B INRIA

Exceptions...a simple
introduction

Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

Stéphane Ducasse

Rmod @

Exceptions

Standardized by ANSI in 1996
Exception is the root of the exception hierarchy:
84 predefined exceptions.The two most important
classes are:

Error

Notification
Specialised into predefined exceptions -> subclass
them to create your own exceptions

Some methods of Exception:
defaultAction is executed when an exception occurs

S.Ducasse

r\{J
RMod @

Catching an Exception

Xyl
x:=17.
y:=0.
[x/y]
on: ZeroDivide
do: [:exception| Transcript show:

exception description, cr.
0...]

S.Ducasse

o0
RMod @

Signaling an Exception

Error signal
Warning signal: ‘description of the exception’

S.Ducasse

o0
RMod @

Exception

S.Ducasse

an Exception Handler is defined using on:do: and is
composed of

an exception class (ZeroDivide) and

a handler block [:theException| Transcript show:* division by
zero’]

An Exception Handler completes by returning
the value of the handler block in place of the
value of the protected block (here [x/y]).

We can exit the current method by putting an
explicit return inside the handler block

o0
RMod @

The Main Exceptions of VW o®

RMod @

Exception class Exceptional Event Default Action

Error Any program error Open a Notifier

Any error evaluating an

. A Inherited from Error
arithmetic

ArithmeticError

Any unusual event that

MessageNotUnderstood does not impair continued Inherited from Error
execution of the prosram
o Notification Any Do nothing continuing
Notification unusual event that does

executing
nat_imnair_ continued

An unusual event that the | Display Yes/No dialog and
Warning user should be informed return a boolean value to
about the sisnaler

S.Ducasse

E

S.Ducasse

xception Sets

Exception Sets
[do some work]
on: ZeroDivide, Warning
do: [:ex| what you want]

|exceptionSets|
exceptionSets := ExceptionSet with: ZeroDivide
with:Warning.
[do some work]
on: exceptionSets
do: [:ex| what you want]

o0
RMod @

Exception Environment)

Each process has its own exception environment: an
ordered list of active handlers.

Process starts -> list empty

[aaaa] on: Error do: [bbb] -> Error,bbb added to the
beginning of the list

When an exception is signaled, the system sends a
message to the first handler of the exception handler.
If the handler cannot handle the exception, the next one
is asked

If no handler can handle the exception then the default
action is performed

S.Ducasse

Resumable and Non-Resumable (i)

A handler block completes by executing the last
statement of the block.The value of the last statement is
then the value returned by the handler block.

Where this value should be returned depends:
Nonresumable (Error)

Sq: ([Error signal.‘Value from protected block’]
on: Error
do: [:ex|ex return: ‘Value from handler’])

> ‘Value from handler’

S.Ducasse

o0
RMod @

Resumable and Non-Resumable (ii)

Resumable (Warning, Notification)
In this case Notification signal raises an exception, then
the context is restored and the value returned normally
[Notification raiseSignal. ‘Value from protected block’]
on: Notification
do: [:ex|ex resume: ‘Value from handler’]

[Notification signal. 'Value from protected block']

on: Notification
do: [:ex|ex resume: 'Value from handler']

S.Ducasse

r\{J
Mod @

Resume:/Return:

Transcript show:

[Notification raiseSignal. 'Value from protected block']
on: Notification
do: [:ex| Transcript show: 'Entering handler ".
'Value from handler'.'5"]
-> Entering handler 5

S.Ducasse

o0
RMod @

Resume:/Return:

Transcript show: [Notification raiseSignal. 'Value from
protected block']
on: Notification
do: [:ex| Transcript show: 'Entering handler ".
ex resume: 'Value from handler'.'5']
> Entering handler Value from protected block

Transcript show: [Notification raiseSignal. 'Value from
protected']

on: Notification

do: [:ex| Transcript show: 'Entering handler '.

S.Ducasse

o0
RMod @

Exiting Handlers Explicitly e
RMod @

exit or exit: (VW specific) Resumes on a resumable and

returns on a nonresumable exception

resume or resume:Attempts to continue processing the

protected block, immeditely following the message that

triggered the exception.

return or return: ends processing the protected block
that triggered the exception

retry re-evaluates the protected block

retryUsing: evaluates a new block in place of the
protected block

S.Ducasse

Exiting Handlers Explicitly (ii) o®
RMod @

resignalAs: resignal the exception as another on

pass exit the current handler and pass to the next outer

handler, control does not return to the passer

outer as with pass, except will regain control if the outer

handler resumes

exit:, resume: and return: return their argument as the

return value, instead of the value of the final statement of
the handler block

S.Ducasse

()
Examples d
RMod @

Look in Exception class examples categories
-20to:2.0do: [:i |
[10.0 /i.Transcript cr; show: i printString]
on: Number divisionByZeroSignal do:
[:ex | Transcript cr; show: 'divideByZero abort'.
ex return]
]
-2.0
-1.0
divideByZero abort
1.0

S.Ducasse

Examples
RMod @

retry recreates the exception environment of active handlers

[x /]
on: ZeroDivide

do: [:exception|
y := 0.00001.
exception retry]

S.Ducasse

