
CHA P T E R 1
Revisiting the Die DSL: a Case for

Double Dispatch

In Chapter ??, using the Die DSL we could only sum die handles together as in
΂ �΂΀ я ΁ �΄. In this new chapter we extend the Die DSL implementation
to support the sum of a die with another one or with a die handle (and vice
versa).

One of the challenges is that the message я should be able to manage differ-
ent types of receivers and arguments. The message will have either a die or
a die handle as receiver and arguments, so we should manage the following
possibilities: die + die handle, die + die, die handle + die handle, and die han-
dle + die. While this extension at first may look trivial, we will take it as a
way to explore double dispatch.

Double dispatch is a technic that avoids hardcoding type checks and also is
able to define incrementally the behavior handling all the possible cases.
Indeed double dispatch does not use any explicit conditionals and is the basis
of more advanced Design Patterns such as the Visitor.

Double dispatch is based on the Don’t ask, tell object-oriented principle ap-
plied twice. In the case of the яmessage, there is a first dispatch to select the
adequate method. Then a second dispatch happens when in this method a
new message is sent to the argument of the яmessage telling this argument
the way the current receiver should be summed. This description is clearly
too abstract so we will go over a full example to explain it.

1

Revisiting the Die DSL: a Case for Double Dispatch

1.1 A little reminder

In a previous chapter you implemented a small DSL to add dice and manage
die handles. With this DSL, you could create dice and add them to a die han-
dle. Later on you could sum two different die handles and obtain a new one
following the ”Dungeons and Dragons” ruling book.

The following tests show these two behaviors: First the dice handle creation
and second the sum of die handles.
�°�)�É�Â�a�ãê мм ê�ãê�ß��ê°ÐÉ���°É¨
՞ ­�É�Â� ՞
­�É�Â� ϓи �°�)�É�Â� É�û
����°��ϓ Ϭ�°�� §���ãϓ ΆϭϞ
����°��ϓ Ϭ�°�� §���ãϓ ΁΀ϭϞ
āÐïßã�Â§ϙ

ã�Â§ �ãã�ßêϓ ­�É�Â� �°��BïÈ��ß и ΂

�°�)�É�Â�a�ãê мм ê�ãê[ïÈÈ°É¨r°ê­B°���T,
՞ ­�É�Â� ՞
­�É�Â� ϓи ΂ �΂΀ я ΃ �΁΀ϙ
ã�Â§ �ãã�ßêϓ ­�É�Â� �°��BïÈ��ß и ΅

The implementation of я was simple since we could only sum die handles
together. The method я creates a new handle, adds the dice of the receiver
and of the argument to the newly created handle and returns it.

�°�)�É�Â� мм я ��°�)�É�Â�
ϜW�êïßÉã � É�û ­�É�Â� ê­�ê ß�Üß�ã�Éêã ê­� ���°ê°ÐÉ Ð§ ê­� ß���°ú�ß

�É� ê­� �ß¨ïÈ�ÉêϙϜ
՞ ­�É�Â� ՞
­�É�Â� ϓи ã�Â§ �Â�ãã É�ûϙ
ã�Â§ �°�� �Ðϓ Ϫ ϓ���­ ՞ ­�É�Â� ����°�ϓ ���­ ϫϙ
��°�)�É�Â� �°�� �Ðϓ Ϫ ϓ���­ ՞ ­�É�Â� ����°�ϓ ���­ ϫϙ
ի ­�É�Â�

1.2 New requirements

The first requirement we have is that we want to be able to add two dice to-
gether and of course we should obtain a die handle as illustrated by the fol-
lowing test.

We want to add two dice together:

Ϭ�°� û°ê­#���ãϓ Άϭ я Ϭ�°� û°ê­#���ãϓ Άϭ

The second requirement is that we want to be able to mix and add a die to a
die handle or vice versa as illustrated below:
΂ �΂΀ я Ϭ�°� û°ê­#���ãϓ Άϭ

Ϭ�°� û°ê­#���ãϓ Άϭ я ΂ �΂΀

2

1.3 Turning requirements as tests

1.3 Turning requirements as tests

Since we are test-infested, we turn such expected behavior into automati-
cally testable expected behavior: we write them as tests.

