
Stéphane Ducasse

Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

!"#$

Some Advanced Points on
Classes

1
S.Ducasse !"#$

Outline
Indexed Classes
Classes as Objects
Class Instance Variables and Methods
Class Variables
Pool Dictionaries

2

S.Ducasse

!"#$

Variable size instance

How do we represent objects whose size is
variable such an array

Array new: 10

Array new: 15

3 S.Ducasse

!"#$

Two Views on Classes

Named or indexed instance variables
Named: ‘addressee’ of Packet

Indexed: Array

Or looking at them in another way:
Objects with pointers to other objects

Objects with arrays of bytes (word, long)

!

Difference for efficiency reasons: arrays of bytes
(like C strings) are faster than storing an array of

4

S.Ducasse

!"#$

Types of Classes

Indexed ! Named Definition Method! Examples

No! ! Yes ! #subclass:...! ! ! Packet
Yes! ! Yes! #variableSubclass:! ! Array
Yes! ! No! #variableByteSubclass!! String

Method related to class types: #isPointers, #isBits,
#isBytes, #isFixed, #isVariable, #kindOfSubclass

5 S.Ducasse

!"#$

Constraints

Classes defined using #subclass: support any kind
of subclasses
Classes defined using #variableSubclass: can only
have: variableSubclass: or variableByteSubclass:
subclasses
pointer classes and byte classes don’t mix: e.g. only
byte subclasses of byte classes.

6

S.Ducasse

!"#$

Indexed Classes

For classes that need a variable number of instance
variables

ArrayedCollection variableSubclass: #Array
 ! instanceVariableNames: ''
 ! classVariableNames: ''
 ! poolDictionaries: ''
 ! category: 'Collections-Arrayed'

! Array new: 4 -> #(nil nil nil nil)

7 S.Ducasse

!"#$

Indexed Classes

Indexed variable is implicitly added to the list of
instance variables
Only one indexed instance variable per class
Access with #at: and #at:put:

(#at:put: answers the value, not the receiver)

Subclasses should also be indexed

8

S.Ducasse

!"#$

Index access

First access: anInstance at: 1
#size returns the number of indexed instance
variables
Instantiated with #new: max

! ! ! |t|
! ! ! t := (Array new: 4).
! ! ! t at: 2 put: 'lulu'.
! ! ! t at: 1 -> nil

9 S.Ducasse !"#$

Roadmap
Indexed Classes
Classes as Objects
Class Instance Variables and Methods
Class Variables
Pool Dictionaries

10

S.Ducasse

!"#$

The Meaning of is-a

A class defines the structure and the behavior of all
its instances.

Each instance possesses its own set of values.

Instances share the behavior defined in their class
with other instances via the instance of link.

11 S.Ducasse

!"#$

The Meaning of Is-a

Every object is an instance of a class.

When anObject receives a message,

the method is looked up in its class

And it continues possibly in

its superclasses

Every class is ultimately

a subclass of Object (except Object).

12

Object

Node

accept:

name

sendt:

node1

msg

1

2

go to the class

look in

the classes

S.Ducasse

!"#$

Lookup...

Object

Node

accept:

name

sendt:

node1

msg

1

2

go to the class

look in

the classes

13 S.Ducasse

!"#$

Remember: …

Example: macNode name
macNode is an instance of Workstation
=> name is looked up in the class Workstation
name is not defined in Workstation
=> lookup continues in Node
name is defined in Node
=> lookup stops + method executed

14

S.Ducasse !"#$

Roadmap
Indexed Classes
Classes as Objects
Class Instance Variables and Methods

Class Variables
Pool Dictionaries

15 S.Ducasse

!"#$

Class Methods

• As any object a (meta)class can have methods that
represent the behavior of its instance: a class

• Uniformity => Same rules as for normal classes
• No constraint: just normal methods
• Can only access instance variable of the class:

16

S.Ducasse

!"#$

Class Method Examples

NetworkManager class>>new can only access
uniqueInstance class instance variable and not
instance variables (like nodes).

Default Instance Creation class method:
new/new: and basicNew/basicNew: (see Direct Instance
Creation)

Packet new

Specific instance creation method
Packet send: ‘Smalltalk is fun’ to: #lpr!

17 S.Ducasse

!"#$

Class Instance Variables

• Like any object, a class is an instance of a class that can
have instance variables that represent the state of a class.

• When Point defines the new instance variable z, the
instances of Point have 3 value (one for x, one for y, and
one for z)

• When a metaclass defines a new instance variable, then
its instance (a Class) gets a new value in addition to
subclass, superclasses, methodDict…

18

S.Ducasse

!"#$

The Singleton Pattern
• A class having only one instance
• We keep the instance created in an instance variable

WebServer class
 instanceVariableNames: 'uniqueInstance’

WebServer class>>new
 self error: 'You should use uniqueInstance to get the unique instance'

WebServer class>>uniqueInstance
 uniqueInstance isNil
 ifTrue: [uniqueInstance := self basicNew initialize].
 ^ uniqueInstance

19
S.Ducasse

!"#$

Singleton
• WebServer being an instance of WebServer class has an

instance variable named uniqueInstance.

