle

DieHandle

+ aDicable
   ^ aDicable sumWithDie: self

sumWithDie: aDie
      
     ^ DieHandle new 

addDie: self; 
addDie: aDie;

                yourself

sumWithDie: aDie

   | handle |
   handle := self class new.
   self dice do: [ :each | handle addDie: each ].
   handle addDie: aDie.
   ^ handle

+ aDicable
   ^ aDicable sumWithHandle: self

sumWithHandle: aDieHandle

        | hd |
hd := DieHandle new.
aDieHandle dice 

              do: [ :each | hd addDie: each ].
hd addDie: self
^ hd

sumWithHandle: aDieHandle

    | hd |
    hd := self class new.
    self dice do: [ :each | hd addDie: each ].
    aDieHandle dice do: [ :each | hd addDie: each ].
   ^ hd

Figure 4-4 Handling all the cases: summing a die/die handle with a die/die han-

dle .

the new handle.

DieHandle >> sumWithHandle: aDieHandle
| handle |
handle := self class new.
self dice do: [ :each | handle addDie: each ].
aDieHandle dice do: [ :each | handle addDie: each ].
^ handle

Now we can define a more powerful version of + by simply sending the mes-
sage sumWithHandle: to the argument (aDicable) of the message +. Again
we send a message to the argument (aDicable) to kick in a new message
lookup and dispatch for the message sumWithHandle:.

DieHandle >> + aDicable
^ aDicable sumWithHandle: self

We said that this is version of + is more powerful than the one of sumWith-
Handle: because once we will implement the missing method sumWithHan-
dle: on the class Die, the +method will be able to sum a die handle with a
die or two die handles.

Up until here we did not change much and all the tests adding two die han-
dles should continue to run.
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4.11 sumWithHandle: on Die class

4.11 sumWithHandle: on Die class

To get the possibility to sum a die handle with a single die, we just have to
define a new method sumWithHandle: on the Die class. The logic is similar
to the one adding one die to one die handle

Die >> sumWithHandle: aDieHandle
| handle |
handle := DieHandle new.
aDieHandle dice do: [ :each | handle addDie: each ].
handle addDie: self.
^ handle

Note that we could have sent the message aDieHandle sumWithDie: self
as body of sumWithHandle: definition.

Figure 4-4 shows the full set up. We suggest to follow the execution of mes-
sages for the different cases to understand that just sending a new message
to the argument and relying on method dispatch produces modular condi-
tional execution. Now the following test should pass and we are done.

DieHandleTest >> testAddingAnHandleWithADie
| handle res |
handle := DieHandle new
addDie: (Die faces: 6);
addDie: (Die faces: 10);
yourself.

res := handle + (Die withFaces: 20).
self assert: res diceNumber equals: 3

4.12 Conclusion

When we step back, we see that we applied the Don’t ask, tell principle twice:
First the message + selects the corresponding methods in either Die or DieHan-
dle classes. Then a more specific message is sent to the argument and the
dispatch kicks in again selecting the correct method for the messages sumWith-
Die: or sumWithHandle:.

In this chapter we presented double dispatch. The idea is to use method
dispatch two times. While the resulting design is simple, it is not trivial to
deeply understand and it requires time to digest double dispatch. At its core,
double dispatch relies on the fact that sending a message to an object selects
the correct method – and sending another message to the message argument
will select a new method. Therefore we have effectively selected a method
according to the receiver and the argument of a message.

Double dispatch is the basis for the Visitor Design pattern that is effective
when dealing with complex data structure such as documents, compilers. In
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such context it is not rare to have more than 30 or 40 different nodes that
should be manipulated together to produce specific behavior.
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CHA P T E R5
Stone Paper Scissors

As we already saw sending a message is in fact making a choice. Indeed when
we send a message, the method associated with the method in the class hier-
archy of the receiver will be selected and executed.

Now we often have cases where we would like to select a method based on
the receiver of the message and one argument. Again there is a simple solu-
tion named double dispatch that consists in sending another message to the
argument hence making two choices one after the other.

