
Stéphane Ducasse

Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

!"#$

Composite

1
S.Ducasse

!"#$

Source

2

S.Ducasse

!"#$

Composite Intent
• Compose objects into tree structures to represent part-

whole hierarchies.

• Composite lets clients treat individual objects and
compositions of objects uniformly

3

Component
operation

Composite
operation
add:
remove:

Leaf
operation

children

children
 do: [:each | each operation]

Client

S.Ducasse

!"#$

Composite Pattern Motivation

4

S.Ducasse

!"#$

Composite Pattern Applicability
• Use the Composite Pattern when :

• you want to represent part-whole hierarchies of objects

• you want clients to be able to ignore the difference between
compositions of objects and individual objects. Clients will
treat all objects in the composite structure uniformly

5 S.Ducasse

!"#$

Composite Pattern Possible Design

6

S.Ducasse

!"#$

Composite Pattern Participants
• Component (Graphic)

• declares the interface for objects in the composition

• implements default behavior for the interface common to all
classes, as appropriate

• declares an interface for accessing and managing its child
components

• Leaf (Rectangle, Line, Text, ...)

• represents leaf objects in the composition. A leaf has no
children

• defines behavior for primitive objects in the composition

7 S.Ducasse

!"#$

Composite Pattern
• Composite (Picture)

• defines behaviour for components having children

• stores child components

• implements child-related operations in the Component
interface

• Client

• manipulates objects in the composition through the
Component interface

8

S.Ducasse

!"#$
Composite Pattern Collaborations
• Clients use the Component class interface to interact with

objects in the composite structure.

• Leaves handle requests directly.

• Composites forward requests to its child components

• Consequences

• defines class hierarchies consisting of primitive and
composite objects.

• Makes the client simple. Composite and primitive objects
are treated uniformly. (no cases)

• Eases the creation of new kinds of components

• Can make your design overly general

9 S.Ducasse

!"#$

An Alternate Structure
• Again structure is not intent!

Client

Component
children

operation

add:

remove:

children

10

S.Ducasse

!"#$

Queries...
• To be able to specify different queries over a repository

q1 := PropertyQuery property: #HNL with: #< value: 4.

q2 := PropertyQuery property: #NOM with: #> value: 10.
q3 := MatchName match: ‘*figure*’

• Compose these queries and treat composite queries as one
query

• ! (e1 e2 e3 e4 ... en)((q1 and q2 and q4) or q3) -> (e2 e5)

• ! composer := AndComposeQuery with: (Array with: q1 with: q2 with:
q3)

11
S.Ducasse

!"#$

A Possible Solution

AbstractQuery
runOn: aCollection
holdsOn: anElement

Matching
holdsOn: anElement

Composite
add: aQuery
remove: aQuery

And
holdsOn: anElement

Or
holdsOn: anElement

^ aCollection collect: [: each |
 self holdsOn: anElement]

^ anElement match: self pattern

^ (self right holdOn: anElement)
 and: [(self left holdOn: anElement)]

^ (self right holdOn: anElement)
 or: [(self left holdOn: anElement)]

12

S.Ducasse

!"#$

In Smalltalk
• Composite not only groups leaves but can also contain

composites

• In Smalltalk add:, remove: do not need to be declared into
Component but only on Composite. This way we avoid to
have to define dummy behavior for Leaf

13
S.Ducasse

!"#$

Composite Variations
• Use a Component superclass to define the interface and

factor code there.
• Consider implementing abstract Composite and Leaf (in case

of complex hierarchy)
• Only Composite delegates to children
• Composites can be nested
• Composite sets the parent back-pointer (add:/remove:)

14

S.Ducasse

!"#$

Composite Variations
• Can Composite contain any type of child? (domain issues)

• Is the Composite’s number of children limited?
• Forward

– Simple forward. Send the message to all the children and merge the
results without performing any other behavior

– Selective forward. Conditionally forward to some children

– Extended forward. Extra behavior

– Override. Instead of delegating

15
S.Ducasse

!"#$

Other Patterns
• Composite and Visitors

• Visitors walks on structured objects

• Composite and Factories

• Factories can create composite elements

16

