
Stéphane Ducasse

Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

!"#$

The Taste of Smalltalk

1 S.Ducasse !"#$

Goals
Two examples:

“hello world”

a LAN simulator

To give you an idea of:
the syntax

the elementary objects and classes

the environment

To provide the basis for all the lectures:
all the code examples,

constructs,

design decisions, ...

2

S.Ducasse

!"#$

An Advice

You do not have to know everything!!!

“Try not to care - Beginning Smalltalk
programmers often have trouble because they
think they need to understand all the details of
how a thing works before they can use it. This
means it takes quite a while before they can
master Transcript show: ‘Hello World’. One of the
great leaps in OO is to be able to answer the
question "How does this work?" with "I don’t
care"“. Alan Knight. Smalltalk Guru

3
S.Ducasse

!"#$

Some Conventions

Return Values
1 + 3 -> 4

Node new -> aNode

Method selector #add:

Instance Method defined in class Node:
Node>>accept: aPacket

Class method defined in class Node (in the class of
the class Node)

Node class>>withName: aSymbol

4

S.Ducasse !"#$

Roadmap
 “hello world”
 a LAN simulator

5 S.Ducasse

!"#$

Hello World

Transcript show: ‘hello world’

At anytime we can dynamically ask the system to evaluate
an expression. To evaluate an expression, select it and with
the middle mouse button apply doIt.

Transcript is a special object that is a kind of standard
output.

It refers to a TextCollector instance associated with the
launcher.

6

S.Ducasse

!"#$

Transcript show: ‘hello world’

7 S.Ducasse

!"#$

Everything is an Object

The workspace is an object.
The window is an object: it is an instance of ApplicationWindow.
The text editor is an object: it is an instance of ParagraphEditor.
The scrollbars are objects too.
‘hello word’ is an object: it is aString instance of String.
#show: is a Symbol that is also an object.
The mouse is an object.
The parser is an object: instance of Parser.
The compiler is also an object: instance of Compiler.
The process scheduler is also an object.
The garbage collector is an object: instance of MemoryObject.
Smalltalk is a consistent, uniform world written in itself. You can learn
how it is implemented, you can extend it or even modify it. All the code
is available and readable

8

S.Ducasse

!"#$

Smalltalk Object Model

Everything is an object
Only message passing

Only late binding

Instance variables are private to the object

Methods are public
Everything is a pointer

Garbage collector
Single inheritance between classes
Only message passing between objects

9 S.Ducasse !"#$

Roadmap
Hello World
First look at the syntax
LAN Simulator

10

S.Ducasse

!"#$

Complete Syntax on a PostCard

exampleWithNumber: x
 “Illustrates every part of Smalltalk method syntax. It has unary, binary, and key
word messages, declares arguments and temporaries, accesses a global variable
(but not and instance variable), uses literals (array, character, symbol, string,
integer, float), uses the pseudo variable true false, nil, self, and super, and has
sequence, assignment, return and cascade. It has both zero argument and one
argument blocks.”
! |y|

! true & false not & (nil isNil) ifFalse: [self halt].

! y := self size + super size.

! #($a #a ‘a’ 1 1.0)

! ! do: [:each | Transcript

 show: (each class name);

 show: (each printString);

 show: ‘ ‘].

11 S.Ducasse

!"#$

Yes ifTrue: is sent to a boolean

Weather isRaining
 ifTrue: [self takeMyUmbrella]
 ifFalse: [self takeMySunglasses]

ifTrue:ifFalse is sent to an object: a boolean!

12

S.Ducasse

!"#$

Yes a collection is iterating on itself

#(1 2 -4 -86)
 do: [:each | Transcript show: each abs printString.
 Transcript cr]

> 1
> 2
> 4
> 86

Yes we ask the collection object to perform

13 S.Ducasse

!"#$

DoIt, PrintIt, InspectIt and Accept

Accept = Compile: Accept a method or a class
definition
DoIt: send a message to an object
PrintIt: send a message to an object + print the
result (#printOn:)
InspectIt: send a message to an object + inspect
the result (#inspect)

14

S.Ducasse

!"#$

Objects send messages

Transcript show: ‘hello world’

The above expression is a message
the object Transcript is the receiver of the message

the selector of the message is #show:

one argument: a string ‘hello world’

Transcript is a global variable (starts with an uppercase
letter) that refers to the Launcher’s report part.

