
S.Ducasse

Stéphane Ducasse
Stephane.Ducasse@inria.fr
http://stephane.ducasse.free.fr/

Reflective Programming
in Smalltalk

M. Denker and S. Ducasse - 2005

1

mailto:Stephane.Ducasse@univ-savoie.fr
mailto:Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/
http://www.iam.unibe.ch/~ducasse/

S.Ducasse LSE

License: CC-Attribution-ShareAlike 2.0
http://creativecommons.org/licenses/by-sa/2.0/

2

http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/

S.Ducasse

Why...
“As a programming language becomes higher and higher
level, its implementation in terms of underlying machine
involves more and more tradeoffs, on the part of the
implementor, about what cases to optimize at the
expense of what other cases.... the ability to cleanly
integrate something outside of the language’s scope
becomes more and more limited” [Kiczales’92a]

3

S.Ducasse

Definition
“Reflection is the ability of a program to manipulate as data
something representing the state of the program during its
own execution. There are two aspects of such manipulation:
introspection and intercession.
Introspection is the ability for a program to observe and
therefore reason about its own state.
Intercessory is the ability for a program to modify its own
execution state or alter its own interpretation or meaning.
Both aspects require a mechanism for encoding execution
state as data: providing such an encoding is called
reification.” [Bobrow, Gabriel and White in Paepke‘92]

4

S.Ducasse

• A system having itself as application domain and that is
causally connected with this domain can be qualified as a
reflective system [Pattie Maes]

• A reflective system has an internal representation of itself.
• A reflective system is able to act on itself with the

ensurance that its representation will be causally
connected (up to date).

• A reflective system has some static capacity of self-
representation and dynamic self-modification in constant
synchronization

Consequences

5

S.Ducasse

• The meta-language and the language can be different:
Scheme and an OO language

• The meta-language and the language can be same:
Smalltalk, CLOS

• In such a case this is a metacircular architecture

Meta Programming in Prog. Language

6

S.Ducasse 7

S.Ducasse

The Essence of a Class
• A format (number of instance variables and types)
• A superclass
• A method dictionary

8

S.Ducasse

Behavior >> new
In Squeak (3.8)

Behavior>>new

 | classInstance |
 classInstance := self basicNew.
 classInstance methodDictionary: classInstance
emptyMethodDictionary.
 classInstance superclass: Object.
 classInstance setFormat: Object format.
 ^ classInstance

9

S.Ducasse

The Essence of an Object
• class pointer
• values

• Can be special:
• the pointer pointing to the object is the object itself
• character, smallInteger (compact classes)

10

S.Ducasse

Some MetaObjects
• Structure: Behavior, ClassDescription, Class, Metaclass,

ClassBuilder
• Semantics: Compiler, Decompiler, ProgramNode,

ProgramNodeBuilder, IRBuilder
• Behavior: CompiledMethod, CompiledBlock, Message,

Exception
• ControlState: Context, BlockContext, Process,

ProcessorScheduler
• Resources: ObjectMemory, WeakArray
• Naming: SystemDictionary, Namespace
• Libraries: MethodDictionary, ClassOrganizer

11

S.Ducasse

Meta-Operations
• MetaOperations are operations that provide

information about an object as opposed to
information directly contained by the object ...They
permit things to be done that are not normally
possible [Inside Smalltalk]”

12

S.Ducasse

Access
• Object>>instVarAt: aNumber
• Object>>instVarNamed: aString
• Object>>instVarAt: aNumber put: anObject

• Browser new instVarNamed: 'classOrganizer'
• | pt |

pt := 10@3.
pt instVarNamed: 'x' put: 33.
pt

• > 33@3

13

S.Ducasse

Access
• Object>>class
• Object>>identityHash

14

S.Ducasse

Changes

• Object>>changeClassOfThat: anInstance
in VW and Squeak both classes should have the same
format, i.e., the same physical structure of their
instances

