
Stéphane Ducasse

Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

!"#$Naming Smalltalk
Patterns

1
S.Ducasse !"#$

Coding Standards
Mainly from Smalltalk Best
Practice Patterns by K. Beck
Excellent
Must read!

2

S.Ducasse

!"#$

Coding Standards
• Standards

• improve communication

• let code be the design

• make code more habitable

• change

3 S.Ducasse

!"#$

Coding Standards for Smalltalk
• Variables have no types

• Names can be any length

• Operations named with keywords

• Pretty printer

4

S.Ducasse

!"#$

Names
• Names should mean something.

• Standard protocols

• Object (printOn:, =)

• Collection (do:, add:, at:put:, size)

• Standard naming conventions

5 S.Ducasse

!"#$

Intention Revealing Selector
• Readability of message send is more important than

readability of method

• Name should specify what method does, not how.

• aDoor open

• and not

• aDoor putPressureOnHandleThenPullWithRotation

6

S.Ducasse

!"#$

Examples

ParagraphEditor>>highlight: aRectangle
! ! self reverse: aRectangle
If you would replace highlight: by reverse: , the
system will run in the same way but you would
reveal the implementation of the method.

7 S.Ducasse

!"#$

Examples

If we choose to name after HOW it accomplished
its task
! Array>>linearSearchFor:,
 Set>>hashedSearchFor:,
 BTree>>treeSearchFor:

These names are not good because you have to
know the type of the objects.
Collection>>searchFor:
even better

8

S.Ducasse

!"#$

Instead of:
! setTypeList: aList
! "add the aList elt to the Set of type taken by the
variable"

! typeList add: aList.

Write:

! addTypeList: aList
! "add the aList elt to the Set of type taken by the

Name your Method Well

9 S.Ducasse

!"#$

setType: aVal
 "compute and store the variable type"
 self addTypeList: (ArrayType with: aVal).
 currentType := (currentType computeTypes: (ArrayType with: aVal))

Not precise, not good

computeAndStoreType: aVal
"compute and store the variable type"

self addTypeList: (ArrayType with: aVal).

currentType := (currentType computeTypes: (ArrayType with: aVal))

Precise, give to the reader a good idea of the
functionality and not about the implementation

Name Well your Methods

10

S.Ducasse !"#$

Method Names

11 S.Ducasse

!"#$

Method Names
• If there is already a standard name, use it otherwise

follow these rules.

• Three kinds of methods

• change state of receiver

• change state of argument

• return value from receiver

12

S.Ducasse

!"#$

Change State of Receiver
• method name is verb phrase

• translateBy:

• add:

13 S.Ducasse

!"#$

Change State of Argument
• Verb phrase ending with preposition like on or to.

• displayOn:

• addTo:

• printOn:

14

S.Ducasse

!"#$

Return Value from Receiver
• Method name is noun phrase or adjective, a description

rather than a command

• translatedBy:

• size

• topLeft

15 S.Ducasse

!"#$

Method Names
• Specialized names for specialized purposes.

• Double-dispatching methods

• Accessing methods

• Query methods

• Boolean property setting

• Converter methods

16

S.Ducasse

!"#$

Accessing Methods
• Many instance variables have accessing methods, methods

for reading and writing them.

• Same name than the instance variables

• Accessing methods come in pairs.

• name, name:

• width, width:

• x, x:

17 S.Ducasse

!"#$

When to use Accessing Methods
• Two opinions:

• Always, including an object’s own instance variable

• lazy initialization, subclassing is easier

• Only when you need to use it.

• better information hiding

• With the refactoring browser it is easy to transform the
class using or not accessing

18

S.Ducasse

!"#$

Query Method
• Methods that return a value often describe the type of the

value because they are noun phrases.

• Query methods are not noun phrases, but are predicates.

• How can we make the return type clear?

• Provide a method that returns a Boolean in the “testing”
protocol. Name it by prefacing the property name with a
form of “be” or “has”- is, was, will, has

19 S.Ducasse

!"#$

Testing Methods
• Prefix every testing method with "is".

• isNil

• isControlWanted

• isEmpty

• hasBorder

20

S.Ducasse

!"#$

Converting Method
• Often you want to return the receiver in a new format.

• Prepend "as" to the name of the class of object returned.

• asSet (in Collection)

• asFloat (in Number)

• asComposedText (in Text)

21 S.Ducasse !"#$

Classes

22

S.Ducasse

!"#$

Simple Superclass Name
• What should we call the root of a hierarchy?

• Complex name conveys full meaning.

• Simple name is easy to say, type, extend.

• But need to show that subclasses are related.

23 S.Ducasse

!"#$

Simple Superclass Name
• Give superclasses simple names: two or (preferably) one

word

• Number

• Collection

• VisualComponent

24

S.Ducasse

!"#$

Qualified Subclass Name
• What should you call a subclass that plays a role similar to

its superclass?

• Unique name conveys most information

• Derived name communicates relationship to superclass

25 S.Ducasse

!"#$

Qualified Subclass Name
• Use names with obvious meaning. Otherwise, prepend an

adjective to most important superclass.

• OrderedCollection

• UndefinedObject

• CloneFigureCommand, CompositeCommand,
ConnectionCommand

26

S.Ducasse !"#$27 S.Ducasse

!"#$

Variables: Roles vs. Types
• Types are specified by classes

• aRectangle

• aCollection

• aView

• Roles - how an object is used

• location

• employees

• topView

28

S.Ducasse

!"#$

Role Suggesting Instance Variable
• What should you name an instance variable?

• Type is important for understanding implementation. But
class comment can describe type.

• Role communicates intent, and this harder to understand
than type.

29 S.Ducasse

!"#$

Role Suggesting Instance Variable
• Name instance variables for the role they play. Make the

name plural if the variable is a collection.

• Point: x, y

• Interval: start, stop, step

• Polyline: vertices

30

S.Ducasse

!"#$

Type Suggesting Parameter Name
• Name of variable can either communicate type or role.

• Keywords communicate their parameter's role, so name of
variable should give new information.

31 S.Ducasse

!"#$

Type Suggesting Parameter Name
• Name parameters according to their most general

expected class, preceded by "a" or "an". If there is more
than one parameter with the same expected class, precede
the class with a descriptive word.

32

S.Ducasse

!"#$

Temporaries
• Name temporaries after role they play.

• Use temporaries to:

• collect intermediate results

• reuse result of an expression

• name result of an expression

• Methods are simpler when they don't use temporaries!

33 S.Ducasse

Conclusion
Names are important
Programming is about

communication

intention

…

Read the book:
Smalltalk Best Practice Patterns

Even if you will program in Java or C#!

When the program compiles this is the start not
the end…

34

