
Learning Object-Oriented

Programming, Design and TDD

with Pharo

Stéphane Ducasse

April 20, 2019

Copyright 2017 by Stéphane Ducasse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations ii

1 Crafting a simple embedded DSL with Pharo 1

1.1 Getting started . 1

1.2 Rolling a die . 3

1.3 Creating another test . 3

1.4 Instance creation interface . 4

1.5 First specification of a die handle . 6

1.6 Defining the DieHandle class . 7

1.7 Improving programmer experience . 7

1.8 Rolling a die handle . 10

1.9 About Dice and DieHandle API . 10

1.10 Role playing syntax . 11

1.11 Handle’s addition . 13

1.12 Conclusion . 13

Bibliography 15

i

Illustrations

1-1 A single class with a couple of messages. Note that the method

withFaces: is a class method. 2

1-2 Inspecting and interacting with a die. 3

1-3 A die handle is composed of dice. 6

1-4 Inspecting a DieHandle. 8

1-5 Die details. 9

1-6 A die handle with more information. 9

1-7 A polymorphic API supports the Don’t ask, tell principle. 11

ii

CHA P T E R 1
Crafting a simple embedded DSL

with Pharo

In this chapter you will develop a simple domain specific language (DSL) for
rolling dice. Players of games such as Dungeons & Dragons are familiar with
such DSL. An example of such DSL is the following expression: 2 D20 + 1
D6 which means that we should roll two 20-faces dices and one 6 faces die. It
is called an embedded DSL because the DSL uses the syntax of the language
used to implement it. Here we use the Pharo syntax to implement the Dun-
geons & Dragons rolling die language.

This little exercise shows how we can (1) simply reuse traditional operator
such as +, (2) develop an embedded domain specific language and (3) use
class extensions (the fact that we can define a method in another package
than the one of the class of the method).

1.1 Getting started

Using the code browser, define a package named Dice or any name you like.

Create a test

It is always empowering to verify that the code we write is always working as
we defining it. For this purpose you should create a unit test. Remember unit
testing was promoted by K. Beck first in the ancestor of Pharo. Nowadays
this is a common practice but this is always useful to remember our roots!

Define the class DieTest as a subclass of TestCase as follows:

1

Crafting a simple embedded DSL with Pharo

faces:
roll
withFaces:

faces
Die

Figure 1-1 A single class with a couple of messages. Note that the method with-
Faces: is a class method.

TestCase subclass: #DieTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Dice'

What we can test is that the default number of faces of a die is 6.

DieTest >> testInitializeIsOk
self assert: Die new faces equals: 6

If you execute the test, the system will prompt you to create a class Die. Do
it.

Define the class Die

The class Die inherits from Object and it has an instance variable, faces
to represent the number of faces one instance will have. Figure 1-1 gives an
overview of the messages.

Object subclass:
... Your solution ...

In the initialization protocol, define the method initialize so that it
simply sets the default number of faces to 6.

Die >> initialize
... Your solution ...

Do not hesitate to add a class comment.

Now define a method to return the number of faces an instance of Die has.

Die >> faces
^ faces

Now your tests should all pass (and turn green).

2

1.2 Rolling a die

Figure 1-2 Inspecting and interacting with a die.

1.2 Rolling a die

To roll a die you should use the method from Number atRandom which draws
randomly a number between one and the receiver. For example 10 atRan-
dom draws number between 1 to 10. Therefore we define the method roll:

Die >> roll
... Your solution ...

Now we can create an instance Die new and send it the message roll and
get a result. Do Die new inspect to get an inspector and then type in the
bottom pane self roll. You should get an inspector like the one shown in
Figure 1-2. With it you can interact with a die by writing expression in the
bottom pane.

1.3 Creating another test

But better, let us define a test that verifies that rolling a new created dice
with a default 6 faces only returns value comprised between 1 and 6. This is
what the following test method is actually specifying.

DieTest >> testRolling
| d |
d := Die new.
10 timesRepeat: [self assert: (d roll between: 1 and: 6)]

Important Often it is better to define the test even before the code it
tests. Why? Because you can think about the API of your objects and a
scenario that illustrate their correct behavior. It helps you to program
your solution.

3

Crafting a simple embedded DSL with Pharo

1.4 Instance creation interface

We would like to get a simpler way to create Die instances. For example we
want to create a 20-faces die as follows: Die withFaces: 20 instead of al-
ways have to send the new message to the class as in Die new faces: 20.
Both expressions are creating the same die but one is shorter.