• Object>>become: anotherObject
• Object>>becomeForward: anotherObject

15

S.Ducasse

Implementing Instance Specific Methods
In Squeak 3.8

| behavior browser |
behavior := Behavior new.
behavior superclass: Browser.
behavior setFormat: Browser format.
browser := Browser new.
browser primitiveChangeClassTo: behavior new.
behavior compile: 'thisIsATest ^ 2'.
self assert: browser thisIsATest = 2.
self should: [Browser new thisIsATest] raise:
MessageNotUnderstood

16

S.Ducasse

become: and oneWayBecome:
• become: is symmetric and swaps all the pointers

• oneWayBecome: (in VW) becomeForward: (Squeak)
changes pointers only in one way

17

S.Ducasse

become:
• Swap all the pointers from one object to the other

and back (symmetric)

• | pt1 pt2 pt3 |
 pt1 := 0@0.
 pt2 := pt1.
 pt3 := 100@100.
 pt1 become: pt3.
 self assert: pt2 = (100@100).
 self assert: pt3 = (0@0).
 self assert: pt1 = (100@100).

18

S.Ducasse

becomeForward:
• Swap all the pointers from one object to the other

one

• | pt1 pt2 pt3 |
 pt1 := 0@0.
 pt2 := pt1.
 pt3 := 100@100.
 pt1 becomeForward: pt3.
 self assert: (pt2 = (100@100)).
 self assert: pt3 = pt2.
 self assert: pt1 = (100@100)

19

S.Ducasse

Structure
• Objects represent classes
• Object root of inheritance

• default behavior
• minimal behavior

• Behavior: essence of class
• anymous class
• format, methodDict, superclass

• ClassDescription:
• human representation and organization

• Metaclass:
• sole instance

20

S.Ducasse

CompiledMethod Holders

21

S.Ducasse

ClassBuilder
• Manages class creation

• unique instance
• format with superclass checking
• changes of existing instance when class structure

changes

22

S.Ducasse

Some Selected Protocols
• Illustrated by the tools of the IDE

• Class>>selectors
• Class>>superclass
• Class>>compiledMethodAt: aSymbol
• Class>>instVarNames
• Class>>compiler

23

S.Ducasse

The Smalltalk Compiler

24

S.Ducasse

Compiler
• Fully reified compilation process:

• Scanner/Parser (build with SmaCC)
• builds AST (from Refactoring Browser)

• Semantic Analysis: ASTChecker
• annotates the AST (e.g., var bindings)

• Translation to IR: ASTTranslator
• uses IRBuilder to build IR (Intermediate Representation)

• Bytecode generation: IRTranslator
• uses BytecodeBuilder to emit bytecodes

25

S.Ducasse

Compiler: Overview

Scanner /
Parser

Semantic
Analysis

Code
Generation

Build IR

SmaCC Scanner
Parser

ASTChecker

ASTTranslator
IRBuilder

IRTranslator
BytecodeBuilder

Bytecode
Generation

AST AST BytecodeCode

IRAST Bytecode

Code generation in detail:

26

S.Ducasse

Compiler: Syntax
• SmaCC: Smalltalk Compiler Compiler
• Like Lex/Yacc
• Input:

• scanner definition: Regular Expressions
• parser: BNF Like Grammar
• code that build AST as annotation

• SmaCC can build LARL(1) or LR(1) parser
• Output:

• class for Scanner (subclass SmaCCScanner)
• class for Parser (subclass SmaCCParser)

27

S.Ducasse

Scanner

28

S.Ducasse

Parser

29

S.Ducasse

Calling Parser code

30

S.Ducasse

Compiler: AST
• AST: Abstract Syntax Tree
• Encodes the Syntax as a Tree
• No semantics yet!
• Uses the RB Tree:

• visitors
• backward pointers in ParseNodes
• transformation (replace/add/delete)
• pattern directed TreeRewriter
• PrettyPrinter

