B INRIA
0@ Goal
Rmod @ Abstract classes
Examples
Abstract Classes
Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/
o0
Stéphane Ducasse | S.Ducasse 2 ‘Mo @
(J . ()
Abstract Classes) Abstract Classes in Smalltalk ¢
¢ Should not be instantiated (abstract in Java) ® Depending of the situation, override new to produce an
® But can define complete methods. error.
® Defines a protocol common to a hierarchy of classes that ® No construct: Abstract methods send the message self
is independent from the representation choices. subclassResponsibility
® A class is considered as abstract as soon as one of the
methods to which it should respond to is not ® Tools check this situation and exploit it.
implemented (can be a inherited one). ® Abstract classes are not syntactically different from

instantiable classes, but a common convention is to use
class comments: So look at the class comment and write in
the comment which methods are abstract and should be
specialized.

S.Ducasse 3 S.Ducasse 4

O
Goal ®
RMod .

Abstract classes
Examples

S.Ducasse

()
Example ‘
RMod @
Boolean>>not
"Negation. Answer true if the receiver is false, answer
false if the receiver is true."
self subclassResponsibility
S.Ducasse 5
Boolean Obj iy
oolean jects
RMod @
. Boolean
false and true are objects |
. &
described by classes or:
and:
Boolean, True and False TrucfFalse:
False True
| i
& &
or: or:
and: and:
ifTrue:ifFalse: ifTrue:ifFalse:
A A
| |
| |
| |
false true

S.Ducasse
7

Conditional: messages to booleans’

- aBoolean ifTrue: aTrueBlock ifFalse: aFalseBlock
- aBoolean ifFalse: aFalseBlock ifTrue: aTrueBlock
- aBoolean ifTrue: aTrueBlock

- aBoolean ifFalse: aFalseBlock

(thePacket isAddressedTo: self)
ifTrue: [self print: thePacket]
ifFalse: [super accept: thePacket]

- Hint: Take care — true is the boolean value and True is the
class of true, its unique instance!

S.Ducasse
8

Boolean Hierarchy

Example %
Mo @

“Class Boolean is an abstract class that implements

behavior common to true and false. Its subclasses

are True and False. Subclasses must implement

methods for logical operations &, not, controlling

and;, or, ifTrue;, ifFalse;, if True:ifFalse:,

ifFalse:ifTrue:”

Boolean>>not
"Negation. Answer true if the receiver is false, answer
false if the receiver is true."

S.Ducasse 10

RMod @
® How to implement in OO true and false without
conditional?
® Late binding: Let the receiver Boolean
. I
decide! &
® Same message on false and true Zﬁd.
produces different results ifTruesifFalse:
False True
[[
& &
or: or:
and: and:
ifTrue:ifFalse: ifTrue:ifFalse:
S.Ducasse
Not o®
RMod @

S.Ducasse

false not -> true
true not -> false
Boolean>>not

"Negation. Answer true if the receiver is false, answer false if
the receiver is true.”

self subclassResponsibility

False>>not
"Negation -- answer true since the receiver is false."
Arue

True>>not
"Negation--answer false since the receiver is true."
Malse

o
| (Or) e
® true |true ->true
® true |false ->true

® true | anything -> true
* false | true -> true

* false | false -> false
¢ false | anything -> anything

S.Ducasse 12

o (]
Boolean>> | aBoolean i) False>> | aBoolean)
Mo Mo
Boolean>> | aBoolean false | true -> true
"Evaluating disjunction (OR). Evaluate the argument. false | false -> false
Answer true if either the receiver or the argument is false | anything -> anything
true."
. False>> | aBoolean
self subclassResponsibility "Evaluating disjunction (OR) -- answer with the
argument, aBoolean."
A aBoolean
S.Ducasse 13 S.Ducasse 14
True>> | aBool o® Boolean, T d Fal o®
rue | aboolean .o oolean, Irue an alse e
Mo Mo
Boolean
true | true -> true sav: . ____ .
storeOn: ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
true I false ->true zzd: self subclassResponsibility
true | anything -> true g
;70f
True>> | aBoolean
"Evaluating disjunction (OR) -- answer true since the o e
receiver is true." g'rl'-rue:ifFalse: ic;'?rue:iiFalse:
& &
not not
| |
A self : : : :
ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
A trueAlternativeBlock value
ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
A falseAlternativeBlock value
S.Ducasse 15 S.Ducasse 16

Abstract/Concrete ol @

Abstract method

Boolean>>not
"Negation. Answer true if the receiver is false, answer false if the
receiver is true."

self subclassResponsibility
Concrete method defined in terms of an

abstract method

Boolean>>xor:aBoolean
"Exclusive OR. Answer true if the receiver is not equivalent to
aBoolean."

A(self == aBoolean) not
When not is be defined in subclasses, xor: is

S.Ducasse 17

Block Use in Conditional? W‘:

- Why do conditional expressions use blocks?

+ Because, when a message is sent, the receiver and the
arguments of the message are always evaluated. Blocks are
necessary to avoid evaluating both branches.

S.Ducasse

. (J
Implementation Note iy
Note that the Virtual Machine shortcuts calls to

boolean such as condition for speed reason.

Virtual machines such as VisualWorks introduced a
kind of macro expansion, an optimisation for
essential methods and Just In Time (JIT)
compilation. A method is executed once and
afterwards it is compiled into native code. So the
second time it is invoked, the native code will be
executed.

S.Ducasse 19

Magnitude o®
RMod @
I'm abstract class that represents the objects that
can be compared between each other such as
numbers, dates, numbers.
My subclasses should implement
< aMagnitude
= aMagnitude
hash
Here are some example of my protocol:
3>4
5=6

S.Ducasse 20

. o . o
Magnitude ‘ Magnitude ®
RMod @ RMod @
Magnitude>> < aMagnitude Magnitude>> <= aMagnitude
Aself subclassResponsibility A(self > aMagnitude) not
Magnitude>> = aMagnitude Magnitude>> > aMagnitude
Aself subclassResponsibility AaMagnitude < self
Magnitude}a\>|>f habsT R bilic Magnitude>> >= aMagnitude
Sell sbclassResponsibiity A(self < aMagnitude) not
Magnitude>> between: min and: max
S.Ducasse 21 S.Ducasse 2
() @
Date ' Date ®
RMod @ RMod @
Subclass of Magnitude Date>>< aDate
"Answer whether the argument, aDate, precedes
Date today < Date newDay: |5 month: |0 year: the date of the rec."
1998
-> false year = aDate year

ifTrue: [*day < aDate day]
ifFalse: [*year < aDate year]

S.Ducasse 23 S.Ducasse 24

Date

Date>>= aDate
"Answer whether the argument, aDate, is the
same day as the receiver."

self species = aDate species
ifTrue: ["day = aDate day & (year = aDate
year)]
ifFalse: [*Malse]

Date>>hash

S.Ducasse 25

o0
RMod @

What you should know

- What is an abstract class?
+ What can we do with it?

S.Ducasse

26

