
Learning Object-Oriented
Programming and Design with TDD

Why testing is important
S. Ducasse
http://stephane.ducasse.free.fr

http://www.pharo.org

WXSYY

http://stephane.ducasse.free.fr
http://www.pharo.org


Software Testing

 It is a vast and important topic
 Multiple conferences on the topic
 Heavily used in industry
 Many companies forgot to invest in tests and usually they pay the price

In this lecture, we just gives a little overview.

WXSYY 2 / 21



Goal

Minimal survey
 Why tests are important?
 What are their advantages?
 What are the techniques to write good tests?

WXSYY 3 / 21



Multiple kinds of tests
Multiple kinds
 Integration testing: verify that different modules or services used by your

application work well together.
 Functional testing: focus on the business requirements of an application.
 Unit tests (low level)

Others
 Acceptance testing: formal tests executed to verify if a system satisfies its

business requirements.
 Performance testing: behaviors of the system when it is under significant load.
 Smoke testing: check basic functionality of the application. to give you the

assurance that the major features of your system are working as expected

We will focus on Unit test.

WXSYY 4 / 21



Don’t and Do

 Do not prevent bugs to appear
 Do identify that a bug appear

Tests are you insurance that when something breaks you know it.

WXSYY 5 / 21



A Test

 You write it once
 Run it million times...

WXSYY 6 / 21



Tests

 Can improve customers trust
 Give you the parachute to change your software
 Guarantee that old bugs won’t reappear

WXSYY 7 / 21



Good test suite

 check extreme cases (e.g. null 0 and empty)
 check complex cases(e.g. exceptions)
 1 test for each bug (at least)
 good coverage
 check abstractions
 check units independently

WXSYY 8 / 21



Tests support understanding

testConvert
self assert: Color white convert = '#FFFFFF'.
self assert: Color red convert = '#FF0000'.
self assert: Color black convert = '#000000'

WXSYY 9 / 21



Tests support understanding

testBitShi�
self assert: (2r11 bitShi�: 2) equals: 2r1100.
self assert: (2r1011 bitShi�:− 2) equals: 2r10.

testShi�OneLe�ThenRight
"Shi� 1 bit le� then right and test for 1"
1 to: 100 do: [:i |
self assert: ((1 bitShi�: i) bitShi�: i negated) = 1]

WXSYY 10 / 21



Advantages

 Give simple and reproducible examples
 Explain an API
 Give a first up to date documentation
 Check conformity of new code
 Offer a first client to new code
 Force modular design

WXSYY 11 / 21



For Understanding support

Good Unit tests are:
 deterministic
 automatic
 self explained
 simple
 unit

WXSYY 12 / 21



Increasing Trust

 Accelerate bug detection
 Help validation of changes
 Ease refactorings
 Prevent regressions

WXSYY 13 / 21



For Increasing Trust

Good Unit tests are:
 change less frequently than the rest
 good code coverage
 deterministic

WXSYY 14 / 21



Colateral advantages

 Improve feeling of customers who care
 Allow for automatic bug fixing
 Improve type inference
 Provide examples to variable values

WXSYY 15 / 21



Testing Tips: Fix the world

You cannot test a changing system
 Fix part
 Test a fixed subset

For example, test minimal local fonts and not the ones on the machine.

WXSYY 16 / 21



Testing Tips: Mocks

Mocks are simple faked objects that represent a part that is not under test but
participate to the object context.
 Example, how to test that an object reads well an output from the network?

◦ provide a Mock object playing the network

WXSYY 17 / 21



Testing Tips: Mocks

 Some mocks framework let you teach your mock objects how to respond to
messages.

 https://github.com/dionisiydk/Mocketry
 JMock
 "Growing Object-Oriented Software Guided by Tests"

WXSYY 18 / 21



Three excellent testing practices

 During dev, write tests first
◦ Specify what you want
◦ You are done when the tests run

 When you redesign/improve your software
◦ refactor in small steps and
◦ run the tests to stop any regression
◦ fix what is broken (get the bar green)

 During debugging
◦ write a test that demonstrates the bug
◦ then fix it.

WXSYY 19 / 21



Conclusion

 Tests are important
 Tests are your life insurance
 Tests identify bugs
 The world changes continuously.
 Software models the world so it will BREAK.

WXSYY 20 / 21



A course by Stéphane Ducasse
http://stephane.ducasse.free.fr

Reusing some parts of the Pharo Mooc by

Damien Cassou, Stéphane Ducasse, Luc Fabresse
http://mooc.pharo.org

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

http://stephane.ducasse.free.fr
http://mooc.pharo.org
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