RBProgramNode
 RBDoItNode
 RBMethodNode
 RBReturnNode
 RBSequenceNode
 RBValueNode
 RBArrayNode
 RBAssignmentNode
 RBBlockNode
 RBCascadeNode
 RBLiteralNode
 RBMessageNode
 RBOptimizedNode
 RBVariableNode

31

S.Ducasse

Compiler: Semantics
• We need to analyse the AST

• names need to be linked to the Variables according to
the scoping rules

• ASTChecker implemented as a visitor
• subclass of RBProgramNodeVisitor
• visits the nodes
• grows and shrinks Scope chain
• method/Blocks are linked with the Scope
• variable definitions and references are linked with

objects describing the variables

32

S.Ducasse

A Simple Tree

33

S.Ducasse

A Simple Visitor
• RBProgramNodeVisitor new visitNode: tree.
• does nothing except walking throw the tree

34

S.Ducasse

LiteralGatherer
RBProgramNodeVisitor subclass: #LiteralGatherer
 instanceVariableNames: 'literals'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'Compiler-AST-Visitors'

initialize
 literals := Set new.
literals
 ^literals
acceptLiteralNode: aLiteralNode
 literals add: aLiteralNode value.

(TestVisitor new visitNode: tree) literals
#(3 4)

35

S.Ducasse

Compiler III: IR
• IR: Intermediate Representation

• semantic like Bytecode, but more abstract
• independent of the bytecode set
• IR is a tree
• IR nodes allow easy transformation
• decompilation to RB AST

• IR build from AST using ASTTranslator:
• AST Visitor
• uses IRBuilder

36

S.Ducasse

Compiler 4: Bytecode
• IR needs to be converted to Bytecode

• IRTranslator: Visitor for IR tree
• Uses BytecodeBuilder to generate Bytecode
• Builds a compiledMethod

testReturn1
 | iRMethod aCompiledMethod |

 iRMethod := IRBuilder new
 numRargs: 1;

 addTemps: #(self); "receiver and args declarations"
 pushLiteral: 1;

 returnTop;
 ir.

 aCompiledMethod := iRMethod compiledMethod.
 self should: [(aCompiledMethod valueWithReceiver: nil arguments: #()) = 1].

37

S.Ducasse

Behavior
• Method Lookup
• Method Application

38

S.Ducasse

• Look on the receiver class (1)
• Follow inheritance link (2)

The Essence

Node
accept: aPacket

Workstation
originate: aPacket

aMac accept

(1)

(2)

39

S.Ducasse

doesNotUnderstand:
• When the lookup fails

• doesNotUnderstand: on the original message receiver
• reification of the message

• 2 zork
• leads to

• 2 doesNotUnderstand: aMessage
• aMessage selector -> #zork

40

S.Ducasse

Invoking a message from its name
• Object>>perform: aSymbol
• Object>>perform: aSymbol with: arg
• ...

• Asks an object to execute a message
• The method lookup is done!

• 5 factorial
• 5 perform: #factorial

41

S.Ducasse

Executing a compiled method
CompiledMethod>>valueWithReceiver:argu
ments:

(Integer>>factorial)
 valueWithReceiver: 5
 arguments: #()

-> 120

No lookup is performed

42

S.Ducasse

Other Reflective Entities
• Execution stack can be reified and manipulated on

demand
• thisContext is a pseudo variable which gives access to

the stack

43

S.Ducasse

• We need a space for
• the temporary variables
• remembering where to return to

• Everything is an Object!
• So: we model this space as Objects
• Class MethodContext

What happens on Method

ContextPart variableSubclass: #MethodContext
 instanceVariableNames: 'method receiverMap receiver'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'Kernel-Methods'

44

S.Ducasse

MethodContext
• MethodContext holds all state associated with the

execution of a CompiledMethod
• Program Counter (pc, from ContextPart)
• the Method itself (method)
• Receiver (receiver) and the Sender (sender)

