
Digitalk License Statement

This book and the accompanying software are copyrighted and are therefore protected
by the Copyright Laws of the United States and copyright provisions of various
international treaties. The effect of such laws and treaties is that you may not, without a
license from DIGITALK, copy or distribute the book or software. The software and
book may be used by any number of people and moved to different locations provided
there is no possiblity of either of them being used simultaneously at two or more
locations or being used by two or more people at the same time.

DIGITALK hereby grants to you the right to make archival copies of the enclosed
software solely for the purpose of protecting yourself from loss or damage of such
enclosed software.

Warranty

DIGITALK warrants the enclosed diskettes and documentation to be free from defects
in materials and workmanship for a period of 60 days from the date of purchase.
DIGITALK will replace any defective diskette or documentation returned to
DIGITALK during such warranty period. Replacement is the exclusive remedy for any
such defects, and DIGITALK shall have no liability for any other damage.

IN NO EVENT SHALL DIGITALK, INC., BE LIABLE FOR ANY LOSS OF PROFIT
OR ANY OTHER COMMERCIAL DAMAGE, INCLUDING BUT NOT LIMITED
TO SPECIAL, INCIDENTAL, CONSEQUENTIAL OR OTHER DAMAGES.
DIGITALK, INC., SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES, EX-
PRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, RELATED TO DEFECTS IN THE DISKETTE AND DOCUMENTA-
TION.

Governing Law

This statement shall be governed and construed under the laws of the state of California
and subject to the exclusive jurisdiction of the courts therein.

Smalltalk/V 286

Tutorial
and

Programming
Handbook

digitalkinc.

The programming language Smalltalk and many of the concepts of
modern user interfaces were developed in research projects at
Xerox Palo Alto Research Center (PARC) over a period of several
years, and culminated in Smalltalk-80. We should like to express
our appreciation to the researchers in the Learning Research Group
under Alan Kay and the System Concepts Laboratory under Adele
Goldberg. We recognize the debt that Smalltalk/V owes to their
creative efforts.

Copyright 1988 by Digitalk Inc., all rights reserved
First printing May 1988

Copying or duplicating this manual or any part thereof is a violation of the law. No part
of this manual may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including but not limited to photocopying, without written permission
from Digitalk Inc.

Digitalk Inc.
9841 Airport Boulevard
Los Angeles, California 90045

IBM is a trademark of International Business Machines Corporation; Unix is a trademark
of AT&T; Smalltalk-80 is a trademark of Xerox Corporation.

TABLE OF CONTENTS

INTRODUCTION 1
System Requirements 2
Before Starting 2

PARTI: OVERVIEW 5

Chapter 1 INTRODUCTION TO THE SMALLTALK LANGUAGE 5

Smalltalk's Big Ideas 5
Smalltalk vs Conventional Languages 6
The World According to Objects 11
Ideas Into Action 18

PART 2: SMALLTALK/V TUTORIALS 21

Chapter 2 INTRODUCTION TO THE SMALLTALK/V
ENVIRONMENT 21

Installing Smalltalk/V 21
Starting Up Smalltalk/V 23
Exiting Smalltalk/V 24
Getting Around 25
Working with Your Mouse 25
Windows and Menus 26
Windows 26
Menus 28
Working with Windows 32
Quick Tour—Windows and Menus 33
Inside the Window Pane 37
Starting Out 40
Tutorial Files 44

Chapter 3 OBJECTS AND MESSAGES 45

Simple Objects 45
Simple Messages 46
Unary Messages 47

it Table of Contents

Keyword Messages 47
Arithmetic Messages 48
Binary Messages 48
Messages Inside of Messages 49
Expression Series 49
Cascaded Messages 50
Simple Loops 50
Objects and Messages Are Safe 51
Temporary Variables 51
Assignment Expressions 52
Return Expressions 52
Global Variables 52
Putting It All Together 53

Chapter 4 CONTROL STRUCTURES 57

Comparing Objects 57
Testing Objects 57
Conditional Execution 58
Boolean Expressions 59
Looping Messages 60
Simple Iterators 61
Block Arguments 61
Generalized Iterators 62
Concluding Example. 64

Chapter 5 CLASSES AND METHODS 67

Classes 67
Methods 68
The Class Hierarchy Browser 69
The Special Variable "self 70
Creating New Objects and the Special Object "nil" 70
Instance Variables 71
Recursion 71
Pattern Matching 72
Adding a Method to a Graphics Program 73
Class Variables 75
Inspectors 75

Chapter 6 INHERITANCE 79

The Class Hierarchy 79
Inheritance 80
Inheritance of Instance Variables 81

Table of Contents Hi

The Methods of the Animal Classes 82
Inheritance of Methods 83
The Special Variable "super" 84
Creating Animal Objects 84
Polymorphism 85
More General Pattern Matching 86
Processing Recursive Data Structures 87
A New Class: MonitoredArray 88
Class Methods 89

Chapter 7 STREAMS AND COLLECTIONS 91

Streams 91
Printer Stream 92
Collections 94
Generic Code 96
Blocks as Objects 97
Patterns 97
Computing Letter Pair Frequencies 98
Animals Revisited 99
A Network of Nodes 102

Chapter 8 DEBUGGING 107

A Document Retrieval System 107
How Class Wordlndex Works 109
Debugging Class Wordlndex 110
Hop, Skip and Jump 115

Chapter 9 GRAPHICS 117

Some Basic Concepts 117
The Basic Class of Graphics: BitBlt 121
Extension of BitBlt 130

Chapter 10 WINDOWS 139

The Prompter 139
Single Pane Window 140
Single Pane Window with More Interaction 141
Multi-Pane Windows 145

Chapter 11 OBJECT-ORIENTED DEVELOPMENT 155

The Smalltalk/V Application Development Cycle 155
Knowing When to Stop 160

iv Table of Contents

Chapter 12 APPLICATION DEVELOPMENT: CASE STUDY 161

The Case Study: A State-Transition Perspective 161
The Case Study Problem as a Smalltalk/V Problem 162
A Window Model for the SalesCom Application 163
Menus Enrich the Window Model 164
Getting There in Half the Time: Recycling Code 165
Re-working the Network of Nodes 166
Raiding the Animal Habitat 171
Customers and Events: A Matter of State 176
Methods and Messages: Bringing the Prototype to Life 178
It's Getting Better All the Time: Evolutionary Development 181
Where to Go from Here 182

PART 3: SMALLTALK/V 286 REFERENCE 187

Chapter 13 THE SMALLTALK LANGUAGE 187

Objects 187
Classes 189
Messages and Methods 194

Chapter 14 SMALLTALK/V 286 CLASSES 203

Magnitudes , 203
Streams 211
Interface to DOS File System 216
Terminal Input and Output 219
Collections 222
Window Classes 230
Graphic Classes 241
Multiprocessing Classes 256

Chapter 15 SMALLTALK/V 286 ENVIRONMENT 263

The Keypad 263
Active Window 264
Cycling 265
Using Menus 265
Manipulating Windows 266
Panes 268
Text Editor 271
Saving the Image 274
Exiting Smalltalk/V 275
Evaluating Smalltalk Expressions 275

Table of Contents v

The System Dictionary 277
Maintaining Smalltalk/V 281
DOS Shell 288
Font and Cursor Shapes 289

Chapter 16 SMALLTALK/V 286 STANDARD WINDOWS 293

Disk Browser 293
Class Hierarchy Browser 297
Class Browser 301
The Inspector 303
Debugger Windows 304
Method Browser 308

PART 4: ENCYCLOPEDIA OF CLASSES 311

APPENDICES 491

Appendix 1 SMALLTALK SYNTAX SUMMARY 491

How Syntax is Specified 491
Smalltalk Syntax 492

Appendix 2 PRIMITIVE METHODS 495

How Primitive Methods Work 495
Primitive Number Assignments 495
User Defined Primitive Methods 499

Appendix 3 CONFIGURING SMALLTALK/V 505

Memory Configuration 505
Hardware and BIOS Configuration 507
Speed vs Space 508

Appendix 4 METHOD INDEX 509

Index 547

INTRODUCTION

Welcome to Smalltalk/V and the world of object-oriented programming systems or,
more often, OOPS for short. You've joined the world's largest community of Smalltalk
users. Owners of Digiralk's Smalltalk/V are people, like you, who want to squeeze
maximum power and performance out of their MS-DOS, OS/2 and Macintosh
computers.

You're in good company. Smalltalk/V is found widely in academic and research
laboratories, R&D and product development departments of Fortune 1000 corporations,
systems development agencies in government as well as on home PCs for recreational and
entrepreneurial pursuits. Smalltalk/V applications have been developed in the areas of
simulation, expert systems, intelligent tutoring computer-based instruction, database
query interfaces, computerized typesetting and integrated programming environments.

Smalltalk/V is selected by so many for such diverse applications because Smalltalk is
both a powerful language—you can get a lot of activity out of a few lines of code—and
a powerful program development environment—software utilities help you to reuse as many
lines of pre-written code as possible and, once copied, to quickly edit and correct errors
in such code for your own program.

To encourage an exploratory "design-prototype-refine" approach to application devel-
opment, Smalltalk/V lets you edit and install small code modules without lengthy
compile and link sessions, building a program piece by piece and seeing the results
immediately. You experiment with bits and pieces of a program long before it is
complete, exploring ideas, structures and algorithms as the application takes form.

Except for a small kernel in machine language, Smalltalk/V is written in Smalltalk/V.
Commented source code for virtually the entire system is supplied in digestible chunks
of source code which you can reuse and modify in your applications.

Smalltalk/V features pure object-oriented programming, a revolutionary approach to
data abstraction, providing a new dimension in which to organize the elements of a
software system. For you, this means highly reusable software, truly generic code and the
opportunity to use a prototyping style of software development.

This book is intended for both people who have never used Smalltalk as well as
experienced Smalltalk programmers. It's organized into five parts:

• Part 1, Overview, introduces object-oriented programming through a
discussion of Smalltalk's big ideas and concludes with a comparison of
Smalltalk and Pascal versions of an example program.

2 Introduction

• Part 2, The Smalltalk/V Tutorials, is a series of tutorials that teach the
Smalltalk language through examples you run in the Smalltalk/V environ-
ment.

• Part 3, The Smalltalk/V 286 Reference, is a complete specification of
Smalltalk/V 286. You'll find summaries of Smalltalk's syntax and semantics,
descriptions of windows and menus that make up the environment, and a
rundown of the major building blocks (classes) included in the system.

• Part 4, The Encyclopedia of Classes, is a comprehensive, structured
description of the classes and methods in Smalltalk/V 286.

• Appendices cover advanced features such as writing your own Smalltalk
primitives and extensions in other languages and conclude with a detailed
cross-referencing Method Index and Index.

System Requirements

Smalltalk/V286 requires an IBM-PC, PS/2 or compatible, with an 80286 or 80386
processor and the following equipment:

• 1 Megabyte of RAM
• Hard disk and one diskette drive
• Monochrome or color monitor
• Graphics controller (either CGA, MCGA, EGA, VGA, Hercules, Toshiba, or

AT&T)
• PC-DOS or MS-DOS, Version 2.0 or later

The following items are optional:

• Expansion to 16 Megabytes of RAM (extended memory only)
• Mouse (highly recommended, Microsoft compatible)
• Floating point co-processor (80287 or 80387)

Before Starting

Before proceeding, please take a moment to make sure that you have the complete
Smalltalk/V 286 package:

• Two diskettes labeled Image and Source
• This book
• Registration Card

Introduction 3

The diskettes are not copy-protected. Using DOS disk copying utilities, you can make
one or several backup copies, as long as they are for archival purposes so you can protect
your investment.

The Smalltalk/V community is growing daily. Digitalk's user newsletter SCOOP, keeps
registered Smalltalk/V users informed of programming hints, product upgrade infor-
mation, bug reports, available Goodies packs, and special licensing and pricing
information. To make the most of your Smalltalk/V investment, and to enable us to
serve you more quickly when you need support, return the enclosed Registration Card
and join the Smalltalk/V community to stay well-informed.

Sign the Registration Card and mail it to:

Digitalk Inc.
9841 Airport Boulevard
Los Angeles, California 90045

Parti

Overview

1 INTRODUCTION TO THE SMALLTALK LANGUAGE

You do not have to read this chapter to get going with Smalltalk/ V. One legitimate school
of Smalltalk thought suggests that the best introduction to object-oriented programming
is simply to jump right in—to learn Smalltalk by experience. If this notion appeals to you,
proceed directly to Chapter 2. You may want to return here to supplement your
experience. But there is nothing in this chapter that you have to know to understand and
make effective use of Smalltalk/V.

If this were a book on driving a car, this Overview describes a bit of the "physics" behind
the car's engine, drive chain and suspension—hardly prerequisite knowledge to the act of
driving. But racing drivers will tell you that the more you know about how your car
works, the better you can drive it—knowing how to pull maximum performance from the
potential of the car's interacting component parts. If this notion appeals to you, proceed.

Smalltalk's Big Ideas

Smalltalk grew from a few powerful ideas.

• The most important component in a computing system is the individual
human user.

• Programming should be a natural extension of thinking.
• Programming should be a dynamic, evolutionary process consistent with the

model of human learning activity.
• A computing environment is both a language and a productivity enhancing

interface of programmer/user "power tools"—utilities to express yourself in
that language and to organize and flexibly use both procedural and factual
knowledge.

Smalltalk embodies these ideas in a framework for human/computer communication. At
the simplest level, Smalltalk is yet another programming language like Basic, C, Pascal or
Lisp. You will see in this chapter how you can write Smalltalk programs that have the
"look and feel" of conventional Pascal or other familiar programming languages.

You will also see how some thirty lines of Pascal, or less than twenty lines of "Pascalese"
Smalltalk, can be reduced to five lines of Smalltalk the way it is meant to be written. And
that's not five lines of dense, cryptic syntaxes like C or APL allows, coding shortcuts that
come back to haunt you in application maintenence and enhancement costs.

6 Chapter 1: Introduction to the Smalltalk Language

If we try to build an ideal machine that lives up to the promise of the big ideas above,
we would want a computing environment that is both very hardy and forgiving. If
programming is to be a natural extension of thinking and learning, the system has to take
programming errors in stride—a simple coding error can't crash the system or you'd lose
all incentive to use an exploratory prototyping style of application development,

Smalltalk promotes the development of safe systems. Smalltalk "errors" are merely
objects telling you they do not understand how to do what you are asking them to do—
hardly events which blow up the system. And Smalltalk's encapsulation of digestible
chunks of program code with their own local data in independently active objects
promotes a "divide and conquer" approach to programming problem solving. Smalltalk
objects are easily inspected, duplicated, modified and, perhaps most importantly, re-used.
Smalltalk lets you get on to the business of solving your problem, not writing the same
code over and over.

The Tutorials will introduce you to the range of programming "power tools" standard in
Smalltalk/V that help you use, re-use and modify the storehouse of Smalltalk source
code which is part of the basic system. But first, it can be helpful to understand that
Smalltalk is both very much like and, at the same time, very much unlike conventional
programming languages.

We'll then introduce you to some of the special terminology and exciting ideas that
energize object-oriented programming in Smalltalk. From there it's on to the introductory
tutorial which gets you up and running and writing your first Smalltalk/V code.

Smalltalk vs. Conventional Languages

This section presents an overview of Smalltalk/V by comparing examples of code in
both Smalltalk and Pascal to help you learn Smalltalk/V more quickly. You don't have
to be a Pascal programmer to benefit from the comparison as thorough explanations
accompany each example.

The step-by-step code examples are followed by a complete program written in both
languages which solves the same problem. We conclude by rewriting the Smalltalk
version of the algorithm, taking advantage of object-oriented features to significantly
reduce the amount of code required to do the same procedure.

The examples which follow present a series of statements in Pascal and Smalltalk/V. The
left column shows program fragments in Pascal, while the right column shows equivalent
code fragments in Smalltalk/V.

Chapter 1: Introduction to the Smalltalk Language 7

Assignment to a Scalar Variable

a := b + c a := b + c

These statements look the same in both Pascal and Smalltalk. The assignment operator
is := . Variable names have the same syntax in both languages. In the example statements,
the contents of variable b are added to the contents of variable c and stored in variable
a. In Pascal, the computed value is stored. In Smalltalk, assignment statements always
store pointers to objects which contain the values.

A Series of Statements/Expressions

x : = 0; x := 0.
y : = 'answer'; y := 'answer*.
z : = w z := w

The statement separator is semicolon in Pascal and period in Smalltalk. Note that in both
languages, the statement separator character is not used after the last statement in the
series. The first statement assigns the constant zero to the variable x. The second
statement assigns a literal string to the variable y. In both languages, a string is an array
of characters. The third statement assigns the contents of variable w to variable z.

A Function Call with One Argument

a : = size(array) a := array size

The function size is called with argument array and the value returned is stored in the
variable a. In Smalltalk, calling a function is known as sending a message. In this case, the
message size is sent to the contents of variable array.

Function Calls with Two Arguments

x := max(xl, x2); x := xl max: x2.
y := sum(p, q) y := p + q

In Pascal, the arguments to the function call are enclosed in parentheses. In Smalltalk, for
a two-argument message, the arguments precede and follow the message name. Note that
in Smalltalk, the standard arithmetic operations are performed via messages. In the first
example, the message max: is sent to the contents of variable xl (the first argument), with
the contents of x2 as the second argument. The result returned is assigned to the variable
x. In the second example, the message + is sent to the contents of variable p with the
contents of variable q as the second argument, and the result returned is assigned to the
variable y.

8 Chapter 1: Introduction to the Smalltalk Language

A Function Call with Three Arguments

b : = between(x, xl , x2) b := x between: xl and: x2

When a message has three or more arguments in Smalltalk, the name of the message is
split into pieces, and a piece of the message name appears preceding each of the
arguments after the first. This distribution of the message name helps to describe the
message arguments. In the example, the message name is between:and: and the
arguments are variables x, xl, and x2. This example could be used to test whether the
value of x is between the values of xl and x2, and assign the Boolean result (true or false)
to the variable b.

Subscripted Variable Access

x := a[i]; x := a at: i.
a[i + l] := y; a at: i + 1 put: y.
a[i + l] : = a[i] a at: i + 1 put: (a at: i)

Pascal uses square brackets to specify subscripting, whereas Smalltalk uses at: and at:put:
messages. In the first example, the value of variable i is used to index the array identified
by variable a, and the value obtained is stored in variable x.

The second example shows replacing an element of an array with a new value. Note that
a Pascal assignment may store into an array element, whereas in Smalltalk only scalar
variables appear to the left of an assignment statement, so an at:put: message is used.

The third example shows accessing and changing array elements. Parentheses are used in
the Smalltalk example to specify evaluation order.

If Statements

if a <C b then
a := a + 1;

if atEnd(stream) then
reset(stream)

else
c := next(stream)

a < b
ifTrue: [a : =

stream atEnd

= a + l].

ifTrue: [stream reset]
ifFalse: [c :-'= stream next]

Pascal and Smalltalk provide similar capabilities for the conditional execution of a series
of statements based on the result of evaluating a boolean expression. In Smalltalk, the
conditional statements are enclosed in square brackets. In the first example above, the
variable a will be incremented by one if the value of variable a is less than the value of
variable b.

Chapter 1: Introduction to the Smalltalk Language 9

The second example illustrates conditionally executed code during file access. The file
being accessed is identified by the variable stream. If the file is positioned at the end; the
reset message is sent to reposition it at the beginning. Otherwise, the variable c is assigned
the next character in the file.

Iterative Statements

while i < 10 do begin [i < 10]
sum := sum + a[i]; whileTrue: [
i : = i + 1 sum : = sum + (a at: i).
end; i := i + l] .

for i := 1 to 10 do 1 to: 10 do: [:i I
a[i] : = 0 a at: i put: o]

Pascal and Smalltalk provide similar capabilities for repeated execution of a series of
statements. In the first example, the two statements in the loop will be executed as long
as the value of the variable i is less than 10. In the second example, the single statement
in the loop will be executed with the variable i taking on the values 1 through 10 in
succession.

Returning Function Results

functionName := A answer
answer;

return

Pascal and Smalltalk both provide for specifying the result of function (or in Smalltalk,
method) evaluation. In Pascal, the function result expression is assigned to the function
name, which serves as a variable for containing the result. In Smalltalk the caret (A)
appears before an expression that is the method result. This causes method execution to
cease and the value of the expression to be returned as the method result. In the example,
the value of the variable answer is the function (and method) result.

Storage Allocation and De-allocation

new(p) p := Array new: 5
dispose(p)

Pascal and Smalltalk both provide for the dynamic allocation of variables (in Smalltalk
terminology, objects). In the first line of the example above, both languages assign to the
variable p a pointer to the newly allocated object. In Pascal, however, it is necessary to
explicitly de-allocate objects when they are no longer needed in order to reclaim their
space. This is done via the dispose function call. In Smalltalk, space reclamation (garbage

10 Chapter 1: Introduction to the Smalltalk Language

collection) is automatic and consequently, there are no language facilities for specifying
object de-allocation. This simplifies programming by eliminating a potential source of
error, de-allocating at the wrong time.

A Complete Program

What follows is a complete program with Pascal code on the left, Smalltalk on the right.

program frequency;

const
size = 80;
var
s: string [size];
i: integer;
c: char;
f: array[l..26]

of integer;
k: integer;
begin
writeln('enter line');
readln(s);

for i := 1 to 26 do
f[i] := 0;

for i : = 1 to size do
begin
c : =

asLowerCase(s [i]);
if isLetter(c) then

begin
k := ord(c)

- ord('a')

f[k] : - f[k] + 1
end

end;
for i := 1 to 26 do

write(f[i], ' ')
end.

I s c f k I

f := Array new: 26.

s := Prompter
prompt: 'enter line'
default: ".

1 to: 26 do: [:i I
f at: i put: 0].

1 to: s size do: [:i I

c := (s at: i) asLowerCase.

c isLetter
ifTrue: [

k := c ascii Value
- $a asciiValue
+ 1.

f at: k put: (f at: k) + 1

]•

The programs above ask the user to enter a line of text from the keyboard. It then
computes the frequency of occurrence of each alphabetic character in the input text. All
characters are treated as lower-case letters.

Chapter 1: Introduction to the Smalltalk Language 11

The example emphasizes the similarities of Pascal and Smalltalk syntax. The algorithm
used is identical in both cases. The input characters are examined one at a time and if they
are characters, the frequency counter for that letter is incremented.

None of the powerful built-in building blocks of Smalltalk were used in the above
example. The example below shows the same program written using some of these
built-in building blocks.

I s f I
s : = Prompter prompt: 'enter line' default: ".
f := Bag new. -***"
s do: [:c I c isLetter ifTrue: [f add: c asLowerCase]].
Af

A Prompter is used to get the input string from the user. A Prompter is a special type
of window. An empty Bag is then created to hold the character frequencies. Bags are a
type of collection that count occurrences of objects. The input string is then iterated
over, and each character is examined. If the character is a letter, its lower case equivalent
is added to the Bag. The resultant Bag is then returned.

Already, Smalltalk is revealing its expressive power. The considerably shorter rewrite uses
a few of Smalltalk's pre-defined objects, each comes with its own highly developed
behavior. In the hundred forty or so classes of Smalltalk/V object types, there are over
two thousand methods you can call upon. Each new object and its methods, which you
create, will be added on equal footing with the generic objects which come in
Smalltalk/V.

Objects obviously have something to offer—a tremendous source of Smalltalk program-
mer productivity. A greater appreciation of what objects are and how they behave is in
order.

The World According to Objects

Smalltalk is built on the simple yet powerful model of "communicating objects" as
shown in Figure 1.1. What could be more natural. We experience our world largely as a
vast collection of discrete objects, acting and reacting in a shared environment.

12 Chapter 1: Introduction to the Smalltalk Language

Figure 1.1
Communicating Objects

Message

At the human social level we are a society of doctors, lawyers, beggars and thieves, etc.
Although we are a population of unique individuals, we cluster in occupational groups
based on the behavioral skills and knowledge we each develop and exhibit as seen below:

Figure 1.2
Human Occupational Classes

Barbara
Truckers

Fred Elton

"BlueCollar"

George

"White Collar ' Roberta

Accountants

Break a leg, call in a doctor and tell him or her about your condition. You trust the
doctor's special knowledge and skills to help make you better. Self communicates with
Doctor Black Box.

Want to become a lawyer? You learn the law and how to behave like a lawyer. Then as
corporate counsel in response to the MegaCorp CEO's question, "What's our exposure
on this new project?", your answer is couched in legal considerations while the chief
financial officer reflects on fiscal impacts.

Chapter 1: Introduction to the Smalltalk Language 15

In Smalltalk's object-oriented terms, occupational abstractions like doctor, lawyer,
programmer, etc., are classes of which we individuals are instances. To become a lawyer, we
learn legal methods. Communications between individuals are comparable to Smalltalk
messages, their content equivalent to Smalltalk selectors as shown in Figure 1.3. Correspon-
dence between our perception of the world and its representation in machine terms
through Smalltalk gets at the heart of Smalltalk's power.

Tax advantage of $120,000 available.

Fiscal impact of incorporation?

'Jane Doe'

Figure 1.3
Human and Smalltalk
Objects Communicating prompt: 'New Name?'

What are objects?

A Smalltalk object is simply related pieces of code and data. The pieces of code are
Smalltalk methods—a library of self-contained subroutines unique to each class giving
each class of object its specific behaviors. An object's data structure is described by its
collection of instance variables.

When you create a specific instance of a class, the initial values of the object's instance
variables are assigned. The object's methods are its know-how. If we were to create a
Smalltalk "car driver object", it would likely include "brake", "steer", "watch for traffic"
and "shift gears" methods. Instance variables of such a car driving object would include
"reaction time", "temperament" and "visual acuity" of the driver.

Related data and program pieces are encapsulated within a Smalltalk object, a
communicating black box. The black box can send and receive certain messages.
Message passing is the only means of importing data for local manipulation within the
black box. And if an object needs something done that it does not know how to do
within its own set of methods, it sends a message to another object, in effect, asking for
assistance in the completion of a task.

In Smalltalk, objects communicate to objects just as lawyers talk to accountants in our
occupational analogy in Figure 1.3. A professional's know-how is comparable to a
Smalltalk object's collection of methods. People communicate using their know-how.

14 Chapter I: Introduction to the Smalltalk Language

Know-how does not communicate to know-how. The lawyer's knowledge used to
prepare a client's will does not include a "direct memory access" to the accountant's
ability to compute financial implications of the settlement of an estate. Similarly, a
Smalltalk object's methods do not call other objects' methods directly. Rather, the
lawyer's methods include knowing when to send a message requesting financial services,
just as the CPA knows when and how to ask for legal services.

In OOPS terms, information hiding—as this encapsulation of code and data is known in
computer science—makes for highly portable, easily modifiable and safe software. Large
applications may be easily maintained since objects may be updated, recompiled, tested
and called immediately back into service with their new behavioral capabilities on line.

What kinds of objects can be described?

Like their physical counterparts, Smalltalk objects have attributes and exhibit behaviors.
Since everything in Smalltalk is an object—including the Smalltalk environment itself—
then what you can do with the language becomes a question of what objects can be
described and manipulated.

If the encapsulation of information hiding provides the means for creating objects, then
a language's data abstraction capabilities determine what objects can be described. Marco
Polo called upon his powers of data abstraction daily as he traveled to parts unknown.
Things which could not be understood or named within his current world view required
invention, new words for new objects.

You need the same powers of an extendible language capable of describing arbitrary data
structures if you are to tailor the generic Smalltalk environment to your purposes.
Smalltalk lets you create arbitrary new data structures, compound objects which can be
thought of as an array whose elements can be any combination of numbers, symbols or
character strings as well as another array making nested data structures possible. Where
it is generally an exception or nuisance in conventional languages, creating new data
structures is done routinely when you define a new class or subclass of objects in
Smalltalk.

How do objects communicate and behave?

Smalltalk objects take responsibility for their own actions, responding individually to
every message. Your application may have occasion to print an integer, a floating point
number, an ASCII character or a string of symbols. Since each of these elementary data
types is defined as a Smalltalk class, instances of these classes come with a bundle of
behavioral features built-in, its methods. Each of the elementary data types knows how
to perform generally required behaviors such as print, duplicate and comparison
operations.

Chapter 1: Introduction to the Smalltalk Language 15

So when it comes time to print, your Smalltalk application simply sends the near universal
message printString to each of the variety of data type objects to be included in a report:

'This is a string' printString.
423 printString.
#(123) printString.
$A printString.
#('array of 3 'strings and' 2 'numbers') printString.

Integers, arrays and characters take care of getting themselves represented on paper. This
Smalltalk characteristic of having different objects responding uniquely to the same
message is known as polymorphism. It means you won't have to memorize a unique
vocabulary for each class used in building your applications.

Because Smalltalk objects take responsibility for their own behavior, you won't have to
litter your application with conditional checks through case statements to see that the
proper type of function is called to operate on a piece of data. This feature saves much
time and significantly reduces software maintenance costs since only affected objects
need be edited and re-compiled to enhance a Smalltalk application.

Among the many reasons objects communicate, a frequent objective is to change the state
of the receiver object. Sending a message to store a new value in a variable (a Smalltalk
variable is an object that stores other objects) is an obvious example of state changing
messaging. A bit more subtle is a user request to resize a window which results in a
mouse-based interaction which sends new screen coordinates to the window's instance
variables which store its size and location on the screen. The window's state changes upon
receipt of the resize message.

Smalltalk guarantees that there will be a response by a message recipient. If an object
determines that it does not know how to perform a requested behavior, it will at least
answer with a "Message not understood" response message. The method which sends
this response also kicks in Smalltalk's debugging utilities to help you determine and
correct the failure to communicate.

So even program errors are detected and resolved within the object-oriented messaging
framework of Smalltalk. This makes for a very exploratory environment in which to
develop application software. A working prototype can be constructed quickly and
enhancements integrated easily into the evolving system.

How does Smalltalk organize objects and their methods?

Smalltalk organizes its classes into a hierarchy of classes and subclasses, a portion of
which is shown in Figure 1.4. For example, the Integer class is a subclass of the Number
class which is a subclass of Magnitude which is a subclass of class Object, the most
general Smalltalk class and parent of all other classes.

16 Chapter 1: Introduction to the Smalltalk Language

Object •

Figure 1.4
Partial
Smalltalk/V
Class
Hierarchy

- Olass

- MetaClass

- CharacterScanner

- IndexedCollection—

Animation

Commander

FixedSizeCotlection -

Array —

— Bitmap

-Byte Array -

— Interval

— String —

- CompiledMethod

FileHandle

Symbol

1— OrderedCollection -

-CursorManager -

DemoClass

Directory

- Dispatcher

- NoMouseCursor

I— Graph Dispatcher

PointDispatcher

— ScreenDispatcher

— ScrollDispatcher -

TopDispatcher

- DispatchManager

- DisplayObject- - Display Medium -

File

Font

Icon

- InputEvent

Inspector-

. Magnitude-

Debugger

Dictionary Inspector

Association

Character

Date

- Message

- Pattern -

— Point

—TopPane

-WildPattern

- ProcessScheduler

Prompter

Rectangle

Semaphore

-Stream-

• ReadStream

-WriteStream •

- UndefinedObject

- ListSelector

—TextEditor -

— Float

- Fraction

Integer

Process

- SortedCollection

- Identity Dictionary-

- System Dictionary

- MethodDictionary

- PromptEditor

EBiColorForm

- ColorForm

DisplayScreen -

- LargeNegativelnteger

—LargePositivelnteger

Smalllnteger

FreeDrawPane

Icon Pane

- Read WriteStream -
FileStream

-Terminal Stream

- ColorScreen

Chapter 1: Introduction to the Smalltalk Language 17

Inheritance provides a mechanism for both organizing and maintaining the collection of
Smalltalk object classes. Inheritance recognizes similarities among objects, capitalizing on
the fact that similar objects often behave similarly.

A subclass inherits all the methods known to the parent. If you define a new customer
database class to be a type of Smalltalk SortedCollection, your application will
automatically know how to add, copy, edit, remove, print and sort customer records. You
need only create methods which describe the new behaviors the customer database must
exhibit beyond those of the generic SortedCollection.

If a selected parent's behavior is inappropriate, you simply define a method by the same
name to override the parental way of doing things. For instance, to protect confidential
customer information, the print method of the Customer Record class could be written
to perform a password checking operation before printing. The customer record would
then enforce security when asked to print itself while a less rigorously defined object
simply prints itself upon receipt of the same print message.

Smalltalk's inheritance features encourage "programming to exception and modifica-
tion". Without inheritance, you would have to spend a good bit of your time telling new
classes of objects how to do elementary things like print. And if you later revamp the
procedures for printing specific data types, you would have potentially hundreds of
individual print methods to update and re-compile if it were not for inheritance.

Only slight reflection is needed to appreciate the programmer productivity potential of
Smalltalk's inheritance mechanism. A little more reflection will confirm that the hierarchy
of Smalltalk classes is consistent with the model of classification systems we routinely lay
over our perceptions of the world.

How do you maintain a Smalltalk world of objects?

Each Smalltalk object is an encapsulated program operating on its own local data, a little
self-contained computer. The user extendable Smalltalk/V system comes with over two
thousand pre-defined methods in over one hundred classes. With time, your personalized
Smalltalk/V environment will contain hundreds, maybe thousands, of new objects,
classes of objects and their associated methods.

If you had to explicitly manage program and data file handling for each Smalltalk object
as well as act as traffic cop to the messaging activity, there would be no incentive to adopt
object-oriented programming. The power of Smalltalk's natural human thinking model
at the design level would be lost at code writing. Smalltalk/V, therefore, is designed to
manage the "dirty work" of object storage and memory management for you.

Imagine the task for your hardware and operating system software if your Smalltalk/V
directory were strewn with:

28 Chapter 1: Introduction to the Smalltalk Language

objl.exe
objl.prg
objl.dat
obj2.exe
ob|2.prg
obj2.dat
obj3.exe
obj3.prg
obj3.dat
. . . and so on for hundreds or thousands of objects if it were possible.

That's what it would take if Smalltalk's objects managed themselves independently under
the conventional model of computing. Smalltalk solves this problem with a global
solution, an object-oriented model for storage.

When you install Smalltalk/V at the beginning of The Tutorial, you will note two large
files. These are the Smalltalk/V source and image files. The source file contains an ASCII
representation of the Smalltalk source code. The image file is a computer readable
snapshot of the current state of your Smalltalk/V environment, a kind of group photo
preserving the state of each object.

Saving the image to permanent disk storage allows you to end a Smalltalk session, saving
your objects in "suspended animation" to be revived exactly as you left them when you
restart Smalltalk. In this global and efficient manner, Smalltalk takes care of storing
objects.

Having an efficient approach to storage management might only serve to preserve chaos
if RAM memory were to become cluttered with persistent though unused and unwanted
objects, therefore taking up valuable real estate in RAM if no longer needed.
Smalltalk/V lets you focus on programming while automatic memory management,
sometimes unglamorously referred to as "garbage collection", maximizes RAM available
for the creation of new objects and keeps accumulated "clutter" from crashing the
system. Automated object storage and memory management further insure a safe
enviroment for Smalltalk application development.

Ideas into Action

Smalltalk/V is a prescription for an exciting programming experience ... the rare
combination of an open and safe system inviting you to shape its capabilities to your
needs. The first several chapters of The Tutorial introduce you to the Smalltalk/V
programming environment and to the range of objects and their behavior in the
Smalltalk/V system.

Chapter I: Introduction to the Smalltalk Language 19

But this is only the beginning. Smalltalk really shows its stuff in real world application
development. The expanding collection of re-usable Smalltalk objects and their methods
when used in an evolutionary, prototyping development cycle result in quick and efficient
development of complex applications. The Tutorial concludes with an application
development example which showcases the "design-test-improve" cycle of development
encouraged by the fully object-oriented character of Smalltalk/V.

Part 2

Smalltalk/V 286
Tutorials

INTRODUCTION TO THE SMALLTALK/V 286
ENVIRONMENT

In this chapter, you will learn how to install Smalltalk/V, start up its environment, and
edit and evaluate some of its most basic expressions. You'll learn how to move the
cursor, use windows and enter and edit text. By the end of this chapter, you'll be familiar
enough with Smalltalk/V to run the tutorials, which make up the remainder of Part 2
of this book.

If you have worked in a "windows" environment before, you may already be familiar with
some ideas in this chapter. After Installing and Starting Up Smalltalk/V, you may want
to take the Quick Tour and read the Starting Out sections of this chapter, then scan the
rest.

If the Smalltalk/V operating environment is new to you, be sure that you understand the
ideas in this chapter before moving on. You can learn more about the Smalltalk/V
operating environment in Part 3: Smalltalk/V 286 Reference. Chapters 15 and 16
provide an in-depth discussion of many of the topics introduced in this chapter.

Installing Smalltalk/V

Before you begin installing Smalltalk/V, make sure that you have made backup copies
of the Source and Image diskettes included in your Smalltalk/V package.

Copying Smalltalk/V to a Hard Disk

Copying Smalltalk/V to the hard disk involves two steps: l) creating a subdirectory on
your hard disk and 2) copying the Smalltalk/V files.

Creating a Subdirectory

Smalltalk/V must have its own subdirectory on your hard disk. You can create a
Smalltalk/V subdirectory as a child of any directory already residing on your disk. Here
we are going to create a subdirectory called smaltalk, but you can name your
subdirectory any name you chose.

To create the subdirectory, enter the following command at the DOS prompt then hit the
return or enter key:

22 Chapter 2: Introduction to the Smalltalk/ V286 Environment

C> mkdir \smaltalk

This creates a subdirectory called smaltalk, with the root directory as its parent on Drive
"C". You may create a subdirectory from any directory on your disk. Refer to your DOS
manual for instructions.

Copying Smalltalk/V Files

To copy Smalltalk/V files to your newly created subdirectory, insert the Source diskette
in Drive A. Enter the following command at the DOS prompt and hit the return or enter
key:

C> copy a:*.* \smaltalk

This copies all files on the Drive A Source diskette to the hard disk subdirectory called
smaltalk. After each file is copied to the hard disk, DOS reports back with a screen
message. When the message "xx files copied" appears, DOS is finished copying the
diskette.

Remove the Source diskette from Drive A, and replace it with the Image diskette. Repeat
the procedure.

With the Smalltalk/V files copied to the hard disk, you are ready to run the installation
program.

Running the Installation Program

To install Smalltalk/V, you need only know the type of video adapter board and
monitor your system is using.

Supported Video Adapters

At time of publication, Smalltalk/V 286 supports the following:

Chapter 2: Introduction to the Smalltalk/ V286 Environment 23

Video Adapter Type

AT&T (640 x 400)
CGA (640 x 200)
MCGA (640 x 480)
CGA Color Graphics (640 x 350)
EGA Color Low Resolution (640 x 200)
EGA Monochrome Graphics (640 x 350)
VGA (640 x 480)
Hercules Monochrome (720 x 348)
Toshiba T3100 (640 x 400)
IBM 3270 (720 x 350)

Monitor Type

color/mono
color/mono
color/mono
color
color
mono
color/mono
mono
mono
mono

The installation program will present you with an up-to-date list of video adapters
supported by the version of the software you have.

