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Singleton

Ensure that a class has only 
one instance, and provide a 
global point of access to it
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The Singleton Pattern

• Intent: Ensure that a class has only one 
instance, and provide a global point of access to 
it

• Problem: We want a class with a unique 
instance.

• Solution: We specialize the #new class method 
so that if one instance already exists this will be 
the only one. When the first instance is created, 
we store and return it as result of #new. 
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Singleton Possible Structure
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The Singleton Pattern

|aLan|
aLan := NetworkManager new
aLan == LAN new -> true
aLan uniqueInstance == NetworkManager new -> true
!! ! !

NetWorkManager class
!     instanceVariableNames: 'uniqueInstance '

NetworkManager class>>new
      self error: ‘should use uniqueInstance’ 
!

NetworkManager class>>uniqueInstance
    uniqueInstance isNil 
!! ifTrue: [ uniqueInstance := self basicNew initialize].
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The Singleton Pattern

• Providing access to the unique instance is not 
always necessary. 

• It depends on what we want to express. The 
difference between #new and #uniqueInstance is 
that #new potentially initializes a new instance, 
while #uniqueInstance only returns the unique 
instance (there is no initialization)

• Do we want to communicate that the class has a 
singleton? new? defaultInstance? 
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Implementation Issues

• Singletons may be accessed via a global variable (ex: 
NotificationManager uniqueInstance notifier). 
!! SessionModel>>startupWindowSystem
!! ! “Private - Perform OS window system startup”
!! ! Notifier initializeWindowHandles.
!! ! ...
!! ! oldWindows := Notifier windows.
!! ! Notifier initialize.
!! ! ...
!! ! ^oldWindows

• Global Variable or Class Method Access
– Global Variable Access is dangerous: if we reassign Notifier we 

lose all references to the current window.
– Class Method Access is better because it provides a single access 

point. This class is responsible for the singleton instance 
(creation, initialization,...).
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Implementation Issues

Persistent Singleton: only one instance exists 
and its identity does not change (ex: 
NotifierManager in Visual Smalltalk)

Transient Singleton: only one instance exists at 
any time, but that instance changes (ex: 
SessionModel in Visual Smalltalk, 
SourceFileManager, Screen in VisualWorks) 

Single Active Instance Singleton: a single 
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Implementation Issues

classVariable or class instance variable
classVariable

One singleton for a complete hierarchy

Class instance variable
One singleton per class
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Access?

In Smalltalk we cannot prevent a client to send a 
message (protected in C++). To prevent additional 
creation we can redefine new/new: 

Object subclass: #Singleton
! instanceVariableNames: ‘uniqueInstance’

! classVariableNames: ‘’

! poolDictionaries: ‘’

Singleton class>>new
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Access using new: not good idea

Singleton class>>new
! ! ^self uniqueInstance

The intent (uniqueness) is not clear anymore! New 
is normally used to return newly created instances. 
The programmer does not expect this:

! ! ! |screen1 screen2|
! ! ! screen1 := Screen new.
! ! ! screen2 := Screen uniqueInstance
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Favor Instance Behavior

When a class should only have one instance, it 
could be tempting to define all its behavior at the 
class level. But this is not good:

Class behavior represents behavior of classes: “Ordinary 
objects are used to model the real world. MetaObjects 
describe these ordinary objects”

Do not mess up this separation and do not mix domain 
objects with metaconcerns.
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Time and not Scope

Singleton is about time not access
time: only one instance is available at the same time

access: can’t you add an instance to refer to the object?

Singleton for access are as bad as global variables

Often we can avoid singleton by passing/referring 
to  the object instead of favoring a global access 
point

13