15 S.Ducasse !"#$

Vocabulary Point
Message passing or sending a message is equivalent
to
invoking a method in Java or C++

calling a procedure in procedural languages

applying a function in functional languages

of course the last two points must be considered under the
light of polymorphism

16

S.Ducasse !"#$

Roadmap
Hello World
First look at the syntax
LAN Simulator

17 S.Ducasse

!"#$

A LAN Simulator

A LAN contains nodes, workstations, printers, file
servers. Packets are sent in a LAN and each node
treats them differently.

mac
node3

node2

pcnode1

lpr

18

S.Ducasse

!"#$

Three Kinds of Objects

Node and its subclasses represent the entities that
are connected to form a LAN.
Packet represents the information that flows
between Nodes.
NetworkManager manages how the nodes are
connected

19 S.Ducasse

!"#$

LAN Design

Node

WorkstationPrinter

NetworkManager

Packet
addressee
contents
originator
isSentBy: aNode
isAddressedTo: aNode

name
accept: aPacket
send: aPacket
hasNextNode

originate: aPacket
accept: aPacket

print: aPacket
accept: aPacket

declareNode: aNode
undeclareNode: aNode
connectNodes: anArrayOfAddressees

nextNode

20

S.Ducasse

!"#$

Interactions Between Nodes

accept: aPacket

send: aPacket

nodePrinter aPacket node1

isAddressedTo: nodePrinter

accept: aPacket

print: aPacket

[true]

[false]

21 S.Ducasse

!"#$

Node and Packet Creation

! |macNode pcNode node1 printerNode node2 node3 packet|
! macNode := Workstation withName: #mac.
! pcNode := Workstation withName: #pc.
! node1 := Node withName: #node1.
! node2 := Node withName: #node2.
! node3 := Node withName: #node2.
! printerNode := Printer withName: #lpr.!
! macNode nextNode: node1.
! node1 nextNode: pcNode.
! pcNode nextNode: node2.
! node3 nextNode: printerNode.
! lpr nextNode: macNode.
!

22

S.Ducasse

!"#$

Objects Send Messages

Message: 1 + 2
receiver : 1 (an instance of SmallInteger)

selector: #+

arguments: 2

Message: lpr nextNode: macNode
receiver: lpr (an instance of LanPrinter)

selector: #nextNode:

arguments: macNode (an instance of Workstation)

Message: Packet send: 'This packet travelled to' to:
#lpr

receiver: Packet (a class)

selector: #send:to:

23 S.Ducasse

!"#$

Transmitting a Packet

!| aLan packet macNode|
!...
!macNode := aLan findNodeWithAddress: #mac.
!packet := Packet send: 'This packet travelled to the printer'
to: #lpr.
!macNode originate: packet.
!! -> mac sends a packet to pc
!! -> pc sends a packet to node1
!! -> node1 sends a packet to node2
!! -> node2 sends a packet to node3
!! -> node3 sends a packet to lpr
!! -> lpr is printing

24

S.Ducasse

!"#$

How to Define a Class?

• Fill the template:
! NameOfSuperclass subclass: #NameOfClass
! instanceVariableNames: 'instVarName1'
! classVariableNames: 'ClassVarName1 ClassVarName2'
! poolDictionaries: ''
! category: 'LAN'

25 S.Ducasse

!"#$

Packet

• For example to create the class Packet
Object subclass: #Packet
! instanceVariableNames: 'addressee originator
contents '
! classVariableNames: ''
! poolDictionaries: ''
! category: 'LAN'

26

S.Ducasse

!"#$

How to Define a Method?

message selector and argument names
! "comment stating purpose of message"

! | temporary variable names |

! statements

accept: thePacket
"If the packet is addressed to me, print it. Otherwise just
behave like a normal node."

! (thePacket isAddressedTo: self)
! ! ifTrue: [self print: thePacket]

27 S.Ducasse

!"#$

In Java

• In Java we would write
!void accept(thePacket Packet)
!/*If the packet is addressed to me, print it. Otherwise just
behave like a normal node.*/

!if (thePacket.isAddressedTo(this)){!
!this.print(thePacket)}
!! else super.accept(thePacket)}

28

S.Ducasse

Summary
What is a message?
What is the message receiver?
What is the method selector?
How to create a class?
How to define a method?

29