We want to add two dice together:

�°�a�ãê мм ê�ãê���aûÐ�°��
՞ ­� ՞
­� ϓи Ϭ�°� û°ê­#���ãϓ Άϭ я Ϭ�°� û°ê­#���ãϓ Άϭϙ
ã�Â§ �ãã�ßêϓ ­� �°�� ã°Ć� и ΂ϙ

The second requirement is that we want to be able to mix and add a die to a
die handle or vice versa as illustrated by the two following tests:

�°�a�ãê мм ê�ãê���°É¨��°��É�)�É�Â�
՞ ­� ՞
­� ϓи Ϭ�°� §���ãϓ Άϭ
я
Ϭ�°�)�É�Â� É�û

����°�ϓ ΆϞ
āÐïßã�Â§ϭϙ

ã�Â§ �ãã�ßêϓ ­� �°�� ã°Ć� �Þï�Âãϓ ΂

�°�)�É�Â�a�ãê мм ê�ãê���°É¨�É)�É�Â�r°ê­��°�
՞ ­�É�Â� ß�ã ՞
­�É�Â� ϓи �°�)�É�Â� É�û
����°�ϓ Ϭ�°� û°ê­#���ãϓ ΆϭϞ
����°�ϓ Ϭ�°� û°ê­#���ãϓ ΁΀ϭϞ
āÐïßã�Â§ϙ

ß�ã ϓи ­�É�Â� я Ϭ�°� û°ê­#���ãϓ ΂΀ϭϙ
ã�Â§ �ãã�ßêϓ ß�ã �°��BïÈ��ß �Þï�Âãϓ ΃

Now we are ready to implement such requirements.

1.4 The first implementation

The first solution is to explicitly type check the argument to decide what to
do.
�°�)�É�Â� мм я ��°�Hß��°�)�É�Â�

ի Ϭ��°�Hß��°�)�É�Â� �Â�ãã и �°�)�É�Â�ϭ
°§aßï�ϓ Ϫ ՞ ­�É�Â� ՞

­�É�Â� ϓи ã�Â§ �Â�ãã É�ûϙ
ã�Â§ �°�� �Ðϓ Ϫ ϓ���­ ՞ ­�É�Â� ����°�ϓ ���­ ϫϙ
��°�Hß��°�)�É�Â� �°�� �Ðϓ Ϫ ϓ���­ ՞ ­�É�Â� ����°�ϓ ���­ ϫϙ
­�É�Â� ϫ

°§#�Âã�ϓ Ϫ ՞ ­�É�Â� ՞
­�É�Â� ϓи ã�Â§ �Â�ãã É�ûϙ
ã�Â§ �°�� �Ðϓ Ϫ ϓ���­ ՞ ­�É�Â� ����°�ϓ ���­ ϫϙ

3

Revisiting the Die DSL: a Case for Double Dispatch

­�É�Â� ����°�ϓ ��°�Hß��°�)�É�Â�ϙ
­�É�Â� ϫ

�°� мм я ��°�Hß��°�)�É�Â�
՞ ã�Â§�ã�°�)�É�Â� ՞
ã�Â§�ã�°�)�É�Â� ϓи �°�)�É�Â� É�û ����°�ϓ ã�Â§ϙ
ի ã�Â§�ã�°�)�É�Â� я ��°�Hß��°�)�É�Â�

The problem of this solution is that it does not scale. As soon as we will have
other kinds of arguments we will have to check more and more cases. You
may think that this is just a spurious argument. But when you have a model
that has around 35 different kinds of nodes as in Pillar, the document pro-
cessing system used to produce this book, this kind of testing logic becomes a
nightmare to maintain and extend.

1.5 Sketching double dispatch

We can do better. The logic of the solution we have in mind is quite simple
but it may be destabilizing at first. Let us sketch it.

• When we execute a method we know its receiver and the kind of re-
ceiver we have: it can be a die or a die handle. The method dispatch
will select the correct method at runtime. Imagine that we have two
яmethods for each class �°� and �°�)�É�Â�. When a given method я
will be executed, we will know the exact kind of the receiver. For ex-
ample, when the method я defined on the class �°� will be executed,
we will know that the receiver is a die (instance of this class). Simi-
larly when the method я defined on the class �°�)�É�Â� will be exe-
cuted, we will know that the message receiver is a die handle. This is
the power of method dispatch: it selects the right method based on the
message receiver.