Let us look at it:

• In the expression Die withFaces:, the message withFaces: is sent to
the class Die. It is not new, we constantly sent the message new to Die
to created instances.

• Therefore we should define a method that will be executed

Let us define a test for it.

DieTest >> testCreationIsOk
self assert: (Die withFaces: 20) faces equals: 20

What the test clearly shows is that we are sending a message to the class Die
itself.

Defining a class method

Define the class method withFaces: as follows:

• Click on the class button in the browser to make sure that you are edit-
ing a classmethod.

• Define the method as follows:

Die class >> withFaces: aNumber
"Create and initialize a new die with aNumber faces."
| instance |
instance := self new.
instance faces: aNumber.
^ instance

Let us explain this method

• The method withFaces: creates an instance using the message new.
Since self represents the receiver of the message and the receiver of
the message is the class Die itself then self represents the class Die.

• Then the method sends the message faces: to the instance and

• Finally returns the newly created instance.

Pay really attention that a class method withFaces: is sent to a class, and
an instance method sent to the newly created instance faces:. Note that the
class method could have also named faces: or any name we want, it does
not matter, it is executed when the receiver is the class Die.

4

1.4 Instance creation interface

This test will not work since we did not create yet the method faces:. This
is now the time to define it. Pay attention the method faces: is sent to an
instance of the class Die and not the class itself. It is an instance method,
therefore make sure that you deselected the class button before editing it.

Die >> faces: aNumber
faces := aNumber

Now your tests should run. So even if the class Die could implement more
behavior, we are ready to implement a die handle.

Important A class method is a method executed in reaction to messages
sent to a class. It is defined on the class side of the class. In Die with-
Faces: 20, the message withFaces: is sent to the class Die. In Die new
faces: 20, the message new is sent to the class Die and the message
faces: is sent to the instance returned by Die new.

[Optional] Alternate instance creation definition

In a first reading you can skip this section. The class method definition with-
Faces: above is strictly equivalent to the one below.

Die class >> withFaces: aNumber
^ self new faces: aNumber; yourself

Let us explain it a bit. self represents the class Die itself. Sending it the
message new, we create an instance and send it the faces: message. And
we return the expression. So why do we need the message yourself. The
message yourself is needed to make sure that whatever value the instance
message faces: returns, the instance creation method we are defining re-
turns the new created instance. You can try to redefine the instance method
faces: as follows:

Die >> faces: aNumber
faces := aNumber.
^ 33

Without the use of yourself, Die withFaces: 20 will return 33. With your-
self it will return the instance.

The trick is that yourself is a simple method defined on Object class: The
message yourself returns the receiver of a message. The use of ; sends the
message to the receiver of the previous message (here faces:). The mes-
sage yourself is then sent to the object resulting from the execution of the
expression self new (which returns a new instance of the class Die), as a
consequence it returns the new instance.

5

Crafting a simple embedded DSL with Pharo

faces:
roll

faces
Die

roll
addDie:
+ aDieHandle

dice
DieHandle

Figure 1-3 A die handle is composed of dice.

1.5 First specification of a die handle

Let us define a new class DieHandle that represents a die handle. The follow-
ing code snippet shows the API that we would like to offer for now (as shown
in Figure 1-3). We create a new handle then add some dice to it. We will use
this kind of expressions in future tests below.

DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself

Of course we will define tests first for this new class. We define the class
DieHandleTest.
TestCase subclass: #DieHandleTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Dice'

Testing a die handle

We define a new test method as follows. We create a new handle and add one
die of 6 faces and one die of 10 faces. We verify that the handle is composed
of two dice.

DieHandleTest >> testCreationAdding
| handle |
handle := DieHandle new

addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself.

self assert: handle diceNumber = 2.

In fact we can do it better. Let us add a new test method to verify that we can
even add two dice having the same number of faces.

DieHandleTest >> testAddingTwiceTheSameDice
| handle |
handle := DieHandle new.
handle addDie: (Die withFaces: 6).

6

1.6 Defining the DieHandle class

self assert: handle diceNumber = 1.
handle addDie: (Die withFaces: 6).
self assert: handle diceNumber = 2.

Now that we specified what we want, we should implement the expected
class and messages. Easy!

1.6 Defining the DieHandle class

The class DieHandle inherits from Object and it defines one instance vari-
able to hold the dice it contains.

Object subclass: ...
... Your solution ...

We simply initialize it so that its instance variable dice contains an instance
of OrderedCollection.