The Installation Program

To install Smalltalk/V, make sure that the directory currently logged on the screen is
your directory containing the Smalitalk/V files.

Now enter the following command:

install

When you hit return or enter, the installation program displays a list of supported video
adapters. Enter the number corresponding to your hardware configuration followed by
the return or enter key.

The installation program performs two functions. First it records your hardware
configuration in the file go in the current directory. Second, it decompresses all of the
Smalltalk/V files from the distribution archives. Then the archive files are deleted.

If your hardward configuration changes, you can run the installation program again. Since
the archive files have been deleted, only the first function is performed.

Starting Up Smalltalk/V

Do not try to run Smalltalk/V unless you have already installed the Smalltalk/V
program.

To start up Smalltalk/V, make sure that the current directory displayed on the screen is
the directory holding Smalltalk/V programs.

Now enter the following command and hit return or enter:

24 Chapter 2: Introduction to the Smalltalk/ V286 Environment

Smalltalk/V then loads. When Smalltalk/V is ready to run, it will display the start-up
screen below:

I-beam

window-

cursor—

background

Figure 2.1
Start Up Screen

: i

Exiting Smalltalk/V

To exit Smalltalk/V and return to DOS, move the cursor to the background and click
the right mouse button to bring up the system menu. Select the exit Smalltalk item by
moving the cursor down the menu and clicking the left mouse button when the cursor
is over your choice on the menu. The menu shown below will pop up on the screen:

Figure 2.2
Exit Menu

continue
mawe iaage

Chapter 2: Introduction to the Smalltalk/ V286 Environment 25

This menu asks you whether or not to save your changes. For now, choose forget image;
since you haven't done any programming yet, you don't have anything you need to save.
Later, when you are actually programming in Smalltalk/V, you'll want to save your
changes after each Smalltalk/V session.

Getting Around

To get around the Smalltalk/V environment, you must open up and close windows,
make selections from popped-up menus and move the cursor using a mouse or your
keyboard.

The Cursor

The cursor is your pointer on the screen. It tells Smalltalk/V where you are going to do
something like pop-up a menu. You can move the cursor by dragging your mouse in the
direction you want it to move or by using the cursor keys on the numeric keypad. When
using the keypad, you can move the cursor in larger amounts by holding down the shift
key while pressing down on a cursor key.

The I-beam

The insertion point or I-beam is a special text marker that is used when editing text
strings. It appears in a text window or pane and marks the spot where new text will be
inserted or deleted.

Working with Your Mouse

Using a mouse is the easiest way to get around the Smalltalk/V environment. With your
mouse you can quickly move between windows and background, text and menus by
dragging the mouse and clicking the correct button.

Mouse Buttons

Your mouse has two buttons. The right button "administrates" your way around the
environment. Use the right button to bring up menus for selection and for scrolling
within a window pane. The left button "selects" things for Smalltalk/V to execute. Use
the left button to choose specific menu items, text or text lines, and objects from a list.

26 Chapter 2: Introduction to the Smalltalk/ V286 Environment

Mouse-key Equivalents

If you do not want to use a mouse, you can use your keyboard keys to get around the
Smalltalk/V environment. Throughout this chapter you will find specific instructions for
using the keyboard. For more keyboard instructions, refer to Chapter 15.

Windows and Menus

Smalltalk/V is a menu-driven system. You give commands to the environment by
selecting things from a menu of possible things to do. There are several different
windows and menus available in the Smalltalk/V environment.

This section of the chapter introduces the windows and menus of the Smalltalk/V
standard window set. You will first learn some general information about windows and
menus and then you will take a Quick Tour of the main Smalltalk/V windows and
menus. For more detailed reading, see Chapters 15 and 16 in Part 3 of this manual.

Windows

A window is an object with a border, label bar, window buttons and one or more panes
and pop-up menus as shown in Figure 2.3. A window can be active or non-active.
Windows can be opened, closed, collapsed, resized and moved around on the screen.

Figure 2.3
Workspace and
Popped Up Menu

Chapter 2: Introduction to the Smalltalk/ V286 Environment 21

Label Bar

Each window has its own label bar and menu. We will say more about menus a little
further on. The window title is displayed on the label bar along with one or more small
buttons, depending on which Smalltalk/V window is open. The buttons provide quick
access to specific window activities.

Label Bar

close zoom

Z •

collapse
Figure 2.4
Window Label Bar with Window Buttons resize

Close Button: When selected, the window closes and disappears from the screen. To
close the window, place the cursor onto the close button and click the left mouse button
or use the numeric keypad + key.

Zoom Button: When selected, Smalltalk/V zooms in on the text pane so that it fills the
whole screen. To select the zoom button, place the cursor onto the button and click the
left mouse button or use the numeric keypad + key. To unzoom the text pane, click on
the label bar and the window redraws to its original configuration. You can also use the
F8 function key to zoom a text pane.

Collapse Button: When selected, the window collapses to show only the label bar. If the
window is already collapsed, selecting this button expands the window to its original size
and position on the screen. To select the collapse button, place the cursor onto the
button and click the left mouse button or use the numeric keypad + key.

Resize Button: Select this button and the system responds with a rectangle outline for
resizing the window. You can resize the window using either the mouse or keyboard.

With a Mouse: Be sure that the cursor is on the resize button. Press and hold down
the left mouse button while you move the mouse to drag the cursor and resize the
rectangle outline. Release the mouse button and the window redraws to its new
size.

28 Chapter 2: Introduction to the Smalltalk/V286 Environment

With the Keypad; With the cursor on the resize button, press and release the
numeric keypad + key. Use the keyboard cursor keys to move the cursor and
resize the rectangle outline. Once again, press and release the numeric keypad +
key and the window redraws to its new size.

Pane

Each window has one or more panes, depending upon which Smalltalk/V window is
open. Each pane also has a menu. The pane is the workspace for programming in
Smailtalk/V. Here you select items from lists using the left mouse button, insert and edit
text strings using the I-beam, and select and evaluate Smallralk/V programming code.

Each pane also has a scroll bar and cursor available for scrolling through all the text
contained in the pane as shown in Figure 2.5. You can bring up the scroll bar by pointing
the cursor onto the pane and holding down the right mouse button. We will discuss
scrolling in greater detail a little further on.

reversed label bar

scroll bar

scroll cursor

Figure 2.5
Pane
with Scroll Bar
and Scroll Cursor

This is Map la text. It Mill scroll upward and out
of sight as you click and drag the Mouse downward
within this pans.

Scrolling Mill cause this text to Move upward in this
pane, revealing the text which is below and currently

Menus

There are many menus in the Smalltalk/V environment. A menu is an object containing
a list of choices relevant to a particular window, pane or other object. Menus are hidden
behind windows, panes and the system screen. You can make a menu visible by popping
up the menu using the mouse or keypad.

Chapter 2: Introduction to the Smalltalk! V286 Environment 29

Popping up Menus

To pop up a menu, position the cursor over the object hiding the menu. Then, click the
right mouse button or press the Del key on the keyboard. The menu pops up.

Selecting from a Menu

To select an item from a menu, move the cursor over the item you wish to select. Click
the left mouse button or press the + key on the numeric keypad.

Hiding a Menu

If you are using a mouse, move the cursor outside of the menu and click either mouse
button. The menu disappears. If you are using a keypad, use the cursor keys to move the
cursor out of the menu and the menu automatically disappears.

Finding Different Menus

Smalltalk/V has many different kinds of menus some of which are shown in Figure 2.6.
What kind of menu you get depends on where the cursor is when you pop it up. If the
cursor is outside of every window, the system menu is popped up. When the cursor is on
the window label bar, a window menu pops up. When the cursor is on a pane, a pane
menu specific to that pane pops up.

window menu

pane menu —

secondary
pane menu

system menu

Figure 2.6
Different Kinds
of Menus

Sane " ^ Q have choices which lead
to additional pop up Menus
offering More selections such as
the ' next aenu' iteM in the
Transcript pane Menu above.

dos shell
speed/space
exit Smalltalk
browse disk
open workspace
broMse classes
redraw screen
save iMage
run deMo

30 Chapter 2: Introduction to the Smalltalk/ V286 Environment

The System Menu

The system menu lets you open new windows and perform system level functions, such
as exiting Smalltalk/V or redrawing the screen.

To find this menu, place the cursor outside any window onto the screen background.
Then click the right mouse button or press the Del key.

The Window Menu

The window menu lets you manipulate the window as a whole. For example, you can
resize the window by selecting frame from the menu. Or you can deactivate the active
window and activate the window behind it by selecting cycle from the menu.

To quickly find this menu from any part of the window, press the Ins key. Or, you can
place the cursor over the window label bar, and click the right mouse button or press the
Del key.

The Pane Menu

The pane menu lets you manipulate the contents of the window pane. For example you
can evaluate selected Smalltalk/V code by choosing show it or do it from the pane
menu. Or, you can edit selected Smalltalk/V code by choosing copy, cut or paste.

To find this menu, place the cursor anywhere inside the window pane and click the right
mouse button or press the Del key.

Using Menus: Running the Demonstration Program

To get you started, we've included a demonstration program, showing you how to use
menus and move the cursor. To start the demonstration program, move the cursor
outside of all of the windows, and pop up the menu. You should see the following
screen:

Chapter 2: Introduction to the Smalltalk/ V286 Environment 31

Figure 2.7
Starting the Demo

S»alltalk/V Transcript [Z]tLI

dos shell
speed/space
exit Smlltalk
browse disk
open workspace
browse classes
redraw screen
save iwage

Now select the item run demo from the menu. (If run demo is not on the menu, you
didn't have the cursor outside of all the windows when you popped up the menu. Try
again.) When you select run demo, you'll see a special menu:

Figure 2.8
Running the Demo

When you select any item from this menu, the demonstration program draws a
corresponding picture. For example, select mandala and a mandala is drawn on the
screen. Select ball and you'll see a little greater program complexity. As you move the
cursor, the ball moves differently. The ball moves faster when you move the cursor
towards the bottom of the screen, and slower when the cursor is near the top.

To leave the demo, select the exit item from the demo menu.

32 Chapter 2: Introduction to the Smalltalk/ V286 Environment

Working with Windows

Windows provide the main interface between Smalltalk/V and you. For example, you
use the Class Hierarchy Browser window to enter programs into the system and the
Disk Browser window to browse and manipulate files. A window can be opened, closed,
collapsed, resized and moved about on the screen.

Opening a Window

A window must be open before it can be activated. When you first start up Smalltalk/V,
the System Transcript Window is opened. To open other Smalltalk/V windows you
make selections from specific menus.

For example when you select browse disk from the System Menu the Disk Browser
Window is opened. Or select browse classes from the same menu and the Class
Hierarchy Browser window opens at a default size appropriate to the window type. If
you want to change the size of a window, use the resize button on the label bar.

Activating a Window

Although there may be many windows visible on the screen at one time, only one of them
can be active. To use a window, you need to activate it.

To activate a window, move the cursor over some portion of the window and click the
left mouse button or press the + key on the numeric keypad. Smalltalk/V reverses the
color of the label bar to show that the window is active and ready for use.

Deactivating a Window

You can deactivate a window by selecting another window on the screen. Click on the
inactive window and its label bar reverses color to show it is active as the old window
becomes deactivated.

If there are no other windows visible on the screen, move the cursor outside the window.
Then click either the left mouse button or press the + key on the numeric keypad. This
deactivates the window on the screen.

Ill.

Chapter 2: Introduction to the Smalltalk/ V286 Environment 33

Resizing a Window

An active window can be resized to your own taste or to allow you to view more than
one window at a time on the screen. You can resize a window by selecting the resize
button from the label bar and dragging the cursor to resize the window, or by selecting
frame from the window menu and following the same procedure.

Closing a Window

When you are finished with a window, you may close it. To close a window you can
either select the close window button on the window label bar, or close from the
window menu.

Moving a Window

You can move windows. This is useful when you have collapsed or resized windows and
you want to reposition them on the screen.

You can move a window in three ways. 1) Select move from the window menu. Then
drag the cursor and its attached window outline, to its new position and click the left
mouse button. The window is redrawn in its new location. 2) Place the cursor on the
window label bar then press and hold the left mouse button. Drag the mouse and relocate
the window on the screen. 3) Select move from the window menu using the 4- key on
the numeric keypad. After the cursor grabs the window frame, use the cursor keys to
move and reposition the window. Press the + key again and the window is redrawn in
its new location.

Quick-Tour-Windows and Menus

Part of the enjoyment of programming in Smalltalk/V is that you have lots of freedom
to experiment. To whet your appetite, a Quick Tour of the main windows and menus
of the Smalltalk/V environment can be found on the following pages. You can use the
Quick Tour to preview the environment or as a roadmap in case you get lost. Detailed
information on the Smalltalk/V windows and menus is found in Chapter 15 in Part 3
of this manual.

34 Chapter 2: Introduction to the Smalltalk/ V286 Environment

Smalltalk/U Transcript cole
cycl
fram
Move

zm

copy
cut
paste
show it
do it
save

next aenu

dos she11
speed/space
exit Smalltalk
browse disk
open workspace

miSEmaBm
redraw scree

m
n!save image

i demo

The System Menu and Transcript Window. The Transcript Window appears when you
first run Smalltalk/V. By selecting from the System Menu, you can open other windows
or perform system level functions.

TUTORIAL EXAfi

"Evaluating an Expression"

"Evaluate this expression with do it"

Evaluate this expression with show it"

3 + 4

Disk Browser. The Disk Browser displays and lets you edit the files on a given directory
and their contents.

Chapter 2: Introduction to the Smalltalk/ V286 Environment 33

mmmClassBrowser

lassReader
Collection...
Co lorPalette
Compiler...
Context...
Cursor-Manager..

file out
update
hide/show
browse

reaioveSe 1 ector
SubClass

selector:
se lectorMenu

ppenOn: aCo1lect ion
"Create a class hierarchy browser window giving access
to the classes in aCollection and their subclasses.
Define the type, behavior and relative size nf roirh
pane and schedule the w indow."

! aTopPane listLineHeight ratio I
hiddenClasses := Set new.
(aCollection includes: Object)

ifTrue: I
aCollection do: I :class I

class subclasses do: ['.each !
each subclasses isEmpty

ifFalse: [

The Class Hierarchy Browser. The Class Hierarchy Browser shows you the interrela-
tionship of the classes within Smalltalk/V, and lets you edit the code for each class.

BitBlt
BitBltErrors
BitEditor
Bitaap
Blitter
Boolean
BreakPoin
ByteArray
Character

CharacterScanner
Class
ClassBrowser
ClassHierarchyB
C lassReader
ClockEvent
Collection
ColorForm
ColorPalette
ColorScreen

Inspector. Inspectors let you examine and edit objects. They serve as a low-level
debugging aid.

36 Chapter 2: Introduction to the Smalltalk/ V286 Environment

Icheckl ndex: anlnteger
"Private - Check that the argiuient anlnteger
is a valid index for the receiver collection.
If it is found to be invalid, report the error.

<anlnteger isXindOf: Integer)
ifFalse: t

*self error:
' Indexed collections are indexed by int

(anlnteger between: 1 and: self size)
ifFalse: I

copu
cut
paste
show it
do it

Walkback. The Walkback window pops up automatically when errors are detected. It
gives a view of the state of your program at that point.

;tring(Object)»error:
Str i ng(I ndexedCo I Iect ion) »error I nBounds:
Str ing(IndexedCo1Iect ion)>>checkIndex:
String»at:
Undef i nedObj ect»Do i t

Debugger. The Debugger gives an expanded view of the Walkback in four panes. It is
a high-level debugging aid to help you correct programming errors.

l i L

Chapter 2: Introduction to the Smalltalk/ V286 Environment 37

Inside the Window Pane

Most of what you do in Smalltalk/V will involve activities inside a window pane. For
many of the programs that you write, you will be able to find program code that has
already been typed into Smalltalk/V. You can copy this code and edit the text strings
to produce the new code you are trying to write. This saves you from having to re-invent
source code each time you want to do something in Smalltalk/V.

In this section you will learn how to enter and edit text strings and how to make the most
of the powerful cut, copy and paste methods found in the pane menu. For more detailed
discussion of these subjects, see Chapter 15.

Selecting Text

To do almost anything in Smalltalk/V, you must select some text to work with. This
simply means marking any piece of data, such as a block of code, an expression, some
text lines, etc.

Once you select text you can copy or cut it from its current location then paste it
elsewhere using the relevant menu selection from the pane menu.

When working with text, you will see an I-beam in the text pane. The I-beam is the
special pointer used when selecting or editing text strings. The I-beam marks the selection
point for working in text. You can position the I-beam anywhere you like in the pane,
even between letters in a word.

Selecting Text Using the Mouse

To select text using the mouse, first activate the window. Move the cursor to one end of
the text string. Press and hold down the left mouse button. While continuing to hold
down the button, move the cursor to the other end of the text you wish to select. As you
move the cursor, text is reversed. When the text you want to select is reversed, release the
left mouse button. The selected text remains reversed until you deselect it. To deselect
text, click the left mouse button somewhere else in the window pane.

Selecting Text Using the Keyboard

To select text using the keyboard, make sure the window is active. Move the cursor to
one end of the text you wish to select and press the + key on the numeric keypad. Then
move the cursor to the other end of the text, and press the — key on the numeric keypad.
The selected text is reversed. If you did not select exactly what you wanted, move the
cursor and press the — key again.

38 Chapter 2: Introduction to the Smalltalk/ V286 Environment

Selecting a different piece of text is done in exactly the same way. Smalltalk/V deselects
the old selected text and reverses the newly selected text strings.

Quick Selection of Single Words and Single Lines

To quickly select a whole word in a text string, position the cursor anywhere on the word
to be selected and click the left mouse button twice or press the + key twice in the same
place—a double click. The whole word is reversed without having to drag the cursor
from one end of the word to the other.

To quickly select a whole line of text, place the cursor just inside the window border to
the left of the line you wish to select and click the left mouse button twice or press the
+ key twice. The whole line is selected. If you continue holding down the mouse button
while you drag the mouse either up or down, line after line of text is selected until you
let go of the mouse button.

Scrolling Text

The text inside of a pane can be larger than the pane itself. Scrolling moves different text
into the pane for viewing. To scroll text into the pane you can use either the mouse or
the keyboard.

Scrolling Text Using the Mouse

Make sure that the window is active. Then press the right mouse button and hold it
down. The cursor changes from an arrow to a scroll cursor and the scroll bar appears on
the right side of the pane. The shaded area in the scroll bar shows where the text in the
window is generally located in the overall document.

Continue to hold down the button while dragging the mouse downward. The scroll
cursor changes to an arrow. Drag the arrow downward outside the text pane and the text
in the pane scrolls up. Drag the arrow up beyond the top of the pane and the text scrolls
downward. You can use the same technique to scroll text left and right across the pane
by dragging the arrow beyond the pane frame in either direction.

Scrolling Text Using the Keyboard

To scroll text in a pane with the keyboard, first make sure that the window is active. Then
press the Home and End keys to scroll the text left and right, respectively, or the PgUp
and PgDn keys to scroll the text up and down, respectively. To scroll in large amounts,
hold down the Shift key while pressing one of the scrolling keys.

Chapter 2: Introduction to the Smalltalk/ V286 Environment 39

Scrolling to Select Large Text Areas

If the text you want to select is too long to fit in the pane at one time, there are two ways
to select large areas of text, l) Move the cursor to one end of the text string. Press and
hold down the right mouse button while dragging the arrow downward as described in
scrolling above. Move the cursor back into the pane when the other end of the desired
text is visible. Then adjust the selection until it is just what you want before releasing the
mouse button. Or 2) you can place the I-beam at one end for selection, then scroll the
pane until the other end of the desired text is visible. Move the cursor over the last
character to be selected. To select the text, press the shift key and click the left mouse
button or press the — key on the numeric keypad. The entire section is selected.

Inserting Text

To insert text into a pane, first activate the window. Then move the cursor to the location
where you want to insert text. Click the left mouse button or press the + key on the
numeric keypad. Notice the I-beam in the pane. The I-beam marks the insertion point for
new text.

You can insert text in two ways: either by directly typing in the new text string or by
using the paste option from the pane menu to bring in text you have selected and copied
from another place. If you make a mistake, use the backspace key to delete your mistakes.

Deleting Text

The easiest but slowest way to delete text is to place the I-beam after the last character
you want to delete and press the backspace key until all the characters you wish to delete
disappear from the screen. Remember that you place the I-beam by clicking the left
mouse button or pressing the + key on the numeric keypad.

To delete whole words or strings of words, select the text to be deleted and either press
the backspace key once, or begin typing new text, or paste in copied text from elsewhere.
All three actions delete the selected text.

Zooming in on a Text Pane

When zoom is selected using either the zoom button on the window label bar or zoom
from the next menu pane menu, Smalltalk/V zooms in on the text window so that it
fills the whole screen. You can then have a full display text view for any text entry or
editing you need to do. Alternatively, you can press the F8 function key to activate the
zoom feature.

M' .

40 Chapter 2: Introduction to the Smalltalk/V286 Environment

To return the display to normal, reselect zoom, or press the F8 function key again, or
click the left mouse button when the cursor is inside of the window label bar.

Starting Out

Now that you are familiar with the objects and methods of the Smalltalk/V
environment, you can jump right in and get to work. As you work your way through this
last section of the chapter and the tutorials that follow, you will quickly come to
understand and be able to use Smalltalk/V.

Evaluating Text

To evaluate a Smalltalk/V expression, you must first enter the text into a pane and select
it. Make sure that the cursor is inside of the window, and then pop up the pane menu.
Select either do it or show it from the menu.

When you select do it, Smalltalk/V executes the selected text. When you select show
it, Smalltalk/V executes the selected text and displays the result of the expression on the
screen.

For example, place the cursor into any active window pane. Type in the following
expression and evaluate it:

3 + 4

When you evaluate this expression with do it, Smalltalk/V executes the expression but
shows no results on the screen. When you evaluate this expression with show it,
Smalltalk/V both executes the expression and shows the results. In the tutorials that
follow, you will usually use the show it method for evaluation.

Compilation Errors

Type the following expression into a window, select it, and then evaluate it, using the do
it choice on the pane menu:

Turtle
home;
north;
black;
mandela: x2 diameter: 300

The result should be:

Chapter 2: Introduction to the Smalltalk/ V286 Environment 41

Figure 2.15
Compilation Error

Turtle
home;
north;
black;
mandela: diameter: 380

The compiler detected an error. The error message is inserted in front of the error and
is selected. To delete the error message, press the backspace key. Now correct the
expression by changing the letter x to the number 1 so that the line reads:

mandela: 12 diameter: 300

Runtime Errors and Walkback Windows

Select the corrected expression from the above example and evaluate it. (Make sure that
you select the entire expression, not just the corrected line.) The result should be:

Figure 2.16
Runtime Error

'en(Obj ect) »error •'
Pen(Object)»doesNotUnderstand:
Jndef inedObj ect»Do it

42 Chapter 2: Introduction to the Smalltalk/ V286 Environment

Smalltalk/V detected a runtime error. In this case, the problem is a misspelled word:
mandela should be mandala. The window notifying you of the error is called a walkback
window.

To correct the error, simply activate the window with the expression and fix the
misspelling. You can now select and evaluate the text again.

Prompters

Smalltalk/V uses prompters to ask questions to which you respond by entering a string
of characters. For example, the code for this prompter shows that it asks you to enter
your name, and then it prints it:

Prompter prompt: 'your name ?' default: ' '

To see how this works, enter the above expression into a pane, select it, and then evaluate
it using the show it choice on the pane menu. The result should be:

Figure 2.17
Prompter

You enter your response in the pane of the prompter. A prompter lets you enter, delete
and edit the text in the usual ways, except that it accepts only a single line of text. When
you press the return or enter key, the line of text is returned to Smalltalk/V as your
response and the prompter is closed.

Chapter 2: Introduction to the Smalltalk/ V286 Environment 43

Reusing Text

One of the nice things about Smalltalk/V is that you can edit text that you have
previously evaluated, and then evaluate the expression again. For example, in the
prompter example above, change 'your name?' to 'your age?' Evaluate the expression
using show it from the pane menu.

Browsing

Some windows, like the Disk Browser have several panes. Some of these panes have lists
from which you can select items.

Pop up the system menu by placing the cursor on the screen background and clicking
the left mouse button or using the + key on the numeric keypad. Select browse disk
from the system menu. You are presented with a menu of devices. Choose one to open
a Disk Browser window for that device. The pane in the upper left corner lists all of the
directories on the disk. You can scroll this list both horizontally and vertically as you can
with any window pane.

directory

file

file contents

Figure 2.18
Disk Browser

Saalltalk/U Transcript

ttmac
Directory by nane

TUTORIAL EXAMPLES FOB CHAPTER 2 - INTRODUCTION TO SMALLTALKS

"Evaluating an Expression"

"Evaluate this expression «ith do it"

Deno run

"Evaluate this expression with show it"

To select an item from the directory list, move the cursor over the desired item and click
the left mouse button or press the + key on the numeric keypad. The item is then
reversed. The upper right pane then displays a list of files in the directory you just
selected. If you select a file in this list, the large pane at the bottom of the window
displays the file contents. Part 3 of this manual explains the Disk Browser in much more
detail.

44 Chapter 2: Introduction to the Smalltalk/ V286 Environment

Now pop up the system menu by placing the cursor on the screen background and
clicking the left mouse button or using the + key on the numeric keypad. Select browse
classes from the system menu to open the Class Hierarchy Browser window.

methods

class hierarchy

source code —

displayFon*: at:rule:
d isplayForn:fron:to:
font
fraae
gray:

Figure 2.19
Class Hierarchy
Browser

initialize: aRectangle font: aFont
' "Initialize the instance variables of
the receiver such that its clipping
rectangle is aRectangle and the font is
aFont. The destination farm is assuaed
to be the display screen."

f
initialize: a Rectangle
font: aFont
dest: Display

Here you can find program code for objects you may want to use in your own
Smalltalk/V program. By bringing the code into any edit or text pane, you can then
select it, copy it and paste it in your own program. Once the copied code is in your own
program, you can edit and evaluate it until Smalltalk/V does what you want it to do.

Tutorial Files

In the tutorials that follow, you'll be seeing many examples and programs. We've already
provided these examples for you in several disk files. To save yourself the time and effort
of typing in these examples, you can use the Disk Browser to access them. Open a Disk
Browser for the device that contains Smalltalk/V and select the directory in which
Smalltalk/V is installed.

The example files are organized by chapter. For example, the examples for Chapter 2 are
in the file Chapter. 2. You can see the examples at the beginning of the chapter displayed
on the screen. To see the rest, just scroll the pane. You can then treat these examples by
evaluating and editing them just as if you had entered them yourself.

You should now be familiar enough with the Smalltalk/V environment to proceed to
the following tutorials. If you want to review any topics covered in this tutorial, you can
either repeat the corresponding section of the tutorial or refer to a detailed description
in Part 3, The Smalltalk/V 286 Reference.

3 OBJECTS AND MESSAGES

Now that you have toured the Smalltalk/V environment, you are ready to learn about
the Smalltalk language itself. This chapter concentrates on the concepts of objects and
messages, the basis of the Smalltalk language. You'll also be introduced to global and
temporary variables.

Throughout the tutorials, you will be asked to evaluate sample pieces of code. As
described in the previous chapter, you can find these examples stored in a disk file. Simply
use the Disk Browser to access these files. The examples for this chapter are stored in the
file chapter.3.

Even if you are an experienced Smalltalk programmer, use these examples. They will help
you to understand the Smalltalk/V environment, as well as introduce you to some
advanced Smalltalk applications. Of course, if you are new to Smalltalk, these examples
will be even more valuable.

Simple Objects

Objects are the basic building block of the Smalltalk language. They are analogous to
pieces of data in other languages. For example,

'this is a string'

is a Smalltalk object, a string of characters. It's very much like a string in any other
language. Here are some other simple Smalltalk objects that have counterparts in most
languages:

1234 "an integer"
$A "the single character A"
(1 2 3) "an array of three integer objects"

Look at the last example, the array. It's an object which itself contains other objects. Let's
look at some more examples:

('array' 'of 'four* 'strings')
('array' 'of 5 'strings' 'and' 2 'integers')

As you can see from the last example, all of the objects contained inside of an object do
not have to be of the same type or size. Part of the power of Smalltalk comes from this
capability. Consider this more complex object:

(1 ('two' 'three') 4)

46 Chapter 3: Objects and Messages

This is an object (an array) with three objects inside of it. The second object in the array
is another array of two strings.

Simple Messages

Of course, an object can do nothing by itself. In Smalltalk, you send messages to objects
to make things happen. Messages are similar to function calls in other languages. For
example, look at this Smalltalk expression, composed of a single message:

20 factorial

This sends the message factorial to the object 20. To evaluate this expression, either find
it in the tutorial file chapter. 3 or type it into a pane and select it. Then use the show it
choice on the pane menu to compile and evaluate it. The result should be a very large
integer:

2432902008176640000

Let's try another simple message. When you select and evaluate the following expression,
the result should be the integer 15, the size of the string:

'now is the time' size

A message is composed of three parts: a receiver object, a message selector, and zero or more
arguments. In the above example, the string is the receiver object, the message selector is
size, and there are no arguments. Or consider:

(1 3 5 7) at: 2

In this example, the array is the receiver, at: is the message selector, and the 2 is the
argument.

A message always returns a single object as its result, just like functions in most other
languages. Similarly, the message selector is like the function name, and the receiver
object is like the first function parameter. The above example asks for the second element
of the array; the result is the integer 3.

Now try evaluating this example:

'20' factorial

A walkback window appears. Since 20 is enclosed in quotes, it is a string, to which
factorial makes no sense. As this example illustrates, objects always know the messages that
are appropriate for them. Part 4 of this manual lists all of the different kinds of objects
provided by Smalltalk/V, and the messages that they respond to.

Chapter 3 : Objects and Messages 47

To get rid of the walkback window, select the close button from the walkback window
label bar by positioning the cursor over the button and clicking the left mouse button or
pressing the numeric keypad + key.

Unary Messages

Messages with no arguments are called unary messages. Try evaluating these unary
messages:

('array' 'of 'strings') size
'now is the time' asUpperCase
'hello there' reversed
(4 'five' 6 7) reversed
$A asciiValue
65 asCharacter

Keyword Messages

Messages with one or more arguments are called keyword messages. Try evaluating these
keyword messages:

'now is the time' at: 6
Hello' includes: $e

'hello' at: 1 put: $H
'The quick brown' copyFrom: 4 to: 9

In the last two examples, the message selectors at:put: and copyFronv.to: are divided up
by the arguments. In these examples, ar.put: and copyFronv.to: work with strings, but
these same messages work for arrays as well:

(9 8 7 6 5) at: 3
(1 (2 3) 4 5) includes: # (2 3)
(1 0 4 5) at: 2 put: # (2 3)
(9 8 7 6 5) copyFrom: 1 to: 2

From these examples, you may have noticed another important point: different kinds of
objects can respond to the same message in different ways. These arrays respond
differently to the ar.put: and copyFrom-.to: message selectors than the strings in the
previous examples.

48 Chapter 3: Objects and Messages

Arithmetic Messages

Smalltalk arithmetic looks the same as in most other languages. For example:

3 + 4

But, like other Smalltalk expressions, this is a message. The integer 3 is the receiver, +
is the message selector, the integer 4 is the argument, and the integer 7 is the result. Here
are some more common arithmetic messages you can evaluate.

5 * 7 "multiplication"
5 / / 2 "integer division (truncation)"
4 \ \ 3 "integer remainder"
2 / 6 "rational division"

The last expression illustrates rational arithmetic, or the arithmetic of fractions. In
Smalltalk, rational arithmetic is exact; there is no rounding or truncation. This is because
Smalltalk stores the result as a numerator and a denominator (reduced to its simplest
form), rather than computing an approximate real number.

Arithmetic expressions in Smalltalk also differ from most other languages in their order
of evaluation. Smalltalk evaluates an arithmetic expression strictly from left to right, with
no precedence among operators. For example, evaluate this expression:

3 + 4 * 2

The result is 14, not 11. You can, however, use parentheses to control evaluation order,
as in this example:

3 + (4 * 2)

If your computer has a coprocessor, you can perform floating point arithmetic as well:

1.5 + 6.3e2

If a walkback window appears, your computer does not have a coprocessor. Close the
walkback window and continue.

Binary Messages

Arithmetic messages are examples of binary messages, messages with one argument and
one or two special characters (other than digits and letters) as the selector. Binary
messages are always evaluated strictly from left to right, unless you have used parentheses.
For example, evaluate these non-arithmetic messages:

Chapter 3: Objects and Messages 49

'hello', ' there'
(1 2 3), # (4 5 6)

In these examples, the special character is the comma. It concatenates the argument with
the receiver object.

Messages inside of Messages

As we stated before, messages are like functions, in that they return an object. This means
that anywhere an object appears in an expression, you can use a message which returns
a similar kind of object. For example, evaluate:

'hello' size + 4
'now' size + # (1 2 3 4) size
(1 12 24 36) includes: 4 factorial

The last expression above is really two messages. 4 factorial is a unary message, and is
computed first. The result then becomes the argument for the includes: message. Now
evaluate this more complex expression:

4 factor ia l b e t w e e n : 3 + 4 a n d : ' h e l l o ' s i ze * 7

This expression is composed of five messages. The five message selectors are factorial,
+ , size, *, and between:and:. As you can see, unary messages are always evaluated before
binary messages, which in turn are evaluated before keyword messages. As usual, you can
override this precedence by using parentheses:

'hello' at: (# (5 3 1) at: 2)

This expression is composed of two at: messages: one to an array, and one to a string.
To see what happens when there are no parentheses, try:

'hello' at: # (5 3 1) at: 2

This expression is a single message with two arguments. The message selector becomes
af.at:, clearly not what we had in mind.

Expression Series

You can't do much with just a single expression. Here's a series of expressions, which you
can evaluate as a single unit. Select the entire series before popping up the pane menu:

50 Chapter 3: Objects and Messages

Turtle black.
Turtle home.
Turtle go: 100.
Turtle turn: 120.
Turtle go: 100.
Turtle turn: 120.
Turtle go: 100.
Turtle turn: 120

Each message in the series is separated from the next by a period. We put each message
on a separate line purely for appearance. The receiver of all the messages is the object
Turtle, one of the objects supplied in the Smalltalk/V environment. To get a different
picture, change the word black to white and evaluate the expression series again.

To clean up the screen, select redraw screen from the system menu.

Cascaded Messages

A cascaded message is a shorthand way of writing a series of messages that are sent to the
same receiver. For example, the following expression draws the same figure as the
previous example (only in a different color):

Turtle
white;
home;
go: 100;
turn: 120;
go: 100;
turn: 120;
go: 100;
turn: 120

The receiver is written only once, and each message (except for the last) is terminated with
a semi-colon instead of a period. The indentation, again, is optional; it simply makes the
code easier to read.

Simple Loops

We can simplify the above example by using a message that loops a specified number of
times:

Chapter 3: Objects and Messages 31

Turtle
black;
home.

3 timesRepeat: [Turtle go: 100; turn: 120]

In this example, the argument to the timesRepeat: message is a block of code. Blocks
of code are written as a series of messages enclosed in square brackets, [and]. We'd
normally write the above example as:

Turtle
black;
home.

3 timesRepeat: [
Turtle

go: 100;
turn: 120]

This makes the cascaded message inside the block easier to see.

Objects and Messages Are Safe

The previous series of expressions illustrates another point about objects and messages.
Objects have a state; they can remember things. Messages change an object's state. The
Turtle object remembers its position, heading, and color. The messages black and white
change its color, the messages go: and home change its position, and the message turn:
changes its heading. Let's look at another expression that emphasizes this point:

'hello' at: 1 put: 23

When you evaluate this expression, a walkback error window pops up because 23 is not
a character. Since you can only change the state of the string by sending messages, the
string can check the validity of the arguments. This makes Smalltalk a very safe language.

Temporary Variables

Temporary variables are so called because Smalltalk discards them as soon as you are done
using them. Temporary variables are declared by enclosing them in vertical bars in the
first line of an expression series. Temporary variable names must start with a lower case
letter, while the rest of the name can be any combination of upper and lower case letters
and digits. For example, look at this short program that uses three temporary variables
and a loop to compute an array of several factorials:

52 Chapter 3: Objects and Messages

I temp index factorials I
factorials : = # (3 4 5 6) .
index := 1.
factorials size timesRepeat: [

temp := factorials at: index.
factorials at: index put: temp factorial.
index :== index + l] .

A factorials

The first line declares three temporary variables: temp, index, and factorials. A temporary
variable can hold any type of object. To give it a value, you use an assignment expression.

Assignment Expressions

The above example uses four assignment expressions:

factorials := # (3 4 5 6).
index := 1.
temp := factorials at: index,
index := index + 1.

The first two assign objects to the temporary variables, while the last two assign the
results of messages. Since the result of a message is always a single object, they actually
assign objects to the temporary variables.

Return Expressions

The last expression in the factorial example above is:

Afactorials

The caret (A) indicates that this is the value to be returned as the result of the expression
series. Such a statement beginning with a caret is called a return expression.

Global Variables

Smalltalk/V has many objects built into it, many of which are contained in global
variables. Unlike temporary variables, Smalltalk does not automatically dispose of global
variables when you are finished using them, and their use is not confined to a single set
of expressions. For example, Smalltalk/V provides (among others) these three global
variables:

Chapter 3: Objects and Messages 53

Turtle
Transcript
Disk

We have been using the global variable, Turtle. Global variables always contain a single
object. For example, select Turtle, and then use the show it choice on the pane menu
to see its current contents. The result is itself a single object.

Global variable names always begin with an upper case letter, with the remainder upper
and lower case letters and digits. Type in the following, select it, and show it:

Sammy

When the global variable does not currently exist, you get a menu which allows you to
choose whether or not you want to create it. If you do not create the global variable,
Smalltalk/V assumes you made an error, and displays an error message. This keeps you
from accidentally creating global variables when you misspell something. As with
temporary variables, you use assignment statements to assign values to global variables:

Sammy := 'Sammy Jones'

Putting It All Together

To conclude this first tutorial, here's a graphical program that draws flowers composed
of several polygons.

"Draw a polygon flower"
I sides length I
sides := 5.
length := 240 / / sides.
Turtle

black;
home;
north.

sides timesRepeat: [
Turtle go: length,
sides - 1 timesRepeat: [

Turtle
turn: 360 / / sides;
go: length]]

The first line is a comment. Comments are any string of characters enclosed in double
quote marks ("comment"). Smalltalk/V ignores comments when it compiles the
program; they simply add clarity to the code. Comments can appear anywhere in an
expression series.

54 Chapter 3: Objects and Messages

Evaluate the above example, and note the results. For a slightly different flower, change
the number of sides. To make the polygons spread further apart, change:

Turtle go: length

to the following expression (you might want to change the color to white as well):

Turtle
up;
go: length / / 2;
down;
go: length.

which produces:

Figure 3.1
Polygon Flower

"Dratt a polygon flower"
sides length !

sides := 5.
length •'= 248 // sides.
Turtle

black;
ho«e;
north.

sides tinesRepeat: [
Turtle

up;
go*. length//2:
down;
go: length.

sides - 1 tiaesRepeat: [
Turtle

turn: 368 •/ sides;
go: length]]

What YouVe Now Learned

At this point, you should be familiar with:

• simple objects
• simple messages
• unary, keyword, and binary (including arithmetic) messages
• messages inside of other messages
• message series
• cascaded messages
• temporary and global variables
• assignment expressions
• return expressions
• comments

Chapter 3: Objects and Messages .5.5

If you want to review any of these topics, simply refer back to the appropriate section in
this chapter. Of course, Part 3 describes all of these topics in greater detail.

