I INRIA

Rmod @

Composite

Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

Stéphane Ducasse |

Source
RMod @

THE

DESIGN PATTERNS

SMALLTALK COMPANION

12 of 12 people found the following review helpful:

Joicioic Easier to understand than the original GoF, February 4, 2000

Reviewer: Nicolas Weidmann (Zurich, Switzerland) - See all my reviews

This book gives you a better understanding of the patterns than in its original version (the GoF one). I am not a
SmallTalk programmer but a 9 years C++ one. At work I had to use the GoF book and never liked reading it. In
contrast to this, the SmallTalk companion is easy to read and you can understand the patterns within the first few lines
of their description. Take the Bridge pattern and compare their discussions in the two books. If you really like the Gof
one then buy it. But according to me, it would be a big mistake buying the GoF in favour of the SmallTalk companion.
Trust a C++ programmer :-)

Was this review helpful to you? (Yes) (_No (Report this)

S.Ducasse 2

Composite Intent)

® Compose objects into tree structures to represent part-
whole hierarchies.

® Composite lets clients treat individual objects and
compositions of objects uniformly

. Component
Client |—>|—|< ________ .
| operation children

children
Lgaf C 3 do: [:each | each operation]
operation operation —

add:
remove:

S.Ducasse

Composite Pattern Motivation

Y e
) | otine | | aRectangle

Graphic
Draw()
Add{Graphic)
Remove(Graphic)
GetChild{int)
I I I | graphics
Line Rectangle Text Picture
N\ R S ——— forall g in graj
Draw() Draw() Draw() Draw() © gmn o
Add(Graphic g) ©--=--= | 9.Draw()
Remove(Graphic) !
GetChild(int) ---‘I add g to kst of graphics H
S.Ducasse 4

Composite Pattern Applicability °°

® Use the Composite Pattern when :
® you want to represent part-whole hierarchies of objects
e you want clients to be able to ignore the difference between
compositions of objects and individual objects. Clients will
treat all objects in the composite structure uniformly

S.Ducasse 5

Composite Pattern Possible Desigf

abicture

stext | | atine | [sRectangle

Graphic

Draw()
Add(Graphic)

Remove(Graphic)

GefChild{int)
I 1 | araphice
Line Rectangle Text Picture
Draw() Draw() Draw() Draw() ©
Add(Graphic g) O-f=-==-- '
Remove(Graphic) |
'
GelChild(int) ---1 add g to kst of graphics
S.Ducasse 6

Composite Pattern Participants ¢

® Component (Graphic)
e declares the interface for objects in the composition
® implements default behavior for the interface common to all
classes, as appropriate
e declares an interface for accessing and managing its child
components
® Leaf (Rectangle, Line, Text, ...)
e represents leaf objects in the composition. A leaf has no
children
e defines behavior for primitive objects in the composition

S.Ducasse 7

Composite Pattern)

® Composite (Picture)
e defines behaviour for components having children
® stores child components
e implements child-related operations in the Component
interface
® Client
® manipulates objects in the composition through the
Component interface

S.Ducasse 8

Composite Pattern Collaboration$

® Clients use the Component class interface to interact with
objects in the composite structure.
® Leaves handle requests directly.
e Composites forward requests to its child components
® Consequences
e defines class hierarchies consisting of primitive and
composite objects.
e Makes the client simple. Composite and primitive objects
are treated uniformly. (no cases)
Eases the creation of new kinds of components
Can make your design overly general

S.Ducasse ?

An Alternate Structure

. ..
Queries...)

- To be able to specify different queries over a repository
ql := PropertyQuery property: #HNL with: #< value: 4.
q2 := PropertyQuery property: #NOM with: #> value: 10.

g3 := MatchName match: *figure®

- Compose these queries and treat composite queries as one

query

. (el e2 e3 e4 ...en)((ql and g2 and q4) or g3) -> (e2 e5)

. composer := AndComposeQuery with: (Array with: q1 with: g2 with:
q3)

S.Ducasse

RMod @
® Again structure is not intent!
Component children
children
add:
remove:
S.Ducasse 0
AP ible Soluti o®
ossible Solution o

S.Ducasse

A Query
runOn: aCollection ——|
holdsOn: anElement

A aCollection collect: [: each |
self holdsOn: anElement]

[Matching____| Composite
holdsOn: anElement add: aQuery
remove: aQuery

A anElement match: self pattern // \\

[And W | Or |
/ holdsOn: anElement | [holdsOn: anElement |
A (self right holdOn: anElement) A (self right holdOn: anElement)
and: [(self left holdOn: anElement)] or: [(self left holdOn: anElement)]

Composite Variations

r\{J
RMod @

Use a Component superclass to define the interface and
factor code there.

- Consider implementing abstract Composite and Leaf (in case

of complex hierarchy)

- Only Composite delegates to children
- Composites can be nested
- Composite sets the parent back-pointer (add:/remove:)

S.Ducasse

®
In Smalltalk .
Composite not only groups leaves but can also contain
composites
In Smalltalk add:, remove: do not need to be declared into
Component but only on Composite. This way we avoid to
have to define dummy behavior for Leaf
S.Ducasse 13
. o ®
Composite Variations)

-+ Can Composite contain any type of child? (domain issues)

S.Ducasse

Is the Composite’s number of children limited?

Forward
- Simple forward. Send the message to all the children and merge the
results without performing any other behavior
- Selective forward. Conditionally forward to some children
- Extended forward. Extra behavior
- Override. Instead of delegating

Other Patterns o

S.Ducasse

RMod @
® Composite and Visitors

® Visitors walks on structured objects

® Composite and Factories
e Factories can create composite elements