DieHandle >> initialize
... Your solution ...

Then define a simple method addDie: to add a die to the list of dice of the
handle. You can use the message add: sent to a collection.

DieHandle >> addDie: aDie
... Your solution ...

Now you can execute the code snippet and inspect it. You should get an in-
spector as shown in Figure 1-4

DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself

Finally we should add the method diceNumber to the DieHandle class to be
able to get the number of dice of the handle. We just return the size of the
dice collection.

DieHandle >> diceNumber
^ dice size

Now your tests should run and this is a good moment to save and publish
your code.

1.7 Improving programmer experience

Now when you open an inspector you cannot see well the dice that compose
the die handle. Click on the dice instance variable and you will only get a list

7

Crafting a simple embedded DSL with Pharo

Figure 1-4 Inspecting a DieHandle.

of a Dice without further information. What we would like to get is some-
thing like a Die (6) or a Die (10) so that in a glance we know the faces a
die has.

DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself

This is the message printOn: that is responsible to provide a textual repre-
sentation of the message receiver. By default, it just prints the name of the
class prefixed with 'a' or 'an'. So we will enhance the printOn: method
of the Die class to provide more information. Here we simply add the num-
ber of faces surrounded by parenthesis. The printOn: message is sent with
a stream as argument. This is in such stream that we should add informa-
tion. We use the message nextPutAll: to add a number of characters to the
stream. We concatenate the characters to compose () using the message ,
comma defined on collections (and that concatenate collections and strings).

Die >> printOn: aStream

super printOn: aStream.
aStream nextPutAll: ' (', faces printString, ')'

Now in your inspector you can see effectively the number of faces a die han-
dle has as shown by Figure 1-5 and it is now easier to check the dice con-
tained inside a handle (See Figure 1-6).

Note This implementation of printOn: is suboptimal. Indeed during the
message faces printString, it creates a separate stream instead of using
the one pass as argument. To understand the problem you can have a look at
the implementation of the method printString defined in the class Object.

8

Figure 1-5 Die details.

Figure 1-6 A die handle with more information.

Crafting a simple embedded DSL with Pharo

Die >> printOn: aStream

super printOn: aStream.
aStream
nextPutAll: '(';
print: faces;
nextPutAll: ')'

1.8 Rolling a die handle

Now we can define the rolling of a die handle by simply summing result of
rolling each of its dice. Implement the rollmethod of the DieHandle class.
This method must collect the results of rolling each dice of the handle and
sum them.

You may want to have a look at the method sum: in the class Collection or
use a simple loop such as do: to iterate over the dice.

DieHandle >> roll
... Your solution ...

Now we can send the message roll to a die handle.

handle := DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself.

handle roll

Define a test to cover such behavior. Rolling an handle of n dice should be
between n and the sum of the face number of each die.

DieHandleTest >> testRoll
... Your solution ...

1.9 About Dice and DieHandle API

It is worth to spend some times looking at the relationship between DieHan-
dle and Dice. A die handle is composed of dices. What is an important de-
sign decision is that the API of the main behavior (roll) is the same for a
die or a die handle. You can send the message roll to a dice or a die handle.
This is an important property.

Why? Because it means that from a client perspective, she/he can treat the
receiver without having to take care about the kind of object it is manipulat-
ing. A client just sends the message roll to an object and get back a number
(as shown in Figure 1-7). The client is not concerned by the fact that the re-
ceiver is composed out a simple object or a complex one. Such design deci-
sion supports the Don’t ask, tell principle.

10

1.10 Role playing syntax

aDie(6)

aDieHandleroll

aDie (6)roll

aDie(10)
roll

client

client

Figure 1-7 A polymorphic API supports the Don’t ask, tell principle.

Important Offering polymorphic API is a tenet of good object-oriented
design. It enforces the Don’t ask, tell principle. Clients do not have to
worry about the type of the objects to whom they talk to.

For example we can write the following expression that adds a die and a
dieHandle to a collection and collect the different values (we convert the
result into an array so that we can print it in the book).

| col |
col := OrderedCollection new.
col add: (Die withFaces: 20).
col add: (DieHandle new addDie: (Die withFaces: 4); yourself).
(col collect: [:each | each roll]) asArray
>>> #(17 3)

About composition

Composite objects such document objects (a book is composed of chapters, a
chapter is composed of sections, a section is composed of paragraphs) have
often a more complex composition relationship than the composition be-
tween die and die handle. Often the composition is recursive in the sense
that an element can be the whole: for example, a diagram can be composed
of lines, circles, and other diagrams. We will see an example of such compo-
sition in the Expression Chapter ??.