Here's one final point which you can think about as you proceed on to the following
tutorials. As we mentioned, Turtle, which you have been using throughout this tutorial,
is a global variable. You have been able to use this variable in a number of different
situations, without knowing anything about its internal contents. This is a unique feature
of Smalltalk; you can use an object simply by knowing its external behavior, without
knowing anything of its internal behavior. You'll see further examples oi this throughout
the following tutorials.

Now that you've learned the above topics, you can proceed on to the next tutorial:
control structures.

4 CONTROL STRUCTURES

In the previous tutorial, you learned some of Smalltalk's basic expressions. But like any
language, Smalltalk cannot do much unless it can make decisions: evaluate a condition
and perform an action based on the result, or repeat actions a specified or unspecified
number of times. This chapter introduces you to Smalltalk's conditional expressions and
control structures, which perform these tasks.

As always, you can access the examples for this tutorial if you do not want to type them
in. Simply use the Disk Browser to retrieve the contents of the file chapter.4.

Comparing Objects

Smalltalk compares objects by sending messages. The normal comparisons of K, <!=,
= , > = , >, and ~s= are implemented as binary messages. For example, evaluate these
expressions:

3 < 4
(1 2 34) = # (1 2 3 4)

All objects understand equality, = . Many objects also define the relational operators, or
ordering messages, as in these examples:

'hello' < = 'goodbye'

Since these comparison messages are binary messages, parentheses are often needed if
there are other binary messages in the expression. For example, evaluate the following
expression with and without parentheses:

5 - (2 + 3)

As you have seen from evaluating these examples, comparisons return either true or false.

Testing Objects

Many objects understand messages that let you test something about their state or
condition. For example, evaluate these expressions:

$a isUpperCase
('hello' at: 1) isVowel
7 odd

These messages return true or false as well.

38 Chapter 4: Control Structures

Conditional Execution

Most languages use if statements to conditionally execute a series of statements.
Smalltalk uses blocks of code and messages to do the same thing. For example, look at
this expression, which computes the greater of two numbers:

I max a b I
a :ss: 5 squared,
b := 4 factorial,
a < b

ifTrue: [max : = b]
ifFalse: [max := a].

A max

The comparison message a < b returns either true or false, which then becomes the
receiver of the ifTrue:ifFalse: message. It, in turn, executes the corresponding block of
code.

As you have seen, all messages return a result. The ifTrue:i£False: message, like any
message, also returns a result. Evaluate the following expression:

3 < 4
ifTrue: ['the true block']
ifFalse: ['the false block']

The message ifTrue-.ifFalse: returns the result of the last expression in the block that it
executes. Let's look at another example:

I string index c I
string := 'Now is the time',
index := 1.
string size timesRepeat: [

c :— string at: index,
string

at: index
put:

(c is Vowel
ifTrue:
ifFalse:

index := index + 1
A string

c asUpperCase]
c asLowerCase]).

The above example converts all consonants to lower case and all vowels to upper case,
using the c is Vowel test on each letter to find out which to do.

Chapter 4: Control Structures 39

The other messages that execute a block of code conditionally are ifTrue:, ifFalse:, and
ifFalse:ifTrue:.

Boolean Expressions

The examples so far have depended on single comparison or testing messages, such as
<C or is Vowel. But often you need to perform a compound test. To do so, you use the
and: and or: messages. For example, look at the following code fragment, which tests
whether a character is not a digit:

(c < $0 or: [c > $9])

The receiver of the or: message is the result of the first comparison, either true or false.
The argument is a block of code whose last expression also returns true or false. The
and: message works in the same way:

(c > = $0 and: [c < = $9])

To see how this is used in a complete example, evaluate this expression:

"compute the value of the first integer in a string"
I string index answer c I
string := '1234 is the number'.
answer : = 0.
index := 1.
string size timesRepeat: [

c :— string at: index.
(c < $0 or: [c > $9])

ifTrue: [Aanswer].
answer := answer * 10

+ c asciiValue — $0 asciiValue.
index := index + l] .

A answer

Notice the return expression ifTrue: [Aanswer] in the middle of the above example.
This exits the expression as soon as the first non digit is encountered.

You can perform more complex tests by nesting the expressions. For example, look at
the following fragment, which tests if a character is a digit or one of the letters from A-F.

(c isDigit or: [c > = $A and: [c < = $F]])

1
60 Chapter 4: Control Structures

Looping Messages

You've already seen one simple looping message, timesRepeat:. Here's a simple
expression that uses another simple looping message to copy a file:

"copy a disk file"
I input output I
input : = File pathName: 'go'.
output := File pathName: 'junk'.
[input atEnd]

whileFalse: [output nextPut: input next],
input close,
output close

You may have noticed the message atEnd in the above example. This message returns
true when there are no more characters to read from the input file stream; otherwise, it
returns fake. The input file stream is read with the next message, which returns the next
character in the file. The output file stream is written with the nextPut: message, which
writes its argument to the output.

The message whileFalse: is sent to a block of code with another block of code as an
argument. The message repeatedly evaluates its receiver block for as long as the argument
is false. When the receiver block evaluates to true, the expression closes the input and
output files.

As you might expect, Smalltalk also provides a corresponding whileTrue: message. To
see it, look at this graphical example, which uses Turtle to draw some polygons:

"draw several polygons"
I sides I
sides := 3.
[sides < = 6]

whileTrue: [
sides timesRepeat: [

Turtle
go: 60;
turn: 360 / / sides],

sides := sides + l]

Chapter 4: Control Structures 61

Simple Iterators

The Turtle example above increases the temporary variable sides from 3 to 6 by 1, and
evaluates some code for each value along the way. Like most other languages, Smalltalk
provides iteration statements to do this more easily. For example, here's the same
expression, using one such iteration statement:

"draw several polygons"
3 to: 6 do: [:sides I

sides timesRepeat: [
Turtle

go: 60;
turn: 360 / / sides]]

The iteration message is to:do:, which has two arguments. It takes the receiver object, 3,
as the lower limit of the iteration, and uses the first argument, 6, as the upper limit. The
second argument is a block of code, which itself uses a block argument, sides, to draw
a polygon with sides number of sides. The iteration message assigns the values 3 thru 6
successively to the block argument, evaluating the block for each value.

The to:do: message uses an increment of one. But you can also specify your own
increment by using the to:by:do: message, as in this example:

"compute the sum of 1/2, 5/8, 3/4, 7/8, 1"
I s u m I
sum := 0.
1/2 to: 1 by: 1/8 do: [:i I

sum := sum + i] .
A sum

The first argument, 1, is the upper limit, while the second argument, 1/8, is the
increment.

Block Arguments

As you can see from the last example, a block argument is declared in the first part of
the block, preceded by a colon, :, and separated from the statements in the block by a
vertical bar, I. For example, here's a block with one argument:

[xharacter I character is Vowel]

In this example, the block argument is character. Block arguments are a kind of
temporary variable, but do not have to be declared at the beginning of the expression
series.

62 Chapter 4: Control Structures

Generalized Iterators

Blocks with arguments allow Smalltalk to supply several generalized iteration messages:
do:, select:, reject:, and collect:.

The do: Iterator

The simplest of these is the do: message:

"count vowels in a string"
I vowels I
vowels := 0.
'Now is the time' do: [:char I

I) char is Vowel
ifTrue: [vowels := vowels + I]] .

A vowels

The do: iterator causes the string to iterate across itself and pass each character to the
block. The above example is equivalent to the following:

"count vowels in a string"
I vowels string index I
vowels := 0.
index := 1.
string := 'Now is the time',
[index <C = string size]

whileTrue: [
(string at: index) is Vowel

ifTrue: [vowels := vowels + l] .
index :— index + l] .

A vowels

The do: message can also iterate arrays, as in this example:

"draw several polygons"
(3 4 12 24) do: [:sides I

sides timesRepeat: [
Turtle

go: 60;
turn: 360 / / sides]]

or file streams:

Chapter 4: Control Structures 63

"Strip all carriage return characters (ascii 13)
from a disk file. Answer the number of characters
stripped."
I output stripped I
stripped := 0.
output := File pathName: 'stripped.go'.
(File pathName: 'go') do: [:char I

char = 13 asCharacter
ifTrue: [stripped := stripped + l]
ifFalse: [output nextPut: char]],

output close.
A stripped

The above expression reformats a DOS text file for use with Unix, replacing DOS's
carriage return/line feed pair at the end of lines with Unix's single line feed.

The select: Iterator

A more powerful iterator is the select: message:

"count the vowels in a string"
('Now is the time' select: [:c I c is Vowel])

size

The select: message iterates across its receiver and returns all of the elements for which
the argument block evaluates to true. In this case, the result is a string of all of the vowels
in the original string. The message size then tells us how many elements were selected.

The reject: Iterator

The reject: message is another generalized iterator:

"answer all digits whose factorial is
less than the digit raised to the 4th power"
(1 2 3 4 5 6 7 8 9) reject: [:i I

i factorial > = (i * i * i * i)]

The reject: message works just as select:, but answers all elements of the receiver for
which the block of code returns false, instead of true.

64 Chapter 4: Control Structures

The collect: Iterator

The collect: message evaluates the block of code for each element of the receiver and
answers the collection of all of the results returned by the block:

"square each element in the array"
(1 13 7 10) collect: [:il i * i]

To help see the differences between select:, reject:, and collect:, evaluate the following
expressions:

(1 2 3 4 5 6 7) select: [:c I c odd]
(1 2 3 4 5 6 7) reject: [:c I c odd]
(1 2 3 4 5 6 7) collect: [:c I c odd]

Concluding Example

Our concluding example is inspired by the limitations of DOS file names. DOS limits file
names to eight characters with a three character extension. Often, you need to abbreviate
long names that appear inside of programs. A good algorithm is to remove lower case
vowels from the original name from right to left. If this doesn't shorten it enough, you
might truncate what's left to eight characters. With names already shorter than eight
characters, you might want to pad the name with blanks, and not throw out any
characters. Here, then, is a Smalltalk solution:

"abbreviate a long file name to 8 characters"
I name length I
name := 'LongFileName'.
length := name size.
A(name reversed reject: [:c I

c is Vowel and: [
c isLowerCase and: [
(length := length — 1) > = 8]]])

reversed, ' '
copyFrom: 1 to: 8

Let's examine this example in detail. The caret (A) on the fourth line tells us that the
remainder of the program will return a single result. We reverse the name so that we can
throw out characters from the end of the original name first. Similarly, we reverse the
result of the reject: message to put the abbreviated name back in the proper order. We
then append blanks to the resulting string and return the first eight characters as the
answer.

Look more closely at the expression inside of the argument block to the reject: message:

Chapter 4: Control Structures 65

[K l
c is Vowel and: [
c isLowerCase and: [
(length := length - 1) > = 8]]]

Remember that the reject: message eliminates only those characters for which this block
evaluates to true. It's easy to see why the first two tests are is Vowel and isLowerCase,
since they are the possible characters to eliminate. The final test is more complex:

(length := length - 1) > = 8

This expression must evaluate to true to delete the character, and false to keep it. The
expression decrements the temporary variable length. If the length is less than 8, the
character is to be kept; otherwise it is eliminated. Since we initially set length to the size
of the string name, this expression of code returns true at most name size - 8 times,
which is the number of characters we want to eliminate.

What YouVe Now Learned

After finishing this chapter, you should be familiar with:

• comparing and testing objects
• conditional statements
• boolean expressions
• simple loops
• simple iterators
• block arguments
• the generalized iterators, do:, select:, reject:, and collect:

If you want to review any of these topics, you can either repeat the corresponding section
of the tutorial, or refer to a detailed explanation in Part 3, The Smalltalk/V 286
Reference.

5 CLASSES AND METHODS

In the preceding chapters, you have learned Smalltalk versions of techniques which are
common to most programming languages. For example, you have learned how to form
basic expressions, and how to use loops and conditional statements. In this chapter, you
will learn some of the concepts that make Smalltalk unique: class and method. You will
examine some Smalltalk/V classes and methods, and add new methods to these classes
for numeric processing, pattern matching, and graphics. You'll also learn how to use
Inspectors, windows for viewing and changing the internal variables that define the state
of objects.

Beginning with this tutorial, you will make changes to the Smalltalk/V environment
itself. In order to make these changes permanent (so that you can use them in later
tutorials), be sure to save the image whenever you leave Smalltalk/V. That is, when you
select exit Smalltalk from the system menu, be sure to then use the save image function.

As always, you can find the examples for this tutorial in the disk file chapter. 5. Use the
Disk Browser to retrieve them, if you wish.

Classes

Problem solving using Smalltalk involves classifying objects according to their similarities
and differences. You've already seen the external behavior of objects, by sending
messages to them and observing the results. A class defines the behavior of similar objects
by specifying their insides: the variables they contain and the methods available for
responding to messages sent to them.

Every object is an instance (member) of a class. For example, # (1 2 3) and #(sam joe)
are instances of class Array, whereas 'north' and 'south' are instances of class String. All
objects know which class they belong to. For example, evaluate the following
expressions:

#(Francesca Jackie Marisa) class
'Rakesh Vijay' class
Turtle class

An object's internal variables are called instance variables, they are themselves containers
for other objects. For example, objects in class Fraction have instance variables
numerator and denominator. For the object representing the fraction 1/7, the instance
variable numerator contains the object 1 and the instance variable denominator contains
the object 7.

68 Chapter 5: Classes and Methods

Methods

Methods are Smalltalk code, the algorithms that determine an object's behavior and
performance. They are like function definitions in other languages. When a message is
sent to an object, a method is evaluated, and an object returned as a result. Evaluate the
following message expression:

(1/7) numerator

When the message numerator is sent to the fraction 1/7, Smalltalk evaluates the method
numerator defined in class Fraction:

numerator
A numerator

The first line of the method defines the method name. (Notice that it matches the selector
in the corresponding message.) The second line returns the result numerator, the instance
variable of the receiver fraction object. As a more complex example, evaluate the
following message expression:

(2/3) * (5/7)

Sending the message * to the fraction 2/3 with the fraction 5/7 as the argument
evaluates the method * in class Fraction:

* aNumber
A (numerator * aNumber numerator) /

(denominator * aNumber denominator)

The first line defines the method name (*) and the name for the argument, aNumber,
which is used in the rest of the method to represent the argument object. The method
returns a new fraction whose numerator is the product of the receiver and argument
numerators, and whose denominator is the product of the receiver and argument
denominators.

Notice that numerator and denominator appear both as instance variables and messages
in this method. In processing the example message, the argument aNumber contains the
fraction 5/7, while the instance variables numerator and denominator contain 2 and 3
respectively.

As you can see from this example, Smalltalk objects are abstract data types. The multiply
method operates on behalf of the receiver object (2/3), whose internal variables
numerator and denominator are accessible. The argument is another object (5/7). Even
though it is the same class as the receiver, its internal variables are not available in this
method, and so messages must be used to request the desired information. This Smalltalk
feature provides complete safety from outside manipulation.

Chapter 3: Classes and Methods 69

The Class Hierarchy Browser

In using the Smalltalk/V environment up to this point, you may be wondering where
you do your actual programming. To program in Smalltalk/V, you use a special window
called the Class Hierarchy Browser. It lets you browse and change existing class and
method definitions, and create new ones. Open a Class Hierarchy Browser window now
by evaluating the following expression:

ClassHierarchyBrowser new openOn: (Array with: Integer
with: Fraction with: String with: DemoClass)

A new window will appear on the screen. Remember that you can resize or move this
window as you learned in Chapter 2. A Class Hierarchy Browser window is now available
for the classes Integer, Fraction, String and DemoClass, as you can see from the top
left pane. Select the entry for class Fraction; you'll see the following window:

Figure 5.1
Class Hierarchy
Browser

Number subclass: tFraction

lint nnrnifnr i nil Inf1»no«'

'numerator denoninator

classUariableNaaes: "

poolDictionaries: "

The top right pane shows the methods defined for class Fraction, the seleaed class. The
bottom pane shows the class definition message for class Fraction. The class definition
message shows the characteristics that make up a class. Notice the instanceVari-
ableNames: argument; it's a string specifying that the instance variable names are
numerator and denominator. You'll learn about this message's other arguments later in
the chapter.

Select the method * in the top right pane; the source code for the method appears in the
bottom pane. This pane is a text editor which you can use to change existing methods
and create new ones. Try selecting other methods, and look at the source code.

I

.III l)

70 Chapter 5: Classes and Methods

The Special Variable "serf"

Now let's add the following new method to class Fraction:

fraction

"Answer the receiver minus its integral part."
A self - self truncated

This method returns a fraction less than one, the receiver of the message minus the
integral part of the receiver. The method contains the word self, a special variable
representing the object which is the receiver of the fraction message. Add the method
to class Fraction using the following steps:

• Pop up the pane menu in the top right pane and select new method.
• You'll see a prototype method in the bottom pane. Replace it with the source

code for the fraction method defined above.
• Pop up the pane menu in the bottom pane and select save.

Smalltalk/V compiles the new method and installs it in class Fraction. Try it out by
evaluating the following messages:

(22/7) fraction
(2/3) fraction

Creating New Objects and the Special Object "nil"

You have seen several messages which create new objects, such as:

'bigger', ' string'
1 / 3

Classes are also objects, and so can be used in message expressions. A common way to
create a new object is to send a message to its class. For example, evaluate the following
messages:

Array new: 10
Array new
Pen new
Date today
Time now

The first message creates an array with 10 elements, all initialized to the object nil. The
object nil is the sole instance of class UndefinedObject; it is assigned to the instance
variables of all new objects. This means that unless an object assigns a value to its
instance variables, they contain nil. The second message, on the other hand, creates an
array with no elements at all.

Chapter 5: Classes and Methods 71

The third message creates a pen, an instance of class Pen; if you show it, it displays itself
as "a Pen". This is the default way for an object to display itself. (In Chapter 7, you'll learn
how to include more information when an instance displays itself.)

The final two messages create an instance of class Date (representing the current date),
and an instance of class Time (representing the current time), respectively.

Instance Variables

Objects can contain both namedand indexedinstance variables. Named instance variables
are accessed by name, as with numerator for fraction objects. Indexed instance variables
are identified by integers beginning with 1. They are always accessed via messages, such
as:

'location* at: 2
'parts' at: 5 put: $y

An object's class specifies the named instance variables, and whether or not indexed
instance variables can be used in its instances. The number of named instance variables
is fixed for all instances of the class. The number of indexed instance variables is defined
when you create the object, and may differ among instances of a class. For example, the
two strings above have eight and five indexed instance variables, respectively.

For a complete description of how to specify class information, refer to Part 3, The
Smalltalk/V 286 Reference.

Recursion

A powerful programming technique is recursion. Recursion is often used when an
algorithm or data structure is defined in terms of itself. In Chapter 3, you saw examples
using the factorial message. Let's look at the factorial method, defined in class Integer:

factorial
"Answer the factorial of the receiver."

self >1
ifTrue: [A(self - 1) factorial * self],

self <0
ifTrue: [Aself error: 'negative factorial'].

AI

The factorial method multiplies the receiver by the factorial of the quantity, receiver
minus one. If the receiver is less than or equal to one, the answer is one. As in this
example, a recursive solution is often a straightforward translation of a mathematical
definition into a Smalltalk method.

72 Chapter 5: Classes and Methods

Evaluate the following expression, which sends the factorial message to each of the
elements of an array and returns the answers in a new array:

(0 1 2 3 4 10 15 20) collect: [:n I n factorial]

As another example of recursion using integers, consider how to compute Fibonacci
numbers. A Fibonacci number is a statistical function used in many applications. The nth
Fibonacci number for n greater than 2 is defined to be the sum of the Fibonacci numbers
for n - 1 and n - 2. (The Fibonacci number for n less than 3 is one.) Use the Class
Hierarchy Browser to add the following method to class Integer (Note that you can
copy the method from the tutorial file chapter. 5 and paste it over the new method
template in the bottom pane of the Class Hierarchy Browser):

fibonacci
"Answer the nth fibonacci number,
where n is the receiver."

Aself <3
ifTrue: [l]
ifFalse: [

(self - 1) fibonacci + (self - 2) fibonacci]

Notice that the fibonacci method returns its result differently from the factorial method.
Instead of using the caret (A) in multiple places, as in factorial, fibonacci uses a single
caret to return the result of the ifTrue:ifFalse: message. That result is the result of either
of the two blocks, depending on the value of the <message. Test the fibonacci method
by evaluating the following message:

(1 2 3 4 5 6 7 10 20) collect: [:m I m fibonacci]

Pattern Matching

The following example illustrates simple pattern matching applied to strings. (Later,
you'll see how Smalltalk's inheritance allows this same method to do pattern matching
for several other classes as well.) Add the method indexOfString: to class String using
the Class Hierarchy Browser:

Chapter 5: Classes and Methods 73

indexOfString: aString
"Answer the index position of the first occurrence
of aString in the receiver. If no such element
is found, answer zero."

I index 1 index2 limit 1 Iimit2 I
Iimit2 := aString size,
limit 1 : = self size — Iimit2 + 1.
indexl := 1.
[index 1 < = limit l]

whileTrue: [
index2 := 1.
[index2 < = Iimit2

and: [(self at: indexl + index2 — 1)
= (aString at: index2)]]

whileTrue: [index2 := index2 + l] .
index2 >limit2

ifTrue: [Aindexl].
indexl := indexl + l] .

AO

This method starts at the beginning of the receiver string and searches for the first
occurrence of the argument string. It returns either the index of the first character in the
receiver's matching substring, or 0 if there are no matches. The method contains two
nested whileTrue: loops. The outer loop proceeds through the characters of the receiver.
Beginning at each character reached in the outer loop, the inner loop compares the
characters of the argument to corresponding characters of the receiver.

Test the indexOf String: method by evaluating each of the following messages:

'abcdebcd' indexOf String: *ebg'
'abcdebcd' indexOf String: 'bed'
'abcdebcd' indexOfString: 'c'
•abcdebcd' indexOf String: 'abcdebcd'
'abcdebcd' indexOf String: "

Adding a Method to a Graphics Program

In Chapter 3 you used a series of expressions to draw a polygon flower on your display.
The next example packages those expressions into a method, and extends the graphics
demo program so that you can choose the polygon flower from the demo program's
menu.

74 Chapter 5: C/asses and Methods

To create the new method, add the following to class DemoClass using the Class
Hierarchy Browser:

polyFlower
"Draw a polygon flower"

I sides length I
Display white: rectangle,
sides := Prompter

prompt: 'Number of sides?'
defaultExpression: '30'.

length := 240 / / sides,
pen

home;
north.

sides timesRepeat: [
pen

up;
go: length / / 2;
down;
go: length.

sides - 1 timesRepeat: [
pen

turn: 360 / / sides;
go: length]]

The polyFlower method differs from the polygon flower expressions used earlier in two
ways. Firstly, this method uses a prompter window, rather than a constant, to determine
the number of sides. Secondly, this method uses the instance variable pen, rather than the
global variable Turtle, to draw the polygon flower.

To add "poly flower" as a choice in the graphics demo menu, extend the demoMenu
method in class DemoClass, as follows:

demoMenu
A Menu

labels: ('exit\poly flower\walking lineY,
'dragon \mandala\mandalas\pentagonsV,
'spirals\ellipses\bouncing ball') withCrs

lines: # (1 5 8)
selectors: # (exit polyFlower walkline dragon mandala
multiMandala multiPentagon multiSpiral multiEllipse bounceBall)

Replace the demoMenu method in class DemoClass with the version above. Now try the
extended demo program by selecting run demo from the system menu.

Chapter 5: Classes and Methods 7.5

Class Variables

Class variables are global variables accessible to all instances of a class. They are used to
share data within a class. Class variables begin with a capital letter.

Let's add a class variable to DemoClass to count the number of times we perform the
mandala graphics demo method. First, define the new class variable using the Class
Hierarchy Browser. Select DemoClass, then edit the class definition to have the name
MandalaCount following VariableCount in the classVariableNames: argument. Then
pop up the pane menu and select save. This creates the class variable and recompiles
DemoClass. Now add the following instance method to DemoClass:

mandalaCount

A MandalaCount

Then add the following code at the end of the mandala method in DemoClass:

MandalaCount isNil
ifTrue: [MandalaCount := l]
ifFalse: [MandalaCount := MandalaCount + l]

To see how many times mandala has been drawn, evaluate the following expression
before and after running the demo program:

DemoClass new mandalaCount

Inspectors

An Inspector is a window which allows you to view and change an object's instance
variables. Evaluate the following expression to create an inspector window on an array:

l a l
a : = # (1 2 sam 'joe' (4 5)).
a at: 2 put: 3 / 4 .
a inspect

The inspector on an array looks as follows:

76 Chapter 3: Classes and Methods

SoalUalk/U Transcript, |Z)Ej

Figure 5.2
Inspector

The left pane of the inspector shows the names of the named instance variables and the
numbers of the indexed instance variables. You select a name or number in the left pane
to see the object contained in that variable in the right pane. You can create an inspector
on the contents of an instance variable by selecting the variable, popping up the pane
menu and selecting inspect or by clicking on a selected variable. Try this by inspecting
the second instance variable of the array which contains a fraction object (3/4).

The fraction object has instance variables named numerator and denominator with
values 3 and 4, respectively. Let's try changing the denominator variable. First select
denominator, and then go to the right pane and use the text editor to replace 4 with 100.
Then pop up the pane menu and select save. The instance variable is now changed. Just
to make sure, close the fraction inspector window, return to the array inspector window,
and select self. There it is; the fraction has been changed to 3/100.

What YouVe Now Learned

By the end of this tutorial, you should now be familiar with:

• classes and methods
• the Class Hierarchy Browser
• the special variable self
• creating new objects
• the special object nil
• named instance variables
• indexed instance variables
• recursion
• pattern matching
• adding new methods

Chapter 5: Classes and Methods 11

class variables
inspectors

As always, if you need to review any of these topics, you can repeat that section of the
tutorial, or refer to a complete description in Part 3, The Smalltalk/V 286 Reference.

If you are going to exit the Smalltalk/V environment before proceeding to the next
tutorial, be sure to save the image.

6 INHERITANCE

This chapter presents Smalltalk's class hierarchy and the concept of inheritance. You'll see
inheritance through an example of animal classification and see how to generalize the
pattern matching method you saw in Chapter 5. You'll also see how to add new classes
to Smalltalk/V, using the Class Hierarchy Browser. And finally, you'll be introduced to
the Smalltalk concept of polymorphism, and how to process recursive data structures.

As always, the examples for this section are stored on a disk file, chapter.6. You can use
the Disk Browser to load these files if you do not want to type the examples.

You'll also add new classes and methods to your environment during this lesson, so be
sure to save the image when you exit the environment.

The Class Hierarchy

Much of Smalltalk's power comes from arranging its classes in a hierarchy. Each class has
an immediate superclass and possibly one or more subclasses, with class Object at the top
of the hierarchy. You're already familiar with this same system in biology, which arranges
living organisms in classes, based on characteristics common to each class. Classes higher
in the hierarchy represent more general characteristics, while classes lower in the hierarchy
represent more specific characteristics. For example, fish and tree are more abstract than
halibut and maple.

In Chapter 5, you saw how Smalltalk organizes its code (methods) by class. In this and
later chapters, you will see how you can develop generic problem solutions using abstract
classes, and then develop more application-specific solutions which "specialize" the
general solution by adding a small amount of code in subclasses.

Close the Class Hierarchy Browser window opened in Chapter 5, pop up the system
menu, and select the browse classes choice. This opens a new Class Hierarchy Browser
on the entire class hierarchy. Select class Boolean in the class list pane. Then pop up the
pane menu and select the hide/show menu choice or click on Boolean a second time.
Now select class True, which shows you the following window:

80 Chapter 6: Inheritance

Figure 6.1
Class True

Boolean subclass: IT rue
instanceUar iableNames:
classUariableNaaes: "
poolDictionaries: '*

Notice that the classes in the class list pane are indented. The indentations show the class
hierarchy. Each class is a superclass of the classes indented below it. As you can see,
Object is the superclass of all classes, and Boolean is the superclass of True and False.

A class with "..." following its name has subclasses that are not displayed. When you first
open the Class Hierarchy Browser, it displays only the first level subclasses of class
Object. This keeps the pane from becoming too cluttered. To display a class' hidden
subclasses (or hide a class' displayed subclasses), simply use hide/show, as you did above
to show True and False in class Boolean or double click on the class name. Try hiding
the subclasses of class Boolean.

Inheritance

Inheritance is the Smalltalk capability which allows you to re-use software by specializing
already existing general solutions. To see this, we'll define a new class hierarchy of
animals:

Figure 6.2
Animal Hierarchy

Chapter 6: Inheritance 81

You'll see these same classes again in the following chapters to illustrate collections,
graphics and window applications. The class Animal is a subclass of class Object. In turn,
classes Bird and Mammal are subclasses of class Animal. Finally, classes Parrot and
Penguin are subclasses of class Bird, and classes Dog and Whale are subclasses of class
Mammal.

Whenever you define a new class, you also declare its instance variables. The following
shows in parentheses the instance variables defined for each class in the animal hierarchy:

Animal (name, knowledge, habitat, topSpeed, color, picture)
Bird (flying)

Parrot (vocabulary)
Penguin ()

Mammal ()
Dog (barksAlot)
Whale ()

Inheritance of Instance Variables

In this chapter, we'll use the instance variables name, vocabulary and barksAlot. (You'll
see the others used in subsequent chapters.) The instance variable name contains a string
representing the animal's name, vocabulary contains a string of all words known by a
parrot, and barksAlot contains either true or false, depending upon how much a dog
barks.

An object inherits all the instance variables defined in its superclasses in addition to
containing the ones defined in its own class. For example, parrots, penguins, dogs and
whales each contain the following instance variables:

Parrot
name, knowledge, habitat, topSpeed, color, picture, flying, vocabulary

Penguin
name, knowledge, habitat, topSpeed, color, picture, flying

Dog
name, knowledge, habitat, topSpeed, color, picture, barksAlot

Whale
name, knowledge, habitat, topSpeed, color, picture

Normally, you create new classes using the Class Hierarchy Browser. (You'll see how to
do this later in this chapter.) Since we have several classes and methods to define for the
animal class hierarchy, however, we've simplified the procedure for you by putting them
in a file. To add the animal classes to your Smalltalk/V environment, install the file by
evaluating the following expression:

82 Chapter 6: Inheritance

(File pathName: 'animal6.st') fileln

Now, in order to see these new classes with the Class Hierarchy Browser, activate the
Class Hierarchy Browser window, pop up the class list pane menu, and select the update
function. Now all the animal classes are visible. If they are not, use the hide/show selection
from the class list pane menu. By selecting its classes and methods, you can now browse
the animal hierarchy.

The Methods of the Animal Classes

As you can see from the Class Hierarchy Browser, the methods you have just included
for class Animal are as follows:

answer: aString
"Display a message for the receiver animal
on the System Transcript window, consisting
of the animal's class name and name preceding
aString."

Transcript nextPutAll:
self class name, ' ', name, ': ', aString;
cr

name: aString
"Change the receiver animal's name to aString."

name := aString

talk
"Display a message that the receiver can't talk."

self answer: *I can"t talk'

Similarly, the methods for class Parrot are:

talk
"Display a message containing the receiver
parrot's vocabulary."

self answer: vocabulary

vocabulary: aString
"Change the receiver parrot's vocabulary
to aString."

vocabulary := aString

And finally, the methods for class Dog are:

Chapter 6; Inheritance 83

bark
"Have the receiver dog bark by ringing the bell
and displaying a bark message."

Terminal bell,
barks Alot

ifTrue: [self answer: 'Bow Wow, Bow Wow, Bow Wow!']
ifFalse: [self answer: 'Woof]

beNoisy
"Change the status of the receiver dog to noisy."

barksAlot : = true,
self answer: '1**11 bark a lot'

beQuiet
"Change the status of the receiver dog to quiet."

barksAlot := false,
self answer: 'I won"t bark much'

talk
"Have the receiver dog talk by barking unless
barksAlot is nil, in which case the superclass
can decide how to talk."

barksAlot isNil
ifTrue: [super talk]
ifFalse: [self bark]

We didn't define any methods for classes Penguin and Whale. However, these classes
do inherit the methods of class Animal, so we can create whale and penguin objects and
send messages to them, as we do later in this chapter.

Inheritance of Methods

Like instance variables, methods are also inherited. When a message is sent to an object,
Smalltalk looks for the corresponding method defined in the object's class. If it finds the
method, Smalltalk performs it. If it doesn't find the method, however, Smalltalk repeats
the procedure in the object's superclass. This process continues all the way to class
Object. If no method is found in any superclass, a walkback window pops up to display
the error.

For example, look at the name: method defined in class Animal. Since this method is not
defined in any of Animal's subclasses, the name: method in class Animal is evaluated
whenever a name: message is sent to instances of classes Dog, Parrot, Penguin, or
Whale.

84 Chapter 6: Inheritance

As another example, look at the talk method in the animal classes. Classes Penguin and
Whale inherit talk from class Animal, whereas classes Dog and Parrot re-implement
their own versions of talk.

The Special Variable "super"

Occasionally, you may want to override a method, instead of using a method higher in
the superclass chain. Generally, you'd do this whenever the specialized processing done
by a method doesn't apply in a particular case. You would instead use the more general
processing of a method with the same name which appears higher in the superclass chain.

For example, look at the method talk for class Dog. A dog doesn't know how to talk
if its instance variable barksAlot is undefined (has the value nil). In this case, it uses the
following message to request the superclass' talk method:

super talk

The special variable super represents the same object as the special variable self: the
receiver in the method in which it appears. The difference is that when a message is sent
to super, Smalltalk looks for the method not in the receiver object's class, but instead in
the superclass of the class containing the method in which super appears. In the example
talk method, the search begins in Mammal, the superclass of class Dog. There is no talk
method in class Mammal, but there is one in class Animal, so that one is used.

Creating Animal Objects

Evaluate the following expressions to create and assign to global variables five animal
objects: two dogs, a penguin, a parrot and a whale (the animals "talk" to the System
Transcript, so first reframe the Disk Browser window to not overlap the System
Transcript):

Chapter 6: Inheritance 85

"creating animals"
Snoopy := Dog new.
Snoopy name: 'Snoopy'.
Snoopy beQuiet.
Lassie := Dog new.
Lassie name: 'Lassie'.
Lassie beNoisy.
Wally := Penguin new.
Wally name: 'Wally'.
Polly := Parrot new.
Polly name: 'Polly*.
Polly vocabulary: 'Polly want a Cracker'.
Moby := "Whale new.
Moby name: 'Moby'

Polymorphism

Polymorphism is a unique characteristic of object-oriented programming whereby different
objects respond to the same message with their own unique behavior. For example,
evaluate the following messages to see how the various animals respond to the talk
message:

"let's hear them talk"
Lassie talk.
Snoopy talk.
Wally talk.
Polly talk; talk; talk.
Polly vocabulary: 'Screeech@#!? Don"t bother me!'.
Polly talk.
Moby talk.
Snoopy beNoisy; talk.
Lassie beQuiet; talk

Polymorphism lets you use entirely new classes of objects in existing applications, as long
as they implement the message protocol required by the application. This greatly
facilitates the reusing of generic code. A simple example is the method max: defined in
class Magnitude, which returns the "maximum" of two objects:

max: aMagnitude
self > aMagnitude

ifTrue: [Aself]
ifFalse: [AaMagnitude]

86 Chapter 6: Inheritance

The existing max: will work in any new subclass of Magnitude, as long as the new class
implements the greater than (>) method.

More General Pattern Matching

In Chapter 5, you created a method indexOfString: to do pattern matching on strings.
By relocating this method to a superclass of class String, we can use it to do pattern
matching for several more classes. We'll change the name of the method to indexOfCol-
lection: to suggest its more general capability, but we won't change the processing. Use
the Class Hierarchy Browser to add the method indexOfCollection: to class
IndexedColiection, a subclass of Collection:

indexOfCollection: aCollection
"Answer the index position of the first occurrence
of aCollection in the receiver. If no such element | -
is found, answer zero." |

I index 1 index2 limit 1 Iimit2 I T
Iimit2 : = aCollection size. E
limit 1 := self size — Iimit2 + 1. l
indexl := 1. s
[indexl < = limitl] I

whileTrue: [=
(self at: indexl) = (aCollection at: 1) '.

ifTrue: [i
index2 :— 2. \
[index2 < = Iimit2 I

and: [(self at: indexl + index2 — 1) = |
(aCollection at: index2)]] |

whileTrue: [index2 := index2 + l] . I
index2 > Iimit2 [

ifTrue: [Aindexl]]. t
indexl := indexl + l] . [

AO I

Try the more general pattern matcher by evaluating the following examples using strings
and arrays.

'the time has come' indexOfCollection: 'tim'
#($c $a $n $ $y $o $u $) indexOfCollection: 'you'
(1 2 3 (4 5) 'abc' 6) indexOfCollection: # (2 3)
(1 2 3 (4 5) 'abc' 6) indexOfCollection: 'abc'

Chapter 6: Inheritance 87

Processing Recursive Data Structures

As an example of polymorphism and the processing of recursive data structures, consider
the following method for equality (=), which appears in class IndexedCollection. This
method compares an instance of class IndexedCollection or one of its subclasses (e.g.,
an array) to another similar object by sending the = message to corresponding elements
of both objects. If the element is a kind of indexed collection, then the method performs
a recursive send, invoking the = method. If the element is an object such as a number,
the method performs a non-recursive send, invoking a different = method.

= aCollection
"Answer true if the elements contained by
the receiver are equal to the elements
contained by the argument aCollection."

I index I
self =— aCollection

ifTrue: [Atrue],
(self class = s = : aCollection class)

ifFalse: [Afalse].
index := self size,
index ~ = aCollection size

ifTrue:
[index < = 0]

whileFalse: [
(self at: index) = (aCollection at: index)

ifFalse: [Afalse].
index := index - 1.]

A true

This method also demonstrates the difference between equality (=) and equivalence
(==) . Equality tests whether two objects contain the same elements. Equivalence, on the
other hand, tests whether two objects are, in fact, the same object. For example, the
expression

self = = aCollection

tests whether the receiver object is the same actual object as the argument. If they are,
then they are obviously equal, and the method returns true.

To help see this difference, evaluate the following statement:

labl
a := # (1 2 3 4).
b := # (1 2 3 4).
Aa = b

88 Chapter 6: Inheritance

This expression returns true, because the two objects contain the same elements. Now
substitute = with ===, and re-evaluate the statement. This returns false, because,
although the two objects contain the same elements, they are still two different objects.
As an example of a true equivalence, evaluate the following expression:

l a b e l
a := #(1 2 34).
b:=a.
c:=b.
AC = = a.