• Then the idea is to tell the argument that we want to sum it with that
given receiver. It means that each яmethod on a different class has
just to send a different message based on the fact that the receiver was
a die or a die handle to its argument and let the method dispatch to
act once again. After this second dispatch, the correct method will be
selected.

But let us makes this really concrete.

1.6 Adding two dice

Let us step back and start by supporting the sum of two dice. This is rather
simple we create and return a die handle to which we add the receiver and
the argument.

4

1.7 Adding a die and a die or a handle

�°� мм я ��°�

ի �°�)�É�Â� É�û
����°�ϓ ã�Â§Ϟ
����°�ϓ ��°�Ϟ āÐïßã�Â§

Our first test should pass ê�ãê���aûÐ�°��. But this solution does not sup-
port the fact that the argument can be either a die or a die handle.

1.7 Adding a die and a die or a handle

Now we want to handle the fact that we can add a die or a die handle to the
receiver as illustrated by the test ê�ãê���°É¨��°��É�)�É�Â�.
�°�a�ãê мм ê�ãê���°É¨��°��É�)�É�Â�

՞ ­� ՞
­� ϓи Ϭ�°� û°ê­#���ãϓ Άϭ
я
Ϭ�°�)�É�Â� É�û

����°�ϓ ΆϞ
āÐïßã�Â§ϭϙ

ã�Â§ �ãã�ßêϓ ­� �°�� ã°Ć� �Þï�Âãϓ ΂

The previous method я is definitively what we want to do when we have two
dice. So let us rename it as ãïÈr°ê­�°�ϓ so that we can invoke it later.
�°� мм ãïÈr°ê­�°�ϓ ��°�

ի �°�)�É�Â� É�û
����°�ϓ ã�Â§Ϟ
����°�ϓ ��°�Ϟ āÐïßã�Â§

Now what we can do is to implement я as follows. Notice that we named the
argument ��°���Â� because we want to convey that the argument can be
either a die or a die handle.
�°� мм я ��°���Â�

ի ��°���Â� ãïÈr°ê­�°�ϓ ã�Â§

We tell the argument ��°���Â� (which can be a die or a die handle) that
we want to add a die to it (we know that ã�Â§ in this method is a �°� be-
cause this is the method of this class that is executed). When rewritting the я
method, we switched ã�Â§ and ��°���Â� to send the new message ãïÈr°ê­Ͼ
�°�ϓ to the argument (��°���Â�). This switch kicks a new method dispatch
and we finally have a double dispatch (one of я and one for ãïÈr°ê­�°�ϓ).

In our two tests ê�ãê���aûÐ�°�� and ê�ãê���°É¨��°��É�)�É�Â� we know
that the receiver is a die because the method is defined in the class of �°�. At
this point the test ê�ãê���aûÐ�°�� should pass because we are adding two
dice as shown in Figure 1-1.

5

Revisiting the Die DSL: a Case for Double Dispatch

+ aDicable
sumWithDie: aDie

Die
sumWithDie: aDie

DieHandle

+ aDicable
 ^ aDicable sumWithDie: self

: aDie(6) : aDie(10) +

sumWithDie: aDie

 ^ DieHandle new

addDie: self;
addDie: aDie;

 yourself

sumWithDie: aDie

 | handle |
 handle := self class new.
 self dice do: [:each | handle addDie: each].
 handle addDie: aDie.
 ^ handle

Message 1

Message 2

Figure 1-1 Summing two dice and be prepared for more.

1.8 When the argument is a die handle

Now we still have to find a solution for the case where the argument to the
message я is a die handle. In fact, the argument will receive the message
ãïÈr°ê­�°�ϓ. Therefore if we define a method with that name in the class
�°�)�É�Â� it will be executed when the argument of message я is a die han-
dle.

We know how to sum a die with a die handle: we simply create a new die
handle, add all the die of the previous die handle to the new one and add the
argument too.

So we just have to define the method ãïÈr°ê­�°�ϓ to the class �°�)�É�Â�
implementing this logic.

