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Objectives

 Another look at double dispatch
 Basis for Visitor Design pattern
 Avoid hardcoding conditionals

(Stone new play: Paper new)
>>> #paper
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Stone Paper Scissors via Tests

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new play: Paper new) equals: #paper
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Stone Paper Scissors via Tests

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new play: Paper new) equals: #paper

StonePaperScissorsTest >> testStoneAgainsStone
self assert: (Stone new play: Stone new) equals: #draw

StonePaperScissorsTest >> testStoneIsWinning
self assert: (Stone new play: Scissors new) equals: #stone
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Let us start

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new play: Paper new) equals: #paper

Stone >> play: anotherTool
^ ...
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Paper playAgainstStone:

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new play: Paper new) equals: #paper

Stone >> play: anotherTool
^ anotherTool playAgainstStone: self

Paper >> playAgainstStone: aStone
...
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Paper playAgainstStone:

StonePaperScissorsTest >> testPaperIsWinning
self assert: (Stone new play: Paper new) equals: #paper

Stone >> play: anotherTool
^ anotherTool playAgainstStone: self

Paper >> playAgainstStone: aStone
^ #paper
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Other playAgainstStone:

Scissors >> playAgainstStone: aStone
^ #stone

Stone >> playAgainstStone: aStone
^ #draw
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Scissors now

StonePaperScissorsTest >> testScissorsIsWinning
self assert: (Scissors new play: Paper new) = #scissors

Scissors >> play: anotherTool
^ anotherTool playAgainstScissors: self

Scissors >> playAganstScissors: aScissors
^ #draw

Paper >> playAgainstScissors: aScissors
^ #scissors

Stone >> playAgainstScissors: aScissors
^ #stone
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Paper now

Paper >> play: anotherTool
^ anotherTool playAgainstPaper: self

Scissors >> playAgainstPaper: aPaper
^ #scissors

Paper >> playAgainstPaper: aPaper
^ #draw

Stone >> playAgainstPaper: aPaper
^ #paper
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Overview

play: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Stone

play: 
playAgainstScissors: 
playAgainStone:
playAgainPaper: 

SPSElement

play: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Paper
play: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Paper
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Remark

In this example we do not need to pass the argument during the double dispatch

Scissors >> playAgainstPaper: aPaper
^ #scissors

Scissors >> playAgainstPaper
^ #scissors
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Thinking more...

When we return a token or a number we should check to do something after. So
passing blocks may be better.

Paper new competeWith: Paper new
onDraw: [ Game incrementDraw ]
onReceiverWin: [ ]
onReceiverLose: [ ]
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Conclusion

 Powerful
 Modular
 Just sending an extra message to an argument and using late binding
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