1.10 Role playing syntax

Now we are ready to offer a syntax following practice of role playing game,
i.e., using 2 D20 to create a handle of two dice with 20 faces each. For this
purpose we will define class extensions: we will define methods in the class
Integer but these methods will be only available when the package Dice will
be loaded.

11

Crafting a simple embedded DSL with Pharo

But first let us specify what we would like to obtain by writing a new test
in the class DieHandleTest. Remember to always take any opportunity to
write tests. When we execute 2 D20 we should get a new handle composed of
two dice and can verify that. This is what the method testSimpleHandle is
doing.

DieHandleTest >> testSimpleHandle
self assert: 2 D20 diceNumber = 2.

Verify that the test is not working! It is much more satisfactory to get a test
running when it was not working before. Now define the method D20 with a
protocol named *NameOfYourPackage ('*Dice’ if you named your package
'Dice'). The * (star) prefixing a protocol name indicates that the protocol
and its methods belong to another package than the package of the class.
Here we want to say that while the method D20 is defined in the class Inte-
ger, it should be saved with the package Dice.

The method D20 simply creates a new die handle, adds the correct number of
dice to this handle, and returns the handle.

Integer >> D20
... Your solution ...

About class extensions

We asked you to place the method D20 in a protocol starting with a star and
having the name of the package ('*Dice') because we want this method to
be saved (and packaged) together with the code of the classes we already cre-
ated (Die, DieHandle,...) Indeed in Pharo we can define methods in classes
that are not defined in our package. Pharoers call this action a class exten-
sion: we can add methods to a class that is not ours. For example D20 is de-
fined on the class Integer. Now such methods only make sense when the
package Dice is loaded. This is why we want to save and load such meth-
ods with the package we created. This is why we are defining the protocol as
'*Dice'. This notation is a way for the system to know that it should save
the methods with the package and not with the package of the class Integer.

Now your tests should pass and this is probably a good moment to save your
work either by publishing your package and to save your image.

We can do the same for the default dice with different faces number: 4, 6,
10, and 20. But we should avoid duplicating logic and code. So first we will
introduce a new method D: and based on it we will define all the others.

Make sure that all the new methods are placed in the protocol '*Dice'. To
verify you can press the button Browse of the Monticello package browser
and you should see the methods defined in the class Integer.

Integer >> D: anInteger
... Your solution ...

12

1.11 Handle’s addition

Integer >> D4
^ self D: 4

Integer >> D6
^ self D: 6

Integer >> D10
^ self D: 10

Integer >> D20
^ self D: 20

We have now a compact form to create dice and we are ready for the last
part: the addition of handles.

1.11 Handle’s addition

Now what is missing is that possibility to add several handles as follows: 2
D20 + 3 D10. Of course let’s write a test first to be clear on what we mean.

DieHandleTest >> testSumming
| handle |
handle := 2 D20 + 3 D10.
self assert: handle diceNumber = 5.

We will define a method + on the DieHandle class. In other languages this
is often not possible or is based on operator overloading. In Pharo + is just a
message as any other, therefore we can define it on the classes we want.

Now we should ask ourself what is the semantics of adding two handles.
Should we modify the receiver of the expression or create a new one. We
preferred a more functional style and choose to create a third one.

The method + creates a new handle then add to it the dice of the receiver and
the one of the handle passed as argument to the message. Finally we return
it.

DieHandle >> + aDieHandle
... Your solution ...

Now we can execute the method (2 D20 + 1 D6) roll nicely and start
playing role playing games, of course.

1.12 Conclusion

This chapter illustrates how to create a small DSL based on the definition of
some domain classes (here Dice and DieHandle) and the extension of core
class such as Integer. It also shows that we can create packages with all the
methods that are needed even when such methods are defined on classes
external (here Integer) to the package. It shows that in Pharo we can use
usual operators such as + to express natural models.

13

Bibliography

15

	Illustrations
	Crafting a simple embedded DSL with Pharo
	Getting started
	Create a test
	Define the class Die

	Rolling a die
	Creating another test
	Instance creation interface
	Defining a class method
	[Optional] Alternate instance creation definition

	First specification of a die handle
	Testing a die handle

	Defining the DieHandle class
	Improving programmer experience
	Rolling a die handle
	About Dice and DieHandle API
	About composition

	Role playing syntax
	About class extensions

	Handle's addition
	Conclusion

	Bibliography