To use the inherited = method on recursive data structures, evaluate these expressions:

(1 (2 (3))) - # (1 (2 (3)))
#(john smith) — #(john smith)
#(1 'two' 3) = #(1 'two' 3)

Since the indexOfCollection: method defined above compares elements with the =
message, it can be applied to nested (recursive) collections. For example, show the results
of the following expressions:

((1 2)(3 4)(5 6)) indexOfCollection: # ((3 4)(5 6))
(1 2 3 (4 5) 'abc' 6) indexOfCollection: # (3 (4 5) 'abc')
(1 2 3 (4 5) 'abc' 6) indexOfCollectioti: #('abc')

A New Class: MonitoredArray

The final example of this chapter creates a new class to monitor the frequency of access
to the data in an array. For instance, suppose you have an array of sales tax rates for
California, indexed by zip code minus 90000 (California zip codes begin with 9). If you
know how frequently each sales tax rate is looked up by zip code, you can compute the
average sales tax paid, shipments to each region, and several other statistics.

To do this, we create class MonitoredArray as a subclass of class Array. A monitored
array is like a normal array, except that it also maintains a parallel array containing the
number of times the at: message was used for each index value. A monitored array can
be substituted for an array in any application. Like any subclass, it inherits all the
behaviors of its superclass (arrays), and implements some special behaviors of its own.

To add the new class, select class Array on the Class Hierarchy Browser. You'll find it
as a subclass of FixedSizeCollection, which is a subclass of IndexedCoilection, which
is a subclass of Collection. With the cursor in the class list pane, pop up the pane menu
and select add subclass. You'll then see a prompter, asking you for the Array Subclass

Chapter 6: Inheritance 89

name; enter MonitoredArray. Finally, you'll see another menu, from which you should
choose the variableSubclass entry. The class list is then updated, with class
MonitoredArray selected.

Now you must specify the new class' instance variables. Proceed to the text pane below
and edit the class definition to appear as follows:

Array variableSubclass: # MonitoredArray
instanceVariableNames: 'atCounts'
classVariableNames: "
poolDictionaries: "

Pop up the text pane menu and select the save entry. The class definition is updated.

Class Methods

Class methods respond to messages sent to class objects, rather than to instances of the
class. Class methods are often used for creating initialized instances of a class.

As an example, we'll create a class method for class MonitoredArray. Select class
MonitoredArray using the Class Hierarchy Browser. Then select the pane labeled Class.
This reverses the pane contents, indicating that any new methods added are class
methods. Now pop up the method list pane menu, and select new method. The contents
pane then displays a template reminding you of a new method's required components.
Type the following method into the contents pane, replacing the template:

new: anlnteger
"Answer a new MonitoredArray."

I answer I
answer := super new: anlnteger.
answer initialize.
A answer

Now pop up the pane menu, and select save, which adds this class method to class
MonitoredArray. We re-implement new: for class MonitoredArray, because the
inherited new: method for arrays does not initialize the atCounts instance variable.

The remaining three MonitoredArray methods are instance methods. Select the Class
Hierarchy Pane labeled Instance, and add these three instance methods one at a time:

accessCounts
"Answer the array of 'at:' counts."

A atCounts

90 Chapter 6: Inheritance

at: anlnteger
"Answer the element in the receiver at
index position anlnteger. Increment
the count for accesses to the receiver
using anlnteger."

atCounts
at: anlnteger
put: (atCounts at: anlnteger) + 1.

A super at: anlnteger

initialize
"Private - Initialize the MonitoredArray by
allocating and initializing the parallel
atCounts array."

I size I
size : = self size.
atCounts := Array new: size.
1 to: size do: [-.index I atCounts at: index put: 0]

As an example of using a MonitoredArray, evaluate and show the results of the
following expressions:

I array I
array : = MonitoredArray new: 20.
1 to: 10 do: [:i I

1 to: 10 do: [:j I array at: i + j]].
Aarray

What You've Now Learned

After completing this tutorial, you should now be familiar with:

• the class hierarchy
• inheritance, both of methods and of variables
• polymorphism
• general pattern matching
• processing recursive data structures
• class methods

As always, you can review any of these topics by repeating the corresponding section of
the tutorial, or by referring to the detailed description in Part 3, The Smalltalk/V 286
Reference.

If you exit the environment before beginning the next tutorial, be sure to save the image.

I

t
|

7 STREAMS AND COLLECTIONS

This chapter introduces you to two of Smalltalk's most widely used hierarchies: the
stream classes and the collection classes. At the end of this chapter, you'll see four
interesting examples using both of these hierarchies.

As always, the examples for this tutorial are stored in a disk file, chapter. 7. You can use
the Disk Browser to retrieve these examples, if you do not want to type them.

You will also be altering the image during this tutorial, so be sure to save the image when
you exit the environment.

Streams

Smalltalk supports many different kinds of stream objects. You already saw one of them
when you accessed disk files using FileStream objects. Streams are also used for
accessing the keyboard and mouse (class TerminalStream), and for accessing internal
collections of objects, such as strings and arrays (classes ReadStream, WriteStream, and
ReadWriteStream). The stream classes are arranged in a hierarchy with the class Stream
as the superclass. You can use the Class Hierarchy Browser (explained in Chapter 6) to
explore this hierarchy.

This chapter will present a series of examples using streams, which should give you a
good introduction. Part 3, The Smalltalk/V 286 Reference, gives a detailed description
of streams and all of the messages that can be used with them.

Streams are frequently used for scanning input or producing edited output. For example,
look at this method, which does both:

"Replace occurrences of % with the date today"
I input output char dateStamp I
dateStamp := Date today printString.
input := ReadStream on: "The date today is %'.
output := WriteStream on: String new.
[input atEnd]

whileFalse: [
(char := input next) = $%

ifTrue: [output nextPutAU: dateStamp]
ifFalse: [output nextPut: char]].

A output contents

This example creates two streams. The on: message is sent to the class ReadStream to
create a stream on the argument string "The date today is %'. The on: message is also
used to create a WriteStream on an empty string, to hold the edited output.

92 Chapter 7: Streams and Collections

As the names imply, ReadStream can only be read and WriteStream can only be written.
As we have seen previously with the disk file examples, streams are read with the next
message and written with the nextPut: message. The message atEnd tests if there is more
input to be read. The message nextPutAll: writes several objects to a stream at once. In
the above example, the argument is a string of characters containing today's date.

The above example streams over strings of characters. It uses an empty string for the write
stream because streams automatically grow as necessary, to accommodate the objects
written to them. The contents message returns a string containing all of the objects
written to the stream.

To change the above example to use disk files instead of streams on strings, simply
change the messages that create the streams input and output. This illustrates one of
Smalltalk's most powerful features: you can write programs that are dependent on the
behavior, rather than the structure, of data. This means that you can write and test a
program using simple internal objects, such as streams on strings, and then easily extend
it to use external files.

Streams are not restricted to reading and writing only characters. For example, this
method reads and writes arrays of numbers:

"Compute several factorials"
I input output/i I
input := ReadStream on: # (1 5 10 20).
output : = WriteStream on: Array new.
[input atEnd]

whileFalse: [
output nextPut: input next factorial].

Aoutput contents

Although these examples do not show it, streams can also be repositioned, much like a
random access file, using the position: message. The argument is an integer. You can also
use the position message to access a stream's current position.

Printer Stream

To see how easy it is to make major enhancements to Smalltalk/V, let's add a new class
PrinterStream. This new class will allow you to use all of the stream messages with your
printer. Define PrinterStream as a subclass of WriteStream (which is a subclass of
Stream) with the type subclass. It needs no instance variables, class variables, or pool
dictionaries. (Chapter 6 explains how to make new classes using the Class Hierarchy
Browser.) After the class is created, the class definition displayed in the Class Hierarchy
Browser should be:

Chapter 7: Streams and Collections 93

WriteStream subclass: # PrinterStream
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "

Class PrinterStream needs only two methods. Again, we've included these methods for
you in a file. Evaluate the following expression to install them:

(File pathName: 'prntrst7.st') fileln

This installs the following methods:

nextPut: aCharacter
"Write aCharacter to the receiver."

I string I
string := ' '. "a string with one blank"
string at: 1 put: aCharacter.
string outputToPrinter.
A aCharacter

nextPutAU: aString
"Write aString to the receiver."

aString outputToPrinter.
A aString

Remember to use the update function from the class list pane menu to display the new
methods.

PrinterStream will inherit its other methods (and all of its variables) from the classes
WriteStream and Stream. To create an instance of the PrinterStream class in the global
variable Printer, evaluate the following expression:

Printer : = PrinterStream new

As an example of using a printer stream, produce a printed report by evaluating the
following program:

"Print the first 10 even numbers and their factorials"
1 width factorial I
width := 20 factorial printString size.
2 to: 20 by: 2 do: [:i I

factorial := i factorial printString.
Printer

next: 4 - i printString size put: Space;
nextPutAll: i printString, * ';
next: width - factorial size put: Space;
nextPutAll: factorial;
cr]

94 Chapter 7: Streams and Collections

If you do not have a printer, you can use the global variable Transcript instead of Printer
in the above example. This will print the report in the System Transcript window. (The
Transcript object is not a kind of stream, but it does support many of the same messages
as streams.)

Collections

Collections are objects which contain a collection of other objects. You have already seen
two kinds of collections: Arrays and Strings. Strings are fixed sized sequences of
characters, while arrays are fixed sized sequences of arbitrary objects. You have used the
iterator messages do:, collect:, select:, and reject: with arrays and strings. These messages
are understood by all of the collection classes, three of which are Dictionary, Bag, and
Set

Dictionaries

Dictionaries store and retrieve objects by using a key. For example, let's create a simple
phone book. First, create a global variable containing an empty dictionary by evaluating
the following:

PhoneBook : = Dictionary new

To add phone numbers to the phone book, use the at:put: message:

PhoneBook
at: 'Marisa' put: '645-1082';
at: 'Franceses' put: '555-1212';
at: 'Jackie' put: '392-481-5000';
at: 'Rakesh' put: '645-1083';
at: 'Vijay' put: '645-1083'

In the above expressions, the strings 'Marisa' and 'Francesca' are the keys, and the strings
'645-1082' and '555-1212' are the corresponding values. Notice that at:put: is also used
to access the elements of strings and arrays. With dictionaries, however, the first argument
is the key in the dictionary, instead of the position in the array or string.

To retrieve an object from a dictionary, use the at: message with the key as the argument.
For example the following expression returns the string '645-1082':

PhoneBook at: 'Marisa'

To test if an object exists as a key in the dictionary, use the includesKey: message, as
in the following expression:

Chapter 7: Streams and Collections 93

(PhoneBook includesKey: 'Aaron')
ifTrue: [PhoneBook at: 'Aaron']
ifFalse: ['Not in phone book']

A simpler way to do this is to use the at-.if Absent: message. The first argument is the key
and the second argument is a block of code that will be executed if the key is not in the
receiver dictionary. For example.

PhoneBook at: 'Aaron' if Absent: ['Not in phone book']

The keys and the values stored in a dictionary can be any kind of object.

Dictionaries are such useful objects that a special inspector window exists called the
Dictionary Inspector. To open a dictionary inspector on the phone book, evaluate the
following expression:

PhoneBook inspect

The pane on the left of the window is a sorted list of all of the keys in the dictionary,
in our case the names of people in the phone book. When you select a key, the
corresponding value is displayed in the pane on the right, in our case the person's phone
number. By using the pane menus, entries can be edited, added, and removed.

Bags

Bags store an arbitrary number of objects of any kind. Unlike arrays, there is no implied
order or sequence to the elements (objects) inside the bag. Elements are added to a bag
with the add: message. To test if an object is in a bag, use the includes: message. For
example, this expression reads a file and reports the frequency with which each letter
occurs:

iI input answer f c I
input := File pathName: 'chapter.7'.
answer := WriteStream on: String new.
f := Bag new.
[input atEnd]

whileFalse: [
(c := input next) isLetter

ifTrue: [f add: c asLowerCase]].
0 to: 25 do: [:i I

c := ($a asciiValue + i) asCharacter.
answer

cr; nextPut: c; space;
nextPutAll: (f occurrencesOf: c) printString].

A answer contents

96 Chapter 7: Streams and Collections

Sets

A Set, like a Bag, stores arbitrary objects. The difference is that a Set does not store the
same object more than once. For example, this expression computes the set of characters
that occur in one file and not in another:

I setl set2 I
setl := Set new.
set2 : = Set new.
(File pathName: 'chapter.7') do: [:cl setl add: c].
(File pathName: 'chapter.6') do: [:cl set2 add: cj.
A setl reject: [:c I set2 includes: c]

The message asSet creates a set out of the receiver collection object. This is a good way
to eliminate duplicates from a collection. For example, to compute the unique vowels in
a string, evaluate the following:

'Now is the time' asSet select: [:c I c is Vowel]

Generic Code

You've now seen the iterator messages select:, reject:, and collect: used with strings,
arrays, sets, and bags. These messages can be used with all of the different kinds of
collections in Smalltalk/V. As such, they are excellent examples of generic code, code
that is type and data independent. Smalltalk's ability to allow you to write generic code
sets it apart from most other languages. Here is the code in class Collection for the
select: message that is inherited by bags, sets, dictionaries, sorted collections, ordered
collections, and other collection classes:

select: aBlock
I answer I
answer : = self species new.
self do: [:element I

(aBlock value: element)
ifTrue: [answer add: element]].

A answer

This method assumes nothing about the structure or type of the collections with which
it deals. It depends only on an object's behavior, the existence of the species, do:, and
add: it sends to them. Smalltalk's polymorphism (discussed in Chapter 6) makes this
possible.

By exploring the Collection classes using the Class Hierarchy Browser, you can see many
more examples of the power of generic code.

Chapter 7: Streams and Collections 97

Blocks as Objects

The select: message above shovfc another interesting feature of Smalltalk: the use of
blocks of code as objects. To illustrate this, look at the following invocation of the
select: method.

'Now is the time' asSet select: [:c I c is Vowel]

The receiver of the select: message is the set of all characters in the string 'Now is the
time'. The argument to the select: message is a block of code with one block argument,
[:c I c isVowel]. This block of code is as much an object as the string 'Now is the
time'. As such, we can use it as an argument for the select: method, which you saw
previously. When the method is invoked, the block of code is assigned to the argument
aBlock in the select: method.

A block of code executes when it is sent the message value, value:, or value:value:,
depending on whether the block has zero, one, or two block arguments, respectively.
Since it uses one argument, the select: message evaluates the block aBlock using the
value: message.

As you now know, all messages return a result. The result of evaluating a block is the
result of the last expression in the block. In the above example, the block [:c I c
is Vowel] returns true or false, depending on whether or not the object passed to the
block, c, is a vowel.

Patterns

Block objects in turn let you build very powerful objects. For example, look at the class
Pattern. Patterns are generalized and efficient pattern matchers. A pattern object consists
of a collection of objects to match, and a block of code to execute when the pattern is
successfully matched. For example, this expression computes the number of occurrences
of a phrase in a file:

"Compute occurrences of a phrase in a file"
I pattern count input word I
count := 0.
(pattern := Pattern new: # ('now' 'is' 'the'))

matchBlock: [count :== count + l] .
input := File pathName: 'chapter.7'.
[(word := input next Word) isNil]

while False: [pattern match: word asLowerCase].
A count

This example uses an array of strings as the pattern. Any collection of objects can be used
as the pattern, as long as it can be indexed using the at: message.

98 Chapter 7: Streams and Collections

Computing Letter Pair Frequencies

The following example computes the frequency with which letter pairs occur in a file, and
stores the result in the global variable, Pairs:

"compute letter pair frequencies"
I last pair I
Pairs : = Bag new.
last := Space.
(File pathName: 'chapter.7') do: [:c I

(last isLetter and: [c isLetter])
ifTrue: [

(pair := String new: 2)
at: 1 put: last;
at: 2 put: c.

Pairs add: pair asLowerCase].
last : = c]

The following expression, in turn, produces a report of the pair frequencies that occur
more than 60 times in Pairs:

"print letter pair frequencies greater than 60
in the Transcript"
I frequent I
Transcript cr.
frequent : = Pairs asSet select: [-.pair I

(Pairs occurrencesOf: pair) > 60 1.
frequent asSortedCollection do: [:pair I

Transcript
nextPutAU: pair;
tab;
nextPutAU: (Pairs occurrencesOf: pair)

printString;
cr]

The message asSortedCollection creates a new kind of collection, a SortedCollection.
SortedCollections are described in detail in Part 3, The Smalltalk/V 286 Reference.
Briefly, they are collections in which all of the elements are stored in sorted order. As you
can see from the above example, they are useful for sorting a collection of objects before
outputting a report.

* Chapter 7: Streams and Collections 99

Animals Revisited

In Chapter 6, we built a simple hierarchy of animal classes. In this section, we will give
those animals an environment (habitat) in which to live and a way to acquire knowledge
and interact with their habitat.

The habitat will have a set of animals that inhabit it. Every animal will store knowledge
as a collection of patterns, instances of class Pattern. In this case a pattern is a sequence
of words that, when recognized by the pattern, evaluates a corresponding block of code.
This causes the animal to react to a word sequence in some prescribed way. The global
variable Script contains a stream of words to send to all of the animals. Giving many
different patterns to a single animal provides that animal with a rich set of behaviors.

Animal Habitat

Create a new class AnimalHabitat as a subclass of class Object, and assign to it five
instance variables, animals, replyStream, animator, inputString, and inputPane.
(Chapter 6 explains how to do this using the Class Hierarchy Browser.) When the new
class is successfully created with the five instance variables, you should see the following
class definition when it is selected in the Class Hierarchy Browser:

Object subclass: # AnimalHabitat
instanceVariableNames:

'animals replyStream animator
inputString inputPane'

class VariableNames: "
poolDictionaries: "

The instance variable animals will contain the set of animals that inhabit the habitat. (The
instance variables replyStream, animator, inputString, and inputPane are used in a later
tutorial.)

Now evaluate the following expression to file in the methods for the AnimalHabitat:

(File pathName: 'habitat7.st') fileln

Click the cursor over the instance label to view the methods list. The new methods are:

add: anAnimal
"Add anAnimal as an inhabitant of the receiver.
Notify anAnimal of its new habitat."

animals isNil
ifTrue: [animals := Set new].

animals add: anAnimal.
anAnimal habitat: self

100 Chapter 7: Streams and Collections

play
"Play the Script to all of the animals."

I word I
Script reset.
animals do: [:animal I animal reset].
[Script atEnd]

whileFalse: [
word :— Script next asLowerCase.
animals do: [:animal I animal reactTo: word]]

script: aString
"Change Script to the stream on the
words in aString."

I stream word I
stream : = ReadStream on: aString.
Script := ReadWriteStream on: Array new.
[(word := stream next Word) isNil]

whileFalse: [
Script nextPut: word]

Now evaluate the following expression to create a global variable, Habitat, containing an
instance of the AnimalHabitat class:

Habitat := AnimalHabitat new

Animal Knowledge

To put animals inside of the habitat, you must first add some methods to the Animal
class. Evaluate the following expression to add the required methods:

(File pathName: 'animal7.st') rileln

The new methods in class Animal are:

habitat: aHabitat
"Change habitat to aHabitat"

habitat := aHabitat

111

> Chapter 7: Streams and Collections 101

learn: aString action: aBlock
"Add a pattern of the words in aString to the
receivers knowledge. The action to perform
when the pattern is matched is aBlock."

I words pattern I
knowledge isNil

ifTrue: [knowledge := Dictionary new],
words := aString asLowerCase asArrayOfSubstrings.
pattern := Pattern new:

(Array with: name asLowerCase), words,
pattern matchBlock: aBlock.
knowledge at: words put: pattern

reactTo: aWord
"Send a word to every pattern in knowledge."

knowledge isNil
ifTrue: [Aself].

knowledge do: [-.pattern I pattern match: a Word]

reset
"Reset all patterns in knowledge"

knowledge isNil
ifTrue: [Aself].

knowledge do: [-.pattern I pattern reset]

Using the Habitat

First, let's add some animals to the habitat. The following expressions use the animals
that were created in Chapter 6:

Habitat
add: Snoopy;
add: Polly

Now, set up a script to work with:

Habitat script:
'Snoopy is upset about the way that Polly is
behaving. It is as if whenever anyone asks
Polly to talk, Polly will be nasty. Maybe if
instead of Snoopy barking at Polly when he
wants Polly to talk, Snoopy quietly asks Polly
to be pleasant for a change, things would go
better. Now maybe Snoopy barking quietly will
not make Polly nasty.'

102 Chapter 7: Streams and Collections

Before playing the script, we need to give the animals some knowledge:

Snoopy
learn: 'barking' action: [Snoopy talk];
learn: 'quietly' action: [Snoopy beQuiet; talk];
learn: 'is upset' action: [Snoopy beNoisy; talk].

Polly
learn: 'to be pleasant' action:

[Polly vocabulary: 'Have a nice day'; talk];
learn: '* nasty' action:

[Polly vocabulary: 'Why are you bothering me';
talk].

The asterisk (*) in '* nasty' stands for none or more arbitrary words. To play the script
to the animals, evaluate the following expression:

Habitat play

Look in the System Transcript to see the responses from the animals.

A Network of Nodes

As a final example of streams and collections, we will build a network of nodes, and
determine paths through the network. Many problems can be described in terms of
networks of nodes and paths through the network, such as route maps, pert charts, and
many kinds of optimization problems.

Network

A network is a collection of nodes that are connected to each other. Create the class
Network as a subclass of class Object, and define a single variable named connections.
When you have created the class and the instance variable, the class specification in the
Class Hierarchy Browser should be:

Object subclass: #Network
instance VariableNames:

'connections'
class VariableNames: "
poolDictionaries: "

The instance variable connections will hold a dictionary of connections between nodes.
The key to the dictionary will be a node, and the value stored under that key will be a
set of all of the nodes to which it is connected. Use the following expression to file in
the methods for class Network:

Chapter 7: Streams and Collections 103

(File pathName: 'network7.st') fileln

The methods are:

connect: nodeA to: nodeB
"Add a connection from nodeA to nodeB."

(connections
at: nodeA
if Absent: [connections at: nodeA put: Set new])

add: nodeB.
(connections

at: nodeB
if Absent: [connections at: nodeB put: Set new])

add: nodeA

initialize
"Initialize the connections to be empty."

connections := Dictionary new

pathFrom: nodeA to: nodeB avoiding: nodeSet
"Answer a path of connections that connect nodeA
to nodeB without going through the nodes in
nodeSet. This result is returned as a new
network. Answer nil if there is no path"

I answer I
nodeSet add: nodeA.
(connections at: nodeA if Absent: [Anil]) do:

[-.node I
node — nodeB

ifTrue: [
A Network new initialize

connect: nodeA to: node].
(nodeSet includes: node)

ifFalse: [
answer := self

pathFrom: node
to: nodeB
avoiding: nodeSet.

answer isNil
ifFalse: [

A answer connect: nodeA to: node]]].
Anil

104 Chapter 7: Streams and Collections

printOn: aStream
"Print a description of the receiver on aStream."

connections keys asSortedCollection do: [-.node I
node printOn: aStream.
(connections at: node) asSortedCollection do:

[-.neighbor I
aStream

cr;
nextPutAU: ' » \

neighbor printOn: aStream].
aStream cr]

Notice the recursion in the pathFrom:to:avoiding: message. This is a simple solution; it
does not find the optimal (shortest) path. If you want to find such an optimal solution,
however, you need only change this one method. This is another of Smalltalk/V's
characteristics. You can quickly build program fragments to start exploring the nature of
the problem being solved. When you better understand the problem, the changes are
quick and localized.

Network Nodes

Before using the Network class, define the class NetworkNode as a subclass of class
Object, with two instance variables, name and position. After you have created the class
and its instance variables, the class specification should be:

Object subclass: # NetworkNode
instance VariableNames:

'name position'
class VariableNames: "
poolDictionaries: "

Then use the following expression to file in the methods for class NetworkNode:

(File pathName: 'nodes7.st') nleln

The methods are:

< = aNode
"Answer true if the receiver name is less or
equal to aNode name."

A name < = aNode name

hash
"Answer receiver's hash."

A name hash

Chapter 7: Streams and Collections 105

name
"Answer receiver's name."

A name

name: aString position: aPoint
"Set the receivers name and position."

name := aString.
position := aPoint

printOn: aStream
"Print a description of the receiver on aStream."

aStream
nextPutAll: 'Node(', name;
space;
nextPutAll: position printString;
nextPut: $)

Building a Network

Now evaluate the following expression to create an empty network in the global variable
Net:

Net := Network new initialize

Then evaluate these expressions, to create six nodes and connect them together into a
network:

= NetworkNode new name: 'one' position: 300 @ 100.
= NetworkNode new name: 'two' position: 400 (5) 150.
= NetworkNode new name: 'three' position: 500 (5) 120.
= NetworkNode new name: 'four' position: 200 (8) 50.
= NetworkNode new name: 'five' position: 350 (5) 195.
= NetworkNode new name: 'six' position: 550 @ 130.

N l
N2
N3
N4
N5
N6
Net

connect: N l to: N2;
connect: N2 to: N3;
connect: N4 to: N5;
connect: N5 to: Nl;
connect: N3 to: N6;
connect: N3 to: N5;
connect: N3 to: N l

You can ask the network to print itself by evaluating the following expression using
show it:

Net

106 Chapter 7: Streams and Collections

Now evaluate the following expression and show the results, to find a path from N l to

N5:

Net pathFrom: N l to: N5 avoiding: Set new

To see if there is a path that does not go through N3, evaluate the following expression:

Net pathFrom: N l to: N5 avoiding: (Set with: N3)

What YouVe Now Learned

After having completed this tutorial, you should be familiar with:

• streams, including PrinterStream
• collections, including Dictionaries, Bags, arid Sets
• generic code

As always, you can review any of these topics by repeating the corresponding section of
the tutorial, or by referring to a detailed description in Part 3, The Smalltalk/V 286
Reference.

If you exit the environment before beginning the next tutorial, be sure to save the image.

8 DEBUGGING

This chapter uses what you learned in Chapter 7 to build a complete program using
collections and streams. The program, however, purposely contains several errors. This
chapter, then, shows you how to locate and correct errors using the Smalltalk/V
debugger.

As always, the examples for this chapter are stored in the disk file, chapter.8. You can
use the Disk Browser to retrieve these examples.

Since you will again be making modifications to your Smalltalk/V environment, be sure
to save the image when you exit Smalltalk/V.

A Document Retrieval System

The first thing we'll do is implement a new class, Wordlndex, which allows you to create
a database of documents and locate them based upon the words that they contain.
Documents are ASCII text files, viewed as a series of words containing alphanumeric
characters separated by a series of non-alphanumeric characters. You query the database
by supplying a collection of word strings, which returns a collection of the file names of
all the documents that contain all the words. You could use the word index, for example,
to locate resumes in a personnel system, such as all employees whose resumes contain the
words C and Unix.

Instances of class Wordlndex have instance variables documents and words.

documents is a set of strings of the document file path names whose words have been
entered into the word index.

words is a dictionary, with each key containing a string for a word and each value being
a set containing the path names of all documents containing the word.

Therefore, the class definition is:

Object subclass: # Wordlndex
instanceVariableNames:

'documents words'
class VariableNames: "
poolDictionaries: "

Add Wordlndex class definition and methods to your Smalltalk/V image by evaluating
the following expression:

108 Chapter 8: Debugging

(File pathName: fwrdindx8.st') nleln

Now select update in the Class Hierarchy Browser's class list so that you can browse the
methods of class Wordlndex. There are six methods defined for class Wordlndex, as
follows:

addDocument: pathName
"Add all words in document described by
pathName string to the words dictionary."

I word wordStreaml
(documents includes: pathName)

ifTrue: [self removeDocument: pathName].
wordStream := File pathName: pathName.
documents add: pathName.
[(word := wordStream next Word) = = nil]

whileFalse: [
self add Word: word asLowerCase to: pathName].

wordStream close

addWord: wordString for: pathName
"Add wordString to words dictionary for
document described by pathName."

(words at: wordString) add: pathName

initialize
"Initialize a new empty Wordlndex."

documents := Set new.
words := Dictionary new

locateDocuments: queryWords
"Answer an array of the pathNames for
all documents which contain all words
in queryWords."

I answer bag I
bag := Bag new.
answer := Set new.
queryWords do: [:word I

bag addAll:
(documents at: word if Absent: [# ()])] .

bag asSet do: [-.document I
queryWords size =

(bag occurrencesOf: document)
ifTrue: [answer add: document]].

A answer asSortedCollection as Array

Chapter 8: Debugging 109

removeDocument: pathName
"Remove pathName string describing a
document from the words dictionary."

words do: [:docs I docs remove: pathName].
self removeUnusedWords

removeUnusedWords
"Remove all words which have empty
document collection."

I new Words I
new Words := Dictionary new.
words associationsDo: [:anAssoc I

anAssoc value isEmpty
ifFalse: [newWords add: anAssoc]].

words := new Words

How Class Wordlndex Works

Next, we'll describe class Wordlndex in terms of the high-level messages which create
an index and make queries.

We mentioned earlier that we've included some intentional errors; this is the first place
where they occur. For this reason, don't evaluate these messages until the tutorial tells you
to do so.

We'll construct and use the word index in three steps. First, we create an empty word
index in an expression such as the following (remember, don't evaluate this expression
yet):

Index := Wordlndex new initialize

The initialize method initializes instance variables of the Wordlndex; that is, docu-
ments now contains an empty set and words contains an empty dictionary.

Next, we'll add the words from documents to the Wordlndex. The addDocument:
method creates a file stream to scan the document, repeatedly sends the nextWord
message to the file stream to obtain each word, and then uses the addWord:for: method
to enter each word/document pair in the words dictionary. For example, to add the
words from the Chapters 5 and 6 sample files, you would use the following expressions
(again, don't evaluate these yet):

Index addDocument: 'chapter.5'.
Index addDocument: 'chapter.6'.

To query the word index, you use the locateDocuments: message, as in the following
examples (again, do not evaluate them):

110 Chapter 8: Debugging

Index locateDocuments: #('show' 'class')
Index locateDocuments: #('where' 'the' 'turtle')
Index locateDocuments: #('each' 'talk')

Each query above returns an array of strings, containing the document path names for all
documents that contain all words in the query. The locateDocuments: method is
somewhat more complex than the other methods in its class. It uses a bag to accumulate
all the path names of all the files that contain each word in the query. (Remember that
bags, unlike sets, can contain multiple occurrences of the same object.) It then examines
the bag to find any documents which are repeated as many times as there are words in
the query; these are the documents which contain all the words.

Debugging Class Wordlndex

Now that you've seen how this class is supposed to work, let's see if it does. (From this
point, start evaluating the sample expressions again.) First, build a new word index and
assign it to the global variable Index:

Index := Wordlndex new initialize

Now try adding the tutorial files for Chapters 5 and 6 by evaluating the following
addDocuments: messages:

Index addDocument: 'chapter.5*.
Index addDocument: 'chapter.6'.

Oops! Instead of adding the tutorial files, we get a walkback window:

irdlndex(0bject)»error:
UordIndex(Object)»doesNotUnderstand:
UordIndex>>addDocuaent:
Undef inedObject»Soit

Figure 8.1
Walkback Window

Chapter8: Debugging 111

As you saw in Chapter 2, a walkback window describes an error condition. The label
shows the error condition, and the text pane shows the most recently sent messages, with
those most recently sent appearing first.

In the above walkback window, the label says that the addWord:to: message is not
understood, while the top line in the text pane shows Wordlndex as the class of the
object which did not understand the message.

Whenever you get a walkback window, you generally do one of three things:

1. You can determine what the problem is from the information contained in
the walkback window. In this case, you normally close the walkback window
and then go fix the problem.

2. You can determine that the walkback window occurred either as a result of
you typing the control and break keys simultaneously, or because a halt
message was sent. In this case, there is nothing wrong with the program, so
you can pop up the pane menu for the walkback window and select resume.
The walkback window closes and execution continues.

3. You can decide that you need more information, and would like to use the
debuggerto obtain it. In this case, you pop up the pane menu for the walkback
window and select debug. The walkback window closes and the debugger
window opens.

In our case, we probably have enough information in the walkback window to fix the
problem. Look at the code for class Wordlndex using the Class Hierarchy Browser. We
defined a method addWord:fbr:, but sent the message addWord:to: (in the addDocu-
ment: method) which was not understood. We used the wrong message!

Correct the addDocument: method to use addWord:for: instead of addWord:to, and
then try again to add the tutorial files to the word index, using the following expressions.

Index addDocument: 'chapter.5'.
Index addDocument: 'chapter.6\

Not fixed yet! This time, you get a new walkback window:

112 Chapter 8: Debugging

Saalltalk/V Transcript

C rmex «(WBocu»ent: 'chapter
tmtex AdiOtocttwent: 'chantnr

Figure 8.2
Opening
the Debugger

i ct i onary(ObJ ect) > > error:
D ict ionary»errorAbsentKey
Dictionartj>>at:
UordI ndex»addllord: for:
Uor d I ndex> > addDocument '•
Undef inedObj ect»Do i t

The label of the walkback window says Key is missing. Since the problem is not
obvious, let's see if we can get some more information by using the debugger. Pop up
the walkback window pane menu and select debug. You'll see the following debugger
window: h

skip
jump

D ict ionaryl Obj ect) »error:
Diet ionary>>errorAbsentXey

UordI ndex»addllord: for:
UordIndex»addDocuiaent:

Knit

Figure 8.3
Debugger with
Window Buttons

at: aKey
"Answer the value of the key/value pair whost
equals aXey froai the receiver dictionary,
not found, report an error."

! answer !
^(answer := self loohUpKey: aKey) == nil

if True: [ggg^^^Q^QQg|
ifFalse: [answer value]

The debugger window gives you an expanded view of the walkback in several panes. The
top left pane (a list pane) repeats the walkback information; you can use this pane to
select walkback lines. When you select a walkback line, the other panes contain related
information. Select the entry containing Dictionary > >at:.

The bottom pane displays the source code for the selected method, in this case at: from
class Dictionary:

Chapter 8: Debugging 113

at: aKey
I answer I
A (answer := self lookUpKey: aKey) = = nil

ifTrue: [self errorAbsentKey]
ifFalse: [answer value]

The text that is reversed is the expression currently being evaluated in this method.

As you can see, this method invokes another dictionary method lookUpKey:, and then
invokes errorAbsentKey if the key is missing, which eventually results in the walkback
window.

The two panes on the top right are an inspector for the receiver, arguments and temporary
variables of the selected method. In this case, you see the receiver self, the argument aKey
and the temporary answer. Select self; you see that the value is an empty dictionary. Now
select aKey; the value is the string 'tutorial', the first word in the file. We tried to do a
dictionary lookup on an empty dictionary, self, with the first word in the file as key.

Select the line containing addWord:for: in the walkback pane on the top left of the
window. Now select the argument wordString. Again, it's the string 'tutorial*. We tried
to access the words dictionary with a key, without first testing whether or not the key
is present! Correct the addWord:for: method in the bottom pane of the debugger to
look as follows:

addWord: wordString for: pathName
"Add wordString to words dictionary for
document described by pathName."

(words includesKey: wordString)
ifFalse: [words at: wordString put: Set new],

(words at: wordString) add: pathName

Now pop up the bottom pane menu and select save. Notice what happens. The entries
above addWord:for: in the walkback list are discarded, because a method they would
return to has been changed. The addWord:for: method is still selected. Now pop up the
menu in the walkback list pane and select restart. Execution resumes by re-sending the
selected message.

The debugger window disappears, and the method builds the index. With the dictionary
now built, let's try to make some queries. Try evaluating the expression below.

Index locateDocuments: #('show' 'class')

Another walkback window pops up, indicating that there is another error. Immediately
open a debugger window on this new error. You'll see the following window:

114 Chapter 8: Debugging

i i

ray(IndexedCol lection)»do:
I ndex» locateDocuaents:

Figure 8.4
Inspecting
Variables

alienage
"Initiate a walkback because a Message Ma* sent which is
not understood, i.e.. there is no Matching Method."

The message at:if Absent: was sent to an instance of class Set, which did not understand
it. Select the top walkback line containing Set(Object)>> doesNotUnderstand:, and
then select self in the temporary variable list. The value is:

Setfchapter.6' 'chapter.5')

Now select the third walkback line, representing a block in the locateDocuments:
method, and examine the values of the temporary variables. Then look at the source code
for the method. The at:ifAbsent: message being executed is reversed. It uses instance
variable documents as receiver. The value printed out for the set above confirms this,
because it does contain the document path names.

Let's look at this statement. Either we sent the wrong message to documents or
documents is the wrong receiver. This statement is trying to add to variable bag all the
documents that include the string contained in variable word. The receiver is indeed
wrong. This statement should instead use the words dictionary:

bag addAll:
(words at: word if Absent: [# ()])

Change the locateDocuments: method using the debugger, save it, and restart at
locateDocuments:. It works! Try the following queries:

Index locateDocuments: #('where' 'the' 'turtle')
Index locateDocuments: #('each' 'talk')

Chapter 8: Debugging 115

Hop, Skip and Jump

Now that you have class Wordlndex debugged, let's see how you can use the debugger
to learn how an application operates by watching it send messages. Open a debugger
window to step through execution of the query you just performed by evaluating the
following expression:

self halt.
Index locateDocuments: #(each talk)

Figure 8.5
Debugging
an Expression

locateDocuments: queryUords

"Answer an array of the pathNames for
all documents which contain all words
in queryUords."

! answer bag !
bag : — f̂ ŷVÂ f̂f.
answer := Set new.
queryUords do: [:word !

bag addAll:

(words at: word ifAbsent: [*()])].
hair asRftt An'. I : rtnniimfsnt. !

There are 6 buttons on the right side of a debugger window label bar as seen in Figure
8.3. The first three called hop, skip and jump are related to debugging. Hop, skip and
jump each cause limited program execution. Hop executes the least amount: one
Smalltalk message send or assignment statement. Skip executes more than hop: up to the
next message send or assignment in the current method or up to the next breakpoint,
whichever comes first. (Refer to Chapter 16 for a description of breakpoints). Jump
executes more than skip: up to the next breakpoint or the end of the debugged
expression.

Try selecting the hop button twice and watch the debugger window. Execution state is
now at the beginning of execution of the expression, shown in Figure 8.5. Select hop
again. Notice how execution proceeds in small amounts, with the next statement to be
executed highlighted after the step. You can examine the state of objects after each hop.

Now try selecting the skip button a few times. Notice that the highlighting stays within
the same method until the method finishes execution. This allows you to concentrate on
a single method activation and ignore lower level messages.

116 Chapter 8: Debugging

What YouVe Now Learned

By the end of this tutorial, you should be familiar with walkback windows and how to
use the debugger. If you want to review, you can either repeat the tutorial, or refer to the
detailed description in Part 3, The Smalltalk/V 286 Reference.

As always, if you exit Smalltalk/V before beginning the next tutorial, be sure to save the
image.

9 GRAPHICS

In these tutorials, you have seen some of Smalltalk/V's remarkable graphics. In this
tutorial, you will learn how Smalltalk/V produces such graphics.