This technique while simple can be challenging to grasp because program-
mers are so used to think that choices are made using explicit conditionals.
In this chapter we will show an example of double dispatch via the paper
stone scissors game.

5.1 Starting with a couple of tests

TestCase subclass: #StonePaperScissorsTest
instanceVariableNames: ''
classVariableNames: ''
package: 'StonePaperScissors'

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new play: Paper new) = #paper

StonePaperScissorsTest >> testScissorIsWinning
self assert: (Scissors new play: Paper new) = #scissors

StonePaperScissorsTest >> testStoneAgainsStone
self assert: (Stone new play: Stone new) = #draw
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5.2 Creating the classes

Object subclass: #Paper
instanceVariableNames: ''
classVariableNames: ''
package: 'StonePaperScissors'

Object subclass: #Scissors
instanceVariableNames: ''
classVariableNames: ''
package: 'StonePaperScissors'

Object subclass: #Stone
instanceVariableNames: ''
classVariableNames: ''
package: 'StonePaperScissors'

They could share a common superclass

5.3 With messages

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new play: Paper new) = #paper

Stone >> play: anotherTool
^ anotherTool playAgainstStone: self

Paper >> playAgainstStone: aStone
^ #paper

The test should pass now.

playAgainstStone:

Scissors >> playAgainstStone: aStone
^ #stone

Stone >> playAgainstStone: aStone
^ #draw

Scissors now

StonePaperScissorsTest >> testScissorIsWinning
self assert: (Scissors new play: Paper new) = #scissors

Scissors >> play: anotherTool
^ anotherTool playAgainstScissors: self

Scissors >> playAgainstScissors: aScissors
^ #draw
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5.4 A Better API

play: elt
playAgainstScissors: elt
playAgainStone: elt
playAgainPaper: elt

Stone

play: elt
playAgainstScissors: elt
playAgainStone: elt
playAgainPaper: elt

Element

play: elt
playAgainstScissors: elt
playAgainStone: elt
playAgainPaper: elt

Paper
play: elt
playAgainstScissors: elt
playAgainStone: elt
playAgainPaper: elt

Paper

Figure 5-1 An overview of a possible solution using double dispatch.

Paper >> playAgainstScissors: aScissors
^ #scissors

Stone >> playAgainstScissors: aScissors
^ #stone

Paper now

Paper >> play: anotherTool
^ anotherTool playAgainstPaper: self

Scissors >> playAgainstPaper: aPaper
^ #scissors

Paper >> playAgainstPaper: aPaper
^ #draw

Stone >> playAgainstPaper: aPaper
^ #paper

The methods could return a value such as 1 when the receiver wins, 0 when
there is draw and -1 when the receiver loses. Add new tests and check this
version.

5.4 A Better API

Both previous approaches either returning a symbol or a number are work-
ing but we can ask ourselves how the client will use this code.

Most of the time he will have to check again the returned result to perform
some actions.

(aGameElement play: anotherGameElement) = 1
ifTrue: [ do something for aGameElement]
(aGameElement play: anotherGameElement) = -1

61



Stone Paper Scissors

So all in all, while this was a good exercise to help you understand that we do
not need to have explicit conditionals and that we can use message passing
instead, it felt a bit disappointing.

But there is a much better solution using double dispatch. The idea is to pass
the action to be executed to the object and that the object decide what to do.

Paper new competeWith: Paper new
onDraw: [ Game incrementDraw ]
onReceiverWin: [ ]
onReceiverLose: [ ]

Paper new competeWith: Stone new
onDraw: [ ]
onReceiverWin: [ Game incrementPaper ]
onReceiverLose: [ ]

Propose an implementation.

5.5 A possible implementation

Paper >> play: anElement onDraw: aDrawBlock onWin: aWinBlock onLose:
aLoseBlock

^ anElement
playAgainstPaper: self
onDraw: aDrawBlock
onReceiverWin: aWinBlock
onReceiverLose: aLoseBlock

Paper >> playAgainstPaper: anElement onDraw: aDrawBlock
onReceiverWin: aWinBlock onReceiverLose: aLoseBlock

^ aDrawBlock value

5.6 Conclusion

Sending a message is making a choice amongst several methods. Depending
on the receiver of a message the correct method will be selected. Therefore
sending a message is making a choice and the different classes represent the
possible alternatives.

