
Stéphane Ducasse

Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

!"#$

Design Points - Law of
Demeter

Stéphane Ducasse --- 2005

1
S.Ducasse !"#$

About Coupling
• Why coupled classes is fragile design?
• Law of Demeter
• Thoughts about accessor use

2

S.Ducasse

!"#$

The Core of the Problem

3
S.Ducasse

!"#$

The Law of Demeter

You should only send messages to:
an argument passed to you

instance variables

an object you create

self, super

your class

Avoid global variables
Avoid objects returned from message sends other
than self

4

S.Ducasse

!"#$

Correct Messages

someMethod: aParameter
! self foo.

! super someMethod: aParameter.

! self class foo.

! self instVarOne foo.

! instVarOne foo.

! aParameter foo.

! thing := Thing new.

! thing foo

5 S.Ducasse

!"#$

In other words
• Only talk to your immediate friends.

• In other words:

• You can play with yourself. (this.method())

• You can play with your own toys (but you can't take them
apart). (field.method(), field.getX())

• You can play with toys that were given to you. (arg.method())

• And you can play with toys you've made yourself. (A a =
new A(); a.method())

6

S.Ducasse

!"#$

Halt!

7 S.Ducasse

!"#$

To not skip your intermediate

8

S.Ducasse

!"#$

Solution

9 S.Ducasse

!"#$

Transformation

Engine
+ carburator

engine.carburetor.fuelValveOpen = true

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

carburetor.fuelValveOpen = true

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
- fuelValveOpen

+ openFuelValve

carburetor.openFuelValve() fuelValveOpen = true

Step 1

Step 2

10

S.Ducasse

!"#$

Law of Demeter’s Dark Side

Class A
! instVar: myCollection

A>>do: aBlock
! myCollection do: aBlock
A>>collect: aBlock
! ^ myCollection collect: aBlock
A>>select: aBlock
! ^ myCollection select: aBlock
A>>detect: aBlock
! ^ myCollection detect: aBlock
A>>isEmpty

11 S.Ducasse

!"#$

About the Use of Accessors

Some schools say: “Access instance variables using
methods”

But
Be consistent inside a class, do not mix direct access and
accessor use

First think accessors as protected methods that should
not be invoked by clients

Only when necessary put accessors in accessing protocol

!

12

S.Ducasse

!"#$

Example

Scheduler>>initialize
! self tasks: OrderedCollection new.

Scheduler>>tasks
! ^ tasks

But now everybody can tweak the tasks!

13 S.Ducasse

!"#$

Accessors

Accessors are good for lazy initialization

! ! Scheduler>>tasks
! ! tasks isNil ifTrue: [task := ...].

! ! ^ tasks

BUT accessors methods should be Protected by
default at least at the beginning

14

S.Ducasse

!"#$

Accessors open Encapsulation

The fact that accessors are methods doesn’t
support a good data encapsulation.
You could be tempted to write in a client:

! ! ScheduledView>>addTaskButton
! ! ! ...

! ! ! model tasks add: newTask

What’s happen if we change the representation of
tasks?

15 S.Ducasse

!"#$

Tasks

If tasks is now an array it will break

Take care about the coupling between your objects
and provide a good interface!
! Schedule>>addTask: aTask
! ! ! tasks add: aTask

!

ScheduledView>>addTaskButton
! ! ! ...

! ! ! model addTask: newTask

16

S.Ducasse

!"#$

About Copy Accessor

Should I copy the structure?

Scheduler>>tasks
 ^ tasks copy

But then the clients can get confused...

Scheduler uniqueInstance tasks removeFirst
and nothing happens!

17 S.Ducasse

!"#$

Use intention revealing names

Better

Scheduler>>taskCopy or copiedTasks
 “returns a copy of the pending tasks”

 ^ task copy

18

S.Ducasse

!"#$

Provide a Complete Interface

Workstation>>accept: aPacket
! ! aPacket addressee = self name

! ! ! …

It is the responsibility of an object to offer a
complete interface that protects itself from client
intrusion.
Shift the responsibility to the Packet object
Packet>>isAddressedTo: aNode
! ^ addressee = aNode name

Workstation>>accept: aPacket

19