�°�)�É�Â� мм ãïÈr°ê­�°�ϓ ��°�
՞ ­�É�Â� ՞
­�É�Â� ϓи ã�Â§ �Â�ãã É�ûϙ
ã�Â§ �°�� �Ðϓ Ϫ ϓ���­ ՞ ­�É�Â� ����°�ϓ ���­ ϫϙ
­�É�Â� ����°�ϓ ��°�ϙ
ի ­�É�Â�

Now we are able to sum a die with a die handle as shown in Figure 1-2. The
test ê�ãê���°É¨��°��É�)�É�Â� should now pass.

1.9 Stepping back

You may ask why this is working. We defined two methods ãïÈr°ê­�°�ϓ
one on class �°� and one on the class �°�)�É�Â� and when the method я on
class �°� will send the message ãïÈr°ê­�°�ϓ to either a die or a die handle,
the message dispatch will select the correct method ãïÈr°ê­�°�ϓ for us as
shown in Figure 1-3.

6

1.10 Now a DieHandle as receiver

+ aDicable
sumWithDie: aDie

Die
sumWithDie: aDie

DieHandle

+ aDicable
 ^ aDicable sumWithDie: self

: aDie(6) : 2 D20 +

sumWithDie: aDie

 ^ DieHandle new

addDie: self;
addDie: aDie;

 yourself

sumWithDie: aDie

 | handle |
 handle := self class new.
 self dice do: [:each | handle addDie: each].
 handle addDie: aDie.
 ^ handle

Message A

Message B

Figure 1-2 Summing a die and a dicable.

+ aDicable
sumWithDie: aDie

Die
sumWithDie: aDie

DieHandle

+ aDicable
 ^ aDicable sumWithDie: self

: aDie(6) : aDie(10) +

: aDie(6) : 2 D20 +

sumWithDie: aDie

 ^ DieHandle new

addDie: self;
addDie: aDie;

 yourself

sumWithDie: aDie

 | handle |
 handle := self class new.
 self dice do: [:each | handle addDie: each].
 handle addDie: aDie.
 ^ handle

Message 1

Message 2

Message A

Message B

Figure 1-3 Summing a die and a dicable

1.10 Now a DieHandle as receiver

Our solution does not handle the case where the receiver is a die handle. This
is what we will address now. Now we are ready to apply the same pattern
than before but for the case where the receiver is a die handle. We will just
say to the argument of the message я that we want to sum it with a die handle
this time.

We know how to sum two die handles, it is the code we already defined in the
previous chapter. We rename the яmethod as ãïÈr°ê­)�É�Â�ϓ to be able to
invoke it while redefining the method я. Basically this method creates a new
handle, then adds the dice of the receiver and the argument to it and returns

7

Revisiting the Die DSL: a Case for Double Dispatch

+ aDicable
sumWithDie: aDie
sumWithDieHandle:
aDieHandle

Die
+ aDicable
sumWithDie: aDie
sumWithDieHandle:
aDieHandle

DieHandle

+ aDicable
 ^ aDicable sumWithDie: self

sumWithDie: aDie

 ^ DieHandle new

addDie: self;
addDie: aDie;

 yourself

sumWithDie: aDie

 | handle |
 handle := self class new.
 self dice do: [:each | handle addDie: each].
 handle addDie: aDie.
 ^ handle

+ aDicable
 ^ aDicable sumWithHandle: self

sumWithHandle: aDieHandle

 | hd |
hd := DieHandle new.
aDieHandle dice

 do: [:each | hd addDie: each].
hd addDie: self
^ hd

sumWithHandle: aDieHandle

 | hd |
 hd := self class new.
 self dice do: [:each | hd addDie: each].
 aDieHandle dice do: [:each | hd addDie: each].
 ^ hd

Figure 1-4 Handling all the cases: summing a die/die handle with a die/die han-
dle .

the new handle.
�°�)�É�Â� мм ãïÈr°ê­)�É�Â�ϓ ��°�)�É�Â�
՞ ­�É�Â� ՞
­�É�Â� ϓи ã�Â§ �Â�ãã É�ûϙ
ã�Â§ �°�� �Ðϓ Ϫ ϓ���­ ՞ ­�É�Â� ����°�ϓ ���­ ϫϙ
��°�)�É�Â� �°�� �Ðϓ Ϫ ϓ���­ ՞ ­�É�Â� ����°�ϓ ���­ ϫϙ
ի ­�É�Â�

Now we can define a more powerful version of я by simply sending the mes-
sage ãïÈr°ê­)�É�Â�ϓ to the argument (aDicable) of the message я. Again
we send a message to the argument (��°���Â�) to kick in a new message
lookup and dispatch for the message ãïÈr°ê­)�É�Â�ϓ.
�°�)�É�Â� мм я ��°���Â�
ի ��°���Â� ãïÈr°ê­)�É�Â�ϓ ã�Â§

We said that this is version of я is more powerful than the one of ãïÈr°ê­Ͼ
)�É�Â�ϓ because once we will implement the missing method ãïÈr°ê­)�ÉϾ
�Â�ϓ on the class �°�, the яmethod will be able to sum a die handle with a
die or two die handles.

Up until here we did not change much and all the tests adding two die han-
dles should continue to run.

8

1.11 sumWithHandle: on Die class

1.11 sumWithHandle: on Die class

To get the possibility to sum a die handle with a single die, we just have to
define a new method ãïÈr°ê­)�É�Â�ϓ on the �°� class. The logic is similar
to the one adding one die to one die handle

�°� мм ãïÈr°ê­)�É�Â�ϓ ��°�)�É�Â�
՞ ­�É�Â� ՞
­�É�Â� ϓи �°�)�É�Â� É�ûϙ
��°�)�É�Â� �°�� �Ðϓ Ϫ ϓ���­ ՞ ­�É�Â� ����°�ϓ ���­ ϫϙ
­�É�Â� ����°�ϓ ã�Â§
ի ­�É�Â�

Note that we could have sent the message ��°�)�É�Â� ãïÈr°ê­�°�ϓ ã�Â§
as body of ãïÈr°ê­)�É�Â�ϓ definition.

Figure 1-4 shows the full set up. We suggest to follow the execution of mes-
sages for the different cases to understand that just sending a new message
to the argument and relying on method dispatch produces modular condi-
tional execution. Now the following test should pass and we are done.

�°�)�É�Â�a�ãê мм ê�ãê���°É¨�É)�É�Â�r°ê­��°�
՞ ­�É�Â� ß�ã ՞
­�É�Â� ϓи �°�)�É�Â� É�û
����°�ϓ Ϭ�°� §���ãϓ ΆϭϞ
����°�ϓ Ϭ�°� §���ãϓ ΁΀ϭϞ
āÐïßã�Â§ϙ

ß�ã ϓи ­�É�Â� я Ϭ�°� û°ê­#���ãϓ ΂΀ϭϙ
ã�Â§ �ãã�ßêϓ ß�ã �°��BïÈ��ß �Þï�Âãϓ ΃

1.12 Conclusion

When we step back, we see that we applied the Don’t ask, tell principle twice:
First the message я selects the corresponding methods in either �°� or �°�)�ÉϾ
�Â� classes. Then a more specific message is sent to the argument and the
dispatch kicks in again selecting the correct method for the messages ãïÈr°ê­Ͼ
�°�ϓ or ãïÈr°ê­)�É�Â�ϓ.

In this chapter we presented double dispatch. The idea is to use method
dispatch two times. While the resulting design is simple, it is not trivial to
deeply understand and it requires time to digest double dispatch. At its core,
double dispatch relies on the fact that sending a message to an object selects
the correct method – and sending another message to the message argument
will select a new method. Therefore we have effectively selected a method
according to the receiver and the argument of a message.

Double dispatch is the basis for the Visitor Design pattern that is effective
when dealing with complex data structure such as documents, compilers. In

9

Revisiting the Die DSL: a Case for Double Dispatch

such context it is not rare to have more than 30 or 40 different nodes that
should be manipulated together to produce specific behavior.

10

	Illustrations
	Revisiting the Die DSL: a Case for Double Dispatch
	A little reminder
	New requirements
	Turning requirements as tests
	The first implementation
	Sketching double dispatch
	Adding two dice
	Adding a die and a die or a handle
	When the argument is a die handle
	Stepping back
	Now a DieHandle as receiver
	sumWithHandle: on Die class
	Conclusion