• WebServer has a new value that is associated with
uniqueInstance

20

S.Ducasse

!"#$

Design Implications
• An instance variable of a class can be used to represent

information shared by all the instances of the class. However,
you should use class instance variables to represent the state
of the class (like the number of instances, ...) and not
information of its instance.

• Should use shared Variable instead (next Section).

21
S.Ducasse !"#$

Advanced Classes
Indexed Classes
Classes as Objects
Class Instance Variables and Methods
Class Variables

Pool Dictionaries

22

S.Ducasse

!"#$

classVariable = Shared Variables

• How to share state between all the instances of a class:

Use a classVariable

• a classVariable is shared and directly accessible by all the
instances of the class and subclasses

• A pretty bad name: should have been called Shared
Variables (now fixed in VW)

• Shared Variable => begins with an uppercase letter
• a classVariable can be directly accessed in instance

methods and class methods

23
S.Ducasse

!"#$

classVariable = shared Variab. (Sq)

Magnitude subclass: #Date
 instanceVariableNames: 'julianDayNumber '
 classVariableNames: 'DaysInMonth FirstDayOfMonth
MonthNames SecondsInDay WeekDayNames '
 poolDictionaries: ''
 category: 'Kernel-Magnitudes'

24

S.Ducasse

!"#$

Date class>>initialize

!"Initialize class variables representing the names of the months and days and
the number of seconds, days in each month, and first day of each month."

!MonthNames := #(January February March April May June July August
September October November December).
!SecondsInDay := 24 * 60 * 60.
!DaysInMonth := #(31 28 31 30 31 30 31 31 30 31 30 31).
!FirstDayOfMonth := #(1 32 60 91 121 152 182 213 244 274 305 335).
!WeekDayNames := #(Monday Tuesday Wednesday Thursday Friday
Saturday Sunday).

25
S.Ducasse

!"#$

ClassVariable vs. Instance Variables

26

S.Ducasse

!"#$

27
S.Ducasse

!"#$
Class Instance Variables vs classVariables

• a classVariable is shared and directly accessible
by all the instances and subclasses

• Class instance variables, just like normal instance
variables, can be accessed only via class message
and accessors:
– an instance variable of a class is private to this class.

• Take care: when you change the value of a
classVariable the whole inheritance tree is
impacted!

28

S.Ducasse

!"#$

Summary of Variable Visibility

NetworkManager>>detectNode: aBoolBlock

instance variables
nodes

class instance variables
uniqueInstance

classVariables
Domain

instance methods

class methods

NetworkManager class>>new
uniqueInstance isNil

ifTrue:[uniqueInstance := super new].

^uniqueInstance

^nodes detect: aBoolBlock

29
S.Ducasse

!"#$

ClassVariables...

• ClassVariables can be used in conjunction with
instance variables to cache some common values
that can be changed locally in the classes.

30

S.Ducasse

!"#$

Example

• in the Scanner class a table describes the types of the
characters (strings, comments, binary....). The original
table is stored into a classVariable, its value is loaded
into the instance variable. It is then possible to change
the value of the instance variable to have a different
scanner.

Object subclass: #Scanner
!instanceVariableNames: 'source mark prevEnd
hereChar token tokenType buffer typeTable '
!classVariableNames: 'TypeTable '

31
S.Ducasse !"#$

Roadmap
Indexed Classes
Classes as Objects
Class Instance Variables and Methods
Class Variables
Pool Dictionaries

32

S.Ducasse

!"#$

poolVariables

Shared variable => begins with a uppercase letter.
Variable shared by a group of classes not linked by
inheritance.
Each class possesses its own pool dictionary
(containing poolVariables).
They are not inherited.
DON’T USE THEM!

33 S.Ducasse

!"#$

Examples of PoolDictionaries

from the System: the class Text

CharacterArray subclass: #Text
! ! instanceVariableNames: 'string runs '

! ! classVariableNames: ''

! ! poolDictionaries: 'TextConstants '

! ! category: 'Collections-Text'

Elements stored into TextConstants like Ctrl, CR,
ESC, Space can be directly accessed from all the

34

S.Ducasse

!"#$

Example of PoolVariables

Smalltalk at: #NetworkConstant put: Dictionary
new.
NetworkConstant at: #rates put: 9000.
Packet>>computeAverageSpeed
! ! ...
! ! NetworkConstant at: #rates!
Equivalent to :
Object subclass: #Packet
! instanceVariableNames: 'contents addressee
originator '

35 S.Ducasse

What you should know
• Classes are objects too
• Class methods are just methods on objects that are

classes
• Classes are also represented by instance variables

(class instance variables)
• (Shared Variables) ClassVariables are shared among

subclasses and classes (metaclass)

36