The examples in this chapter repeatedly alter the top half of the screen. For this reason,
you will want to open any windows in the bottom half of the screen only. After each example,
you can restore the screen to its previous state by selecting redraw screen from the
system menu. As always, you can find the sample code for this tutorial in the disk file
chapter.9. Use the Disk Browser to retrieve these examples from this file. Since this file
is larger than 10,000 bytes, only the beginning and end of it can be seen in the text pane.
Pop up the text pane menu and select read it to make the entire file accessible.

You will again be adding new methods and classes to the environment in this tutorial,
so be sure to save the image when you exit Smalltalk/V.

Some Basic Concepts

Smalltalk/V owes its graphical capability to bit-mapped graphics (also called raster
graphics). A line is drawn with a continuous vector of dots. A cursor is formed with a
rectangle of black and white dots. Even a character is formed with a block of dots,
instead of an ASCII value.

These dots are displayed on a monitor screen as colored pixels. They are stored internally
as a Bitmap, contained in a Form. A Bitmap is a matrix of bits, with a value 1 representing
white and 0 representing black. To refer to an individual dot within a Bitmap, you use
Points. To move a group of dots from one place to another (either within the same Bitmap
or between different Bitmaps), you use Rectangles to denote the areas involved. Thus
Point, Rectangle, and Form are Smalltalk/V's basic graphic data structures.

Point

A Point refers to a position within a two dimensional array. It has two instance variables:
x, the column coordinate, and y, the row coordinate. To create a Point, you use the
binary message @. For example, the expression:

10

creates a Point referencing column 5 and row 10. Evaluate the following expressions:

(5 @ 10) x
(5 @ 10) y

118 Graphics

These expressions return the values 5 and 10, respectively. You can also add, subtract,
multiply, divide, or compare Points, as in these examples:

(l @ 2) + (- l @ - 2)
(1@2)-(1@2)
(l@2)*(l/2@(l/2))
(1@2) <(3@4)
(3 @ 5) > (3 @ 4)

These expressions combine or compare x of the receiver with x of the argument and y
of the receiver with y of the argument. This is why the last expression returns false; the
first x, 3, is not greater than the second, also 3.

You can mix a Point with a scalar:

1 (3) 2 + -1
1 @ 2 II 2

which applies the scalar to both x and y of the Point. You cannot, however, compare
point coordinates and a scalar. For example, try evaluating this expression:

1 @ 2 < 3

To alter one of the two coordinates, simply use the messages x: and y:. For example,
evaluate the following expressions as a group:

I aPoint I
aPoint := (5 @10).
aPoint x: 1.

;; aPoint y: 2.

Rectangle

A Rectangle is represented by two points: an origin (the top left point) and a corner (the
bottom right point). With this information, Smalltalk can determine its extent (the width
and height of the elements contained within the rectangle) as:

corner - origin

To create a Rectangle, you normally send messages to a point, as in this example:

1 @ 1 corner: 100 @ 100

Or equivalently:

1 (Sb 1 extent: 99 @ 99

Graphics 119

A Rectangle includes the bits inside of the rectangle. The rectangle itself is imposed on
gaps between bits. For example, the Rectangle

1(5)1 corner: 4 @ 3

contains 6 bits (3 horizontal and 2 vertical) as illustrated below:

Figure 9-1
Pixels and
Rectangles

rectangle

pixel

There are many operations you can perform on Rectangles. For example, try evaluating
each of the following:

(0 @ 0 extent: 100 @ 100) center
(0(5)0 extent: 100 @ 100) insetBy: 10
(-5 @ -10 extent: 20 @ 20)

intersect: (1 @ 2 extent: 20 @ 20)
(-5 @ -10 extent: 20 @ 20)

containsPoint: 0 (8) 0

These operations are not the focus of this tutorial, however; refer to Part 3, The
Smalltalk/V 286 Reference, for more detailed descriptions.

Form

As we said before, a Point or a Rectangle simply refers to a position or an area of
positions. The object that actually holds the graphical image is the Form. A Form has
many instance variables, but only three concern you: bits, width, and height.

120 Graphics

The variable bits contains a Bitmap, which is the content of the Form. This Bitmap
contains bits for the area represented by a Rectangle:

0 @ 0 extent: (width @ height)

So, for example, to create a Form containing all 1 bits, evaluate the following expression:

F : = Form width: 100 height: 50

To display a Form, use the message displayAt: with a point for the argument. For
example, to display the rectangle created above, you would use:

F displayAt: 0 (8) 0

This displays a white rectangle at the top left corner of the screen. You can also display
only a portion of a Form. For example, evaluate the following expression:

1 black white aRect I
white : = Form width: Display width height: Display height,
black := (Form width: Display width height: Display height)

reverse.
aRect := Display boundingBox. "screen rectangle"
Display height / / 2 / / 8 timesRepeat: [

black displayAt: 0 (2) 0 clippingBox: aRect.
aRect := aRect insetBy: 4.
white displayAt: 0 (3) 0 clippingBox: aRect.
aRect := aRect insetBy: 4J.

Menu message: 'continue'.
Scheduler systemDispatcher redraw

The message displayAtxlippingBox: restricts the area on the screen to be changed.
(You'll learn more about clipping boxes later in this tutorial.) The last two lines pop up
a menu and then redraw the screen.

You can also display a Form on a printer by evaluating the following expression:

(Form new width: 100 height: 100 initialByte: l6rF0)
outputToPrinter

Class Form has three immediate subclasses: BiColorForm, ColorForm, and
DisplayScreen.

A BiColorForm allows a foreground color to be assigned to the 1 pixels, and a
background color to the 0 pixels in the bitmap. This allows a single bitmap to represent
two colors other than just black and white.

A ColorForm has an array of bitmaps. The bits in the same position of each bitmap
collectively represent the color of the pixel at that position.

Graphics 121

Class DisplayScreen and its subclass ColorScreen represents a monochrome screen and
a color screen respectively. Their bitmaps have fixed physical addresses, as well as fixed
sizes, dictated by the mode of the graphics adapter being used. A global variable,
Display, contains an instance of either ColorScreen or DisplayScreen depending on
whether or not your monitor and graphics adaptor supports color.

The Basic Class of Graphics: BitBIt

BitBlt ("bit block transfer") is the fundamental class of all Smalltalk/V graphics. Classes
like Pen (for drawing) and CharacterScanner (for writing text) are subclasses of BitBlt.

The basic function of BitBlt is to move a rectangular area of bits from one portion of
a Form or DisplayScreen to another. The simplest form of the move requires a source
form, a destination form, a rectangle on the source form to be moved, and an origin point
on the destination form. Smalltalk can then calculate the corner of the destination
rectangle by adding the source rectangle extent to the destination origin.

For example, consider the following code, which copies the top left quarter of the screen
to the right:

(BitBlt destForm: Display sourceForm: Display)
sourceRect: (0 (S> 0 extent: Display extent / / 2);
destOrigin: (Display width / / 2 (3) 0);
copyBits

The first line creates a BitBlt instance with Display as both the source and destination
form. The second line specifies the top left quarter of Display as the source rectangle.
The third line specifies the top center point as the destination origin. The last line moves
the bits.

Let's look at another example. This code copies a white form in its entirety to Display,
while storing the old contents of the screen in another form, F:

F := Display compatableForm new extent: Display extent / / 2.
(BitBlt destForm: F sourceForm: Display) copyBits.
(BitBlt destForm: Display sourceForm:

(Form new extent: F extent)) copyBits.

The first line creates a form, F, with a size one quarter of the display screen. Display
compatableForm returns either class Form or class ColorForm depending on whether
Display is an instance of class DisplayScreen or ColorScreen, respectively. The second
line copies the top left quarter of the screen onto F. When, as in this example, you do
not specify a source rectangle and destination origin, the destFornv.sourceForm:
message uses the entire area of the source form and point 0 @ 0 as the source rectangle
and destination origin, respectively.

122 Graphics

In this copy operation, BitBlt copies a larger rectangle onto a smaller form. This poses
no problem, however; BitBlt never touches any bits beyond those contained in the
destination form.

The last two lines create a new white form with the same size as F, and then copies it onto
the screen. Here, we move a smaller form to a larger one. Again, BitBlt moves only as
many bits as are contained in the source form. Now evaluate the above expressions; the
upper left corner is blanked. But, since the old contents are stored in F, you can restore
the old screen by evaluating:

(BitBlt destForm: Display sourceForm: F) copyBits

The rest of this section describes the concepts of BitBlt with color.

When bits are moved from a BiColorForm to either a ColorForm or ColorScreen, the
bits of value 1 in the BiColorForm become the foreground color specified by the mask
form and the bits of value 0 become the background color. Then these color pixels are
moved to the destination with four bits of each color pixel occupying the same position
on the four destination bitmaps. Try the following:

I aForm I
aForm : — BiColorForm width: 100 height: 100.
(BitBlt destForm: aForm sourceForm: nil)

mask: Form black;
extent: 50 (S) 100;
copyBits;
destForm: Display;
sourceForm: aForm;
mask: (BiColorForm foreColor: 1 backColor: 4);
extent: 100 (S) 100;
copyBits

This example first initializes aForm to be a BiColorForm with all bits set to 1. Then it
copies zeros into the bits comprising the left half of aForm. Finally it copies aForm to
the display screen assigning color 1 (blue) to 1 bits and color 4 (red) to 0 bits. The result
shown on the screen is a 100 x 100 pixel block with the left half in red and the right half
in blue.

When bits are moved between a ColorForm and a ColorScreen, bits are moved between
corresponding bitmaps. In other words, this can be viewed as four separate moves
between corresponding single bitmaps. Try the following:

Graphics 123

I aForm I
aForm := ColorForm width: 100 height: 100.
(BitBlt destForm: aForm sourceForm: Display)

copyBits;
destForm: Display;
sourceForm: aForm;
mask: Form gray;
copyBits

This example copies a block from DisplayScreen to a ColorForm and then copies it
back to the screen with a gray halftone.

When bits are moved from a ColorForm or ColorScreen to a BiColorForm, the colors
on the source bitmaps that are the same as the foreground color of the mask form are
turned into 1 bits on the destination BiColorForm and the rest of the bits are set to zero.
For example,

I aForm I
aForm := BiColorForm

width: Display width
height: Display height.

(BitBlt destForm: aForm sourceForm: Display)
mask: (BiColorForm color: 11);
copyBits;
destForm: Display;
sourceForm: aForm;
copyBits

extracts the area with color 11 from the screen to aForm, and blacks out the rest when
aForm is copied back to the screen.

When the source form is nil, if the destination is a BiColorForm, then bits in the mask
form will be tiled over the destination. If the destination object has multiple bitmaps then
1 bits in the mask form will take on the foreground color of the mask form, 0 bits the
background color, and the colors will be tiled over the destination area. For example,

(BitBlt destForm: Display sourceForm: nil)
mask: (BiColorForm color: 4);
destRect: (0(8)0 extent: 100 @ 100);
copyBits

paints a red rectangle in the top left corner of the screen.

124 Graphics

Halftone (Mask)

A halftone, or mask, is a Form which combines with the source form to create the effect
of gray tone. This mask Form is restricted to have a width and height of 16. To copy a
mask over a larger area, BitBlt repeatedly applies (tiles) the content throughout the entire
affected area. Since a bit value 1 represents white and 0 represents black, a white mask
form contains all 1 bits while a black one contains all 0 bits. There are four possible ways
to combine source and mask forms; evaluate each of the following expressions to see the
results:

"no source, no halftone (displays solid white)"
(BitBlt destForm: Display sourceForm: nil)

destRect: (0 @ 0 extent: 100 @ 100);
copyBits

"halftone only (gives halftone tiling)"
(BitBlt destForm: Display sourceForm: nil)

mask: Form gray;
destRect: (0 @ 0 extent: 100 @ 100);
copyBits

In this case, the message Form gray returns a prebuilt mask form which yields a gray
tone effect. Other prebuilt mask forms can be obtained by sending the message black,
darkGray, gray, lightGray, or white to class Form.

"source only (gives source bits)"
(BitBlt destForm: Display sourceForm:

(Form new width: 100 height: 100 initialByte: l6rF0))
copyBits

Where the initialByte argument, l6rF0, specifies the initial value for all bytes in the new
Form. The result will be white and black vertical strips (each four pixels wide).

"both specified (bits in mask are ANDed with bit in source)"
(BitBlt destForm: Display sourceForm:

(Form new width: 100 height: 100 initialByte: l6rF0))
mask: Form darkGray;
copyBits

When a mask having colors other than black and white is desired, a BiColorForm mask
should be used to control which color is painted on the screen or on a ColorForm. The
following messages are often used to create such a mask form:

BiColorForm color: aColor
Creates a 16 x 16 BiColorForm with all 1 bits, with aColor as its foreground
color and 0 (black) as its background color.

Graphics 125

BiColorForm foreColor: fColor backColor: bColor
Creates a 16 x 16 BiColorForm with all 1 bits, fColor as its foreground color
and bColor as its background color.

BiColorForm gray foreColor: fColor backColor: bColor
Creates a 16 x 16 BiColorForm with alternating 0 and 1 bits, with fColor as its
foreground color and bColor as its background color.

This last mask form can be used to mix two colors together. For example,

(BitBlt destForm: Display sourceForm: nil)
mask: (BiColorForm gray foreColor: 1 backColor: 4);
extent: 100 @ 100;
copyBits

paints a purple block (mixing blue and red) on the screen. By using this technique, you
can expand the number of simultaneously displayable colors from 16 toL20.

Combination Rules V - . ^ ?,J Ac -^ ts^

A combination rule is an Integer which specifies how the source form bits (after being
merged with the mask form) are combined with the destination form bits. Since a bit
value of 1 represents white and a bit value of 0 represents black, if you OR white with
black, the result is white. If you AND them together, the result is black. To specify what
you want to happen in different situations, send a message to class Form:

Form over
Form orRule
Form andRule
Form under
Form erase
Form reverse
Form orThru

destination becomes source
source OR into destination
source AND into destination
source AND into destination
if source is 1 then destination becomes 0
source XOR into destination
first erase without specifying mask form,
then OR with mask form specified

All the examples we've used so far in this chapter have assumed the combination rule
over. To see the effect of different combination rules, evaluate the following expression,
which repeatedly displays the number "8" on a background of white with a black band
in the middle, each time with a different combination rule:

126 Graphics

'8' display At: 0 @ 0 font: Font fourteenLine.
F :== (Form width: 8 height: 14) fromDisplay.
F := (F magnify: (0 @ 0 extent: 8 @ 14) by: 7 @ 7).
Display white: (0 (3) 0 extent: 640 (3) 104);

black: (0 @ 24 extent: 640 @ 30).
(BitBlt destForm: Display sourceForm: F)

mask: Form lightGray;
combinationRule: Form over;
copyBits;
destOrigin: 70 @ 0;
combinationRule: Form orRule;
copyBits;
destOrigin: 140 (3> 0;
combinationRule: Form under;
copyBits;
destOrigin: 210 @ 0;
combinationRule: Form erase;
copyBits;
destOrigin: 280 @ 0;
combinationRule: Form reverse;
copyBits;
destOrigin: 350 @ 0;
combinationRule: Form orThru;
copyBits

Another interesting example is to swap the left half of the display screen with the right
half, without using an intermediate Form:

I aRectangle I
aRectangle :— Display width / / 2 (2) 0 corner: Display extent.
(BitBlt destForm: Display sourceForm: Display)

combinationRule: Form reverse;
destRect: aRectangle;
copyBits;
sourceRect: aRectangle;
destOrigin: 0 (8) 0;
copyBits;
sourceOrigin: 0 (8) 0;
destRect: aRectangle;
copyBits.

Menu message: 'continue'.
Scheduler systemDispatcher redraw

Graphics 127

There is an extra dimension in dealing with multi-bitmap forms. With a single-bitmap
form, pixels are represented by binary numbers since they can assume only two colors:
black (0) and white (l). Thus when the 8 pixels 10101010 in the source are ORd into the
8 pixels 11110000 in the destination, the destination becomes 11111010 (5 black pixels
followed by white, black and white). A color screen or form, however, has four bitmaps.
Each pixel must be represented by a hexadecimal number. For example, when the 8 pixels
E0E0E0E0 are ORd into 33330000 you get F3F3EOEO. Following are some examples
dealing with multi-colored forms. They will not work if your machine does not support
color.

The over rule is used to copy the source rectangle over the destination rectangle
regardless of which colors are contained in the destination area. When you create a
BitBlt instance, it defaults to this rule. For example:

(BitBlt destForm: Display source Form: Display)
destOrigin: (Display extent / / 2);
copyBits

The opaque rule (called orThru for black and white) first blanks (zeroes) out the
destination area corresponding to the 1 bits of the source area, then combines the source
area with the repeated bits of the mask form by logical AND, and finally ORs the result
to the destination area. In short, the 0 bits of the source form will appear to be transparent
after the move. For example:

I aForm I
aForm := (Bi Color Form width: 100 height: 100)

foreColor: 5.
(BitBlt destForm: aForm sourceForm: nil)

mask: Form black;
destRcct: (20 @ 20 extent: 60 @ 60);
copyBits;
destForm: Display;
sourceForm: aForm;
mask: nil;
destRect: Display boundingBox;
combinationRule: Form opaque;
copyBits

first makes an inner rectangle of 0 bits in aForm and then copies aForm to the screen.
You can see that the portion of 0 bits is transparent. This rule also has many other uses.
For example:

128 Graphics

I aForm I
(BitBlt

destForm:
(aForm := BiColorForm new extent: Display extent)

sourceForm: Display)
mask: (BiColorForm color: 5; "extract blue color"
copy Bits.

aForm foreColor: 4. "change foreground color to red"
(BitBlt

destForm: Display
sourceForm: aForm)

combinationRule: Form opaque; "change only 1 bits"
copyBits

changes blue to red on your screen.

The orRule merges two colors together. For example, combining blue (l) with green (2)
yields cyan (3). Try the following:

I aForm I
aForm := (BiColorForm width: 100 height: 100)

foreColor: 1. "a blue single-bitmap form"
aForm display At: 0 (3) 0.
aForm foreColor: 2.
(BitBlt destForm: Display sourceForm: aForm)

combinationRule: Form orRule;
copyBits

The andRule is usually used to extract a base color. For example:

I aForm I
aForm := (BiColorForm width: Display width height: Display height)

foreColor: 1. "a blue single-bitmap form"
(BitBlt destForm: Display sourceForm: aForm)

combinationRule: Form andRule;
copyBits

causes any pixel in the destination rectangle having an odd numbered color (a trace of
blue) to become blue and all other pixels to become black.

The reverseRule, as its name implies, is usually used to reverse the destination color, for
example:

Graphics 129

(BitBlt destForm: Display sourceForm: nil)
combinationRule: Form reverse;
extent: 100 <S> 100;
copyBits

reverses the color in the top left comer of your screen.

Clipping Rectangle

BitBlt lets you use clipping rectangles to restrict your bit transfer to a designated rectangle
on the destination Form. For example, each pane within a window sets up a clipping
rectangle every time the window is opened or moved or reframed; you never have to
worry about writing or drawing beyond that rectangle.

For example, look at the following code, which expands all the black areas in your active
window to the left by one pixel. Thus black characters in the window will appear to be
bolded, while white ones appear to be thinned:

(BitBlt destForm: Display sourceForm: Display)
clipRect: Scheduler topDispatcher pane frame;
combinationRule: Form andRule;
destOrigin: -1 (3) 0;
copyBits

In the example, Scheduler topDispatcher returns the Dispatcher controlling the active
window, the pane message returns the pane associated with the Dispatcher, and the
frame message asks its receiver pane to answer the rectangle surrounding the active
window. {Dispatchers control keyboard and mouse input; they are described in detail in
Part 3.) This final rectangle is used as the clipping area. Now evaluate the expression;
you'll see that only the content of the active window is affected, even though the entire
screen is copied.

You should note two things from the above example. First, this example copies a form
to itself, overlapping a large portion of the source and destination rectangles. BitBlt
handles this situation properly as if a copy of the source form was made before
transferring the bits.

Second, both the source and destination origin can be somewhere outside their forms.
The only restriction is that the coordinates of origin points must be small integers. The
final rectangular area affected by the BitBlt is the intersection of the destination form,
source form (with the source origin aligned with the destination origin), source rectangle,
destination rectangle, and clipping rectangle.

130 Graphics

Extension of BitBIt

You've now seen some of BitBlt's raw power. It still, however, needs to be extended to
provide an easier user interface for handling tasks like drawing lines or displaying
characters. Smalltalk/V therefore provides four BitBIt subclasses: CharacterScanner,
Pen, Commander, and Animation.

CharacterScanner

Class CharacterScanner converts a character's ASCII representation into its graphical,
readable form. For example, a message such as:

'Hello' displayAt: 0 <S> 0

actually creates a CharacterScanner and tells it to display the String 'Hello' at screen
location 0 @ 0.

One of CharacterScanner's major additions to BitBIt is an instance variable containing
the font to use when displaying characters. It is an instance of class Font, containing a
particular version of the bitmap representation of all characters, which provides
information about how to retrieve each character. When a CharacterScanner is told to
display a string, it literally uses the ASCII value of each character in the string as an index,
then uses its own BitBIt to copy the bitmap pointed to by the index onto the destination
form. For example:

CharacterScanner new
initialize: Display boundingBox

font: Font eightline;
display: 'Hello' at: 0 @ 0;
setFont: Font fourteenline;
display: 'Hello' at: 40 @ 0

displays Hello at the top left corner of the screen using a font 8 lines high, switches to
a font of 14 lines, and displays the same string next to the previous one.

You can use the setForeColor.backColor: message to set the foreground and
background colors for the characters to be displayed:

CharacterScanner new
initialize: Display boundingBox

font: SysFont
dest: Display;

setForeColor: (Display compatibleMask color: 1)
backColor: (Display compatibleMask color: 14)

display: 'abc' at: 0 @ 0. "display on screen"

Graphics 131

In a monochrome system, the colors numbered 0-7 are mapped into black and colors
numbered 8-15 are mapped into white.

Pen

In the previous chapters, you have seen many examples of turtle graphics. Although you
may not have known it, you were using an instance of class Pen. When you tell a pen
to draw a line from one place to another, the pen actually uses its BitBlt to copy from
its source form to its destination form at each position along the line. For example, to
draw from 0 @ 0 to 9 @ 0, the pen copies from its source form to its destination form
10 times, starting at 0 @ 0 and moving right by one pixel for each of the successive
copies. The end result looks like a straight horizontal line. When you tell a pen to draw
diagonally, it moves to successive positions in as straight a line as possible. The algorithm
also makes sure that there are no gaps in the line.

Because a pen uses its source form to draw, changing the shape or tip size of a pen simply
means changing its source form. To change the color of a pen, use a mask form with the
desired gray tone. Of course, you can also change the combination rule and clipping
rectangle to get different effects.

A pen always remembers its current location, direction, and downState. Location tells it
where to start for the next movement. Direction allows it to calculate the ending point
when the go: message is used, where only units of movement are specified. The angle is
expressed in degrees, with east equal to 0 and north equal to 270. If downState is true,
the pen draws while it moves; otherwise, it moves without drawing. The mandala drawing
method illustrates this:

132 Graphics

" Pen method "
mandala: sides diameter: diameter

I vertices radius center angle color I
"initialize local variables"
center : = self location.
vertices := Array new: sides.
radius := diameter / / 2.
angle := 360 / / sides.
"set down state to false in order to use Pen to
locate vertices without drawing"
self direction: 270; up.
1 to: sides do: [:i I

self go: radius, "move to next new vertex"
vertices at: i put: self location, "remember it"
self place: center; "change location to center"

turn: angle], "increase direction by angle"
"draw from each vertex to every later one"
self down,
color := 1.
1 to: sides - 1 do: [:j I

j + 1 to: sides do: [:i I
halftone foreColor:

(color := 5 - color),
self place: (vertices at: j);

goto: (vertices at: i)]]

To execute this method, evaluate the following expression:

Pen new mandala: 30 diameter: 300

When you send the message go: to a pen, be aware that the actual pixels drawn may not
be the same as you specified. This is because the number of pixels drawn are adjusted by
a global variable, Aspect, which describes the aspect ratio of your display. Aspect
contains a fractional number, determined by the video adapter board your system uses.
The go: message multiplies the vertical distance of its argument by Aspect to yield the
real number of pixels to draw. Because of this adjustment, you are able to draw squares
and circles without worrying about your screen's aspect ratio. To find the correct Aspect
to use with your video adapter board, evaluate the following expression:

Display black: (2 @ 2 extent: 150 @ 150)

With a ruler, measure the width and height of the black rectangle; then set:

Graphics 133

Aspect := widthMeasured / heightMeasured

Aspect must be an integer or a fraction, not a floating point. For example, if the black
rectangle measured 1 3/4" by 2 1/4" you would set:

Aspect : = (7/4) / (9/4)

The Network Example Revisited

With all the graphics techniques we have learned so far, we can now actually draw the
network system you saw in Chapter 7.

In class NetworkNode, add the following methods to draw the node itself:

draw
"Draw the receiver node with a
circle around its name."

I font r aspect pen I
font := Font eightline.
(pen := Pen new)

defaultNib: 2;
mask: Form white,

pen place: position,
pen solidEllipse: (r := name size * font width + 15 / / 2)

aspect: (aspect := font height + 16 / r / 2 / Aspect),
pen mask: Form black,
pen centerText: name font: font,
pen ellipse: r aspect: aspect

position
"Answer the position of the receiver node."

A position

The method draw draws a solid white ellipse large enough to contain the node name,
displays the text for the name in black, and finally redraws the border of the ellipse in
black. The method position answers the position of the node.

134 Graphics

Then, in class Network, add another draw method to first draw arcs and nodes:

draw
"Draw the network. For each node, it draws
all the arcs and then the node. All the
nodes visited are remembered to avoid double
drawing."

I visited pen I
pen -.^Pen new

defaultNib: 4 @ 3.
visited := Set new.
connections keys do: [:nodeA I

visited add: nodeA.
(connections at: nodeA) do: [:nodeB I

(visited includes: nodeB)
ifFalse: [

pen place: nodeA position;
goto: nodeB position]].

nodeA draw]

In Chapter 7 you assigned a network of nodes to the global variable Net. Display the
network by evaluating all of the following:

Display white.
Net draw.
Menu message: 'continue'.
Scheduler systemDispatcher redraw

The result should be as follows.

Figure 9.2
Displaying
a Network

Graphics 135

Commander

Commander is a subclass of Pen. A Commander commands an array of pens. It has
messages to either fan out or line up all the pens under its command. It also reimplements
messages like place:, turn:, down, up, go:, and goto: to pass the message to all of its
pens. When the units of movement are small, this creates an illusion of all pens drawing
simultaneously. For example, evaluate the following example, which draws five dragons
fanning out:

Display white: Display boundingBox. "blank screen"
(Commander new: 5)

fanOut; "set fan out direction"
up;
go: 60; "set starting point"
down;
dragon: 9. "draw dragon"

Menu message: 'continue'.
Scheduler systemDispatcher redraw

The result should be as follows.

Figure 93
Dragon Curves

136 Graphics

Animation

Animation is another subclass of Pen. An Animation contains several collections of
images of objects in motion. Each collection of images (each image is an instance of class
Form) represents the motion of a single object as a series of still frames. When the forms
are displayed continuously, it creates the illusion of a moving object, as in a cartoon. You
can send messages to an Animation to tell any of its objects t o move, or change its
position or direction.

Movement in class Animation differs from the one in Pen in that an animation always
erases the old image of an object before moving it to a new position. The following
example illustrates four walking dogs. The pictures of these dogs were drawn using the
FreeDrawing tool included on your Smalltaik/V diskettes. Evaluate these expressions
to create an animation called Animator, with four dogs under your command:

I dog lmages I
d o g Images : =

Array "build an Array of pictures o f a walking d o g "
with: (GraphDictionary at: ' d o g l ')
with: (GraphDictionary at: 'dog2')
with: (GraphDictionary at: 'dog3')
with: (GraphDictionary at: 'dog2') .

Animator : = Animation new
initialize: Display bounding Box. "ink cl ipping rectangle"

Animator add: dog lmages "add first d o g "
name: 'Snoopy' " with a name Snoopy"
color: # l i g h t G r a y . " and a lightGray color"

Animator add: dog lmages
name: 'Lassie'

j! i j color: # black.
Animator add: doglmages

name: 'Bow'
color: #darkGray.

Animator add: doglmages
name: 'Wow'
color: # white.

Graphics 137

Now evaluate the following expressions, to issue commands to your dogs:

"issue commands"
Display gray, "make whole screen gray"
Animator

speed: 16; "each picture is displayed 8 pixels apart"
shiftRate: 2; "display picture twice before going

to the next (slows down the leg and tail motion)"
setBackground; "use current screen as background"
tell: 'Snoopy' place: 0@0;
tell: 'Snoopy' direction: 45;
tell: 'Lassie' place:

0 @ (Display height - 60);
tell: 'Lassie' direction: -45;
tell: 'Bow' place:

(Display width - 100) @ 0;
tell: 'Bow' direction: 135;
tell: 'Wow' place:

Display extent - (100 @ 60);
tell: 'Wow' direction: -135;
tell: 'Snoopy' go: 350;
tell: 'Lassie' go: 350;
tell: 'Bow' go: 350;
tell: 'Wow' go: 350.

Menu message: 'continue'.
Scheduler systemDispatcher redraw

The above expressions command the four dogs to move towards the center of the screen.
The following commands cause Snoopy to bounce around the screen at a quicker pace:

Display gray, "make whole screen gray"
Animator

speed: 24;
shiftRate: 1;
tell: 'Snoopy' bounce: 4000.

Menu message: 'continue'.
Scheduler systemDispatcher redraw

138 Graphics

The following commands make ail four dogs bounce together.

80 timesRepeat: [
Animator

tell: 'Lassie' bounce: 16;
tell: 'Bow' bounce: 16;
tell: 'Wow' bounce: 16;
tell: 'Snoopy' bounce: 16].

Menu message: 'continue'.
Scheduler systemDispatcher redraw

Global variables like Animator have varying amounts of memory assigned to them. To
free this space after you have finished exploring the Animator variable here, type the
following and evaluate it:

Animator := nil. "get rid of the instance"

This will set the global variable to nil, the undefined object, freeing up space as you
continue.

What YouVe Now Learned

By the end of this tutorial, you should be familiar with:

• Point, Rectangle, Form, and Bitmap
• BitBlt
• Halftone (mask)
• Combination Rules
• Clipping rectangles
• BitBlt subclasses CharacterScanner, Pen, Commander, and animation

As always, you can review any of these topics by repeating the corresponding section of
the tutorial, or by referring to a detailed description in Part 3, The Smalltalk/V 286
Reference.

If you are going to exit Smalltalk/V before proceeding on to the next tutorial, be sure
to save the image.

10 WINDOWS

As you've seen throughout these tutorials, windows provide the major interface between
you and Smalltalk/V. For example, you use the Class Hierarchy Browser window to
enter programs into the system, and the Disk Browser window to browse and manipulate
files. In the previous chapters, we used standard, supplied windows for the tutorial
examples. In this chapter, you'll find out how to make your own windows.

As always, the examples for this tutorial are stored in a disk file. To retrieve these
examples, simply use the Disk Browser to load the contents of the file chapter. 10.

You will also again be making modifications to the Smalltalk/V environment in this
tutorial. Be sure to save the image when you exit the environment; if you want to repeat
any section of this or any tutorial, it will already be there for you.

This tutorial builds on several of the previous tutorial examples in chapters 6, 7, and 9.
If you have not done the tutorials in those chapters and saved the image, you should
evaluate the following expression to install the needed classes:

(File pathName: 'classlO.st') nleln

The later part of this tutorial extends the animal and animal habitat classes with several
new methods. Evaluate the following expression to file in all of the new methods:

(File pathName: 'animallO.st') fileln

We will explain the new methods as they are used below.

The Prompter

Prompters are a special kind of window which lets you ask a question and wait for a single
response. For example, evaluate the following expression:

Prompter prompt: 'Do you know Smalltalk/V?'
default: 'Yes, I"ve done a tutorial.'

A window pops up with the prompt: argument as the window label, and the default:
argument shown below it. The line containing the default is a standard text pane, which
means that its contents can be edited. The user can either accept the response, or edit it.
When you press the return or enter key, or select accept on the text pane menu, the
prompter accepts your answer and displays it as the result of show it.

A unique characteristic of a prompter is that as long as it lives, no other windows can be
activated. You must either accept or cancel the answer (which closes the prompter
window) before you can activate another window.

140 Chapter 10: Windows

Single Pane Window

Other windows in Smalltalk/V are not as restrictive as prompters. They are more under
user, rather than program, control. For instance, often a window may ask a question
which you cannot answer without first consulting another window. You would then
simply select or open another window, get your answer, then switch back to the previous
window and enter the answer.

Let's start with a window with only a single text pane. Evaluate the following expression:

LearnDispatcher : =
TextEditor

windowLabeled: 'Learning Status'
frame: (0 @ 0 extent: 400 @ 100).

TextEditor is one of the Dispatcher classes whose instance variables, when paired with
a TextPane, provide text editing capabilities. Sending the windowLabeled:frame:
message to it creates a window occupying a rectangular area (0 @ 0 extent: 400 @ 100)
on the screen, with the specified label on the top.

To write text from your current window into the text pane of this new window, evaluate
the following expression:

LearnDispatcher
nextPutAll: 'I have learned everything about Smalltalk.';
cr.

LearnDispatcher is used like a Stream, which you saw in Chapter 7. As you recall, the
message nextPutAll: adds its String argument to the end of the receiver contents. The
message cr then adds a line feed. For a TextEditor, cr also displays the buffered
nextPutAll: strings immediately; without it, the display will be delayed until the next line
feed is received.

You can now move the cursor over the new window and select it, which activates the
window and lets you edit the text in it.

To retrieve the contents of this window from another window, activate a different
window and evaluate the expression:

LearnDispatcher contents.

To close the window, select close from the window menu or select the close button on
the label bar. Or, if you are in another window, simply evaluate the expression:

LearnDispatcher closelt.

Chapter 10: Windows l4l

Single Pane Window with More Interaction

The window you just created automatically inherits a window's standard text editing
capabilities. In many cases, however, you'll want to customize a window to suit your
application's needs.

In Chapter 7, you developed an animal habitat with a script to command animals. In this
section we will build a custom window for editing and playing animal habitat scripts that
uses its own menus. We will build the window in stages adding features as we go.

Opening the Animal Habitat

The new window we are creating is for editing and playing scripts for animals. Since the
class AnimalHabitat contains the methods for playing scripts we will add the methods
for the new window to this class rather than create a new class. By convention, the
message usually used to open a window is either open or open On:. Since we will want
to pass a default or initial script to the window, we will implement a method for the
openOn: message. The following expression files in the first version of the openOn:
method for the AnimalHabitat class:

(File pathName: 'windowl.st') fileln

This method opens a window that behaves in the same way as a workspace or System
Transcript window.

openOn: aString
"Create a single pane window with aString
as its initial script."

I topPane I
inputString := aString.
topPane :== TopPane new label: 'Habitat*.
topPane addSubpane: TextPane new.
topPane dispatcher open schedule Window

Every window has a TopPane which encompasses the entire window, including the label.
In addition to initializing the window label, it acts as a local scheduler inside the window
to pick the active pane. To do this, it needs to know the existence of every subpane.
Hence, we send the addSubpane: message to the TopPane.

The last line first sends the open message to the dispatcher associated with the topPane,
which prompts for the window area and displays the window. It then sends the
schedule Window message to let the Scheduler activate the window. The global variable
Scheduler is an instance of class DispatchManager; only the windows known to it can
be activated.

142 Chapter 10: Windows

Now, to open the window, evaluate:

AnimalHabitat new openOn: 'Snoopy be quiet'

A blank window with the label "Habitat" will appear.

Congratulations, you have created your first customized window! However, this window
cannot do much, except some text editing. It does not even display the initial script, the
argument aString, since we have not defined a mechanism for the habitat to
communicate with the window.

Before proceeding, close the window by selecting close from the window menu or select
the close button on the label bar.

Connecting the Habitat to the Window

Our next version of the openOn: method adds a means of communication between the
habitat and the window. The following expression files it in.

(File pathName: 'window2.st') fileln

Here is the new code:

openOn: aString
"Create a single pane window with aString
as its initial script."

I topPane I
inputString := aString.
topPane := TopPane new label: 'Habitat'.
topPane addSubpane:

(TextPane new
model: self;
name: #input).

topPane dispatcher open schedule Window

In this method, we've sent two additional messages to the newly created TextPane:

model: self tells the text pane the identity of the controlling application (in our case, an
instance of AnimalHabitat) so that the text pane can send messages to the application.

name: # input lets the text pane identify itself with the name # input. The text pane also
uses its name as a message to the controlling application to retrieve the pane contents
when it is first opened. Hence we implemented the message input in the application class,
AnimalHabitat, to initialize the contents of the text pane:

Chapter 10: Windows 143

input
"Initialize inputPane with inputString."

AinputString

We can now open the new window with the following expression:

AnimalHabitat new openOn: 'Snoopy be quiet.'

Now the initial script appears when the window is opened.

Customizing the Habitat Pane Menu

If you pop up the pane menu of the above window, you still see a standard text editor
menu. In order to play the script, you'll want to customize this menu.

The following expression files in the final version of the openOn: method:

(File pathName: 'window3.st') fileln

We now present the final version of the openOn: message for AnimalHabitat:

openOn: aString
"Create a single pane window with aString
as its initial script."

I topPane I
inputString :— aString.
topPane := TopPane new label: 'Habitat'.
topPane addSubpane:

(inputPane := TextPane new
model: self;
name: # input;
menu: #inputMenu).

topPane dispatcher open schedule Window

We have made two changes to the openOn: method. We send the additional message
menu: to the text pane to inform it that the controlling application has a method called
inputMenu to create the menu for the input pane. We also assign the instance variable
inputPane to point to the input pane, so that we can communicate with the pane.

Here is the inputMenu method which returns the new menu for the input pane.

144 Chapter 10: Windows

inputMenu
"Answer a Menu for the input Pane."

A Menu
labels: 'copy\cut\paste\play selection\play all' withCrs
lines: # (3)
selectors: # (copySelection cutSelection

pasteSelection playSelection play All)

The method inputMenu simply returns a menu. In this menu, the first three selectors
copySelection, cutSelection, and pasteSelection are the standard TextEditor messages
for copying, cutting, and pasting, which we do not need to implement again in class
AnimalHabitat. We do, however, need to implement the following two new methods:

playSelection
"Accept selected string as the script
and play it to animals."

CursorManager execute change,
self script: inputPane selectedString.
self play.
CursorManager normal change

playAll
"Accept the entire content of the pane
as the script and play it to animals."

CursorManager execute change,
self script: inputPane contents,
self play.
CursorManager normal change

The playSelection method plays only the selected text in the input pane, while playAll
plays the entire text in the pane. Notice that we change the cursor shape to execute
(shown as an hour glass) while playing the script, and then change it back to normal
when finished.

The window is now defined. To try it, first set up the global variable Habitat and teach
the animals commands in the same way as you did in Chapter 7, and then open the
window:

Snoopy : = Dog new name: 'Snoopy'.
Polly := Parrot new name: 'Polly'.
Habitat := AnimalHabitat new

add: Snoopy;
add: Polly.