Now this example illustrates this point but going even further. Here we wanted
to be able to make a choice depending on both an object and the argument of
the message. The solution shows that it is enough to send back another mes-
sage to the argument to perform a second selection that because of the first
message now realizes a choice based on a message receiver and its argument.
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Part III

Playing with Visitors





5.6 Conclusion

Here I should take the slides flow from the design mooc lectures.
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CHA P T E R6
Understanding Visitors

In a previous chapter, you built a simple mathematical expression inter-
preter. You were able to build an expression such as (3 + 4) * 5 and then
ask the interpreter to compute its value. In this chapter we will introduce
Visitors. A Visitor is a way to represent an action on a structure (often a
tree). The action can be complex and need its own specific state. What is nice
about a visitor is that it embeds its own state and behavior which would be
otherwise mixed with the ones of the structure. In addition we can have mul-
tiple visitors visiting the same structure without mixing their concerns.

You will build two simple visitors that evaluate and print an expression.

Let us start with the previous situation.

value:
printOn:
evaluateWith:

value
Constant

operatorString
evaluateWith:

Addition

expression:
printOn:
evaluateWith:

expression
Negation

operatorString
evaluateWith:

Multiplication

negated

Expression

left:
right:
printOn:
operatorString

left 
right

Binary
Expression

printOn:
evaluateWith:

id
Variable

Figure 6-1 A simple hierarchy of expressions.
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6.1 Existing situation: expression trees

Figure 6-1 shows the simple hierarchy of expressions that we developed in a
previous chapter. We basically have the different possible parts of an expres-
sion (variable, addition, value...) represented by their own node. Each node
holds some state and in addition specifies how it computes its value. This is
often done by a recursive call sending message evaluateWith: to subex-
pressions.

Note that expression trees are similar to the ones that are used to manipu-
late programs. For example, compilers and code refactorings as offered in
Pharo and many modern IDEs are doing such manipulation with trees repre-
senting code (often called Abstract Syntax Trees).

In the rest of this chapter we will introduce step by step a visitor and we will
incrementally replace the recursive calls by calls to the a visitor. Doing so we
will make sure that all the

6.2 Visitor’s key principle

The previous solution is using a simple recursive process to compute the
value of an expression. Now we will define the evaluation using a visitor.

The key principle about visitor is the following one: a visitor declares to a
structure that it wants to visit it (i.e., apply a treatment to it) and then the
structure replies by indicating to the visitor how this visitor should visit
it. This interaction is a double dispatch: it means that given a visitor and a
structure, the correct method will be executed without having to explicitly
test the class of the structure.

You do not have to deeply understanding this now. This interaction will
emerge from the exercise.

Here is a typical illustration: The class Constant defines the method ac-
cept: to say to the visitor that it should visit the expression using the mes-
sage visitConstant:.

EConstant >> accept: aVisitor
^ aVisitor visitConstant: self

The visitor defines the specific action that he will perform:

EEvaluatorVisitor >> visitConstant: aConstant
^ aConstant value

Here is how the interaction starts: We ask the structure to accept a visitor.

| constant |
constant := EConstant value: 5.
constant accept: EEvaluatorVisitor new.
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6.3 Introducing an Evaluating Visitor

 

Object

value:
accept:

value
Constant

accept:
 
Addition

 
 

…

accept:
 
Multiplication

negated
accept: aVisitor

Expression

visitConstant: aConstant
visitNegation: aNegation
visitAddition: anAddition
…

Visitor

left:
right:
printOn:
operatorString

left 
right

Binary
Expression

accept: aVisitor
  ^ aVisitor visitConstant: self 

visitConstant: aConstant          
    ^ aConstant value 

Figure 6-2 Visitor principle.

Let us step by step implement an evaluating visitor.

