
Stéphane Ducasse 

Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

!"#$

Design Points -
 Subclassing vs Subtyping

Stéphane Ducasse --- 2005

1
S.Ducasse

!"#$

How to Implement a Stack?

By subclassing OrderedCollection...

Stack>>pop
   ^ self removeFirst
Stack>>push: anObject
   self addFirst: anObject
Stack>>top
   ^ self first

Stack>>size, Stack>>includes:

2

S.Ducasse

!"#$

BUT BUT BUT!!!
• What do we do with all the rest of the interface of 

OrderedCollection?

• a Stack IS NOT an OrderedCollection!

• We cannot substitute an OrderedCollection by a Stack

• Some messages do not make sense on Stack

• Stack new addLast: anObject

• Stack new last

• So we have to block a lot of methods...

3 S.Ducasse

!"#$

Consequences...

Stack>>removeLast
    self shouldNotImplement

Stack>>pop
   ^ super removeLast

4



S.Ducasse

!"#$

The Problem
• There is not a clean simple relationship between Stack and 

OrderedCollection

• Stack interface is not an extension or subset of 
OrderedCollection interface

• Compare with CountingStack a subclass of Stack

• CountingStack is an extension

5 S.Ducasse

!"#$

Another Approach

By defining the class Stack that uses 
OrderedCollection

Object subclass: Stack
     iv: elements

Stack>>push: anElement
    elements addFirst: anElement
Stack>>pop
    element isEmpty ifFalse: [^ element removeFirst]

6

S.Ducasse

!"#$

Inheritance and Polymorphism
• Polymorphism works best with standard interfaces

• Inheritance creates families of classes with similar 
interfaces

• Abstract class describes standard interfaces

• Inheritance helps software reuse by making polymorphism 
easier

7 S.Ducasse

!"#$

Specification Inheritance 
• Subtyping

• Reuse of specification

• A program that works with Numbers will work with 
Fractions.

• A program that works with Collections will work with 
Arrays.

• A class is an abstract data type (Data + operations to 
manipulate it)

8



S.Ducasse

!"#$

Inheritance for Code Reuse 
• Subclassing

• Dictionary is a subclass of Set

• Semaphore is a subclass of LinkedList

• No relationship between the interfaces of the classes

• Subclass reuses code from superclass, but has a different 
specification.  It cannot be used everywhere its superclass 
is used.  Usually overrides a lot of code.

• ShouldNotImplement use is a bad smell…

9 S.Ducasse

!"#$

Inheritance for Code Reuse 
• Inheritance for code reuse is good for

• rapid prototyping

• getting application done quickly.

• Bad for:

• easy to understand systems

• reusable software

• application with long life-time.

10

S.Ducasse

!"#$

Subtyping Essence
• You reuse specification

• You should be able to substitute an instance by one of its 
subclasses (more or less)

• There is a relationship between the interfaces of the class 
and its superclass

11 S.Ducasse

!"#$

How to Choose?
• Favor subtyping

• When you are in a hurry, do what seems easiest.

• Clean up later, make sure classes use “is-a” relationship, not 
just “is-implemented-like”. 

• Is-a is a design decision, the compiler only enforces is-
implemented-like!!!

12



S.Ducasse

!"#$

Quizz
– Circle subclass of Point? 

– Poem subclass of OrderedCollection? 

13