Chapter 10: Windows 143

Snoopy
learn: 'barking' action: [Snoopy talk];
learn: 'quietly* action: [Snoopy beQuiet; talk];
learn: 'is upset' action: [Snoopy beNoisy; talk].

Polly
learn: 'to be pleasant' action:

[Polly vocabulary: 'Have a nice day'; talk];
learn: '* nasty' action:

[Polly vocabulary: 'Why are you bothering me';
talk].

Habitat openOn:
'Snoopy is upset about the way that Polly is
behaving. It is as if whenever anyone asks
Polly to talk, Polly will be nasty. Maybe if
instead of Snoopy barking at Polly when he
wants Polly to talk, Snoopy quietly asks Polly
to be pleasant for a change, things would go
better. Now maybe Snoopy barking quietly will
not make Polly nasty.'.

After the window is displayed, pop up the pane menu and select the play all choice.
You'll then see the dialogue in the Transcript window. Next, try selecting only a portion
of the script; pop up the same menu, pick the play selection choice, and watch the
dialogue.

Multi-Pane Windows

Multi-pane windows, such as the Class Hierarchy Browser or the Disk Browser, group
related functions into several panes within a single window. This gives the user a clear
picture of the application, since panes within one window do not overlay each other.
Multi-pane windows are also ideal when panes within the window interact with one
another to a high degree. For example, when you select a directory in the Disk Browser's
directory list pane, the contents of two other panes (the file list pane and the bottom text
pane) are automatically updated.

We'll now create a window which groups the animal pattern matching you saw in Chapter
7 with the animation from Chapter 9- In this window, we add two more panes to the
previous example:

146 Chapter 10: Windows

Figure 10.1
Animation
Window

reply pane

animation pane

input pane

The input pane is the same as the one in the previous example, where you can edit the
script to be played to the animals. The reply pane contains the dialogue from animals, so
that we don't have to use the System Transcript window any more. The animation pane
is the stage where animals can perform in response to commands in the script.

The following expression files in a new openOn: method which opens the above
multi-paned window and initWindowSize which establishes its default si2e:

(File pathName: 'window4.st') fileln

Here is the new code:

Chapter 10: Windows 147

openOn: aString
"Create a kennel window with aString
as its initial script."

I topPane replyPane I
inputString := aString.
(topPane : = TopPane new)

label: ' K E N N E L ' ;
model: self.

topPane addSubpane:
(replyPane := TextPane new

model: self;
name: # reply;
framingRatio: (0@0 extent: 2/3 @ (1/4))).

topPane addSubpane:
(GraphPane new

model: self;
name: #graph:;
framingRatio: (0 @ (1/4) extent: 2/3 @ (3/4))).

topPane addSubpane:
(inputPane := TextPane new

menu: #inputMenu;
model: self;
name: # input;
framingRatio: (2/3 (8) 0 extent: 1/3 @ 1)).

replyStream := replyPane dispatcher.
topPane dispatcher open schedule Window

We call this window "KENNEL" because it will contain only dogs. (Your Smalltalk/V
diskettes include the FreeDrawing utility, with which you can draw your own pictures
of different animals and try them out.) The window consists of three panes: a text pane
called reply, a graph pane called graph, and another text pane called input.

We set the instance variable, inputPane, to point to the input pane, so that later we can
use it to reference the pane's contents. We also set another instance variable,
replyStream, to point to the dispatcher of the reply pane, so that we can later use it like
a stream and output things to it.

Since the size of each subpane depends on the size of the whole window, the message
framingRatio: defines the position and size of each pane relative to its window. The
coordinates of the rectangle argument to framingRatio: are a fraction of the width or
height of the window. For example, if the window rectangle is:

100 @ 100 extent: 300 @ 200

then a framing ratio of (2/3 @ 0 extent: 1/3 @ l) yields the rectangle:

148 Chapter 10: Windows

(100 <S) 100) + ((300 <8> 200) * (2/3 @ 0)) extent:
(300 @ 200) * (1/3 @ 1)

which is equivalent to:

300 @ 100 extent: 100 @ 200

Since we want the window to open with a particular size, we provide the metho4
initWindowSize which is used when the window is first opened:

initWindowSize
"Answer the initial window extent"

A (Display bounding Box insetBy: 16 @ 16) extent

If you do not supply an initWindowSize method, the system uses a standard default siza

Several other new methods need to be added and existing methods need to be modifiei
before we can try out the new window. The following code files in the changes an«
additions:

(File pathName: 'window5.st') fileln

The following two methods initialize the two additional panes:

reply
"Initialize reply pane with an
empty String."

A String new

graph: aRect
"Initialize graph pane area to aRect and the
animation associated with it."

I aForm I
aForm := Form

width: aRect width
height: aRect height.

aForm display At: aRect origin, "background"
animator :— Animation new initialize: aRect.
animals do: [:anAnimal I

animator
add: anAnimal picture
name: an Animal name
color: anAnimal color].

AaForm

Chapter 10: Windows 149

Now, we'll slightly modify the previous example's playSclection and playAll methods by
adding the message changed:, which asks the pane identified by its Symbol argument to
reinitialize the pane contents:

playSelection
"Accept selected string as the script
and play it to animals."

self changed: # reply.
CursorManager execute change,
self script: inputPane selectedString.
self play.
CursorManager normal change

playAll
"Accept the entire content of the pane
as the script and play it to animals."

self changed: # reply.
CursorManager execute change,
self script: inputPane contents,
self play.
CursorManager normal change

Next, we'll change the answer: method to write to the reply pane instead of the System
Transcript window:

answer: aString
"Output aString to the reply Pane."

replyStream
nextPutAll: aString;
cr

Next, we add a new method to clean up objects that are no longer useful after the
window is closed. The message super release releases the objects needed by the
changed: message in methods playSelection and playAll:

release
"Window is closed, release all the
objects created by this habitat."

inputPane := replyStream := nil.
super release

Changes to Animal Classes

At the beginning of this tutorial we filed changes and additions to the Animal methods.
We present them in this section.

150 Chapter 10: Windows

Since we are going to animate the animal objects, we need to provide methods for
initializing and accessing an animal's color and picture attributes. We are storing the color
as a symbol representing the desired color and the picture as a series of images of the
animal in motion that can be used by the Animation class described in Chapter 9. Here
are these methods:

color
"Answer the receivers color."

A color

name: aString picture: images color: aColor
"Initialize the receivers name, pictures,
and color."

name : = aString.
picture := images,
color : — aColor

picture
"Answer the receiver's array of pictures."

A picture

We need to provide behavior that lets the animals move about the graph pane. Since we
are only using dogs for our example, we present the new methods for class Dog:

run: distance
"Run for distance."

self answer:
'I am running ',
distance printString,
'feet',

habitat animator
speed: topSpeed;
tell: name go: distance

turn: anAngle
"Turn direction with anAngle."

self answer:
'I am turning ', anAngle printString, ' degrees',

habitat animator
tell: name turn: anAngle

Chapter 10: Windows 151

walk: distance
"Walk for distance."

self answer:
'I am walking ' ,
distance printString , ' feet',

habitat animator
speed: self topSpeed / / 2;
tell: name go: distance

In addition there are methods implementing the following new messages: bounce:,
topSpeed:, direction:, and home. The implementations are very similar to the ones given
above. You can use the Class Hierarchy Browser to view them.

Running the Animation

Now that the methods are defined, we can initialize the animals:

I doglmages I
doglmages : =

Array
with: (GraphDictionary at: 'dogl')
with: (GraphDictionary at: fdog2')
with: (GraphDictionary at: 'dog3')
with: (GraphDictionary at: 'dog2').

Kennel := AnimalHabitat new.
Kennel add:

(Snoopy := Dog new
name: 'Snoopy'
picture: doglmages
color: #gray).

Kennel add:
(Lassie :== Dog new

name: 'Lassie'
picture: doglmages
color: #black).

Kennel add:
(Wow := Dog new

name: 'Wow'
picture: doglmages
color: #darkGray).

152 Chapter 10: Windows

The above expressions add three dogs to the Kennel. Each dog has the same array of
pictures but different colors. (Chapter 9 explains animation in detail).

Next we teach each dog the commands that define their behavior. Since all three dogs
learn the same set of commands, we show only one dog's learning here:

Snoopy learn: 'bark a little'
action: [Snoopy beQuiet].

Snoopy learn: 'bark a lot'
action: [Snoopy beNoisy].

Snoopy learn: 'talk' action: [Snoopy talk].
Snoopy learn: 'home' action: [Snoopy home].
Snoopy learn: 'top speed'

action: [Snoopy topSpeed: Script peek aslnteger].
Snoopy learn: 'run'

action: [Snoopy run: Script peek aslnteger].
Snoopy learn: 'run inside kennel'

action: [Snoopy bounce: Script peek aslnteger].
Snoopy learn: 'walk'

action: [Snoopy walk: Script peek aslnteger].
j! • Snoopy learn: 'direction'
lit] r l

action: [Snoopy direction: Script peek aslnteger J.
Snoopy learn: 'turn'

action: [Snoopy turn: Script peek aslnteger].

Chapter 10: Windows U3

Finally, evaluate the following expression to open the new window with a starting script:

Kennel openOn:
'Snoopy home
Lassie home
Wow home
Snoopy top speed 40
Lassie top speed 30
Wow top speed 20
Snoopy bark a little
Lassie bark a little
Wow bark a lot
Snoopy direction 45
Snoopy walk 200
Snoopy talk
Lassie direction 90
Lassie walk 150
Lassie talk
Lassie turn 225
Lassie run 150
Lassie talk
Wow direction 0
Wow walk 300
Wow talk
Wow turn 135
Wow run 250
Wow talk
Snoopy run inside kennel 4000 feet*

Pop up the pane menu of the input pane and select the play all choice to play the entire
script. You see the dogs' dialogue in the reply pane, and their performance in the graph
pane. The final window is shown in the following picture.

1}4 Chapter 10: Windows

Figure 10.2
Kennel

Dog Uo«: I an turning 135 degrees
Dog Uow: I an running 258 Feet
Dog Uow: Bow Uow, Bow Uow, Bow Uowt
Dog Snoopy: I an running 8 feet
Dog Snoopy: I an bouncing 4888

Uow top speed 28
Snoopy bark a little
Lassie bark a little
Uow bark a lot
Snoopy direction 45
Snoopy walk 288
Snoopy talk
Lassie direction 98
Lassie walk 158
Lassie talk
Lassie turn 225
Lassie run 158
Lassie talk
Uow direction 8
Uow walk 388
Uow talk
Uow turn 135
Uow run 258
Uow talk
Snoopy run inside kennel

Try composing your own scripts in the input pane, and then select either all or a portion
of it to play.

What YouVe Now Learned

By the end of this tutorial, you should be familiar with prompters, single pane windows,
and multi-pane windows. You've seen a complex interactive application, which provides
many of Smalltalk's most important building blocks.

As always, if you want to review any of the topics covered in this tutorial, you can either
repeat the corresponding section of the tutorial, or refer to the detailed description in
Part 3.

If you are going to exit Smalltalk/ V before proceeding on to the next tutorial, be sure
to save the image.

! i

k

11 OBJECT-ORIENTED DEVELOPMENT

The tutorials so far have shown you many strengths of the Smalltalk/V language and
programming environment. Chapters 11 and 12 are about Smalltalk/V application
development—the "how" rather than the "what" of OOPS. In Chapter 11, you will learn
the OOPS application development cycle, a methodology which will guide you in
designing and implementing your own Smalltalk/V applications. The process is
demonstrated through a simple but complete example.

After working through the phone book example in this chapter, you will be ready for the
more complex application in Chapter 12. There, a multi-window, multi-pane application
involving state-transition data management is developed using Smalltalk/V in a case
study of the development of an office information system.

The Smalltalk/V Application Development Cycle

Smalltalk/V application development involves defining objects, their interrelationships
and their behavior. Together with the Smalltalk/V environment, these problem solving
techniques support an incremental and evolutionary approach to software development.

The Smalltalk/V application development process can be generally divided into six
phases:

• State the Problem
• Draw the Window
• Identify the Classes
• Describe Object States
• List the Object Interfaces
• Implement the Methods

State the Problem

Begin your Smalltalk/V application development project by making as explicit and
cogent a problem statement as possible, describing what you are trying to get your
software to do. For example:

Problem Statement: There are many people I call regularly on the phone, so I
will create a window application which maintains a list of people and their
phone numbers. The phone book list will be sorted in alphabetical order.
Selecting a name will retrieve the associated phone number. Names and phone
numbers can be added to and deleted from the list.

156 Chapter 11: Object-Oriented Development

As you think through and learn more about your problem, you can return to the problem
statement to qualify or extend it, refining application goals as you go along. The purpose
here is to have a short, understandable statement of the problem which points toward the
kind of software solution that will address your need.

Your problem statement, like your Smalltalk/V application, will evolve. The act of
bringing your initial design ideas to life will generate insights that enhance your
appreciation for the original problem.

Draw the Window

Armed with your problem statement, ask yourself what a new window that helps solve
your problem looks like, then draw it. Don's worry about the internal workings of the
application and data structures involved. Concentrate on the appearance and interaction.
What does the application look like? How does it behave? What existing Smalltalk/V
windows have you seen that suggest an approach?

Figure 11.1
PhoneBook
Window Model

Mi/ ?hone Book

Andy Jlwerson

125 Maple Street
tastWontuck MN'61222

612-555-4521

friend of the fa/nilif

restore
copif
cut
paste
saw
neyp menu

Figure 11.1 shows a proposed phone book window. Notice that it includes menu
selections. Having an idea of the number, size and contents of the panes of the window
in your application is obviously helpful, but it is through the menu selections that things
come to life. Menu items are the means for you as user-object to send messages to your
application which is, after all, a Smalltalk/V object.

You have now transformed your problem statement into a concrete window to be built.
The drawing is a specification of the application user interface and is the starting point
for specifying the rest of the application.

Chapter II: Object-Oriented Development 157

The next three phases consist of identifying classes, object state and object interfaces,
and are by nature interrelated. Although they are described sequentially, it may be more
productive to perform them in parallel or iteratively.

Identify the Classes

Knowing as much as you can about your problem and having a sketch of the application
interface, you are ready to identify the classes of objects that implement the application.
List both the new classes defined for the application and existing classes from the
Smalltalk/V class hierarchy to be used. New classes will be either self-standing (a
subclass of class Object), or a subclass of an existing class that implements some of the
behavior needed by the new class. Existing classes used will generally include user
interface classes (Menu and subclasses of Pane) and subclasses of Collection, Magni-
tude and Stream.

In our example, we need a new class PhoneBook whose instances are the phone book
window application. Menus and panes appear in your window sketch, so classes Menu,
ListPane, TextPane and TopPane are needed. After some consideration, it seems that a
Dictionary is most appropriate for associating names with telephone numbers, and
names and telephone numbers will be represented as Strings.

The classes identified so far seem like a natural breakdown of the problem statement and
the window picture. But what if the choices aren't so obvious? It's important to make
some choice, even if it's not the best. You may be wrong, but with an environment that
allows you to make changes easily, you can change to better ones later. Any kind of
progress on the application will enhance your understanding of the appropriate classes to
be used.

Describe the Object States

Given the problem statement, the window drawing and the classes to be used, what
instance variables are needed in the new classes you have defined? In this example, our
only new class is PhoneBook, which is the window model. What state is appropriate to
put in a phone book object? The standard dispatcher and pane classes already keep track
of most of the state associated with the window. The model, an instance of class
PhoneBook, needs the application specific data, which in this case are (l) the dictionary
of phone numbers phones and (2) the name from the selected list pane entry
selectedName. Look in file chapter. 11 to see the resulting class definition.

Are there general rules for deciding what instance variables to use? The best guide is to
look ahead to the object interface. What kind of questions (messages) will the object be
asked? What will be the object's behavior?

138 Chapter 11: Object-Oriented Development

List the Object Interfaces

Object interfaces are the messages that the object responds to. List the messages that the
new classes must implement. A good starting point for this is to augment the window
drawing with the messages that will be used for each pane.

Figure 11.2
PhoneBook Window
with Messages

Mi/ Phone Book

123 Maple Street
EastWontuck MN 61222

612-555-4521

friend of the fam'ty

restore
copif
cut

In Figure 11.2, the message names are circled. In general, messages are used for (1)
accessing non-standard menus defined by the application, (2) accessing the contents of
panes for display purposes, (3) saving the contents of changed panes, (4) carrying out
menu selections, and (5) opening the window. In our example we have the following:

Message
add
list
list: aString
listMenu
openOn: aDictionary
remove
text
text: aString

from: aDispatcher

Purpose
Add a new name to phone book.
Answer the list of names of people in the phone book.
Display the phone number for aString.
Answer the name list menu.
Open a phone book window for aDictionary.
Remove selected name from phone book.
Answer the phone number for the selected name.
Enter aString in dictionary as phone number for

selected name.

Chapter 11: Object-Oriented Development 159

Implement the Methods

All that remains to do is to implement the methods. A good starting point for a window
application is to do the window opening message (in our case, openOn:). This method
is generally the largest in your application. Here it is for the phone book:

openOn: aDictionary
"Open a phone book window on aDictionary. Define
the pane sizes and behavior and schedule the window."

I topPane I
phones := aDictionary.
topPane : = TopPane new.
topPane label: 'Phone Book'.
topPane addSubpane:

(ListPane new
menu: #listMenu;
model: self;
name: #list;
change: #list:;
framingRatio: (0 @ 0 extent: 1/3 @ 1)).

topPane add Subpane:
(TextPane new

model: self;
name: #text;
change: #text:from:;
framingRatio: (1/3 (3) 0 extent: 2/3 @ 1)).

topPane dispatcher open schedule Window

All open messages for a window are very similar. They generally initialize model instance
variables, and create window panes by specifying the following for each pane:

• menu: The pane menu. Not used if the standard pane menu is used.
• model: The pane model, generally self.
• name: Specifies the selector of the message used to ask model for pane

contents.
• change: Specifies the selector of the message used by the pane to tell the

model that the pane contents are changed.
• framingRatio:

A rectangle that specifies the relative position and size of the pane
in a window 0(3)0 corner: 1(8)1.

The remaining methods for the phone book are small and are contained in the chapter. 11
file. The following expression files in class PhoneBook.

(File pathName: 'chapter.!!') fileln

160 Chapter 11; Object-Oriented Development

You will find it as the first expression in file chapter. 11.

To try it out, evaluate:

PhoneBook new openOn: Dictionary new

Knowing When to Stop

During the first round of a new application development project, you generally progress
through the above six steps sequentially. Once you have your "first cut" at a proposed
application, your increased understanding will generate new insights. You will find
yourself jumping around the six steps in a non-sequential process. For instance, while
writing a method you realize the need for a class instance variable which brings you back
to state considerations.

Smalltalk/V's incremental compiling capabilities promote dynamic movement among
these development steps. In face, Smalltalk/V application development can be seductive.
It is always easy to think about adding just a few more lines of code which will further
polish the application's interface or performance. By design, Smalltalk/V is an open
system, an application always has the potential for enhancement.

That is why it is important to refresh your memory as to the original design goals of your
Smalltalk/V application development project. If the prototype meets your design
criteria, then stop. Use the application for a while and let experience guide subsequent
enhancement.

What YouVe Now Learned

You have seen the Smalltalk/V application development cycle applied to a very simple
example. You have seen that a Smalltalk/V application develops in a revolving process
which addresses:

• State the Problem
• Draw the Window
• Identify the Classes
• Describe Object States
• List the Object Interfaces
• Implement the Methods

The next chapter will showcase the Smalltalk/V application development cycle in a
more involved case study. As always, if you want to review any of the topics covered in
this tutorial, you can either repeat the corresponding section of the tutorial, or refer to
the relevant topics in Part 3.

12 APPLICATION DEVELOPMENT: CASE STUDY

This chapter gives you a snapshot of the Smalltalk/V big picture...

• How do you approach real world problems with Smalltalk solutions?
• What tips and techniques help your application prototyping?
• Where are the "hot spots" in the Smalltalk/V manual that help you write

your own applications?
• Where do you start?...How do you proceed?

We'll take a case study approach. A case of real world people, not whiz Smalltalk
programmers. This chapter is intended for non-programmers, people with something they
want their computers to help them do.

The Case Study: A State-Transition Perspective

Our case involves the prototype development of an office automation system, a sales
communication application. In the general scheme of things, the case study is an analysis
involving state-transition models where physical objects pass through a series of states
according to a network of connections between the states.

The connections between states reflect the logical constraints and preconditions which
order the transition from one state to another. The tokens which pass from node to node
along the constraint network are objects experiencing the state changes.

Objects going through state changes is a subject of broad interest. The objects might be:

• A molecule in a chemical reaction
• A widget on the widget assembly line
• A source code instruction processed by a compiler
• A ticket in an airline reservation system

State-transition models relevant to these objects include, respectively:

• A theory on the molecular interaction of the substances involved in the
reaction

• A specification of the factory's numerical control tools and assembly line
conveyors, including capacities and set-up time

• A graph grammar specifying the step-wise decomposition of a high-level
language instruction into a collection of machine instructions

• A diagram describing the paperwork flow involved in getting a ticket to a
traveler

162 Chapter 12: Application Development: Case Study

Smalltalk/V is ideal for developing applications based on state-transition and other
highly graphical and data intensive models. Its screen graphics and rich data abstracting
capabilities allow you to produce working prototypes of complex models in record time.

Our case study shows how some self-starters in an optical disk drive sales office develop
a Smalltalk/V application to track and facilitate their sales communications. Their
state-transition network—though they didn't know or care to call it that—is a flowchart
of their company's approved sales strategy. The tokens coursing through this sales
strategy network are their potential customers.

The Case Study Problem as a Smalltalk/V Problem

Where to begin? The Whizzard WORMS reps knew they had a sales communication
problem. They knew they wanted to develop a Smalltalk/V application to facilitate these
communications consistent with corporate marketing strategy. They had a sense of what
the application interface would be like—inspired by things they'd seen, code they already
had on hand. A lunchtime, napkin-based brainstorming session captured the problem.

On the first napkin they drafted a preliminary objective, their problem statement:

To develop a Sales Communication application (SalesCom) that will allow a rep to
sit down to its interactive display where he or she will quickly and easily see what
communication events are required for the day and to see what the current load of
their customers is for each of the steps in the sales strategy. Further, the prototype
version will print letters on a case by case basis and will facilitate making telephone
follow-up calls. The protoptype application will be built as much as possible from
reusable code taken from the Smalltalk/V tutorial examples and system source files.

Looking over the rep developers' shoulders with the eyes of a generalist, their problem
statement can be restated:

To develop a Smalltalk/V application using state-transition models to manage the
movement of objects through a process. This application will have a multi-pane main
window where a database of tokens moving through the process can be singled out
for state inspection and manipulation. The application keeps a token state change
event schedule. When moving a token through the process, the application prompts
the user for preconditions or the result of state transitions where the network exhibits
multiple alternate branches.

The reps, as far as WORM disk sales are concerned, see a world of "us" and "them".
Inside are the Whizzard reps and outside, a sea of current and potential customers. The
rep's job consists of acting as an agent for Whizzard through a series of communication
events with a customer which hopefully lead to a sale.

Chapter 12: Application Development: Case Study 163

They sketched a diagram of their customer prospecting strategy as shown in Figure 12.1.
It was a simple marketing strategy which involved a direct mail campaign, followed by
a telephone contact with an attempt to get interested folks to attend a sales seminar.

Figure 12.1
SalesCom Sales Strategy

A Window Model for the SalesCom Application

The reps next sketched a rough picture of the ideal SalesCom application window as in
Figure 12.2. Their objective was to take inspiration from the various tutorial examples and
system features to formalize their vision of the proposed application.

Figure 12.2
Sketch of SalesCom Window

164 Chapter 12: Application Development: Case Study

There were two purposes for the display as far as they could see:

• They want a basic facility to scan and manage the database of customers.
Once one is selected, they want to see the detailed record of that customer.

• They want to promote a visual connection between their real world activity
and the formal corporate marketing strategy represented by the (state-
transition) diagram in Figure 12.1.

The first requirement suggested the IistPane and TextPane views in the SalesCom
window model, the Master Customer List pane and Customer Detail text pane. The
inspiration was the Smalltalk/V browsers where a clicked selection in a scrolling
IistPane initiates a look-up of some associated detail information, the source code for
a method or the contents of a file for instance.

The second requirement begged for graphic representation based on an extension of the
tutorial Network of Nodes example. The "hard" part of taking a network data structure
and giving it a visual representation is done already. The reps needed only to give the
nodes more representative names and new screen coordinates to transform the random
network of Figure 9.2 to that of Figure 12.1.

The GraphPane of the SalesCom application (inspired by the animation pane of the
Animal Habitat tutorial example) facilitates the salesperson's visualization of the
communication process and the flow of customers through the sales cycle. Numbers
appended to the label of each communication event node indicate the total number of
customers currently pooled at that step in the strategy as well as the year-to-date total of
customers having passed through the event node.

Menus Enrich the Window Model

The reps next addressed what the application would have to do to move customers
through the marketing strategy. What "messages" would the user rep want to send to the
SalesCom application object to control preparing letters and prompting phone calls?

They gravitated toward brainstorming about the menus of each of the SalesCom
application subpanes. They found a pad of removable self-stick notes was useful for
laying hypothetical menu pop-ups over each pane. After much debate, the reps decided
on the configuration in Figure 12.3.

The reps were excited. They finished lunch with a clear sense of direction on their
development project. They were ready to start writing code.

Survival Tip # 1: Don't over-plan. Yes, you need a decent statement of your problem and some
sense of what the application's primary interface will look like. But you don't have to have all
the answers to get going. To determine when to start, ask yourself, "If 1 write as much code as

Chapter 12: Application Development: Case Study 165

ABC li

SalesCom: Today's Date

add Customer
import Customers
ll / t d '
p

all / today's
print Letter
make Call

Figure 12.3
Menus Enrich SalesCom Window

D£F Corp,
Jam Dot
521 Poplar Terr.
Hkhsvilk MD 21202.
555-5476

•HISTORf-
Kick.-ofn.tr, Feb ?, V&&

change Contact
change Address
change Citif St Zip
h Phchange
print i

f
Phone

print Detail

it takes to get a prototype to look and behave like the design so far, would it do anything
interesting and useful?" When your answer is affirmative, go to it. Smalltalk/V is designed to
work with you in an evolving, incremental process.

As they prepared to begin development, the reps took a couple of minutes to draft a list
of the classes involved in the SalesCom application:

• SalesCom, the sales communication application and window model class
• ComEvent, the class of communication events
• Network, the network of ComEvents which make up a sales strategy
• Dictionary, to associate customer names and customer data

Getting There in Half the Time: Recycling Code

The reps set to work on a kind of scavenger hunt for reusable code to get the SalesCom
application up and running as soon as possible. You can recreate their exploratory
process by opening a Class Hierarchy Browser and use your Disk Browser to open the
chapter. 12 tutorial file.

As you do more Smalltalk/V programming you will see that you re-use code in two
basic ways:

• indirectly through inheritance when creating new subclasses, and
• through cut and paste of methods from an existing class to a new,

non-hierarchically related class.

166 Chapter 12: Application Development: Case Study

You will use both methods in creating the SalesCom application, starting with the
inheritance approach by creating a new class of object, ComEvent, as a subclass of the
NetworkNode class. You will then go on a cut and paste "raid" on the AnimalHabitat
class to borrow the basic window model for the three pane SalesCom application.

If you have not done the tutorial examples in Chapters 6, 7, 9 and 10 and/or have not
saved the image along the way, you should add the following classes by evaluating:

Object subclass: # NetworkNode
instance VariableNames:

'name position'
class VariableNames: "
poolDictionaries: "

Then select and evaluate:

Object subclass: # Network
instance VariableNames:

'connections'
class VariableNames: °
poolDictionaries: "

and evaluate:

Object subclass: # AnimalHabitat
instance VariableNames:

'animals replyStream animator inputString inputPane'
class VariableNames: "
poolDictionaries: "

V.
Then select and evaluate the following to file in the relevant methods for these three
classes. This is to give you a starting point equivalent to where the sales reps started.

(File pathName: 'network9.st') nleln.
(File pathName: 'nodes9.st') nleln.
(File pathName: 'classlO.st') nleln.
(File pathName: 'animallO.st') nleln.
(File pathName: 'window4.st') nleln.
(File pathName: 'window5.st') fileln.

Update the class list pane of the Class Hierarchy Browser.

Re-working the Network of Nodes

The starting point of the Network of Nodes example can be seen in Figure 9.2.

Chapter 12: Application Development: Case Study 167

As a first step, we create a new pool dictionary, SalesStrategy, to hold objects that will
be global to our new application. Initially we create two new pool variables: StratNet to
hold the sales strategy network, and StratNodes to hold the nodes used in the sales
strategy network. Evaluate the following:

SalesStrategy := Dictionary new.
SalesStrategy

at: 'StratNet' put: Network new initialize;
at: 'StratNodes' put: Dictionary new

The network node of the SalesCom marketing strategy diagram requires a richer data
structure than the simple name and position instance variables defined for the path
computation and graphic display examples from earlier tutorial chapters. So we will
create a ComEvent subclass of NetworkNode. In addition to a couple of new methods,
a ComEvent has an info instance variable which is initialized as a Dictionary object.
Info will be used to store information about the body of the letter or phone call script,
the delay before the next event and a pointer to the next most likely event, etc. Select and
evaluate:

(File pathName: 'comevent.cls') fileln

We will use the pool variables StratNet and StratNodes to build a sales strategy network.
StratNet and its nodes are given new names, positions and connections which transform
the prior random network graphic example into the structured diagram of the SalesCom
marketing strategy. Evaluate the following to see the transformation:

(('Kick-off Ltr' 180 20)
('Fol-UpLtr' 180 120)
('Phone Call' 180 180)
('Wake Up Ltr' 295 180)
('Exit Seminar' 57 240)
('Exit Dead Leads' 280 240))

do: [-.nodelnfo I
ComEvent new initialize;

name: (nodelnfo at: 1) position:
(nodelnfo at: 2) @ (nodelnfo at: 3)].

(SalesStrategy at: 'StratNet') initialize.
ComEvent

connect: 'Kick-off Ltr'
connect: 'Kick-off Ltr'
connect: 'Fol-Up Ltr'
connect: 'Fol-Up Ltr'
connect: 'Phone Call'
connect: 'Phone Call'
connect: 'Phone Call'

to: ' Fol-Up Ltr';
to: 'Exit Seminar';
to: 'Phone Call';
to: 'Exit Seminar';
to: 'Wake Up Ltr';
to: 'Exit Seminar';
to: 'Exit Dead Leads'.

168 Chapter 12: Application Development: Case Study

To see what the sales strategy net looks like, evaluate the following:

Display white
(SalesStrategy at: 'StratNet') draw.
Menu message: 'continue'.
Scheduler systemDispatcher redraw

Your screen should look like Figure 12.4.

Figure 12.4
SalesCom
Network
Screen

The preceding code drew directly on the display. What we want is to draw it to a form
so we can display it in a window. We need to edit the methods draw in class Network
and NetworkNode to produce an additional method drawOn: for each class. You can
either directly edit these methods using the Class Hierarchy Browser as indicated below
(note the ** changed ** lines) or copy the methods from the file chapter. 12 and paste
them over the new method template.

The method drawOn: for class Network is:

Chapter 12: Application Development: Case Study 169

drawOn: aForm "** changed **"
"Draw the network. For each node, it draws all
the arcs and then the node. All the nodes visited
are remembered to avoid double drawing."

I visited pen I
(pen := Pen new: aForm) "** changed **"

defaultNib: 4 @ 3.
visited := Set new.
connections keys do: [:nodeA I

visited add: nodeA
(connections at: nodeA) do: [:nodeB I

(visited includes: nodeB)
ifFalse: [

pen place: nodeA position;
goto: nodeB position]].

nodeA drawOn: aForm] "** changed **"

The method drawOn: for class NetworkNode is:

drawOn: aForm "** changed **"
"Draw the receiver node with a circle
around its name."

I font r aspect pen I
font := Font eightline.
(pen := Pen new: aForm) "** changed **"

defaultNib: 2;
mask: Form white,

pen place: position,
pen solidEllipse: (r := name size * font width + 15 / / 2)

aspect: (aspect : = font height + l 6 / r / 2 / Aspect),
pen mask: Form black,
pen centerText: name font: font,
pen ellipse: r aspect: aspect.

Note that the draw methods could now by changed to use the new drawOn: methods,
but we leave this as an excercise for you. (Hint: it can be done in a single line.)

To test the new methods, evaluate the following:

170 Chapter 12: Application Development: Case Study

f : = Form width: 600 height: 300.
(SalesStrategy at: 'StratNet') drawOn: f.
f displayAt: 0 @ 0.
Menu message: 'continue'.
Scheduler systemDispatcher redraw

That's it. You have roughed out one of the two main components of the visual
presentation of the SalesCom application.

Take a moment to inspect the ComEvent class. Although the Net drawing of ComEvent
nodes is visually similar to the random network tutorial example, notice the impact of the
initialize and name:position: methods. While a ComEvent can be drawn by the same
code that draws the original NetworkNode of the network tutorial example, a
ComEvent has a much richer data structure:

initialize
"Initialize the dictionary data record of information about the
communication event to be empty."

info : = Dictionary new
info

at: 'l.Strategy' put: 'NYS'; "not yet specified"
at: '2.Type' put: 'L, P or F";
at: '3.Message' put: 'Type your message here.';
at: '4.Next Step' put: 'NYS';
at: '5.Days Till NS' put: 'NYS';
at: '6.MTD' put: 0;
at: '7.YTD' put: 0

name: aString position: aPoint
"Set the name and position while adjusting for screen
aspect ratio"

super
name: aString
position: aPoint x @ (aPoint y * Aspect) truncated.

StratNodes at: aString put: self

The next step is to integrate this graphic network display into the multi-pane window you
are about to create with code copied from the Animal Habitat tutorial example. Divide
and conquer. That's a big part of Smalltalk/V programming strategy.

Chapter 12: Application Development: Case Study 111

Raiding the Animal Habitat

Before you can "borrow" some code, you need some place to put it. While you can
expect to call on many existing classes in the course of your Smalltalk/V development
projects, you can pretty much count on adding a new class for the application model.
This is the class which defines the user interface of your application.

To run your "program", you create a new instance of your application model class, then
interact with it. In this case, evaluate the following to create the new SalesCom class as
a subclass of Object:

Object subclass: # SalesCom
instance VariableNames:

'replyStream'
class VariableNames: "
poolDictionaries: 'SalesStrategy'

The first and most important method in the SalesCom application is the openOn:
method which describes the window appearance. This method also associates a collection
of methods with each of the panes. These methods are triggered as needed when the
window or any of its subpanes are created or changed.

You will get much of the code detail and the overall method structure from the openOn:
method of the AnimalHabitat class. Use a Class Hierarchy Browser to locate the
method, select all of it and copy it.

Return to the currently empty SalesCom class and add your first method by choosing
new method from the method list pane menu. Select the entire default method template
and chose paste from the text pane menu. Then change the method selector from
openOn: aString to open. The method source text pane should look like this at the
conclusion of this operation:

/ 72 Chapter 12: Application Development: Case Study

open
"Create a kennel window with aString as its initial script."
I topPane replyPane I
inputString := aString.
topPane := TopPane new label: ' K E N N E L ' ;

model self.
topPane addSubpane:

(replyPane := TextPane new
model: self;
name: # reply;
framingRatio: (0 @ 0 extent: 2/3 (3> (1/4))).

topPane addSubpane:
(GraphPane new

model: self;
name: # graph;
framingRatio: (0 @ (1/4) extent: 2/3 @ (3/4))).

topPane addSubpane:
(inputPane := TextPane new

menu: #inputMenu;
model: self;
name: # input;
framingRatio: (2/3 @ 0 extent: 1/3 @ 1)).

replyStream := replyPane dispatcher.
topPane dispatcher open schedule Window

Choose save from the method source text pane and you will get an "undefined" message
explaining that the SalesCom class does not have the instance variable, inputString,
defined.

What a dilemma. You can't save the method without discarding the changes which, in
this case, means losing the entire new method.

Survival Tip # 2 / When you are on cut and paste "raids" of existing methods, put the source
method's class instance variable name(s) into the temporary variable declaration of the new
method in your new class. You can then save the method and decide later whether your new class
definition needs to be changed to incorporate the source's instance variable(s) or whether you leave
the temporary declarations.

Insert inputPane, inputString, and aString into the temporary variable declaration as
follows:

I topPane replyPane inputPane inputString aString I

Chapter 12: Application Development: Case Study 173

And save again. This time it works. But you want a SalesCom window to open on a
marketing network, not on an inputString. Edit the comment. You've determined that
you won't be needing a temporary or instance variable called inputString, so delete it
from the temporary declaration. Also delete the temporary aString and remove the first
statement setting inputString. Edit the label: argument now appearing in the first
statement of the method. The SalesCom window model now looks like:

open
"Create a SalesCom window with aNet
as its marketing strategy."
I topPane replyPane inputPane I
topPane := TopPane new label:

('SalesCom: ', Date today printString);
model self.

topPane addSubpane:
(replyPane := TextPane new

model: self;
name: # reply;
framing Ratio: (0 @ 0 extent: 2/3 @ (1/4))).

topPane addSubpane:
(GraphPane new

model: self;
name: # graph;
framingRatio: (0 @ (1/4) extent: 2/3 @ (3/4))).

topPane addSubpane:
(inputPane := TextPane new

menu: inputMenu;
model: self;
name: # input;
framingRatio: (2/3 @ 0 extent: 1/3 @ 1)).

replyStream := replyPane dispatcher.
topPane dispatcher open schedule Window

Follow the same procedure, copying method initWindowSize from AnimalHabitat to
class SalesCom and save it.

SalesCom is shaping up. Evaluate:

Test := SalesCom new.
Test open

A Walkback window informs you that the SalesCom object, Test, does not know how
to reply. Close the Walkback and go back to AnimalHabitat to copy the reply method
and paste it in as a new method in the SalesCom class. Save it. Next evaluate:

Test open

174 Chapter 12: Application Development: Case Study

No big deal, another Walkback. A little more careful inspection of open reveals the need
to copy graph:, input and inputMenu methods from AnimalHabitat into SalesCom.
Start with graph:. After pasting it into SalesCom, graph: will look like this:

graph: aRect
"Initialize graph pane area to aRect and the
animation associated with it."
I aForm I
aForm := Form

width: aRect width
height: aRect height.

aForm displayAt: aRect origin, "background"
animator : = Animation new initialize: aRect.
ftrnmftls do: [:anAnimal I

animator
add: an Animal picture
name: anAnimal name
color: anAnimal color].

AaForm

Before saving, notice that most of the code relates to animals and not to our problem.
Let's first edit the comment to say what we really want this method to accomplish. Then
edit the code to do what is necessary. We can always leave the code incomplete and the
comment will serve as a guide to finish it later. In this case, the actual implementation is
very simple:

graph: aRect
"Initialize graph pane area to aRect and the
network strategy graphic associated with it."