6.3 Introducing an Evaluating Visitor

We start by adding an abstract method accept: in the Expression class to
document that any expression can welcome a visitor and tells it how to react.

Here is the definition of the the abstract method accept::

EExpression >> accept: aVisitor

self subclassResponsibility

Now we take a concrete node expression: we start with constant expressions.
When the visitor visit a constant, the constant tells the visitor that it should
visit the constant as a constant. This is literaly what the following method is
doing.

EConstant >> accept: aVisitor

^ aVisitor visitConstant: self

Defining the visitor class

Now it is time to define class representing the evaluating visitor.

69
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Object subclass: #EEvaluatorVisitor
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Expressions-Model'

Once the class is created we can define what is it to visit a constant expres-
sion. This is simple, it is just to return the constant value. We define the
visitConstant: as follows:

EEvaluatorVisitor >> visitConstant: aConstant

^ aConstant value

Adding a test class

To make sure that we control what we are doing, we add a test class.

TestCase subclass: #EEvaluatorVisitorTest
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Expressions-Test'

We are ready to write our first test

EEvaluatorVisitorTest >> testVisitConstantReturnsConstantValue

| constant result |
constant := EConstant value: 5.
result := constant accept: EEvaluatorVisitor new.
self assert: result equals: 5

We can rewrite the old method evaluateWith: method to invoke the visitor.

EConstant >> evaluateWith: anObject

^ self accept: EEvaluatorVisitor new

You can execute your new and old tests and both should work. Note that
once the visitor is in place, we will remove this method and only define it
once in the superclass.

6.4 Now handling addition

We will do the same with adddition. First we define a new accept: method
on the Addition class to say to the visitor which method it should execute
on the structure.
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6.4 Now handling addition

EAddition >> accept: aVisitor

^ aVisitor visitAddition: self

Notice again that the visitor announces itself and that the addition tells it
that it should be treated this time as an addition. This pattern is key to the
visitor logic. You will see that we will repeat again and again. Each expres-
sion will declare how it should considered by the visitor.

Adding a new test

Now we can define a new test to validate that the execution of an addition is
correct.

EEvaluatorVisitorTest >> testVisitAdditionReturnsAdditionResult

| expression result |
expression := EAddition
left: (EConstant value: 7)
right: (EConstant value: -2).

result := expression accept: EEvaluatorVisitor new.
self assert: result equals: 5

We create the accessors left and right.

EBinaryExpression >> left
^ left

EBinaryExpression >> right
^ right

Defining visitAddition:

Now we are ready to define the method visitAddition: as follows:

EEvaluatorVisitor >> visitAddition: anEAddition

| evaluationOfLeft evaluationOfRight |
evaluationOfLeft := anEAddition left accept: self.
evaluationOfRight := anEAddition right accept: self.
^ evaluationOfLeft + evaluationOfRight

Let us study a bit the method visitAddition:. What you see is that each
subexpression left and right is now using the visitor. And once each value is
known the visitor will perform the addition.

We also redefine the method evaluateWith: to use the visitor. As you rec-
ognize it, it is the same as in the class Constant. We will remove it later.

EAddition >> evaluateWith: anObject
^ self accept: EEvaluatorVisitor new
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Again all your new and old tests should pass.

6.5 Supporting negation

We will focus on the negation. Again we start by defining a test method.

EEvaluatorVisitorTest >> testVisitNegationReturnsNegatedConstant

| expression result |
expression := (EConstant value: 7) negated.
result := expression accept: EEvaluatorVisitor new.
self assert: result equals: -7

We follow the same process. We define the accept: method for the nega-
tion.

ENegation >> accept: aVisitor
^ aVisitor visitNegation: self

We add the expression accessor.

ENegation >> expression
^ expression

Defining visitNegation:

We define the visitNegation: as follows:

EEvaluatorVisitor >> visitNegation: anENegation

| aNumber |
aNumber := anENegation expression accept: self.
^ aNumber negated

What you see is that again the method visitNegation: is invoking the visi-
tor on a subexpression, here the negated expression.

Again redefining evaluateWith:

We redefine the evaluateWith: method on a negation to invoke the visitor.

