
Learning Object-Oriented
Programming and Design with TDD

Points as (real) Objects
Stéphane Ducasse
http://stephane.ducasse.free.fr

http://www.pharo.org

Core

http://stephane.ducasse.free.fr
http://www.pharo.org

Objectives

 Looking at two concrete implementations of Point
 Understanding the impact of strong API

Core 2 / 16

Points in Java

Without getters and setters:
 boolean equals(Object obj) Determines whether or not two points are equal.
 void move(int x, int y) Moves this point to the specified location in the (x,y)

coordinate plane.
 String toString() Returns a string representation of this point and its location in

the (x,y) coordinate space.
 void translate(int dx, int dy) Translates this point, at location (x,y), by dx along the

x axis and dy along the y axis so that it now represents the point (x+dx,y+dy).

Inherited from Point2D
 distance and clone

Core 3 / 16

Points in Java

Getters and setters:
 Point getLocation() Returns the location of this point. (well this is to be

polymorphic with Component - A location is just a point)
 void setLocation(double x, double y) Sets the location of this point to the

specified double coordinates.
 void setLocation(int x, int y) Changes the point to have the specified location.
 void setLocation(Point p) Sets the location of the point to the specified location.
 double getX() Returns the X coordinate of this Point2D in double precision.
 double getY() Returns the Y coordinate of this Point2D in double precision.

Core 4 / 16

Example

How to make our robot walks from distance in its current direction (in degree).

public class Bot {
int direction = 0;
Point position = new Point(0,0);

public void go(int distance){
position = (new Point((Math.round(Math.cos(Math.toRadians(direction))) * distance +
position.x()),
(Math.round(Math.sin(Math.toRadians(direction)) * distance + position.y())))) ;

}
}

Core 5 / 16

Analysis

 A poor data structure, not an object
 Arithmetic of Points is defined outside of them!

◦ Points cannot sum themselves
◦ Points cannot shape themselves (rounded, normal, reciprocal,...)

 When an object exposes a shallow API, it favors logic duplication in clients!

Core 6 / 16

Go in Pharo

public void go(int distance){
position = (new Point((Math.round(Math.cos(Math.toRadians(direction))) * distance +
position.x()),
(Math.round(Math.sin(Math.toRadians(direction)) * distance + position.y ())))) ;

}
}

to

Bot >> go: aDistance
"Return the point that is at a distance aDistance in the direction pointed by the
receiver"

position := position + (direction degreeCos @ direction degreeSin * aDistance)
rounded

Core 7 / 16

Points in Pharo
Point selectors

 r setR:degrees:, normalized, onLineFrom:to:, angleWith:, angle,
onLineFrom:to:within:, rotateBy:about:, normal, degrees, rotateBy:centerAt:,
theta, bearingToPoint:, distanceTo:

 >= > <= min:max: min: < closeTo: closeTo:precision: hash max: =
 negated, translateBy:, adhereTo:, scaleBy:, scaleTo:, scaleFrom:to:
 triangleArea:with: to:intersects:to: to:sideOf: isInsideCircle:with:with: sideOf:
 \ - * reciprocal / + min // abs max
 rectangle:, extent:, corner:
 roundUpTo: ceiling truncated truncateTo: roundTo: floor roundDownTo: rounded
 quadrantOf: leftRotated fourNeighbors grid: eightNeighbors

nearestPointAlongLineFrom:to: sortsBefore: flipBy:centerAt: crossProduct:
nearestPointOnLineFrom:to: dotProduct: squaredDistanceTo:
insideTriangle:with:with: fourDirections directionToLineFrom:to: transposed
reflectedAbout: sign octantOf: rightRotated

Core 8 / 16

Simple example

Point >> abs
"Answer a Point whose x and y are the absolute values of the receiver's x and y."

^ x abs @ y abs

Core 9 / 16

Simple example

< aPoint
"Answer whether the receiver is above and to the le� of aPoint."
"((100@200) < (330@400)) >>> true"
"((100@200) < (330@100)) >>> false"

^ x < aPoint x and: [y < aPoint y]

Core 10 / 16

Example

Point >> crossProduct: aPoint
"Answer a number that is the cross product of the receiver and the
argument, aPoint."
^ (x * aPoint y)− (y * aPoint x)

Core 11 / 16

Example
Point >> degrees
"Answer the angle the receiver makes with origin in degrees. right is 0; down is 90."
| tan theta |
^ x = 0
ifTrue:
[y >= 0
ifTrue: [90.0]
ifFalse: [270.0]]

ifFalse:
[tan := y asFloat / x asFloat.
theta := tan arcTan.
x >= 0
ifTrue:
[y >= 0
ifTrue: [theta radiansToDegrees]
ifFalse: [360.0 + theta radiansToDegrees]]

ifFalse: [180.0 + theta radiansToDegrees]]

Core 12 / 16

Polymorphic
Point >> asPoint
"Answer the receiver itself."

^ self

Object >> asPoint
"Answer a Point with the receiver as both coordinates; o�en used to
supply the same value in two dimensions, as with symmetrical gridding
or scaling."

^ self @ self

 This way we can manage list of objects and easily convert them to point

{ 1 . 2 . 3 . 33@33 . 4} collect: [:a | a asPoint]
>> {1@1 . 2@2 . 3@3 . 33@33 . 4@4}

Core 13 / 16

Point Arimethic
 Points know how to *, +, divide, substract themselves
 We can mix points, rectangles and number.

drawString: aString at: aPoint font: aFontOrNil color: aColor
self
drawString: aString
in: (origin + aPoint extent: self clipRect extent)
font: aFontOrNil
color: aColor

 In Pharo Points are more than a data structure
 They embed behavior and hide the logic
 Functionality is pushed from clients to Point
 Point offers behavior: reuse here!

Core 14 / 16

What you should know

 Objects are not data structures
 An object should encapsulate logic and lets its client reuse such logic!

Core 15 / 16

A course by Stéphane Ducasse
http://stephane.ducasse.free.fr

Reusing some parts of the Pharo Mooc by

Damien Cassou, Stéphane Ducasse, Luc Fabresse
http://mooc.pharo.org

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

http://stephane.ducasse.free.fr
http://mooc.pharo.org
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

