
Learning Object-Oriented
Programming and Design with TDD

Type aspects of Java
S. Ducasse
http://stephane.ducasse.free.fr

http://www.pharo.org

Core

http://stephane.ducasse.free.fr
http://www.pharo.org


Objectives

 Understanding dynamic and static
 Casts

Core 2 / 13



Static vs. Dynamic Types

A a = new B();

 The static type of variable a is A i.e., the statically declared class to which it
belongs.
◦ The static type never changes.

 The dynamic type of a is B i.e., the class of the object currently bound to a.
◦ The dynamic type may change throughout the program.

a = new A();

Now the dynamic type is also A!

Core 3 / 13



Static vs. Dynamic Types
This works too with method signature

public class A { }
public class B extends A { }

public class Main {
public static void main(String[] args) {
dynclassOutput (new B());
dynclassOutput (new A());

}
public static void dynclassOutput (A a) {
System.out.println(a.getClass().getName());

}
}

What is the static / dynamic type of a there?

Core 4 / 13



Overloading is a bad idea

You can have multiple methods with the same name and types argument

visit (ProgramNode n) {}

visit (Assignment n) {}

visit (SequenceNode n) {}

 Avoid it as much as possible... it makes code less extensible
 Overloading makes your code difficult to understand in presence of subtyping
 Programming in OOP is using subtyping
 Check other lectures

Core 5 / 13



About Casts

 Tell the compiler that the type of the object is another one...
 you cannot downcast to a type lower than the runtime type of the instance.

B b = new B();
A upcasted = (A) b; <=== this is the "upcast"
B downcasted = (B) upcasted; <=== this is the downcast

Core 6 / 13



About Casts: the runtime errors

A upcasted = new A();
B downcasted = (B) upcasted; <=== this is an invalid downcast that compiles but does

not run

 but it does not run
 because at runtime it checks "is the object a B?" NO => boom
 a runtime check is necessary
 You cannot downcast to a lower type than the object dynamic type

Core 7 / 13



The case of equals
The only place where you should use a downcast is equals(Object o)

public class Person
{
String firstName;
String lastName;
public String getFirstName() { return firstName; }
public String getLastName() { return lastName; }

@Override
public boolean equals(Object o) {
if(o instanceof Person)
return isSamePerson((Person)o);

return false;
}
public boolean isSamePerson(Person o) {
return firstName.equals(o.firstName) && lastName.equals(o.lastName);

}
}

Core 8 / 13



The case of equals

In the case of equals, it’s to compare this with the parameter. The signature says
the parameter that represents the other object that you will compare yourself
against is an instance of Object, then in your equals, if you need to compare
specific result of methods (or fields), you need to downcast

Class B {
public boolean equals(Object o) {
if (this == o) return true;
if (! (o instanceof B)) return false;
B other = (B) o;
// Do stu�s with other and this to compare getter/fields...etc

}

Core 9 / 13



Kind of Summary

 Static types are known by the compiler.
 Dynamic types are the variable values known at execution.

Core 10 / 13



Method lookup

 The compiler choses one signature (with static types)
 The runtime uses dynamic types and looks for a method compatible with the

signature

Core 11 / 13



What you should know

 Dynamic / static types
 equals(Object o)

Core 12 / 13



A course by Stéphane Ducasse
http://stephane.ducasse.free.fr

Reusing some parts of the Pharo Mooc by

Damien Cassou, Stéphane Ducasse, Luc Fabresse
http://mooc.pharo.org

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

http://stephane.ducasse.free.fr
http://mooc.pharo.org
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