ENegation >> evaluateWith: anObject
^ self accept: EEvaluatorVisitor new

6.6 Supporting Multiplication

You start to get it and we will do exactly the same for multiplication.
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6.7 Supporting Division

Adding a test

EEvaluatorVisitorTest >>
testVisitMultiplicationReturnsMultiplicationResult

| expression result |
expression := EMultiplication
left: (EConstant value: 7)
right: (EConstant value: -2).

result := expression accept: EEvaluatorVisitor new.
self assert: result equals: -14

Defining the accept: method

We define the accept: method on the Multiplication class.

EMultiplication >> accept: aVisitor

^ aVisitor visitMultiplication: self

Defining the visitMultiplication

EEvaluatorVisitor >> visitMultiplication: anEMultiplication

| evaluationOfLeft evaluationOfRight |
evaluationOfLeft := anEMultiplication left accept: self.
evaluationOfRight := anEMultiplication right accept: self.
^ evaluationOfLeft * evaluationOfRight

Figure @fig:ExpressionsVisitorBeforeBindings describes the situation.

6.7 Supporting Division

For division we do the same.

First two tests

EEvaluatorVisitorTest >> testVisitDivisionReturnsDivisionResult

| expression result |
expression := EDivision
numerator: (EConstant value: 6)
denominator: (EConstant value: 3).

result := expression accept: EEvaluatorVisitor new.
self assert: result equals: 2
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accept:
value

Constant

accept:
 
Addition

 
 

…

accept:
 
Multiplication

accept: aVisitor
negated

Expression

visitConstant: aConstant
visitNegation: aNegation
visitAddition: anAddition
visitMultiplication: aMultiplication
…

Visitor

printOn:
operatorString

left 
right

Binary
Expression

accept: aVisitor
  ^ aVisitor visitConstant: self 

visitConstant: aConstant          
    ^ aConstant value 

accept: aVisitor
  ^ aVisitor visitAddition: self 

accept: aVisitor
  ^ aVisitor visitMultiplication: self 

Figure 6-3 Visitor at work.

EEvaluatorVisitorTest >> testVisitDivisionByZeroThrowsException

| expression result |
expression := EDivision
numerator: (EConstant value: 6)
denominator: (EConstant value: 0).

self
should: [expression accept: EEvaluatorVisitor new]
raise: EZeroDenominator

EEvaluatorVisitorTest >> testVisitDivisionByZeroThrowsException

| expression |
expression := EDivision
numerator: (EConstant value: 6)
denominator: (EConstant value: 0).

self
should: [expression accept: EEvaluatorVisitor new]
raise: EZeroDenominator

Improving the creation API

We introduce the class message numerator:denominator: to ease division
creation.

EDivision class >> numerator: aNumeratorExpression denominator:
aDenominatorExpression

^ self new
numerator: aNumeratorExpression;
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denominator: aDenominatorExpression;
yourself

We define accessors so that the visitor can access to subexpression.

EDivision >> numerator
^ numerator

EDivision >> denominator
^ denominator

Defining accept:

Then we define the method accept: for divisions.

EDivision >> accept: aVisitor

^ aVisitor visitDivision: self

Defining the visitDivision:

We define the visitDivision: method as follows. It is similar to others. In
addition here we prevent division by Zero and raise an exception instead.

EEvaluatorVisitor >> visitDivision: aDivision

| denom numerator |
denom := aDivision denominator accept: self.
denom isZero
ifTrue: [ EZeroDenominator signal ].

numerator := aDivision numerator accept: self.
^ numerator / denom

6.8 Moving up evaluateWith:

Since we get bored to always redefine the method evaluateWith: we de-
fine it in the superclass, the class Expression and we remove it from all the
subclasses except Variable since we will still have to transform it.

EExpression >> evaluateWith: anObject

^ self accept: EEvaluatorVisitor new

6.9 Supporting variable

to be done!!!

