
Stéphane Ducasse

Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

!"#$

Singleton

1
S.Ducasse

!"#$

Singleton

Ensure that a class has only
one instance, and provide a
global point of access to it

2

S.Ducasse

!"#$

The Singleton Pattern

• Intent: Ensure that a class has only one
instance, and provide a global point of access to
it

• Problem: We want a class with a unique
instance.

• Solution: We specialize the #new class method
so that if one instance already exists this will be
the only one. When the first instance is created,
we store and return it as result of #new.

3
S.Ducasse

!"#$

Singleton Possible Structure

4

S.Ducasse

!"#$

The Singleton Pattern

|aLan|
aLan := NetworkManager new
aLan == LAN new -> true
aLan uniqueInstance == NetworkManager new -> true
!! ! !

NetWorkManager class
! instanceVariableNames: 'uniqueInstance '

NetworkManager class>>new
 self error: ‘should use uniqueInstance’
!

NetworkManager class>>uniqueInstance
 uniqueInstance isNil
!! ifTrue: [uniqueInstance := self basicNew initialize].

5
S.Ducasse

!"#$

The Singleton Pattern

• Providing access to the unique instance is not
always necessary.

• It depends on what we want to express. The
difference between #new and #uniqueInstance is
that #new potentially initializes a new instance,
while #uniqueInstance only returns the unique
instance (there is no initialization)

• Do we want to communicate that the class has a
singleton? new? defaultInstance?

6

S.Ducasse

!"#$

Implementation Issues

• Singletons may be accessed via a global variable (ex:
NotificationManager uniqueInstance notifier).
!! SessionModel>>startupWindowSystem
!! ! “Private - Perform OS window system startup”
!! ! Notifier initializeWindowHandles.
!! ! ...
!! ! oldWindows := Notifier windows.
!! ! Notifier initialize.
!! ! ...
!! ! ^oldWindows

• Global Variable or Class Method Access
– Global Variable Access is dangerous: if we reassign Notifier we

lose all references to the current window.
– Class Method Access is better because it provides a single access

point. This class is responsible for the singleton instance
(creation, initialization,...).

7
S.Ducasse

!"#$

Implementation Issues

Persistent Singleton: only one instance exists
and its identity does not change (ex:
NotifierManager in Visual Smalltalk)

Transient Singleton: only one instance exists at
any time, but that instance changes (ex:
SessionModel in Visual Smalltalk,
SourceFileManager, Screen in VisualWorks)

Single Active Instance Singleton: a single

8

S.Ducasse

!"#$

Implementation Issues

classVariable or class instance variable
classVariable

One singleton for a complete hierarchy

Class instance variable
One singleton per class

9 S.Ducasse

!"#$

Access?

In Smalltalk we cannot prevent a client to send a
message (protected in C++). To prevent additional
creation we can redefine new/new:

Object subclass: #Singleton
! instanceVariableNames: ‘uniqueInstance’

! classVariableNames: ‘’

! poolDictionaries: ‘’

Singleton class>>new

10

S.Ducasse

!"#$

Access using new: not good idea

Singleton class>>new
! ! ^self uniqueInstance

The intent (uniqueness) is not clear anymore! New
is normally used to return newly created instances.
The programmer does not expect this:

! ! ! |screen1 screen2|
! ! ! screen1 := Screen new.
! ! ! screen2 := Screen uniqueInstance

11 S.Ducasse

!"#$

Favor Instance Behavior

When a class should only have one instance, it
could be tempting to define all its behavior at the
class level. But this is not good:

Class behavior represents behavior of classes: “Ordinary
objects are used to model the real world. MetaObjects
describe these ordinary objects”

Do not mess up this separation and do not mix domain
objects with metaconcerns.

12

S.Ducasse

!"#$

Time and not Scope

Singleton is about time not access
time: only one instance is available at the same time

access: can’t you add an instance to refer to the object?

Singleton for access are as bad as global variables

Often we can avoid singleton by passing/referring
to the object instead of favoring a global access
point

13

