
Stéphane Ducasse

Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

!"#$

Selected Design Patterns

1
S.Ducasse !"#$

Goal
What are patterns?
Why?
Patterns are not god on earth
Example

2

S.Ducasse !"#$

Design Patterns
Design patterns are recurrent solutions to design
problems

They are names
Composite, Visitor, Observer...

There are pros and cons

3 S.Ducasse

!"#$

• Christoffer Alexander

• “The Timeless Way of Building”, Christoffer Alexander,
Oxford University Press, 1979, ISBN 0195024028

• More advanced than what is used in computer science

• only the simple parts got used.

• pattern languages were skipped.

From Architecture

4

S.Ducasse

!"#$

Why Patterns?
• Smart

• Elegant solutions that a novice would not think of

• Generic

• Independent on specific system type, language

• Well-proven

• Successfully tested in several systems

• Simple

• Combine them for more complex solutions

• There are really stupid patterns (supersuper) in some
books so watch out!!!

5 S.Ducasse

!"#$

• Reusable solutions to common problems

based on experiences from real systems

• Names of abstractions above class and object level

a common vocabulary for developers

• Handling of functional and non-functional aspects

• separating interfaces/implementation, loose coupling between
parts, …

• A basis for frameworks and toolkits

basic constructs to improve reuse

• Education and training support

Patterns provide...

6

S.Ducasse

!"#$

• Pattern name

Increase of design vocabulary

• Problem description

When to apply it, in what context to use it

• Solution description (generic !)

The elements that make up the design, their relationships,
responsibilities, and collaborations

• Consequences

Results and trade-offs of applying the pattern

Elements in a Pattern

7 S.Ducasse !"#$

Example
The composite pattern...

Open the other file :)

8

S.Ducasse !"#$

Patterns...

9 S.Ducasse

!"#$

• Creational Patterns

• Instantiation and configuration of classes and objects

• Structural Patterns

• Usage of classes and objects in larger structures, separation
of interfaces and implementation

• Behavioral Patterns

• Algorithms and division of responsibility

• Concurrency

• Distribution

• Security

Categories of Design Patterns

10

S.Ducasse

!"#$

Some Creational Patterns
• Abstract factory

• Builder

• Factory Method

• Prototype

• Singleton

11 S.Ducasse

!"#$

Some Structural Patterns
• Adapter

• Bridge

• Composite

• Decorator

• Façade

• Flyweight

• Proxy

12

S.Ducasse

!"#$

Some Behavioral Patterns
• Chain of responsibility

• Command

• Interpreter

• Iterator

• Mediator

• Memento

• Observer

• State

• Strategy

• Template Method

• Visitor

13 S.Ducasse

!"#$
Alert!!! Design Patterns are invading
• Design Patterns may be a real plague!

• Do not apply them when you do not need them

• Design Patterns make the software more complex
– More classes

– More indirections, more messages

• Try to understand when NOT applying them!

14

S.Ducasse

!"#$

About Pattern Implementation
• This is POSSIBLE implementation not a definitive one

• Do not confuse structure and intent!!!

• Patterns are about INTENT
 and TRADEOFFS

15 S.Ducasse

!"#$

Source

16

S.Ducasse

Wrap-up
Patterns are names

Patterns are about tradeoffs
Know when not to apply them

17