EVariable >> accept: aVisitor
^ aVisitor visitVariable: self
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Object subclass: #EEvaluatorVisitor
instanceVariableNames: 'bindings'
classVariableNames: ''
poolDictionaries: ''
category: 'Expressions-Model'

EEvaluatorVisitor >> initialize

super initialize.
bindings := Dictionary new

EEvaluatorVisitor >> visitVariable: aVariable

^ bindings at: aVariable id

EEvaluatorVisitorTest >> testVisitVariableReturnsVariableValue

| expression result |
expression := (EVariable id: #answerToTheQuestion) negated.
result := expression accept: EEvaluatorVisitor new.
self assert: result equals: 42

EVariable class >> id: anId

^ self new
id: anId;
yourself

EEvaluatorVisitorTest >> testVisitVariableReturnsVariableValue
| expression result visitor |
expression := (EVariable id: #answerToTheQuestion) negated.
visitor := EEvaluatorVisitor new.
result := expression accept: visitor.
self assert: result equals: 42

EEvaluatorVisitor >> at: anId put: aValue

bindings at: anId put: aValue

EVariable >> id
^ id

EEvaluatorVisitorTest >> testVisitVariableReturnsVariableValue
| expression result visitor |
expression := EVariable id: #answerToTheQuestion.

visitor := EEvaluatorVisitor new.
visitor at: #answerToTheQuestion put: 42.

result := expression accept: visitor.
self assert: result equals: 42
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6.10 Redefine evaluateWith:

EExpression >> evaluateWith: anObject

| visitor |
visitor := EEvaluatorVisitor new.
visitor bindings: anObject.
^ self accept: visitor.

EEvaluatorVisitor >> bindings: aDictionary

bindings := aDictionary

6.10 Redefine evaluateWith:

EExpression >> evaluateWith: anObject

| visitor |
visitor := EEvaluatorVisitor new.
visitor bindings: anObject.
^ self accept: visitor.

We remove evaluateWith: from class Variable

6.11 A new visitor

Using a visitor is particularly interesting when we have multiple behavior
that we want to encapsulate. Such behaviors are applied on a structure with-
out mixing the state of the structure with the state of the behavior or mixing
multiple behaviors together.

Now we show how we can have another visitor, an expression printer.

Object subclass: #EPrinterVisitor
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Expressions-Model'

We define

EPrinterVisitor >> visitConstant: aConstant
^ aConstant value asString

EPrinterVisitor >> visitMutiplication: aMultiplication

| left right |
left := aMultiplication left accept: self.
right := aMultiplication right accept: self.
^ '(', left , ' * ', right, ')'
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EPrinterVisitor >> visitAddition: anAddition

| left right |
left := anAddition left accept: self.
right := anAddition right accept: self.
^ '(', left , ' + ', right, ')'

EPrinterVisitor >> visitDivision: aDivision

| left right |
left := aDivision left accept: self.
right := aDivision right accept: self.
^ '(', left , ' / ', right, ')'

EPrinterVisitor >> visitNegation: aNegation

| subExpression |
subExpression := aNegation expression accept: self.
^ subExpression , ' negated'

EPrinterVisitor >> visitVariable: aVariable

^ aVariable id asString

6.12 Stepping back

State of behavior is defined in visitor. We could abstract

6.13 Conclusion

say something :)
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CHA P T E R7
Playing with Interpreters

Returning an integer is not really nice because we cross boundaries. Visitor
then after I should make sure that we only return expressions of the same
domain and with a stack.

7.1 Using the Pharo execution stack

EEvaluator >> visitMultiplication: aMultiplication
^ (EConstant new
value: (self evaluate: aMultiplication left) *

(self evaluate: aMultiplication right)

7.2 With an explicit interpretation stack

EEvaluator >> visitMultiplication: aMultiplication
self evaluate: aMultiplication left.
self evaluate: aMultiplication right.
self push: (EConstant new

value: self pop value * self pop value)
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CHA P T E R8
Beacon
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CHA P T E R9
Parsing alain?
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CHA P T E R 10
Uno

https://github.com/cdlm/kata-uno
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CHA P T E R 11
Ideas

Lire

• Implement sokoban

• Ants

• Parser

• Implementation turtle
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