
Stéphane Ducasse

Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

!"#$

Strategy

1 S.Ducasse !"#$

Strategy

Define a family of algorithms,
encapsulate each in a separate
class and define each class with
the same interface so that they can
be interchangeable.

Also Know as Policy

2

S.Ducasse

!"#$

Strategy Intent

Define a family of algorithms, encapsulate each in a
separate class and define each class with the same
interface so that they can be interchangeable.

3 S.Ducasse

!"#$

Motivation

Many algorithms exist for breaking a stream into
lines. Hardwiring them into the classes that
requires them has the following problems:

Clients get more complex
Different algorithms can be used at different times
Difficult to add new algorithms at run-time

4

S.Ducasse

!"#$

Code Smells

Composition>>repair
 formatting == #Simple
 ifTrue: [self formatWihtSimpleAlgo]
 ifFalse: [formatting == #Tex
 ifTrue: [self formatWithTex]

 ]

5 S.Ducasse

!"#$

Alternative

Composition>>repair
 | selector |
 selector := (‘formatWith, formatting) asSymbol.
 self perform: selector

Still your class gets complex...

6

S.Ducasse

!"#$

Inheritance?

May not be the solution since:
- you have to create objects of the right class
- it is difficult to change the policy at run-time
- you can get an explosion of classes bloated with
the use of a functionality and the functionalities.
- no clear identification of responsibility

7 S.Ducasse

!"#$

Strategy Solution

8

S.Ducasse

!"#$

When

Many related classes differ only in their behavior
You have variants of an algorithm (space/time)
An algorithm uses data that the clients does not
have to know

9 S.Ducasse

!"#$

Structure

Composition>>repair
 formatter format: self

10

S.Ducasse

!"#$

Participants

Strategy (Compositor)
declares an interface common to all concrete strategies

Concrete Strategies
implement algorithm

Context
configure with concrete strategy

maintains a reference to the concrete strategy

may define an interface to let the strategy access data

11 S.Ducasse

!"#$

Collaborations (i)

Strategy and Context interact to implement the
chosen algorithm.

A context may pass all data required by the
algorithm to the strategy when the algorithm is
called

GraphVisualizer>>graphIt

 grapher plot: data using: graphPane pen

12

S.Ducasse

!"#$

Context passes itself as argument

Also know as self-delegation...

GraphVisualizer>>graphIt
 grapher plotFor: self

BartChartGrapher>>plotFor: aGraphVisualizer
 |data|
 data := aGraphVisualizer data

13 S.Ducasse

!"#$

BackPointer

Grapher class>>for: aGraphVisualizer

 ^ self new graphVisualizer: aGraphVisualizer

BartChartGrapher>>plot
 ...

 graphVisualizer data..
 graphVisualizer pen

Grapher (Strategy) points directly to GraphVisualizer
(Context), so sharing strategy between different context

14

S.Ducasse

!"#$

Collaboration (ii)

“A context forwards requests from its clients to its
strategy. Clients usually create and pass a
ConcreteStrategy object to the context;
thereafter, clients interact with the context
exclusively. “ GOF

Not sure that the client has to choose...

15 S.Ducasse

!"#$

Consequences

Define a family of pluggable algorithms
Eliminates conditional statements
Clients can choose between several
implementations
Clients must be aware of the different strategies
Increase the number of objects
Communication overhead between client and
strategies
Weaken encapsulation of the client

16

S.Ducasse

!"#$

Domain-Specific Objects as Strategies

Strategies do not have to be limited to one single
algorithm
They may represent domain specific knowledge

Mortgage
FixedRateMortgage

OneYear...

17 S.Ducasse

!"#$

Known Uses

ImageRenderer in VW: “a technique to render an
image using a limited palette”
ImageRenderer

NearestPaint

OrderedDither

ErrorDiffusion

View-Controller
a view instance uses a controller object to handle
and respond to user input via mouse or keyboard.

18

