
Stéphane Ducasse

Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

!"#$

Abstract Classes

1 S.Ducasse !"#$

Goal
Abstract classes
Examples

2

S.Ducasse

!"#$

Abstract Classes
• Should not be instantiated (abstract in Java)

• But can define complete methods.

• Defines a protocol common to a hierarchy of classes that
is independent from the representation choices.

• A class is considered as abstract as soon as one of the
methods to which it should respond to is not
implemented (can be a inherited one).

3 S.Ducasse

!"#$

Abstract Classes in Smalltalk
• Depending of the situation, override new to produce an

error.

• No construct: Abstract methods send the message self
subclassResponsibility

• Tools check this situation and exploit it.

• Abstract classes are not syntactically different from
instantiable classes, but a common convention is to use
class comments: So look at the class comment and write in
the comment which methods are abstract and should be
specialized.

4

S.Ducasse

!"#$

Example

Boolean>>not
"Negation. Answer true if the receiver is false, answer
false if the receiver is true."

 self subclassResponsibility

5 S.Ducasse

!"#$

Goal

Abstract classes
Examples

6

S.Ducasse

!"#$

Boolean

|

&

or:

and:

ifTrue:ifFalse:

False

|

&

or:

and:

ifTrue:ifFalse:

True

|

&

or:

and:

ifTrue:ifFalse:

truefalse

Boolean Objects

false and true are objects
described by classes
Boolean, True and False

7
S.Ducasse

!"#$

Conditional: messages to booleans
• aBoolean ifTrue: aTrueBlock ifFalse: aFalseBlock

• aBoolean ifFalse: aFalseBlock ifTrue: aTrueBlock

• aBoolean ifTrue: aTrueBlock
• aBoolean ifFalse: aFalseBlock

 (thePacket isAddressedTo: self)

 ifTrue: [self print: thePacket]

 ifFalse: [super accept: thePacket]

• Hint: Take care — true is the boolean value and True is the
class of true, its unique instance!

8

S.Ducasse

!"#$

Boolean

|

&

or:

and:

ifTrue:ifFalse:

False

|

&

or:

and:

ifTrue:ifFalse:

True

|

&

or:

and:

ifTrue:ifFalse:

Boolean Hierarchy
• How to implement in OO true and false without

conditional?

• Late binding: Let the receiver

decide!

• Same message on false and true

produces different results

S.Ducasse

!"#$

Example

“Class Boolean is an abstract class that implements
behavior common to true and false. Its subclasses
are True and False. Subclasses must implement
methods for logical operations &, not, controlling
and:, or:, ifTrue:, ifFalse:, ifTrue:ifFalse:,
ifFalse:ifTrue:”

Boolean>>not
"Negation. Answer true if the receiver is false, answer
false if the receiver is true."

10

S.Ducasse

!"#$

Not
false not -> true

true not -> false

Boolean>>not
"Negation. Answer true if the receiver is false, answer false if
the receiver is true.”

 self subclassResponsibility

False>>not
"Negation -- answer true since the receiver is false."

^true

True>>not
"Negation--answer false since the receiver is true."

^false

11 S.Ducasse

!"#$

| (Or)
• true | true -> true

• true | false -> true

• true | anything -> true

• false | true -> true

• false | false -> false

• false | anything -> anything

12

S.Ducasse

!"#$

Boolean>> | aBoolean

Boolean>> | aBoolean
"Evaluating disjunction (OR). Evaluate the argument.
Answer true if either the receiver or the argument is
true."

self subclassResponsibility

13 S.Ducasse

!"#$

False>> | aBoolean

false | true -> true
false | false -> false
false | anything -> anything

False>> | aBoolean
"Evaluating disjunction (OR) -- answer with the
argument, aBoolean."

^ aBoolean

14

S.Ducasse

!"#$

True>> | aBoolean

true | true -> true
true | false -> true
true | anything -> true

True>> | aBoolean
"Evaluating disjunction (OR) -- answer true since the
receiver is true."

^ self

15 S.Ducasse

!"#$

Boolean, True and False

Boolean

xor:
eqv:
storeOn:
and:

or:

ifTrue:ifFalse:

&

not

|

False

and:
or:
ifTrue:ifFalse:
&
not
|

True

and:
or:
ifTrue:ifFalse:
&
not
|

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

 self subclassResponsibility

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

 ^ trueAlternativeBlock value

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

 ^ falseAlternativeBlock value

16

S.Ducasse

!"#$

Abstract/Concrete

Abstract method
Boolean>>not

"Negation. Answer true if the receiver is false, answer false if the
receiver is true."

 self subclassResponsibility

Concrete method defined in terms of an
abstract method
Boolean>>xor: aBoolean

"Exclusive OR. Answer true if the receiver is not equivalent to
aBoolean."

! ^(self == aBoolean) not

When not is be defined in subclasses, xor: is

17 S.Ducasse

!"#$

Block Use in Conditional?
• Why do conditional expressions use blocks?

• Because, when a message is sent, the receiver and the
arguments of the message are always evaluated. Blocks are
necessary to avoid evaluating both branches.

18

S.Ducasse

!"#$

Implementation Note

Note that the Virtual Machine shortcuts calls to
boolean such as condition for speed reason.

Virtual machines such as VisualWorks introduced a
kind of macro expansion, an optimisation for
essential methods and Just In Time (JIT)
compilation. A method is executed once and
afterwards it is compiled into native code. So the
second time it is invoked, the native code will be
executed.

19 S.Ducasse

!"#$

Magnitude

I'm abstract class that represents the objects that
can be compared between each other such as
numbers, dates, numbers.
My subclasses should implement
 < aMagnitude
 = aMagnitude
 hash

Here are some example of my protocol:
 3 > 4
 5 = 6

20

S.Ducasse

!"#$

Magnitude

Magnitude>> < aMagnitude
^self subclassResponsibility

Magnitude>> = aMagnitude
! ^self subclassResponsibility

Magnitude>> hash
! ^self subclassResponsibility

21 S.Ducasse

!"#$

Magnitude

Magnitude>> <= aMagnitude
! ^(self > aMagnitude) not

Magnitude>> > aMagnitude
! ^aMagnitude < self

Magnitude>> >= aMagnitude
! ^(self < aMagnitude) not

Magnitude>> between: min and: max

22

S.Ducasse

!"#$

Date

Subclass of Magnitude

Date today < Date newDay: 15 month: 10 year:
1998
-> false

23 S.Ducasse

!"#$

Date

Date>>< aDate
 "Answer whether the argument, aDate, precedes
 the date of the rec."
!

 year = aDate year
 ! ifTrue: [^day < aDate day]
 ! ifFalse: [^year < aDate year]

24

S.Ducasse

!"#$

Date

Date>>= aDate
 "Answer whether the argument, aDate, is the
 same day as the receiver. "
!

 self species = aDate species
 ! ifTrue: [^day = aDate day & (year = aDate
year)]
 ! ifFalse: [^false]
!

Date>>hash

25 S.Ducasse

What you should know
• What is an abstract class?
• What can we do with it?

26