• The sender is the previous Context
• The chain of senders is a stack
• It grows and shrinks with activation/return

45

S.Ducasse

Contexts: Stack Reification

46

S.Ducasse

Example: #haltIf:
• You can’t put a halt in methods that are called often

(e.g. OrderedCollection>>add:)
• Idea: only halt if called from a method with a certain

name

haltIf: aSelector
 | cntxt |
 cntxt := thisContext.
 [cntxt sender isNil] whileFalse: [
 cntxt := cntxt sender.
 (cntxt selector = aSelector) ifTrue: [
 Halt signal
].
].

47

S.Ducasse

Controling Messages

48

S.Ducasse

Approaches to Control Message
• Error Handling Specialization

• Minimal Objects + doesNotUnderstand:

• Using Method Lookup
• anonymous classes between instances and their classes

• Method Substitution
• wrapping methods

• Control: instance-based/class/group
• Granularity: all/unknown/specific

49

S.Ducasse

Error Handling Specialization
• Minimal Object

• do not understand too much
• redefine doesNotUnderstand:
• wrap normal object in a minimal object

• nil superclass or ProtoObject
• use becomeForward: to substitute the object to

control

50

S.Ducasse

Minimal Object at Work

51

S.Ducasse

Control
• MinimalObject>>doesNotUnderstand: aMsg

 ...
 originalObject perform: aMsg selector
 withArguments: aMsg arguments

52

S.Ducasse

Minimal Behavior in VW
MinimalObject class>>initialize
 superclass := nil.
 #(doesNotUnderstand: error: ̃ ̃ isNil = ==
 printString printOn: class inspect basicInspect
 basicAt: basicSize instVarAt: instVarAt:put:)
 do: [:selector |
 self recompile: selector from: Object]

53

S.Ducasse

Limits
• self problem:

• messages sent by the object itself are not trapped
• messages sent to a reference on it passed by the

controlled object

• Class control is impossible
• Interpretation of minimal protocol:

• message sent to the minimal object or to controlled
object

54

S.Ducasse

Evaluation
• Simple
• In Squeak ProtoObject
• Some problems
• Instance-based
• All messages

55

S.Ducasse

Approaches to Control Message
• Error Handling Specialization

• Minimal Objects + doesNotUnderstand:

• Using Method Lookup
• anonymous classes between instances and their classes

• Method Substitution
• wrapping methods

56

S.Ducasse

Using VM Lookup
• Creation of a controlling class that is interposed

between the instance and its class
• Definition of controlling methods
• Class change

• Hidding it from the developper/user using anonymous
class

57

S.Ducasse

1@1, 2@2 are controlled, but not 3@3

58

S.Ducasse

Anonymous class in VW
Object>>specialize
 |nCl|
(1) nCl :=Behavior new
(2) setInstanceFormat: self class format;
(2) superclass: self class;
 methodDictionary:MethodDictionary new.
(3) self changeClassToThatOf: nCl basicNew

59

S.Ducasse

Control
anAnonymousClass>>setX:t1setY:t2
 ...before
 super setX:t1setY:t2
 ...after

60

S.Ducasse

The beauty in VisualWorks
AnonymousClass>>installEssentialMethods
 self compile: ’class ˆ super class superclass’.
 self compile: ’isControlled ˆ true’.
 self compile: ’anonymousClass ˆ super class’

In Squeak class is not sent but optimized by the compiler

61

S.Ducasse

Evaluation
• instance-based or group-based
• selective control
• no identity problem
• good performance
• transparent to the user
• requires a bit of compilation (could be avoided using

clone as in Method Wrapper)

62

S.Ducasse

Approaches to Control Message
• Error Handling Specialization

• Minimal Objects + doesNotUnderstand:

