
Learning Object-Oriented
Programming and Design with TDD

Interfaces
S. Ducasse
http://stephane.ducasse.free.fr

http://www.pharo.org

Core

http://stephane.ducasse.free.fr
http://www.pharo.org


Interfaces

 A good element of Java :)
 Group of method signatures

◦ and since Java 80 default methods...
 Used by the type checker
 Support the manipulation of instances of classes not in subtype relation (i.e. not

in the same hierachy)

interface {
//methods
}

Core 2 / 11



Example

All methods are implicitly public and all fields are public static final

interface Polygon {
public static final String color = "blue";
public double getArea();
}

interface Polygon {
String color = "blue";
double getArea();
}

Core 3 / 11



class A Implements I

class Rectangle implements Polygon {
...
public double getArea() {
return length * width;
}
}

Core 4 / 11



Classes - Interfaces

Any class implementing an interface MUST defined the methods specified in the
interface.
 A class can implement many interfaces
 A class inherits from a single superclass
 An interface can implement from multiple interfaces

interface Line {
//members of Line interface
}

interface Polygon extends Line {
//members of Polygon interface and Line interface
}

Core 5 / 11



Interfaces: step back

A nice mechanism for statically checked languages
 defines what is expected
 lets the system evolve

When you use a class as a type:
 You freeze the possible instances
 You will only be able to have instances of type or subtypes

When you use an interface as a type:
 You will be able to use any instance of classes implementing the interface

Core 6 / 11



Remember

Box b = new Box();

b can only contain instances of Box and its subclasses

class MyBox extend Object {}
Box b = newMyBox()
>>>> BREAK!!!

Because there is no type relationship between MyBox and Box

Core 7 / 11



Now with interfaces
interface IBox {
double getArea()
double volume()
}

class MyBox extend Object implement IBox
IBox b = newMyBox();
>>> Valid

class Box extend Rectangle implement Ibox
IBox b = new Box();
>>> Valid

class MyBox2 extend ZKZ implement IBox
IBox b = newMyBox2();
>>> Valid

Core 8 / 11



Interfaces support evolution

 You can reuse a program expecting a given interface by passing a new class
implementing the give interface

 This is key!
 This cannot be done if you use a class.
 With a class you can only pass a subclass.

Core 9 / 11



Interfaces and nominal types

 Pay attention two interfaces with different names but the same contents are not
compatible

 You will not be able to substitute instances of a class using one interface by
instances of another class using another interface with the same contents

Core 10 / 11



A course by Stéphane Ducasse
http://stephane.ducasse.free.fr

Reusing some parts of the Pharo Mooc by

Damien Cassou, Stéphane Ducasse, Luc Fabresse
http://mooc.pharo.org

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

http://stephane.ducasse.free.fr
http://mooc.pharo.org
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

