
S.Ducasse

Stéphane Ducasse
Stephane.Ducasse@inria.fr
http://stephane.ducasse.free.fr

History and Concepts

1

mailto:Stephane.Ducasse@univ-savoie.fr
mailto:Stephane.Ducasse@univ-savoie.fr
http://www.iam.unibe.ch/~ducasse/
http://www.iam.unibe.ch/~ducasse/

S.Ducasse

Outline
• History
• Context
• Run-Time Architecture
• Concepts

• "Making simple things very simple and complex things
very possible."

 Alan Kay

2

S.Ducasse

Smalltalk: a State of Mind
• A small and uniform language:

• Syntax fits on one sheet of paper
• A large set of reusable classes

• Basic Data Structures, GUI classes, Database Access, Internet,
Graphics

• A set of powerful development tools
• Browsers, GUI Builders, Inspectors, Change Management Tools,

Crash Recovery Tools, Project Management Tools

• A run-time environment based on virtual machine technology
• Really Platform Independent

• Team Working Environment (releasing, versioning, deploying).

3

S.Ducasse

Smalltalk - The Inspiration
• Flex (Alan Kay, 1969)
• Lisp (Interpreter, Blocks, Garbage Collection)
• Turtle graphics (The Logo Project, Programming for

Children)
• Direct Manipulation Interfaces (Sketchpad, Alan Sutherland,

1960)
• NLS, (Doug Engelbart, 1968), “the augmentation of human

intellect”
• Simula (Classes and Message Sending)

– Description of real Phenomenons by means of a specification
language -> modelling

• Xerox PARC (Palo Alto Research Center)
• DynaBook: a Laptop Computer for Children

4

S.Ducasse

http://www.artmuseum.net/w2vr/archives/Kay/
01_Dynabook.html

Dynabook Mock

5

S.Ducasse

Smalltalk on Alto III

Alto: a Machine to Run Smalltalk

6

S.Ducasse

Precursor, Innovator & Visionary
• First to be based on Graphics

– Multi-Windowing Environment (Overlapping Windows)
– Integrated Development Environment
– -> Debugger, Compiler, Text Editor, Browser

• With a pointing Device-> Yes, a Mouse
• Ideas were taken over

– Apple Lisa, Mac
– Microsoft Windows 1.0

• Virtual Machine -> Platform independent
• Garbage Collector -> Time for some real thinking...
• Just in Time Compilation
• Everything was there, the complete Source Code

7

S.Ducasse

The History

1960

1970

1980

1990

FORTRAN
Algol 60 COBOL

PL/1Simula 67

Smalltalk 72

Smalltalk 80

Objective C

C

C++ Ada

Lisp

Pascal
Prolog

Modula-2

Modula-3

Oberon

ANSI C++

Self Eiffel

Algol 68

Clu

Java Ada 95

CLOS

8

S.Ducasse

The History (Internal)
• 1972 - First Interpreter -> More Agents than Objects (every

object can specify its own syntax)
• 1976 - Redesign -> A Hierarchy of classes with a Unique

Root, Fixed Syntax, Compact Byte Code,
 Contexts,
Processes, Semaphores, Browsers, GUI Library. Projects:
ThingLab, Visual Programming Environment Programming by
Rehearsal.

• 1978 - NoteTaker Project, Experimentation with 8086
Microprocessor with only 256 KB RAM.

9

S.Ducasse

The History (External)
• 1980 - Smalltalk-80 (ASCII, cleaning primitives for portability,

Metaclasses, Blocks as first-class Objects, MVC). Projects:
Gallery Editor (mixing text, painting and animations) +
Alternate Reality Kit (physics simulation)

• 1981 - Books + 4 external virtual machines (Dec, Apple, HP
and Tektronix) -> GC by generation scavenging

• 1988 - Creation of Parc Place Systems
• 1992 - ANSI Draft
• 1995 - New Smalltalk implementations (MT, Dolphin, Squeak,

Smalltalk/X, GNU Smalltalk)
• 2000 - Fscript, GNU Smalltalk, SmallScript
• 2002 - Smalltalk as OS: 128k ram

10

S.Ducasse

Smalltalk’s Concepts
• Everything is an object (numbers, files, editors, compilers,

points, tools, boolean).
• Objects communicate only by message passing.
• Each object is an instance of one class (which is also an

object).
• A class defines the structure and the behavior of its

instances.
• Each object possesses its own set of values.
• Dynamic Typing.
• Purely based on late binding.

11

S.Ducasse

Messages and Methods
Message: What behavior to perform

 aWorkstation accept: aPacket

 aMonter eat: aCookie

Method: How to carry out the behaviour

 accept: aPacket

 (aPacket isAddressedTo: self)

 ifTrue:[Transcript show: 'A packet is
accepted by the Workstation ', self name asString]

 ifFalse: [super accept: aPacket]

12

S.Ducasse

Objects and Classes
• Every object is an instance of a class
• A class specifies the structure and the behaviour of all

its instances
• Instances of a class share the same behavior and have a

specific state
• Classes are objects that create other instances
• Metaclasses are classes that create classes as instances
• Metaclasses describe class behaviour and state

(subclasses, method dictionary, instance variables...)

13

S.Ducasse

Summary
Had a major impact: Java, Ruby, C#
Simple and consistent model

Everything is an object
All computation is made by sending message
Classes, Single inheritance, public methods, private
attributes

Uniform syntax

Not an old language
Still one of the most elegant, simple, uniform prue
object-oriented language

14

