
Stéphane Ducasse

Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

!"#$

Visitor

1
S.Ducasse

!"#$

Visitor

Represent an operation to
 be performed on the
elements of an object
structure in a class separate
from the elements
themselves. Visitor
lets you define a new
operation without changing
the classes of the elements
on which it operates.

2

S.Ducasse

!"#$

Intent: Represent an operation to be performed
on the elements of an object structure in a class
separate from the elements themselves. Visitor lets
you define a new operation without changing the
classes of the elements on which it operates.

Visitor Intent

3 S.Ducasse

!"#$

Visitor Possible Structure

4

S.Ducasse

!"#$

Whenever you have a number of items on which
you have to perform a number of actions, and
When you ‘decouple’ the actions from the items.
Examples:

the parse tree (ProgramNode) uses a visitor for the
compilation (emitting code on CodeStream)

GraphicsContext is a visitor for VisualComponents,
Geometrics, and some other ones (CharacterArray, ...)

Rendering documents

When to use a Visitor

5 S.Ducasse

!"#$

So all our problems are solved, no?
Well...

when to use a visitor

control over item traversal

choosing the granularity of visitor methods

implementation tricks

Applying the Visitor

6

S.Ducasse

!"#$

Use a Visitor:
when the operations on items change a lot.

Do not use a visitor:
when the items you want to visit change a lot.

Question: But how do we know what to choose
up-front?

When to Use a Visitor

7 S.Ducasse

!"#$

Language to deal with arithmetic expressions.
It supports one kind of number, and has +, *, (,)
We want to evaluate expressions, and print them.
Example:

 1 + 1

 result: 1 + 1 = 2

 ((4 * 2) * (3 + 5)) * 3

 result: (4 * 2 * (3 + 5)) * 3 = 192

...

Visitor Toy Example

8

S.Ducasse

!"#$

Visitor Toy Example: ParseTree

9 S.Ducasse

!"#$

Two solutions:
add methods for evaluating, printing, ... on Expression and
its subclasses

create a Visitor, add the visit methods on Expression and
its subclasses, and implement visitors for evaluation,
printing, ...

Implementing the Actions

10

S.Ducasse

!"#$

Visitor Toy Example Solution 1

11 S.Ducasse

!"#$

Visitor Toy Example 2

12

S.Ducasse

!"#$

So which solution to take?
In this case you might say:

printing is not easy

adding it directly on Expression clutters Expression (need
to add instance variables etc.)

therefore we can factor out the printing on a separate
class.

if we do this with a visitor we can then implement
evaluation there as well.

Toy Example: Discussion

13 S.Ducasse

!"#$

Smalltalk has class extensions:
method addition

method replacement

So ‘Decoupling’ actions from items can be done:
e.g., put all the printing methods together.

take care: works only for methods

makes it also really easy to package a visitor!

Note: this is a static solution!

Smalltalk’s class extensions

14

S.Ducasse

!"#$

Somewhere in the visitor, items are traversed.
Different places where the traversal can be
implemented:

in the visitor

on the items hierarchy

Controlling the traversal

15 S.Ducasse

!"#$

Traversal on the Visitor

Times
acceptVisitor:
...

Operation
left
right
acceptVisitor:
...

Expression
acceptVisitor:

Number
acceptVisitor:
...

Printer
visitNumber:
visitOperation:
visitPlus:
visitTimes:

Evaluator
visitNumber:
visitOperation:
visitPlus:
visitTimes:

Visitor
visitNumber:
visitOperation:
visitPlus:
visitTimes:

Plus
acceptVisitor:
...

aPlus left acceptvisitor: self.
self printPlus.
aPlus right acceptVisitor:
self.

aVisitor visitPlus: self | l r |
l := aPlus left acceptvisitor: self.
r := aPlus right acceptVisitor:
self.
^l + r

16

S.Ducasse

!"#$

Traversal on the Items

self left visit: aVisitor.
self right visit: aVisitor.
aVisitor visitPlus: self.

Times
acceptVisitor:
...

Operation
left
right
acceptVisitor:
...

Expression
acceptVisitor:

Number
acceptVisitor:
...

Printer
visitNumber:
visitOperation:
visitPlus:
visitTimes:

Visitor
visitNumber:
visitOperation:
visitPlus:
visitTimes:

Plus
acceptVisitor:
...

Evaluator
numberStack
visitNumber:
visitOperation:
visitPlus:
visitTimes:

self push: aNumber

^self sumStack

17 S.Ducasse

!"#$

Sometimes you can pass context information with
the visit methods
So visitors have more information for
implementing their operations

Granularity of Visit Methods

18

S.Ducasse

!"#$

Regular case: nothing special is going on

Granularity of Visit Methods

19 S.Ducasse

!"#$

Here methods allow finer control of variables
(#doTemporaryVariable)

Refined Granularity

20

S.Ducasse

!"#$

You can implement it as we have shown before.
But notice the general structure of the methods!
This can be taken as advantage:

code can be generated for a visitor.

the method can be performed/invoked

But take care:
only works when there is a full correspondence.

can make the code hard to understand.

Implementation Tricks

21 S.Ducasse

!"#$

Using #perform:

22