I aForm I
aForm := Form width: 600 height: 400.
StratNet drawOn: aForm.
aForm displayAt: aRect origin clipRect: aRect.
AaForm

Survival Tip # 3 / When re-working a copied method, edit the "comment" first to make it reflect
the changes you will be making. Let the edits you make in the ccmment direct you to lines in the
code which implement that aspect of the method responsible for the behavior referred to in the
comment. This technique can be so useful that you will develop an appreciation for and will,
hopefully, write clear and complete comments. They aren't "training wheels". Comments are an
integral part of the communication among the Smalltallk/V community of programmers.

\

Chapter 12: Application Development: Case Study 175

Continue by copying the inputMenu method into SalesCom. It can be saved without
modification, though a SalesCom object will not understand if you ask it to perform any
of its menu selections related to the Animal Habitat. The reps brought in inputMenu to
get the SalesCom prototype window running as soon as possible. They later used this
method as a template to create a menu for each of the SalesCom window subpanes as
required by their prototype design.

Next copy the input method from AnimalHabitat to SalesCom. Before saving it will
look like this:

input
"Initialize inputPane with inputString."

AinputString

You can see that this method simply returns the content of inputString, an
AnimalHabitat instance variable, and since you just slipped those instance variable
names into the temporary variable declaration of the open method, you know this won't
work. So to "hardwire" a consistent response from this method until you decide what this
method will need to do, change the method to read:

input
"Initialize inputPane with a temporary input string."

A "This is a test input string.'

and save the method.

Survival Tip #4: Simplified, interim versions of methods are an excellent way to "divide and
conquer11 a Smalltalk! V programming problem. Most often this involves writing a return
expression which is a specific instance of the kind of object which will result from the more complex
computation that a method is planned to perform. This is especially useful for separating
development progress on the interface from progress on the internal manipulations of the involved
data structures.

Now select and evaluate:

Test open

You've done it. The first incarnation of a recognizable SalesCom object, as seen in Figure
12.5. The pizzaz of the strategy network GraphPane hints at the developing interface. The
window resembles but certainly isn't an animal habitat anymore. The two TextPanes are
the targets of the next phase of your SalesCom prototype development project.

176 Chapter 12: Application Development: Case Study

Figure 12.5
SalesCom Window
Phase One

Customers and Events: A Matter of State

The reps realized they were on track now. They saw two areas of SalesCom which needed
attention:

• They needed to create an initial state, a test case "world" onto which a
SalesCom object could open.

• They also needed to add new methods which would make the SalesCom
window manage the interaction and updating of the Customers and
Communication Events databases.

You incorporate many traditional database management operations into the SalesCom
application simply by making the global variable Customers a new Dictionary object.
The dictionary keys will be the customer company names. The value associated with each
company is an array, its elements the 'fields' in the customer 'database*. A comment
identifies each element in the first case entry. Select and evaluate:

Chapter 12: Application Development: Case Study 111

Customers := Dictionary new.

Customers
at: 'ABC Inc.' put: # ("Key is company name"

'Fred Smith' "Field 1 is Contact Name."
'123 Maple St.' "Field 2 is Address."
'Boston MA 02055' "Field 3 is City State and Zip"
'555-4321' "Field 4 is Phone."
'Kick-off Ltr' "Field 5 is Current Event scheduled."
'Feb 14, 1988' "Field 6 is Prep Date for Current Event."
()); "Field 7 is an array for the customer history."

at: 'DEF Co.' put: #('Jane Doe' '321 Poplar Terr.'
'Hicksville MD 21202' '555-3476' 'Fol-Up Ltr' 'Feb 15, 1988'
('Kick-off Ltr: Feb 7, 1988'));

at: 'GHI Ltd.' put: #('Clive Davies' '999 Oak Ave.'
'Tustin CA 92680' '555-7890' 'Kick-off Ltr' 'Feb 14, 1988'
0);

at: 'JKL Inc.' put: #('Bert Jenks' ^666 Sycamore St.'
'Irvine CA 92680' '555-4734' 'Kick-off Ltr' 'Feb 14, 1988'
0);

at: 'MNO Co.' put: #('Bill Rasp' '345 Apple Ave.'
'New Vists CA 93232' '555-5678' 'Fol-Up Ltr' 'Feb 20, 1988'
('Kick-off Ltr: Feb 6, 1988'));

at: 'PQR Corp.' put: #('Ellie Small' '423 Sassafras Ave.'
'Tustin CA 92680' '555-2064' 'Phone Call' 'Feb 20, 1988'
('Kick-off Ltr: Feb 1, 1988' 'Fol-up Ltr: Feb 8, 1988'));

To see the mini-database which you just created, evaluate:

Customers inspect
To inspect a customer—to review and modify the fields in a customer's "record"—select
a customer name in the left hand list pane of the Customers Dictionary Inspector. Bring
up the pane menu and click on inspect to pop up an Inspector on the selected customer.
Each element, or field, of the customer record is a selectable line in the new Inspector list
pane. Remember to select save in the TextPane whenever you make field changes that
you want to keep.

To explore the many things you can do with Customers, turn to the Dictionary class
entry in the Smalltalk/V Encyclopedia of Classes. Try "talking" to the Customers
dictionary to explore its database-like behaviors.

The reps used the Encyclopedia of Classes like a foreign language phrase book
throughout the development of SalesCom. The reps got the customers to jump through
hoops with keysDo:, includes:, occurrencesOf: and ar.put: messages. Check it out. Flip
to the Encyclopedia and explore the things you can do to the Customers.

178 Chapter 12: Application Development: Case Study

Survival tip #5: Study and understand the format of a class entry in the Encyclopedia of
Classes in Part 4 of the Smalltalk/V manual. And learn to actively use the Methods Index
in the Appendices to direct your cross-referencing exploration of the behavior of the many classes
which make up the Smalltalk/V environment.

With customer objects in hand, the reps turned their attention to the communication
events.

The reps used the same basic object inspection technique to fill in the required
information in each of the ComEvent network strategy nodes. This included typing in
the body of the letters and phone call scripts that will eventually be merged with
customer information. To save you time, evaluate:

(File pathName: 'comevents.in') fileln

To view the new data contained in the ComEvent nodes, select and evaluate:

(SalesStrategy at: 'StratNodes') inspect

Open an Inspector on one of the nodes. Use the Zoom button to get a good view of the
letter bodies and phone script. All these data management and multi-window editing
features of Smalltalk/ V dictionaries are already a part of the capabilities of the SalesCom
application. The reps realized this was as sophisticated a data management facility as they
needed for the prototype.

SalesCom consists now of two databases, Customers and StratNodes, a network of
ComEvents. It will be up to new and original methods to manage these objects'
interation and updating. You will do that by enhancing the behavior of the multi-pane
SalesCom window.

Methods and Messages: Bringing the Prototype to Life

The reps next objective was to get each TextPane working with the Customers
dictionary. The inspiration was the browser, so they poked around relevant methods,
especially open, in the browser classes and determined that they needed one to function
as a ListPane. Selections in the ListPane would then trigger a method for the other
TextPane to display the data record for the selected customer.

The reps edited open to reflect the following changes:

• replyPane was renamed custsPane and made a ListPane.
• custsPane was assigned a name: method, customers, to return the Sorted

Collection of customer company name keys from the Customers dictionary.
• A change: method, viewCust:, was added to custsPane so list selections

would trigger display of the customer record in the customer detail TextPane.

Chapter 12: Application Development: Case Study 179

• inputPane was renamed custDetPane to show that it would display
customer details.

• custDetPane was added to the SalesCom instance variable list and
recompiled after "killing" the SalesCom object, Test.

• Each pane was assigned its own menu method.

To see the many changes that the reps made to SalesCom during this next phase of
prototype development, evaluate:

Test := nil.
(File pathName: 'classl2.2in') file In.
Test := SalesCom new.
Test open

You will probably get a walkback saying has instances.

Survival Tip # 6 / Finding lost instances. Windows cause dependencies to be stored between panes
and models in the Dependents dictionary. If you have instances of a class that you cannot find,
they are probably in the Dependents dictionary. This usually happens when you are debugging
a new window. You remove these instances by executing the expression:

Scheduler reinitialize

All open windows close and the System Transcript reappears.

SalesCom's basic behavior is evolving. Note the reps are using a "divide and conquer"
approach to bring the prototype up in stages with the interface taking the lead. The
customers method returns a typical list of customer names and viewCust: simply clears
the Customer Detail pane and displays a few lines of sample text.

Once they got the synchronization between panes and the stream to the Customer Detail
pane working, they "attached" the Customers dictionary to the SalesCom application by
a quick rework to the customers method:

customers
"Return the keys of a Customers dictionary as a Sorted
Collection."

A Customers keys asSortedCollection

And an enhancement of viewCust: was all that was needed to bring the Customers
Dictionary "on-line":

180 Chapter 12: Application Development: Case Study

viewCust: aCust
"Change: method response for the Customer List pane.
It updates the Customer Detail pane to show the
currently selected customer."

I custData custHist prepDate I
curCust := aCust.
custData := Customers at: curCust.
custDetPane cancel.

1 to: custData size - 1 do: [:index I
replyStream

nextPutAll: (custData at: index);
cr].

custHist := custData at: 7. "Now print the history"
replyStream nextPutAll: ' HISTORY '; cr.
1 to: custHist size do: [:index I
replyStream

nextPutAll: (custHist at: index);
cr]

You can edit the methods to reflect these changes or paste them in from the tutorial
chapter. 12 file. Once these two methods are changed, you have reached another plateau
in the SalesCom prototype development project. Both the Customers and Communica-
tion Events databases are up and accessible interactively in the SalesCom window as in
Figure 12.6. Evaluate the expression Test open to see it.

Figure 12.6
SalesCom Window
Phase Two

Jane Doe
321 Poplar Terr.
Hicksville MD 21282
555-3476
N2
Fefa 15, 1988

HISTORV
Kick-off Ltr: Feb 7, 1988

Chapter 12: Application Development: Case Study 181

Menu selections foreshadow but don't yet deliver the full SalesCom environment. Menu
selections result in message not understood walkbacks. The rest of the prototype
development consisted of writing small methods to perform the actions requested by
each of the menu items.

It's Getting Better All the Time: Evolutionary Development

The reps were on a roll. Every method they wrote gave them new insights and ideas for
the next. They found that Smalltalk/V lent itself to "team development" as they took
turns, one on the keyboard, the other scouring the manual. And by experience, they came
up with another tip.

Survival Tip # 7: Keep moving. Write the methods that "jump out at you" and practically
write themselves. If you get stuck on a method, put its body in comment quotes and save it. Then
go on to the next method you need to write. Something you pick up solving another method's
implementation or sometimes just some "creative gestation1' will bring you back to unfinished
methods. Eventually the toughest methods seem to give way when they are the only thing standing
between you are your application running.

To see what the reps were able to accomplish with SalesCom on their maiden
Smalltalk/V development project, evaluate:

(File pathName: <classl2.3in') file In.
Test open

While they have a long wish list, the reps now had a prototype that met their original
SalesCom development objective, see Figure 12.7. With the pop-up mail merge and
phone call script windows, SalesCom was a lot more sophisticated a program than the
reps ever throught they could have written.

Take a few minutes to take SalesCom on a shake-down cruise. Add a customer and
update somebody's contact information. Print a few letters. Make a phone call or two.
Push that initial bunch of prospects through a hypothetical sales campaign. Sell a couple
of WORMS. Lose a couple to the Dead Leads bin.

Notice how the node highlighting pinpoints the position of the selected customer in the
marketing campaign. Track how printing a letter or making a call updates both the
customer and communication event records.

To see what makes SalesCom tick, poke around the methods which you have just filed
in. Note that while a method like viewCust: now looks complex with all the data
handling that has found its way in to support the additional interface features, viewCust:
became complex in stages. The reps wrote simple methods that became more
sophisticated a line or two at a time.

182 Chapter 12: Application Development: Case Study

SalesCow: Apr 28, 1988

Figure 12.7
Full SalesCom
Prototype

add customer
import customers

Jane Doe
321 Poplar Terr.
Hicksville HD 21282
555-3471char>ge Contact
N2 change Address
Feb 15.|rtlange City St Zip

Jane Doe
DEF Co.
321 Poplar Terr.
Hicksville HO 21282

There is still root* for a busy executi
at our next UORH Uarwer. Free food an
small dose of technoj^SffiHd-pony at:

Vou could add vast aass storage to you
a few dollars a day. Join us, please.

Best Regards,!
Susan Heath

For the record, over the course of the prototype development project, the reps were able
to get all the behavior you see exhibited in SalesCom by:

• creating two new classes, and
• writing about thirty new methods.

The reps began using SalesCom the day after they finished the prototype. They had a long
list of anticipated changes but they found that use helped focus their subsequent
development. Rather than add features that they thought would be useful, they wrote
those that their daily use convinced them they needed.

Where to Go from Here

Like many Smalltalk/V applications, SalesCom begs extension. While the prototype was
fully functional and positively impacted the reps sales performance, over the next few
months they intend to do the following:

• Add batch printing of daily correspondence, including envelope printing, to
the mail merge capabilities of SalesCom.

• Make the network of strategy nodes dynamic so exits of one strategy network
lead to the top of other strategic clusters of communication event nodes.

• Add a management report window to show month and year to date totals,
sales total, and "body counts" of customers in each node of the network as
well as compute the average days delay between one event and another, etc.

• Use Smalltalk/V Goodies # 2 to use the FieldPane class to create good
looking, easy to use Customer and Communication Event data entry and
editing interfaces. This will allow users to "tab" from field to field rather than
using the SalesCom prototype Inspectors and Prompters.

Chapter 12: Application Development: Case Study 183

To take SalesCom to an even higher level of sophistication, the reps (or you) might
consider extensions into the realm of discrete event simulation and expert systems:

• Use the multi-tasking capabilities provided by the Process and Semaphore
classes of Smalltalk/V to add an Event Driven Simulation component to
SalesCom. Such an extension would take the SalesCom databases' current
state and use what it knows about response tendencies to generate simulation
data to evaluate future impacts of current marketing decisions.

• Use the backward chaining inference capabilities available from the logic
programming extensions of the Prolog class supplied as an example program
to create a SalesCom Expert System. Based on sales management "rules", the
SalesCom Expert System should be able to analyze data from SalesCom
Event Driven Simulation runs. The result of this analysis would be a series of
recommendations as to how to adjust sales activity now to avoid bottlenecks
and "feast or famine" cycles in the future.

As you can see, the potential of SalesCom is great and will be reached by a process of
evolutionary development. From prototype to bigger and better. With Smalltalk/V the
limits are those of your imagination and the time and energy you have for development.

What YouVe Now Learned

In the last chapter, we introduced the Smalltalk/V application development cycle. In this
chapter, we've shared a number of tips to help speed your application development:

• Don't over-plan. Know enough to get going, then do. Smalltalk/V is designed to
work with you in an evolving, incremental process.

• When on cut and paste "raids" of existing methods, turn source class instance
variable references into termporary variable assignments until you determine the
destination class' data structure requirements.

• When re-working a copied method, edit the "comment" first. Then let the changes
made to the comment point the way to lines in the method source code which
implement those aspects of the method whose description in the comment has changed.
And remember, comments are a critical means of communication among Small-
talk! V programmers.

• Simplified, interim versions of methods are an excellent way to "divide and conquer"
a Smalltalk/V programming problem. Often this means writing a return
expression which is a "hardwired" instance of the type of message a method will
return once its more complex computation is written.

• Use the Encyclopedia of Classes in Part 4 of the Smalltalk/ V manual. And use
the Methods Index in the Appendices to direct your cross-referencing exploration
of' Smalltalk/V classes and their methods.

184 Chapter 12: Application Development: Case Study

• Keep moving. Keep your productivity high by writing the "easy ones" first. Very
often the act of writing other methods or incubating on a tough one will result in
insights to conquer almost any Smalltalk/ V programming problem.

• Know how to bounce back from errors, like using Scheduler reinitialize to kill
hard-to-find instances.

Keep these tips in mind as you tackle your first Smalltalk/V programming project. The
remaining three sections of this manual are provided as reference tools. Part 3, The
Smalltalk/V 286 Reference, covers in greater detail all the material explored in these
tutorials. Part 4, The Encyclopedia of Classes, exhaustively describes the classes in the
Smalltalk/V environment, including each classes' instance and class variables and
methods. The Appendices contain a variety of sections on advanced and special topics
as well as that ever-so-important Methods Index.

If you want to review any of the topics covered in this tutorial, you can either repeat the
corresponding section of the tutorial, or refer to the detailed description in Part 3.

i i1

Part 3

Smalltalk/V 286
Reference

13 THE SMALLTALK LANGUAGE

Smalltalk is easy to learn and use because it has simple syntaxes and semantics, and few
concepts. The concepts object, class, message, and method form the basis of programming
in Smalltalk. The methodology for using Smalltalk consists of:

• Identifying the objects appearing in the problem and its solution.
• Classifying the objects according to their similarities and differences.
• Designing messages which make up the language of interaction among the

objects.
• Implementing methods which are the algorithms that carry out the interac-

tion among objects.

Objects

Objects are self-describing data structures. Every object is an instance of a class. The class
of an object is determined by sending it the message class. This message is understood
by all objects.

Objects are protected data structures. The data stored inside of an object is accessible
only through messages. Objects can also be shared.

The word self in a method refers to the receiver object of the message that invokes the
method.

Variables

All Smalltalk variables are containers for objects. A variable contains a single object
pointer.

The variable name can be used in an expression to refer to the object whose pointer it
contains. A variable may contain different object pointers at different times. The object
pointer contained in a variable changes when an assignment expression is evaluated. An
assignment makes a copy of a pointer to an object, not a copy of the object itself.

Variables are either private or shared. Private variables are accessible only to a single
object. Shared variables are accessible to multiple objects. A private variable has a
lower-case first letter, while a shared variable has an upper-case first letter.

There are three kinds of variables:

1. Instance variables are the component parts of an object. They exist for the
lifetime of the object.

188 Chapter 13: The Smalltalk Language

2. Temporary variables are created during the activation of a method. They exist
for the lifetime of the method activation.

3. Shared variables are shared by many objects. They exist until explicitly
deleted.

Instance Variables

Each object maintains its own internal state. The private memory of an object consists
of its individually accessible components called instance variables. Instance variables are
similar to fields of a record structure in other languages. Instance variables either have a
name or are referred to with an integer index. Named instance variables are accessed by
using their name. Indexed instance variables are accessed only through messages (usually
using ar.put: with integer indices). Each member of a class has its own separate instance
variables.

Instance variables have a type—they contain either pointers or bytes. All instance variables
for objects belonging to the same class are the same type. Most objects' instance
variables contain pointers. The pointers refer to objects. If an object contains bytes, then
its instance variables contain eight-bit values representing elementary data values.

Classes may specify both named and indexed instance variables for their member objects.
The number and names of named instance variables are fixed for all members of the class.
The number of instance variables may differ among members of the same class. For
example, # (1 2 3) and #('up' 'down') are both objects of class Array, but they have
different numbers of indexed instance variables, 3 and 2 respectively. A class with
indexed instance variables creates new members with a message that specifies the number
of indexed instance variables to create (usually the message new: with an integer
argument). Many objects return their number of indexed instance variables in response
to the message size.

Only the instance variables of the receiver of the message that invoked the method can
be referred to by name.

Temporary Variables

Temporary variables include method arguments and method temporaries, and contained block
arguments.

Method arguments are assigned the associated message arguments for the message which
caused method invocation. Method temporaries are initialized to nil upon method
invocation. Block arguments are assigned the associated message arguments for the

Chapter 13: The Smalltalk Language 189

value: message at the time the block is activated. When a block is invoked while its
containing method is still active, the block and the containing method share the same
temporary variables.

Shared Variables

Shared variables are defined in dictionaries called pools. Different kinds of shared variables
are defined in different kinds of pools. All shared variable names start with an upper-case
letter. The variable name and the variable value are bound together into an object that
is an instance of class Association. This association object is placed in the pool.

The System Dictionary Smalltalk is a pool which contains all the global variables.

Global variables are accessible from every object.

Class variables for each class are implicitly collected into a pool for the class. Class
variables are defined as part of the class specification. Class variables are accessible only
to the class, subclasses, instances of the class, and instances of the subclasses.

Pool variables are contained in named pool dictionaries that you explicitly construct.
Pool dictionaries are global variables. To make pool variables accessible to a class and its
instances, you must modify the class specification.

Classes

Classes are the program modules of Smalltalk because they describe data structures
(objects), algorithms (methods), and external interfaces (message protocol). Classes
provide complete capabilities to solve a particular problem.

Every object is an instance of some class. All objects which are instances of a class are
similar because they have the same structure (i.e., the same instance variables), the same
messages to which they respond, and the same available methods.

Classes are also objects contained in global variables which are maintained in the System
Dictionary Smalltalk. As such, class names begin with a capital letter. This allows classes
to be referred to in an expression.

190 Chapter 13: The Smalltalk Language

The Class Hierarchy

Classes form a hierarchy, consisting of a root class, called Object, and many subclasses.
Each class inherits the functionality of all its superclasses in the hierarchy. Class Object
provides the common behavior for all objects. It includes methods for printing an object
symbolically, for testing the class of an object, and for making a copy of an object. Each
subclass builds on its superclasses by adding its own methods and instance variables to
complete the implementation of the subclass's behavior.

The complete Smalltalk/ V class hierarchy is shown on the next page. Indentation is used
to show subclass relationships.

Chapter 13: The Smalltalk Language 191

Object
Behavior

Class
MetaClass

BitBlt
CharacterScanner
Pen

Aoimacioa
Commander

Boolean
False
True

ClassBrowser
ClassHierarchyBrowser
ClassReader
Collection

Bag
IndexedCollection

FixedSizeCollection
Array

CompiledMethod
Bitmap
Byte Array

FileHandle
Interval
String

Symbol
OrderedCollection

Process
SortedCollection

Set
Dictionary

IdentityDictionary
MethodDictionary

SystemDictionary
SymbolSet

Compiler
LCompiler

Context
HomeContext

CursorManager
NoMouseCursor

DeletedClass
DemoClass
Directory
DiskBrowser
Dispatcher

GraphDispatcher
PointDispatcher
ScreenDispatcher
ScrollDispatcher

ListSelector
TextEditor

PromptEditor

TopDispatcher
DispatchManager
DisplayObject

DisplayMedium
Form

BiColorForm
ColorForm
DisplayScreen

ColorScreen
DOS
File
Font
Icon
InputEvent
Inspector

Debugger
Dictionary Inspector

Magnitude
Association
Character
Date
Number

Float
Fraction
Integer

LargeNegativelnteger
LargePositivelnteger
Smalllnteger

Time
Menu
Message
Pane

SubPane
GraphPane
IistPane
TextPane

TopPane
Pattern

WildPattern
Point
ProcessScheduler
Prompter
Rectangle
Semaphore
Stream

ReadStream
WriteStream

ReadWriteStream
FileStream
TerminalStream

StringModel
TextSelection
UndennedObject

192 Chapter 13: The Smalltalk Language

Inheritance

A class inherits all of its superclasses' instance variables, class variables, and methods.
Inheritance of class variables allows the methods of a class to refer to the class variables
defined in its superclasses.

Inheritance of instance variables allows the methods of a class to refer to the instance
variables defined in its superclasses, but it also means that superclass instance variables are
included in objects which are instances of the class.

Determining what method to perform starts with two pieces of information: the message
selector and the class of the receiver of the message.

First, the available methods for the class of the receiver are examined to see if there is a
method which matches the message selector. If so, that method is performed. If not, the
superclass of the class of the receiver is used, and the check for a method matching the
selector is performed again. This checking for a matching method and advancing to the
superclass is repeated until the method is found or until the end of the superclass chain
is reached. In the latter case, a programming error occurs, and a message which describes
the error is sent to the receiver of the original message.

There is a special syntax form for a receiver, super, which changes the initial class used
for message lookup. The word super has two implications.

1. It represents the same object as self does, the receiver of the message which
caused the method containing super to be performed.

2. It causes message lookup to start in the superclass of the class containing the
method in which super appears, rather than starting in the class of the
receiver.

The major purpose of a message to super is to be able to use a method in a superclass
which is redefined in a subclass.

Class Messages

Messages to class objects are used for creating instances of the class and for initializing
class variables, the most common messages for creating new instances are new and new:.
Some classes define their own messages for creating instances.

Like all objects, classes know to which messages they can respond. For other objects, the
methods available are determined by the object's class. Class objects, too, belong to a
"class," called a metadass, which determines the messages to which the class can respond.

Chapter 13: The Smalltalk Language 193

There are three important classes relating to metaclasses:

1. Metaclass—the class of all metaclasses.

2. Class—the superclass of all instances of Metaclass.

3. Every metaclass has exactly one instance: the class of which it is the metaclass.

Specifying a New Class

In order for you to add a new class, you first choose a superclass on which you will build.
Make the new class a subclass of the chosen superclass, then add the instance variables
and methods necessary to complete the new class's functionality. Classes are normally
specified using a Class Hierarchy Browser. The following describes the information which
defines a class.

Classes are defined by sending a message to the new or modified class's superclass with
class specification information as arguments. The class information that can be specified
is the following:

• The class name
• Whether objects of the class contain pointers or bytes
• Whether objects of the class can contain indexed instance variables
• The names of the named instance variables for objects of the class
• The names of the class variables available to all objects of the class
• The names of the pool dictionaries which define shared variables available to

objects of the class and possibly other classes

The message which specifies a class is sent to its superclass. There are three class
definition messages. They are as follows:

1) subclass: subclassSymbol
instance VariableNames:

instanceVariableNameString
class VariableNames: class VariableNameString
poolDictionaries: poolDictionaryNameString

2) variableSubclass: subclassSymbol
instance VariableNames:

instance VariableNameString
class VariableNames: class VariableNameString
poolDictionaries: poolDictionaryNameString

3) variableByteSubclass: subclassSymbol
class VariableNames: class VariableNameString
poolDictionaries: poolDictionaryNameString

i94 Chapter 13: The Smalltalk Language

The first two messages define classes whose member objects contain pointers. The first
message specifies objects with named instance variables (zero or more of them). The
second message specifies objects with both named and indexed instance variables.

The third message defines classes whose member objects contain bytes. Objects with
bytes contain only indexed instance variables, so there is no instance variable name string

| argument. Objects with bytes define elementary data values such as strings of characters.

Messages and Methods

All processing in a Smalltalk system involves sending messages to objects. Messages are
the language of interaction which you use in order to express your computing
requirements to objects. Messages request services from an object in terms of its external
interface.

Methods are the algorithms which are performed by an object in response to receiving
a message. Methods represent the internal details of the implementation of an object.

Protocol definitions for a class always have two parts—class methods and instance
methods.

Class methods implement the messages sent to the class. The receiver of a class message
is always the class object, not an instance of the class. All classes are global variables and
can be referred to by their names.

Instance methods implement messages sent to instances of the class. The receiver of an
instance message is always an object that is an instance of the class.

A method contains a sequence of Smalltalk expressions. There are four types of
expressions:

1. Literals:

#aSymbol # (1 2 4 16) 'magic'

2. Variable names:

Smalltalk x replacementCollection

3. Message expressions:

bag add: stream next
100 factorial
array at: index + 10 put: Bag new

Chapter 13: The Smalltalk Language 195

4. Blocks of code:

[:x :y I x name <C y name]

The beginning of a method defines its name, arguments, and any temporary variables that
it uses.

Sending a message involves:

1. Identifying the object to which the message is sent (the receiver of the
message).

2. Identifying the additional objects that are included in the message (the
message arguments).

3. Specifying the desired operation to be performed (the message selector).

4. Accepting the single object that is returned as the message answer.

The following sections present the syntax of methods and messages both informally with
examples and more precisely using a syntax metalanguage. The metalanguage definition
appears in Appendix 1. If you find that the informal presentation is sufficient, you can skip
over the syntax rules. A complete syntax summary and cross reference are also presented
in Appendix 1.

The Syntax of Variable Names and Literals

Variable names and literals are the elemental building blocks used in higher-level syntax
forms in Smalltalk.

Variable Names

A variable name identifies a variable in an object. A variable is a container for an object
pointer. A variable name is a sequence of letters and digits, beginning with a letter.
Example variable names are:

OrderedCollection aString elements x2

Variable names beginning with an upper case letter represent shared variables, while those
beginning with a lower-case letter represent private variables. The rules for variable names

are:

<rule> variableName = identifier.
<rule> identifier = letter {letter I digit}.

196 Chapter 13: The Smalltalk Language

Literals

A literal defines an object of class Number, String, Character, Symbol, or Array.
Examples are given below where each of the possible literal forms is defined. The syntax
rule for literals is:

<Crule> literal = number I string I characterConstant
I symbolConstant I arrayConstant.

Numbers

Numbers are objects of class Float, Fraction, or Integer. If a number contains a decimal
point, it is an object of class Float. If it contains a negative exponent and no decimal
point, it belongs to class Fraction. All other numbers belong to class Integer. If the
number includes r, the digits preceding r define the number radix. In this case, capital
letters are used to represent digit values greater than 9, with A = 10, B = 11, etc.
Example numbers are:

•I
t, 15 l6rFF 3.1416 le-3 -100

The rules for numbers are:

<rule> number = [digits "r"] ["-"] bigDigits [". "bigDigits] ["e" ["-"]
digits].

digits = digit {digit}.
<rule> digit = "0" I "1" I "2" I "3" I "4" I "5" I "6" I "7" I "8" I "9".
<rule> bigDigits = bigDigit {bigDigit}.
^rule^ bigDigit = digit I capitalLetter.

Strings

A string is a sequence of characters enclosed in apostrophes. It is an object of class String
which is a sequence of objects of class Character that can be indexed. Strings are not
necessarily constant; their characters may be changed by sending a message to the string.
Paired apostrophes within a string reduce to a single apostrophe in the resultant string
object. Example strings are:

'hello' ° fisn"t' ' "comment in string" '

The rules for strings are:

Chapter 13: The Smalltalk Language 197

< r u l e > s t r i n g = " ' " {character | « « • » • | « » • } " » " .
< r u l e > character = letter I d i g i t I se lectorCharacter I " [" I "] " I " (" I ") "

I " A " I "•" I "A" I " # " I **•" I " " I " f " I " I " I •* "
<rule> selectorCharaaer = "," I "+" I "/" I "\" I "*" I " ~ " I ">" I

" < " I " = " I " @ " I "%" I " I " I " & " I " ? " I

Comments

A comment is a sequence of characters enclosed in double quotes. A comment is ignored
anywhere within a method, except when occurring within a string. Example comments
are:

"Answer the size of the receiver" "goodBye"

The rule for comments is:

< r u l e > c o m m e n t = ' " ' { c h a r a c t e r I » ' » } « » • .

Character Constants

A character constant is an object of class Character. A character constant appears as a
dollar sign followed by any character. Example character constants are:

$$ $a |< $ $.

The rule for character constants is:

<rule> characterConstant = "$" character I " $ " " ' " I " $ " * " '.

Symbols

A symbol is an object of class Symbol, a sequence of objects of class Character which
can be indexed. Symbols'differ from strings in that their characters may not be changed.
A symbol constant identifies the associated symbol object. The form of a symbol
constant is a number sign, # , followed by the characters of the symbol. Example symbol
constants are:

+ #asOrderedCollection #at:put: # = =

The rules for symbols and symbol constants are:

198 Chapter 13: The Smalltalk Language

<rule> symbolConstant = " # " symbol.
<rule> symbol = unarySelector I binarySelector I keyword {keyword}.
<rule!> unarySelector = identifier.
<rule> binarySelector = selectorCharacter [selectorCharacter] I "— ".
<Crule> keyword = identifier ":".

Arrays

An array is an object of class Array which may be indexed by an integer from one
through the size of the array. An array is a series of literals enclosed in parentheses. An
array constant identifies the associated array object. It consists of an array preceded by
a number sign. Example array constants and arrays are:

#('red' 'blue' 'green')
#(yes no)
#(1 'two'three $4 (5))

The rules for arrays and array constants are:

<rule> arrayConstant = " # " array.
<Crule!> array = "(" {number I string I symbol I array I characterConstant}

Expression Syntax

The actions in a method are specified by a series of expressions separated by periods. A
period is optional after the last expression of the series. Each expression computes a
single object as its result. The expression may also include assignment of its result to one
or more variables.

The final expression in an expression series may be preceded by a caret, A. The caret
means that method execution terminates and answers the object computed by the
expression.

The rules for expressions and expression series are:

expressionSeries = {expression "."} [[" A "] expression],
expression = {variableName ":="} (primary I messageExpression

{";" cascadeMessage}).
<Crule> primary = variableName I literal I block I "(" expression ") " .

A message expression is a request to an object (the receiver of the message) to perform
a computation and return an object as the answer. There are three kinds of message
expressions: unary, binary, and keyword(n-ary). Each has a different precedence and a
different syntax for its selector, the name of the message.

Chapter 13: The Smalltalk Language 199

A unary expression sends a series of unary messages which are evaluated from left to
right. A unary message has no arguments.

A binary expression sends a series of binary messages which are evaluated from left to
right. A binary message has a single argument following the binary selector. The
traditional arithmetic operators are implemented in Smalltalk using binary expressions.
This gives all arithmetic operators the same precedence. Parentheses may be used to
specify other than left-to-right evaluation.

A keyword expression sends a single keyword message with one or more arguments. The
arguments to a keyword message are evaluated from left to right.

The selector of a keyword message is the concatenation of all the keywords in the
message.

Unary expressions have highest precedence, followed by binary and then keyword.
Parentheses may be used to specify a different evaluation order.

Cascaded messages are a series of messages to the same receiver. Each message after the first
is preceded by a semicolon.

The rules for message expressions are:

messageExpression = unary Expression I binary Expression I
keywordExpression. ^

cascadeMessage = unary Message I binaryMessage I
keywordMessage.

<rule> unaryExpression = primary unary Message {unary Message}.
^Crule^ binary Expression = (unaryExpression I primary) binaryMessage

{binaryMessage}.
<rule> keywordExpression = (binaryExpression I primary)

keywordMessage.
unaryMessage = unarySelector.
binaryMessage = binarySelector (unaryExpression I primary).

<Crule> keywordMessage = keyword (binaryExpression I primary) I
{keyword (binaryExpression 1 primary)}.

Blocks

A block is a part of a method enclosed in square brackets. It is an object describing
executable code. Blocks may be nested.

A block may have arguments. These are specified between the left bracket and vertical
bar by preceding each block argument variable name with a colon.

Ill

200 Chapter 13: The Smalltalk Language

The result of block execution is the final expression in the block. A block with no
arguments is executed by sending it the message value.

A block with one argument is executed by sending it the message value:. The argument
to the value: message is assigned to the block argument upon block execution.

A two-argument block is executed by sending it the message value:value:. The
value:value: arguments are assigned to the block arguments.

A block may contain an expression preceded by a caret, A. Evaluation of such an
expression causes termination of execution for both the block and the method in which
the block appears.

Blocks are the basis for control structures in Smalltalk. Since control structures conform
to keyword message syntax, control structures have no special syntax.

The rule for blocks is:

<rule> block = " [" [{":" variableName} "I"] expressionSeries "] " .

Method Syntax

A complete method specification includes a message pattern, optional primitive number,
optional temporaries, and an expression series. The message pattern specifies how to send
a message to request method execution. It includes the method selector and the variable
names used to refer to arguments within the method.

The rules for method syntax are:

<rule> method = messagePattera [primitiveNumber] [temporaries]
expressionSeries.

messagePattera = unarySelector I binarySelector variableName I
keyword variableName {keyword
variableName}.

<rule> primitiveNumber = "<" "primitive:" number ">".
^ ! ^ temporaries ,= "I" {variableName} "I".

Control Structures

Control structures are invoked by sending messages with blocks as arguments. Three
forms, with several variations, are predefined in the Smalltalk language. You may define
additional forms in Smalltalk using these predefined ones.

Chapter 13: The Smalltalk Language 201

Conditional Execution

The following predefined conditional execution messages are available:

ifTrue: aBlock
ifFalse: aBlock
ifTrue: trueBlock ifFalse: falseBlock
ifFalse: falseBlock ifTrue: trueBlock

In all cases, the receiver expression must be of class Boolean and the arguments must be
blocks with no arguments. The ifTrue: argument block (if present) is sent the message
value, if and only if, the receiver has the value true. The ifFalse: argument block (if
present) is sent the message value, if and only if, the receiver has the value false. The
answer of the conditional messages is the last expression in the executed block or nil if
no block is executed.

Iterative Execution

The following predefined iterative execution messages are available:

whileTrue: aBlock
whileFalse: aBlock

Both the receiver and argument of these messages must be no-argument blocks. For
whileTrue:, the receiver block is sent the message value. If it answers true, the argument
block is sent the message value. The iteration continues until the answer of the first block
evaluation is false. For whileFalse:, the sequence is the same but the iteration continues
until the answer of the first block evaluation is true. The answer of both whileTrue: and
'whileFalse: is always nil.

Short Circuit Boolean Evaluation

The following predefined boolean operators are available:

and: aBlock
or: aBlock

The receiver of each of these methods must be of class Boolean and the argument must
be a block. For and:, if the receiver is true, the block is sent the message value, and the
answer of the message is the last block expression. If, however, the receiver of the and:
message is false, the answer is false, and the block is not evaluated. For or:, if the receiver
is false, the block is sent the message value, and the answer of the message is the last
block expression. If, however, the receiver of the or: message is true, the answer is true,
and the block is not evaluated.

14 SMALLTALK/V 286 CLASSES

This section describes the major Smalltalk/V classes. These classes serve as the basic
building blocks for your applications.

Magnitudes

The magnitude classes are the easiest to understand and the most frequently used. They
define objects that can be compared, measured, ordered, and counted. These include
characters, numbers, dates, and times. Many useful messages for comparing, testing, and
ordering these objects are defined. The arithmetic operators and many useful numerical
functions are also defined as messages understood by the numerical magnitude objects.

This chapter presents a quick overview of each of the magnitude classes provided in
Smalltalk/V. Examples are used to demonstrate some of the functionality provided. Part
4: The Encyclopedia of Classes gives a detailed specification of each of the magnitude
classes.

The Magnitude class hierarchy shown below lists all of the magnitude classes.