• Using Method Lookup
• anonymous classes between instances and their classes

• Method Substitution
• wrapping methods

63

S.Ducasse

Method Substitution
• First approach: add methods with offucasted names

• but the user can see them

• Wrapping the methods without poluting the interface

64

S.Ducasse

MethodWrapper Definition
CompiledMethod variableSubclass: #MethodWrapper
 instanceVariableNames: ’clientMethod selector’
 classVariableNames: ’’
 poolDictionaries:’’
 category: ’Method Wrappers’

(MethodWrapper on: #color inClass: Point) install

65

S.Ducasse

Method Wrappers: The Idea

66

S.Ducasse

Mechanics
WrapperMethod>>valueWithReceiver: anObject arguments: args
 self beforeMethod.
 ˆ [clientMethod
 valueWithReceiver: object
 arguments: args]
 valueNowOrOnUnwindDo:
 [self afterMethod]

aClass>>originalSelector: t1
 |t2|
 (t2 := Array new: 1) at: 1 put: t1.
 ˆself valueWithReceiver: self arguments: t2

67

S.Ducasse

Evaluation
• Class based: all instances are controlled
• Only known messages
• Single method can be controlled
• Smart implementation does not require compilation

for installation/removal

68

S.Ducasse

Scaffolding Patterns
• How to prototype applications even faster?
• Based on K. Auer Patterns

69

S.Ducasse

Patterns
• Extensible Attributes

• Artificial Delegation
• How do you prepare for additional delegated

operations?

• Cached Extensibility
• Selector Synthesis

70

S.Ducasse

Extensible Attributes
Context:

multi person project + heavy version control
other designers will want to add attributes to your class

How do you minimize the effort required to add
additional attributes to the class?

Solution:
Add a dictionary attribute to your class
+ a dictionary access

71

S.Ducasse

Extensible Attributes
anExtensibleObject attributes at: #attName put: value

value := anExtensibleObject attributes at: #attName

72

S.Ducasse

Artificial Accessors
Context: you applied Extensible Attributes

How do you make it easier for other classes to access
your extended attributes?

Solution: simulate the presence of accessor for the
attributes by specializing doesNotUnderstand:

73

S.Ducasse

Artificial Accessors Code
anExtensibleObject widgets: 4

is converted to

self attributes at: #widgets put: 4

anExtensibleObject widgets

is converted to

^ self attributes at: #widgets

74

S.Ducasse

Consequences
Accessors do not exist therefore

browsing can be a problem
tracing also
reflective queries (allSelectors, canUnderstand:....) will not
work as with plain methods

75

S.Ducasse

Artificial Delegation
How do you make

^ self delegate anOperation
 easier?

Solution: Override doesNotUnderstand: of the delegator
to iterate through its attribute looking for an attribute
that supports the method selector that was not
understood

76

S.Ducasse

Cached Extensibility
Context: you used the previous patterns

How do you know which artificial accessors or artificial
delegate have been used?

Solution: Specialize doesNotUnderstand: to create
methods as soon as artificial ones are invoked

77

S.Ducasse

Selector Synthesis
How can you implement a state-dependent object with a
minimal effort?

Solution: define state and event as symbols and given a
pair synthesise a method selector

selector := ‘handle’, anEvent aString, ‘In’, aState asString.
self perform: selector asSymbol.

78

S.Ducasse

References
• [Ducasse’99] S. Ducasse, “Message Passing Control Techniques in Smalltalk”,

JOOP, 1999
• [Rivard’96] F. Rivard, Smalltalk : a Reflective Language, REFLECTION'96,1996
• [Bran’98] Wrappers To The Rescue, ECOOP’98, 1998
• [Auer] Scaffolding patterns, PLOD 3, Addison-Wesley, (http://

www.rolemodelsoftware.com/moreAboutUs/publications/articles/scaffold.php)
• Smalltalk the Language, Golberg Robson, Addison-Wesley

79

S.Ducasse

Smalltalk Reflective Capabilities
Both introspection and reflection
Powerful
Based on everything is an object approach

80

