
Object-Oriented
Design Lecture

Stone Paper Scissors
Stéphane Ducasse
http://stephane.ducasse.free.fr
http://car.mines-douai.fr/luc

http://www.pharo.org

http://stephane.ducasse.free.fr
http://car.mines-douai.fr/luc
http://www.pharo.org

Objectives

 Another look at double dispatch
 Basis for Visitor Design pattern
 Avoid hardcoding conditionals

(Stone new play: Paper new)
>>> #paper

From the Design Corner 2 / 15

Stone Paper Scissors via Tests

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new play: Paper new) equals: #paper

From the Design Corner 3 / 15

Stone Paper Scissors via Tests

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new play: Paper new) equals: #paper

StonePaperScissorsTest >> testStoneAgainsStone
self assert: (Stone new play: Stone new) equals: #draw

StonePaperScissorsTest >> testStoneIsWinning
self assert: (Stone new play: Scissors new) equals: #stone

From the Design Corner 4 / 15

Let us start

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new play: Paper new) equals: #paper

Stone >> play: anotherTool
^ ...

From the Design Corner 5 / 15

Paper playAgainstStone:

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new play: Paper new) equals: #paper

Stone >> play: anotherTool
^ anotherTool playAgainstStone: self

Paper >> playAgainstStone: aStone
...

From the Design Corner 6 / 15

Paper playAgainstStone:

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new play: Paper new) equals: #paper

Stone >> play: anotherTool
^ anotherTool playAgainstStone: self

Paper >> playAgainstStone: aStone
^ #paper

From the Design Corner 7 / 15

Other playAgainstStone:

Scissors >> playAgainstStone: aStone
^ #stone

Stone >> playAgainstStone: aStone
^ #draw

From the Design Corner 8 / 15

Scissors now

StonePaperScissorsTest >> testScissorsIsWinning
self assert: (Scissors new play: Paper new) = #scissors

Scissors >> play: anotherTool
^ anotherTool playAgainstScissors: self

Scissors >> playAganstScissors: aScissors
^ #draw

Paper >> playAgainstScissors: aScissors
^ #scissors

Stone >> playAgainstScissors: aScissors
^ #stone

From the Design Corner 9 / 15

Paper now

Paper >> play: anotherTool
^ anotherTool playAgainstPaper: self

Scissors >> playAgainstPaper: aPaper
^ #scissors

Paper >> playAgainstPaper: aPaper
^ #draw

Stone >> playAgainstPaper: aPaper
^ #paper

From the Design Corner 10 / 15

Overview

play: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Stone

play:
playAgainstScissors:
playAgainStone:
playAgainPaper:

SPSElement

play: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Paper
play: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Paper

From the Design Corner 11 / 15

Remark

In this example we do not need to pass the argument during the double dispatch

Scissors >> playAgainstPaper: aPaper
^ #scissors

Scissors >> playAgainstPaper
^ #scissors

From the Design Corner 12 / 15

Thinking more...

When we return a token or a number we should check to do something after. So
passing blocks may be better.

Paper new competeWith: Paper new
onDraw: [Game incrementDraw]
onReceiverWin: []
onReceiverLose: []

From the Design Corner 13 / 15

Conclusion

 Powerful
 Modular
 Just sending an extra message to an argument and using late binding

From the Design Corner 14 / 15

A course by

Stéphane Ducasse
http://stephane.ducasse.free.fr

and

Luc Fabresse
http://car.mines-douai.fr/luc

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

http://stephane.ducasse.free.fr
http://car.mines-douai.fr/luc
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