Magnitude
Association
Character
Date
Number

Float
Fraction
Integer

LargeNegativelnteger
LargePositivelnteger
Smalllnteger

Time

204 Chapter 14: Smalltalk/ V 286 Classes

Magnitude

All of the magnitude classes are subclasses of the abstract class Magnitude. Class
Magnitude provides the comparing and ordering protocol inherited by its subclasses. All
magnitudes support comparing, ordering, and interval testing. Magnitude assumes its
subclasses implement the ordering relation and comparison methods: = , < = , > = , < ,
>, ~=s. Based on these methods, Magnitude provides generic methods for interval
testing and max/min computation inherited by all magnitude classes. Some numerical
examples are:

Expression Answer

46 > 33 true
46 min: 33 33
46 max: 33 46
5/4 between: 0.5 and: 1 false

Character

The instances of class Character are the extended ASCII character set from ASCII value
0 to ASCII value 255. Characters are pre-existing objects in Smalltalk, hence they do not
have to be created. References to characters are made in two ways: as literals or by
converting integers into the corresponding ASCII character. There are two conversion
messages. The message asCharacter can be sent to an integer, or the message value: with
an integer argument can be sent to class Character. For example:

Character Literal Equivalent Expression

A
B
C
space
line feed
tab

$A
IB
$C
$

65 asCharacter
66 asCharacter
Character value: 61
32 asCharacter
10 asCharacter
Character value: 9

Like all subclasses of Magnitude, the class Character must define how characters are
compared and ordered. The methods K, <C=, = , > = , > , and ~ = compare characters
by comparing their ASCII values. For example:

Expression

$ a = $ A
$A < $ B

Answer

false
true

Chapter 14: Smalltalk/ V 286 Classes 205

The interval testing and min/max methods are inherited from class Magnitude
automatically:

Expression Answer

69 asCharacter max: $ A $£
$x between: $a and: $t false

Class Character has many testing and conversion methods. Some examples follow:

Expression Answer

$a isUpperCase
$a isLowerCase
$a asUpperCase
$? asLowerCase
$e is Vowel
$ + isLetter
$9 isDigit
$A asciiValue

Date and Time

false
true
$A
$?
true
false
true
65

Instances of class Date represent specific dates such as January 1, 1980 or September 15,
1876. Instances of class Time represent specific times of the day such as 10 am or 12:15
pm.

Dates and Times are created by evaluating expressions. The detailed descriptions of
classes Date and Time in Part 4 give a complete list of the messages supported by Date
and Time. Some examples are:

Time now
Date today
'20 January 1950' asDate
Date newDay: 20 month: #Jan year: 1950.

The following code makes an instance of class Date and puts it in the global variable
Birthday:

Smalltalk at: # Birthday put: '4 August 1976' asDate

206 Chapter 14: Smalltalk/ V 286 Classes

Ordering and comparing of dates and times are supported. Some examples of messages
supported by dates are:

Expression

Birthday year

Birthday dayName

Birthday >
Date today

Birthday min:
Date today

Birthday
previous Weekday:

Saturday

Birthday
daysLeftlnYear

Answer

1976

Wednesday

false

'August 4, 1976'

'July 31, 1976*

149

Birthday daysInYear 366

You can add new ways of creating objects by defining new methods. If you add the
following method as a class method in class Time:

hour: hours minute: minutes seconds: seconds
"Answer an instance of class Time as specified"

A self fromSeconds:
(((hours * 60) + minutes) * 60) + seconds

then you can create instances of class Time using expressions like the following:

Smalltalk at: #LunchTime
put: (Time hour: 12 minute: 0 second: 0).

Smalltalk at: #DinnerTime
put: (Time hour: 18 minute: 45 second: 0).

Smalltalk at: #BreakfastTime
put: (Time hour: 7 minute: 30 second: 0).

Chapter 14: Smalltalk/ V 286 Classes 207

Some examples using these new global variables are:

Expression Answer

LunchTime true
between: BreakfastTime
and: DinnerTime

LunchTime min:
DinnerTime

DinnerTime hour

LunchTime K
BreakfastTime

12:(X

Sl8

false

Number

Smalltalk supports three kinds of numbers: floating point (class Float), rational (class
Fraction), and integer (class Integer and its subclasses). The methods of class Number
define the general behavior of its subclasses, support mixed mode arthimetic, and provide
many useful numeric, testing, and iteration functions.

Number defines the arithmetic protocol that its subclasses must implement. These are
the usual binary arithmetic operators: + , —, *, / . There is equal precedence between all
binary operators, so evaluation is left to right. Some examples:

Expression

3 + 4
3 + 4 * 2
2 + 4 / 1 2

Answer

7
14
1/2

Number implements many numerical methods that its subclasses can inherit such as:
exp, cos, arcSin, tan, In, sqrt, floor, reciprocal. Some examples:

Expression

7.5 floor
4 reciprocal
•2.3 abs

Answer

7
1/4
2.3

208 Chapter 14: Smalltalk/ V 286 Classes

Number implements many testing methods inherited by its subclasses such as: even,
positive, strictlyPositive. Some examples:

Expression

4 even
0.1 positive
0 strictlyPositive

Answer

true
true
false

Number implements methods for creating other kinds of objects, such as:

Expression

2 @ 7

1/4 to: 3/4 by: 1/8

Answer

A Point with x coordinate of 2 and y coordinate
of 7

An Interval containing the fractions 1/4, 3/8, 1/2,
5/8, 3/4

Number also implements iteration methods, such as:

1/4 to: 1.5 by: 1 do: [:il
Transcript space; nextPutAll: i printString; cr]

which prints the numbers 1/4 and 5/4 in the Transcript window.

Smalltalk/V supports mixed,mode arithmetic so that arithmetic expressions can be
composed of different kinds of numbers. Executing sample expressions is the best way
to understand the conversion rules.

Expression

1 +
5.1 -
2 * -
2 /4
1/2
1/2
4 /2

2
3

4.0

+ 1
+ 1.0

Answer Comment

3
2.1 Note space between - and 3
-8.0 Mixed mode gives a Float
1/2 A fraction
3/2 Mixed mode gives a Fraction
1.5 Mixed mode gives a Float
2 Fraction reduces to an integer

Chapter 14: Smalltalk/ V 286 Classes 209

The following examples explain many of the messages that can be used with nulmibers.

Expression Answer Comment

4 / / 3
-4 / / 3
4\\3
-4\\3
-4 quo: 3
-4 rem: 3
-2.3 abs
10 negated
11 reciprocal
2 + 3 * 4
3 - (2 * 2)
2 + 3 negated
6 quo: 2 + 1
2 sqrt
4 sqrt
2.1 squared
2.3 even
2 odd
10 negative
0 positive
0 strictlyPositive
-0.1 sign
0 sign
100 sign
5.1 ceiling
-5.1 ceiling
5.1 floor
-5.1 floor
5.1 truncated
-5.1 truncated
5.1 rounded
5.1 truncateTo: 2
5.1 truncateTo: 2.3
5.1 roundTo: 2
5.1 roundTo: 2.3
5 exp
2.7182819 In
4 log: 2
3 raisedTo: 1.1

1
-2
1
2
-1
-1
2.3
-10
1/11
20
-1
-1
2
1.414236
2.0
4.41
true
false
false
true
false
-1
0
1
6
-5
5
-6
5
-5
5
4
4.6
6
4.6
148.41316
1.0
2.0
3.3483695

Integer quotient
Truncate toward minus infinity
Integer remainder
Integer remainder, truncates as / /
Integer quotient, truncate toward zero
Integer remainder, truncate toward zero
Absolute value

A fraction
Evaluation is left to right
Parentheses change evaluation order
Unary operator (negated) done first
Keyword operator (quo:) done last
Square root
Answer always float
Receiver times itself

True if > = 0
True if > 0

Nearest integer greater than or equal

Nearest integer less than or equal

Nearest integer toward zero

Nearest integer

Nearest argument multiple toward zero

Nearest argument multiple

Exponential
Natural logarithm
The logarithm in the base of the argument
The receiver to the power of the argument

210 Chapter 14: Smalltalk/ V 286 Classes

Expression Answer Comment

4 raisedToInteger: 3

30 degreesToRadians
2 radiansToDegrees
0.52359878 sin
0.72273425 cos
0.24497866 tan
0.5 arcSin
0.75 arcCos
0.25 arcTan

64

0.52359878
114.59156
0.5
0.75
0.25
0.52359878
0.72273425
0.24497866

The receiver to the
argument
Convert degrees to
Convert radians to
Angle in radians

Angle in radians

power of the integer

radians
degrees

Float

An 8-byte IEEE format is used for instances of class Float to approximate real numbers.
This gives approximately 18 digits of precision and represents values in the range (+/—)
4.19e-307 to (+/—)l.67e3O8. The 8087 or 80287 arithmetic co-processor, depending upon
your computer, must be present to perform arithmetic operations on floating operands.

Fraction

Instances of class Fraction are exact representations of rational numbers. A pair of
integers (instance variables numerator and denominator) describes the fraction. Fractions
are created by sending the slash (/) message to an integer with an integer argument
(provided that the answer does not reduce to an integer).

Integer

Integers are frequently used in counting and indexing. Three subclasses of class Integer
are defined: LargeNegativelnteger, LargePositivelnteger and Smalllnteger. Instances
of class Smalllnteger are in the range -32767 to 32767. These are highly efficient in both
computing speed and memory occupation. Small integers are encoded in the reference to
the object (the object pointer); they are not represented as objects in memory. The large
integer classes can represent numbers with up to 64K bytes of precision. Conversion
between integer classes is automatic.

Chapter 14: Smalltalk/ V 286 Classes 211

Streams

The stream classes are used for accessing files, devices, and internal objects as sequences
of characters or other objects. Streams have an internal record of their current position.
Streams also have access messages which get or put the next object at the current
position and advance the stream's position by one. Messages are defined for changing the
stream position so that random access is possible.

This chapter presents the purposes of and the protocol shared among the stream
hierarchy classes. For a complete specification of each class, refer to Part 4: Encyclo-
pedia of Classes.

The Stream class hierarchy is as follows:

Stream
ReadStream
WriteStream

ReadWriteStream
FileStream
TerminalStream

Streams are frequently used for scanning input and writing edited output. The example
which follows sends the message printString to an instance of class String. The answer
to this message is a new string composed of the initial string (the receiver of printString)
surrounded by quotes with any internal quotes doubled. For example:

Expression

'hello' printString

'hello' printString
printString

Answer

'hello*

'"hello"1

The key to the following implementation of printString in class String is that an
instance of class WriteStream automatically grows to contain all the characters written
to it and responds to the message contents by returning a string containing all of its
characters.

212 Chapter 14: Smalltalk/ V 286 Ciasses

printString
I inputStream outputStream I
inputStream := ReadStream on: self.
outputStream := WriteStream on:

(String new: self size + 2).
outputStream nextPut: $'.
[inputStream atEnd]

whileFalse: [
character := inputStream next.
outputStream nextPut: character,
character = = $'

ifTrue: [outputStream nextPut: $']].
outputStream nextPut: $'.
A outputStream contents

This example illustrates several stream messages.

Instances of classes ReadStream and WriteStream are created with the on: message with
a string as the argument. Both streams are positioned at the first character. Note that in
creating the WriteStream instance, space is provided for the containing quotes but not
for interior paired quotes. If interior quotes exist, the string object affected by the
WriteStream will automatically be enlarged.

Characters are written to the WriteStream with the message nextPut:. The character to
write is the argument.

The end of a ReadStream is detected with the atEnd message. If there is a character at
the current position, atEnd answers false; otherwise it answers true.

A character is read from the ReadStream with the message next. Note that you cannot
send the message next to a ReadStream that is positioned at the end.

All of the characters in a WriteStream are returned as a string in answer to the contents
message.

Chapter 14: Smalltalk/ V 286 Classes 213

Accessing Protocol

We summarize the above information in the following protocol:

Protocol

atEnd

contents

next

nextPut: anObject

Explanation

Answer true if stream is at the end else answer
false.

Answer the collection of objects that is being
streamed over.

Answer the next object in the receiver stream and
advance the position by one.

Write anObject at the current position. Answer
anObject.

Positioning and Reading Protocol

Some of the stream positioning protocol is as follows:

Protocol

position

position: anlnteger

reset

skip: anlnteger

Explanation

Answer an integer representing the stream's
position. The position at the beginning of the
stream is zero.

Set the stream position to anlnteger. Report an
error if anlnteger is beyond the end of the stream.

Set the stream's position to zero.

Add anlnteger (which may be negative) to the
stream's position.

Some stream reading protocol follows:

Protocol Explanation

do: aBlock Proceed through the stream from the current
position to the end evaluating aBlock with each
element of the stream as the block argument.

214 Chapter 14: Smalltalk/ V 286 Classes

Protocol

isEmpty

next: anlnteger

peek

peekFor: anObject

skipTo: anObject

upTo: anObject

Explanation

Answer true if the stream contains no elements;
otherwise answer false.

Answer a collection of the next anlnteger
elements of the stream. Advance the stream
position by anlnteger.

Answer the next element in the stream without
advancing the stream position. Answer nil if at end
of stream.

Answer true and advance the stream position if the
next object in the stream equals anObject.
Otherwise, answer false and leave the stream
position unchanged.

Set the stream position beyond the next occurrence
of anObject in the stream or, if none, at the end
of the stream. Answer true if there was an
occurrence; otherwise answer false.

Answer a collection of objects starting at the
current stream position and up to but not
including the next object that equals anObject and
advance the stream position beyond the object that
equals anObject. If anObject is not in the stream,
answer up to the end of the stream and set the
stream position to the end.

The following example illustrates positioning and reading protocol using a stream on an
array of symbols. First the stream is created and assigned to the variable Colors. Then a
series of messages are sent to the stream Colors. The result of each message is shown
below.

Colors := ReadStream on:
#(red blue green yellow pink cyan magenta brown).

Chapter 14: Smalltalk/ V 286 Classes 215

Expression Answer

Colors isEmpty
Colors next
Colors next: 3
Colors peek
Colors peekFor: #blue
Colors upTo: # magenta
Colors skip: -4
Colors position
Colors skipTo: #pink
Colors upTo: #red

false
red
(blue green yellow)
pink
false
(pink cyan)

3
true
(cyan magenta brown)

Writing Protocol

Some additional stream writing protocol follows.

Protocol

nextPutAU:
aColiection

next: anlnteger
put: anObject

cr

tab

space

Explanation

Write the elements of aColiection to the stream.
Answer aColiection.

Write anObject to the stream anlnteger times.
Answer anObject.

Write a line-terminating character to the stream.

Write a tab character to the stream.

Write a space character to the stream.

216 Chapter 14: Smalltalk/ V 286 Classes

All objects understand the message printOn: with a stream as the argument. This
message produces a character description of the receiver object on the argument stream.
For example, the implementation of printOn: for class Rectangle is:

printOn: aStream
"Print the origin and corner points"

origin printOn: aStream.
aStream nextPutAll: ' corner: '.
corner printOn: aStream

where the printOn: message is sent to the origin and corner points and the message
nextPutAll: to its stream argument. The implementation for class Point is:

printOn: aStream
"Print the x and y coordinates"

x printOn: aStream.
aStream nextPutAll: ' @ '.
y printOn: aStream

An example of printing a Rectangle is:

Display boundingBox printOn: Transcript

which writes the following in the System Transcript window if you are running in EGA
color mode:

0 @ 0 corner: 640 @ 350

Interface to DOS File System

Class FileStream, a subclass of ReadWriteStream, provides the primary interface to the
DOS file system. File streams respond to all of the stream protocol presented earlier. File
streams use an instance of the class File to provide random page access to DOS files. Files
use an instance of class FileHandle to read and write DOS file pages. The class
Directory provides access to DOS disk directories.

In this section we present an overview of these file system classes. For detailed
information on all of the messages that they provide, please see the descriptions in
Part 4.

Chapter 14: Smalltalk/ V 286 Classes 217

File Streams

File streams are usually created with either a message to class File specifying a partial or
complete path name or a message to an instance of class Directory specifying a particular
file to access in that directory. Here are some examples of messages to class File.

File pathName: 'c:\smaltalk\chapter.r
File pathName: 'chapter. 1'
File pathName: '\smaltalk\chapter.l*

The first expression above has a complete path name. The second example above is a
partial path name. The directory object Disk, a global variable, is used to complete the
path name. In this case the file 'chapter. 1' in the directory Disk is accessed. The final
example is a complete path name without a disk drive specifier. The drive specifier used
is the same as that used by the directory Disk.

The other way to create a file stream is by sending one of the following messages to a
directory object.

Disk file: 'chapter. 1'
Disk newFile: 'junk.fil'

The above two messages cannot have path names as arguments, only a file name. The
difference between the two messages is that the second message will erase an existing file
of the same name if one exists. They both will create the file if it does not already exist.

A word of caution about DOS files. DOS does not automatically update the directory
entry on disk as you write to a file. There are two messages that you can send to file
streams to cause the directory entry to be updated on the disk. These are:

stream close
stream flush

The difference between the two messages is that the first closes the file stream making
further access to the DOS file using this object impossible. The second message also
causes the directory entry to be updated but keeps the file stream object open for further
access to the file. For consistency, all other streams support these two messages as well,
but they have no effect.

File streams are buffered for efficiency. In addition, file streams recognize two different
formats for end of line, the DOS cr-lf pair, and the UNIX single If. When a file stream
is opened, the beginning of the file is scanned to determine which format applies. New
files are created using the DOS format. The following three messages let you test and
change the line ending format for a file.

218 Chapter 14.- Smalltalk/ V 286 Classes

stream lineDelimiter "Answers Lf or Cr"
stream lineDelimiter: Lf "Change to Unix format"
stream lineDelimiter: Cr "Change to DOS format"

The fastest way to read a file stream is with the upTo: or the nextLine message. The fast
way to write a file stream is with the nextPutAll: message.

Putting all of the above together, here is a faster version of the program given in Chapter
7 of the tutorials which converts text files from DOS format to UNIX format.

"Convert a file from DOS format to UNIX format"
I input output I
input *= Disk file: 'chapter.7'.
output := Disk newFile: 'stripped.7'.
output lineDelimiter: Lf.
[input atEnd]

whileFalse: [output nextPutAll: input nextLine; cr].
output close

Directories

The class Directory provides access to DOS file system directories. Smalltalk/V as
delivered has the following global variables which contain directories.

Disk
DiskA
DiskB

The variable Disk contains the directory in which you started Smalltalk/V. The variables
DiskA and DiskB contain the root directories for the disk devices A: and B: respectively.
You can create new directory objects using the following messages:

SampleDir := Directory pathName: 'a:\dirname'
DiskC := Directory new drive: $c; pathName: 'V

Note that creating a directory object is not the same as creating a directory on the disk
drive itself. To create a new directory on the disk, send the message create to a directory
object with the proper drive and path name, as in:

SampleDir create

Chapter 14: Smalltalk/ V 286 Classes 219

Directories understand messages for listing their subdirectories and files, for creating new
files and subdirectories, and much more. See Part 4 for more details.

Files and FileHandles

Class File provides the logical support to file streams necessary for random page access
to DOS files. Class FileHandle provides the low level access to DOS files. Part 4
provides a detailed list of the messages implemented by these classes. Unless you are
building some sort of new file access protocol separate from file streams, you will rarely
have to deal with these classes. A few of the class messages for File are important: the
ones for copying, renaming, and removing files.

FileHandle is a subclass of ByteArray. A FileHandle instance has a size of exactly two
bytes long which contains the DOS file handle number when the file is opened. DOS
allows only a limited number of file handles. When you try to open a file and no more
file handles are available, Smalltalk/V automatically checks that all file handles are
indeed used by some objects. For example, you might have opened a file and forgot to
close it. As long as this handle is not pointed to by any object, Smalltalk/V will
automatically reuse it to open a new file.

Terminal Input and Output

Terminal input and output is accomplished through the cooperation of two classes:
InputEvent and TerminalStream. InputEvent is a lower level interface whose method
nextEvent uses a primitive to read a keyboard or mouse event and return the type of the
event read. InputEvent is interrupt driven. It usually waits on the KeyboardSemaphore
(a global variable containing an instance of class Semaphore) until the semaphore is
signaled by a key stroke or mouse operation.

CurrentEvent is the global variable used to read events. It contains an instance of
InputEvent. The read primitive modifies the instance variables of CurrentEvent: type,
value, x, and y. The location of the mouse at the time of the event is placed in x and
y. The following table describes the events returned from the read primitive (left column),
the types returned by the InputEvent (middle column), and the values associated with the
types (right column).

220 Chapter 14: Smalltalk/ V 286 Classes

Primitive Type nextEvent Type

characterlnput
functionlnput
mouseMove

#mouseButton

characterlnput
functionlnput
mouseMove
mouseStillDown
mouseButtonDown

mouseButtonUp

#nullEvent #nullEvent

Value

ASCII code
scan code

mouse button value
1 = left button down
2 = right button down
3 = middle button down
5 = left button down shifted
6 = right button down shifted
7 = middle button down shifted
1 = left button up
2 = right button up
3 — middle button up
5 = left button up shifted
6 = right button up shifted
7 = middle button up shifted
(none)

The scan code associated with # functionlnput is defined by DOS. When a
mouseMove event is returned from the primitive, an InputEvent can generate either
mouseMove or # mouseStillDown depending on whether a mouse button is being
held down (if yes, the latter one is generated). When a #mouseButton event is returned,
an InputEvent further differentiates it into two types, # mouseButtonDown or
mouseButtonUp depending on whether it is a down or up action that has caused the
event.

TerminalStream is defined as a subclass of ReadWriteStream. It uses InputEvent to
read from the keyboard or mouse and sends messages to CharacterScanner to write
characters to the terminal screen. The global variable Terminal, which contains an
instance of class TerminalStream, is used throughout Smalltalk/V to handle terminal
I/O.

TerminalStream reimplements the method next defined in Stream with the method
read. Method read is the major user interface for reading a single character (or function
key) from the keyboard or an event from the mouse. Two global variables, FunctionKey
and MouseEvent, are set to true or false to indicate the source of the input before the
input is returned. If a mouse event is read, the variable MouseEvent is set to true. If a
function key is pressed, the variable FunctionKey is set to true. And non-function keys
set both variables to false.

Chapter 14: Smalltalk/ V 286 Classes 221

Method nextPut: outputs a character to the terminal screen at the current cursor
position. It is seldom used in the system since writing characters to the screen is usually
done through instances of CharacterScanner which has more sophisticated masking and
clipping capabilities.

Programming Function Keys

When a function key is processed outside of class Terminal-Stream, the read method in
class TerminalStream is usually invoked by method processlnput in class Dispatcher.
As soon as a function key is pressed, the read method returns the function code and sets
the global variable FunctionKey to true and the global variable MouseEvent to false.
Method processlnput then calls method processKey: in the receiver dispatcher class
(any of the dispatcher classes). The latter method checks the state of the two global
Boolean variables, MouseEvent and FunctionKey. If either of the variables is true, then
a function code must be processed. To do this, method processFunctionKey: in the
receiver dispatcher is invoked to compare the function code to the values defined by the
pool dictionary FunctionKeys. When a match is found, the appropriate action is taken.

Suppose you want to assign the move and frame window operations to Fl
and F2. First, define names for them, for example MoveWindowFunction and
FrameWindowFunction respectively. Then, enter these names into the pool dictionary
FunctionKeys and associate them with the desired function key codes. You can do this
by executing the following expression:

FunctionKeys at: 'MoveWindowFunction'
put: 59 asCharacter.

FunctionKeys at: 'FrameWindowFunction'
put: 60 asCharacter

This creates two new variables in pool dictionary FunctionKeys. Note that 59 and 60 are
the scan codes generated by Fl and F2 respectively.

The next step is to add the following code to method processFunctionKey: in class
Dispatcher so that the desired functions occur when Fl and F2 are pressed.

222 Chapter 14: Smalltalk/ V 286 Classes

MoveWindowFunction = = aCharacter
ifTrue: [

pane topPane hasCursor
ifTrue: [Apane topPane dispatcher move]
ifFalse: [ATerminal bell]].

FrameWindowFunction = = aCharacter
ifTrue: [

pane topPane hasCursor
ifTrue: [Apane topPane dispatcher frame]
ifFalse: [ATerminal bell]].

Collections

A collection is a group of related objects. The Smalltalk collection classes define several
different data structures which serve as containers for arbitrary objects. For example, a
String is a sequence of characters while a Set is an unordered collection of non-duplicated
objects of any kind. The collection classes are useful because they provide similar
protocol for:

1. Iterating over the elements of a collection.

2. Searching a collection for a particular element.

3. Adding and removing elements.

4. Accessing and changing elements.

The following is the Collection class hierarchy:

Collection
Bag
IndexedCollection

FixedSizeCollection
Array
Byte Array
Interval
String

Symbol
OrderedCollection

SortedCollection
Set

Dictionary
IdentityDictionary

Chapter l4: Smalltalk/ V 286 Classes 223

The attributes, conversions, and common protocol among various collections are
discussed next with a description of each kind of collection following.

Attributes of the Collection Class

In general, each kind of collection can be characterized by four attributes:

1. Whether the collection has a well defined order associated with its elements.
This order can be defined either externally by a key or internally by the
contents of elements.

2. Whether the collection's size is fixed or expandable.

3. Whether or not duplicates of the collection's elements are allowed.

4. Whether the collection is accessible by a set of keys. Keys can be either
integer indices or lookup keys.

The following table shows the attributes of each class:

Bag
IndexedCollection*
FixedSizeCollection*
Array
ByteArray
Interval
String
Symbol

OrderedCollection
SortedCollection

Set
Dictionary
IdentityDictionary

Ordered

No
Yes
Yes
Yes
Yes

Internal
Yes
Yes
Yes

Internal
No
No
No

Fixed
size

No
N.A.
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
No

Pup's

Yes
N.A.
N.A.
Yes
Yes
No
Yes
Yes
Yes
Yes
No
No
No

Keys

None
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
None
Lookup
Lookup

Element
Class

any
N.A.
N.A.
any
Smalllnteger
Number
Character
Character
any
any
any
any
any

Notes: * — abstract classes, there are no instances
Internal — ordered by the internal contents of the collection
N.A. — not applicable (determined by subclasses)

In the table, the only collections that have the same attribute values are the String
Symbol pair and Dictionary IdentityDictionary pair. The difference between a String
and a Symbol is that a Symbol is guaranteed to be unique while a String can have many
copies. The difference between a Dictionary and an IdentityDictionary is that during
the key lookup comparison, the former uses the = message while the latter uses = s s .

224 Chapter 14: Smalltalk/ V 286 Classes

Conversions

Because the various collection classes have different attributes, being able to convert from
one kind of collection to another is useful. Smalltalk/V provides the following
conversion protocol in class Collection.

Methods

asArray

asBag

asSet

asOrderedCollection

asSortedCollection

asSortedCollection:
sortBlock

Comments

Ordering is possibly arbitrary.

Duplicates are kept.

Duplicates are eliminated.

Ordering is possibly arbitrary.

Each element is < = its successor.

Ordering is specified by sortBlock.

Thus any collection can be converted into an Array, a Bag, a Set, an OrderedCollection,
or a SortedCollection.

Instance Creation

Like other classes, message new can be used to create an instance of any collection.
Message new: can be used to create a fixed-size collection with a specified size and a
variable size collection with a specified initial allocation size.

Some collections may be expressed in literal form:

Class Instance in literal form

String
Symbol
Array

'John Mary'
#John
#($J 'John' John (John 3))

A literal string is enclosed in a pair of quotes, a literal symbol is preceded by a number
sign (#) , and a literal array is enclosed in paired parentheses and preceded by a number
sign. The Array example contains four elements: a character, a string, a symbol, and
another array which has two elements — a symbol and a small integer. Notice that within
a literal array, a symbol or another array element must not be prefixed with a number sign.

In addition, there is protocol in every collection class to create instances with one, two,
three, or four elements which are not necessarily constants. For example,

Chapter 14: Smalltalk/ V 286 Classes 225

Array with: 'Daughters of John'
with: #('Ann' 'Mary')

creates an array with two elements, a string and another array of two elements.

Common Protocol

Smalltalk/V provides common protocol to manipulate collections in a uniform way.
These can be categorized as adding new elements, removing elements, testing the
occurrences of elements, and enumerating elements. These are all described in Part 4:
Encyclopedia of Classes under class Collection.

Suppose you have two global variables, Customer and Supplier, initialized as:

Customer : = Bag with: #John.
Supplier := #(John Peter).

Then you send adding, removing, and testing messages to Customer:

Expression Answer Customer value if changed

Customer add: #Bob
Customer addAll:

Supplier
Customer removeAll:

Supplier
Customer removeAll:

Supplier
Customer remove:

#Bob
Customer isEmpty
Customer

occurrencesOf:
#John

Customer includes:
#John

Customer addAll:
(John John)

Customer addAll:
Supplier

Customer
occurrencesOf:
#John

Bob
(John Peter)

(John Peter)

error

Bob

true
0

false

(John John)

(John Peter)

3

Bag(John Bob)
Bag(John John Peter Bob)

Bag(John Bob)

Bag(Bob)

BagO

Bag(John John)

Bag(John John John Peter)

226 Chapter 14: Smalltalk/ V 286 Classes

Enumerating messages allow you to process all the elements of a collection. Enumerating
messages usually take a one-argument block as an argument and evaluate it with each
element in the receiver collection. Assume Customer and Supplier have the same values
as at the end of the last example.

I count I
count := 0.
Customer do: [-.aName I count := count + aName size].

A count

produces 17.

Customer select: [-.aName I aName = = #John]

produces Bag (John John John). W

Customer reject: [:aName I aName =:=:: #John] I

produces Bag (Peter).

Customer collect: [:aName I aName as Array]

produces Bag(($J $o $h $n) ($J $o $h $n) ($J $o $h $n) ($P $e $t $e $r)).

Customer detect:

[:aName I aName includes: $P]

produces Peter.

Customer detect:

[:aName I aName = #Mary] ifNone: ['Not found']

produces 'Not found'.

Customer inject: 0 into:
[:count -.aName I count + aName size]

produces 17.

Class Bag

A Bag contains a collection of arbitrary objects. Duplicates are allowed and ordering is
arbitrary. A Bag does not have external keys; therefore it cannot respond to the messages
at: and at:put:. In addition to the common protocol, it has a message, add:withOccur-
rences: to add an element a specified number of times. Bags are hashed for efficient
lookup.

Chapter 14: Smalltalk/ V 286 Classes 221

As an example, here is an expression that computes the frequency of occurrence of words
in a file.

I input frequency output word I
input: ̂ File pathName: 'in.fil'.
output: =File pathName: 'out.fiT.
frequency: —Bag new.
[(word:=input next Word) isNil]

while False: [frequency add: word asLowerCase].
frequency asSet asSortedCollection do: [:word I

output
nextPutAll: word;
tab;
nextPutAll: (frequency occurrencesOf: word) printString;
cr].

output close.

Class Set

A Set is like a Bag except that it cannot have duplicate elements. Sets are hashed for
efficient lookup.

As an example, here is an expression that computes a sorted list of words in a file.

I input words word I
input: = File pathName: 'in.fil'.
words = Set new.
[(word: = input nextWord) isNil]

whileFalse: [words add: word asLowerCase].
A words asSortedCollection.

Class Dictionary

Class Dictionary represents a set of objects with external lookup keys. Dictionaries are
hashed for efficient lookup. A dictionary's elements are instances of class Association
which contain a lookup key and its corresponding value. Because the key is only for
lookup purposes, the messages includes:, do:, and other inherited enumeration messages
are applied to the values rather than to the keys or to the associations themselves. Class
Dictionary provides other messages to deal with keys and associations. Refer to Part 4
for all the messages implemented by class Dictionary.

228 Chapter 14: Smalltalk/ V 286 Classes

Class IdentityDictionary

Class IdentityDictionary is similar to Dictionary except that it uses equivalence (=—)
instead of equality (=) during a key lookup. Its implementation also makes better storage
utilization than a Dictionary. Because its key lookup matches object pointers instead of
object contents, the only sensible classes for its keys (except for special situations) are
Symbol and Smalllnteger.

Class IndexedCollection

Class IndexedCollection represents collections with elements ordered externally by
integer indices. It is an abstract class to contain common protocol for its subclasses and
therefore should not have any instance of its own created.

Because of its well-defined ordering, all of its subclasses implement the equality (=)
message in such a way that the answer is true if two IndexedCollections have the same
class and size, and their corresponding elements answer true for the equality message.

Class FixedSizeCollection

Class FixedSizeCollection is a subclass of class IndexedCollection. It is an abstract class
to provide common protocol for its subclasses: Array, ByteArray, Interval, String, and
Symbol. These subclasses represent collections with a fixed range of integer indices as
external keys. Because these subclasses have fixed sizes, they cannot respond to the add:
message.

The instance creation message new: is subtly different when applied to a fixed size
collection than to a variable one. The following message:

(Array new: 5) size

evaluates to 5, while

(OrderedCollection new: 5) size

evaluates to 0. When message new: is sent to class Array, the new instance is created
with elements initialized to nil. When the message is sent to a variable size collection like
OrderedCollection, the new instance is created with space allocated, but is logically
empty.

The elements of an Array can be any objects. An element of a ByteArray must be a
Smalllnteger in the range of 0 to 255. The elements of a String or Symbol are
characters. Symbols are guaranteed to be unique.

Chapter 14: Smalltalk/ V 286 Classes 229

An Interval represents a finite arithmetic progression. Its elements can be any kind of
number: integer, float, or fraction. Although Interval contains all the numbers within a
specified range and with a specified increment between each number, it is represented
concisely with only three instance variables: beginning, end, and increment. Its elements
are regenerated upon access rather than stored in the instance. To create an instance, the
two Interval class messages, from-.to: and from:to:by:, are used. Class Number also
provides some shorthand messages, to: and to:by:, to create new Intervals.

Class OrderedCollection

OrderedCollections are ordered by the sequence in which objects are added to and
removed from them. They are like dynamic arrays, except that they can be expanded on
both ends. To facilitate this feature, messages are provided to add, remove, and access
both the beginning and end.

The add: message defined in class Collection is implemented to be like addLast:. Other
messages enable you to access, add, or remove an object in the middle by specifying its
preceding or succeeding object.

OrderedCollections can act as stacks or queues. Operations to a stack are typically
"last-in, first-out." Following is a comparison of terminology:

Typical Stack
Vocabulary

push newElement
pop
top
empty

OrderedCollection
Message

addLast: newObject
removeLast
last
isEmpty

Operations to a queue are typically "first-in, first-out":

Typical Queue
Vocabulary

add newElement
delete
front
empty

OrderedCollection
Message

addLast: newObject
removeFirst
first
isEmpty

Queues grow on one end and shrink on the other. When space is exhausted on the
growing end, an OrderedCollection always checks the shrinking end. If there is enough
space, it shifts the entire collection towards the shrinking end to make room for growing
at the other end. If there is not enough space, it will allocate a larger space and copy the
original collection to the new space.

230 Chapter 14: Smalltalk/V286 Classes

Class SortedCollection

SortedCollections are ordered according to a two-argument block called the sort block.
The sort block is used to determine whether two elements are correctly sorted relative to
each other. Because the position of each element is dictated by the sort block, messages
such as addLast: are disallowed. Message add: newObject, however, will insert the
newObject into the sorted position according to the sort block.

There are five ways to create a new instance:

SortedCollection new
SortedCollection new: 10
SortedCollection sortBlock: [:a :b I a > b]
anyCollection asSortedCollection
anyCollection asSortedCollection: [:a :b I a > b]

A sort block can be as complex as desired, but the last expression in the block must
evaluate to either true or false. For example, the following sort block assumes that strings
are being compared. It sorts the strings based on the number of unique vowels.

[:a :b I
(a asLowerCase select: [:c I c isVowel]) asSet size

(b asLowerCase select: [:c I c isVowel]) asSet size]

When the sort block is not specified at creation time, the following default sort block is
used:

[:a :b I a < = b]

The sort block can also be changed any time by sending message sortBlock: newBlock
to a SortedCollection which automatically resorts the whole collection according to the
newBlock.

Window Classes

To write an interactive application in Smalltalk/V, you need to understand Smalltalk/V
window technology. In Smalltalk/V, a window typically involves three major kinds of
classes (and their subclasses): the application classes (such as ClassBrowser) which
synchronize panes, the Pane classes which display on the screen, and the Dispatcher
classes which process keyboard and mouse inputs.

Chapter 14: Smalltalk/ V 286 Classes 231

The application class is also referred to as the model class. It has to be written for each
new application, although you can use an existing model as a template. The Pane and
Dispatcher classes and their subclasses are complete building blocks in the system, and
you rarely need to modify them.

The relationship among these classes is depicted in Figure 14.1 using the ClassBrowser
window as an example.

You can look at the model class as the skeleton of a window which organizes all the
window panes and is responsible for the communication and synchronization among the
panes.

The Pane class has two immediate subclasses: TopPane and SubPane. The main function
of an instance of class TopPane is to coordinate all of the subpanes in the model window.
Thus there is one and only one instance of class TopPane in each window. It holds the
window label located at the top of the window.

The SubPane class has three subclasses: GraphPane, IistPane and TextPane. An
instance of class IistPane provides a view of a list of strings. You can browse through
the list (scrolling if necessary), and select the string that you wish. When you make a
selection, the model instance will be notified and act accordingly.

An instance of class TextPane lets you view and edit the text that it contains. The text
is usually represented as an instance of class StringModel. When you save a piece of
modified text, the model instance is again notified to act according to your request.

Every pane has a unique dispatcher associated with it. The type of the pane determines
the type of the associated dispatcher. An instance of a Dispatcher subclass serves as a
messenger that collects input from the keyboard and mouse. It sends messages to its pane
to take actions according to the input events.

Keep in mind that for an application with window panes that involve only classes
GraphPane, IistPane and TextPane, you only need to know about the application
model. If you want to define new kinds of panes, then you also need to define
corresponding new Dispatcher subclasses, which means you need to learn about the
entire trilogy. Or if you want to re-assign the meaning of a function key, then you need
to know how to modify the existing Dispatchers. For these more advanced problems
refer to the Smalltalk source code and Part 4: Encyclopedia of Classes for the relevant
classes.

232 Chapter 14: Smalltalk/V 286 Classes

Dispatchers Panes Model

Mouse

Keyboard

Figure 14.1
Dispatcher, Pane,
Model Relationships

List Pane dictionaries

List Pane selectors

text

label

borders

Class Browser

Chapter 14: Smalltalk/ V 286 Classes 25

Application Model

An application model has five major functions:

• Remember the Current State
• Create Panes
• Initialize Contents of Panes
• Carry Out Communication and Synchronization
• Define Menus for Panes

Remember the Current State

This is normally accomplished by assigning application states to instance variables in the
model class. For example, class ClassBrowser has the following instance variables:

browsedClass
The class object you are currently browsing.

selectedDictionary
The current message dictionary (either class or instance) of the class you are
browsing.

selectedMethod
The currently selected method within the currently selected message dictionary.

The contents of these variables are normally initialized during pane creation and changed
from time to time by the change methods mentioned below.

Create Panes

The creation of panes is usually accomplished by sending the message open or openOn:,
depending on whether an argument is needed, to a new instance of the model class. It
initializes the following items:

• The label and minimum size of the window
• The name of each pane
• A menu creation message associated with each pane (optional)
• A framing block for calculating the area of each pane relative to the window
• A change message for each pane to send when the change in a pane has

global effects
• The model of each pane (usually the application model itself but can be

another model. This can also be changed dynamically.)

234 Chapter 14: Smalltalk/ V 286 C/asses

Following is the openOn: method defined in ClassBrowser:

openOn: aClass
"Create a class browser window on aClass.
Define the type, behavior and relative size
of each pane and schedule the window."

I topPane twoIineHeight I
(aClass isKindOf: Class)

ifFalse: [A nil],
browseddass := aClass.
topPane := TopPane new

label: aClass name, ' I ClassBrowser';
minimumSize: SysFontWidth * 20

@ (SysFontHeight * 8);
yourself.

twoIineHeight : = ListFont height * 2 + 4.
topPane addSubpane:

(IistPane new
model: self;
name: # dictionaries;
change: #dictionary:;
selection: 2;
framingBlock: [box I

box origin extent:
box width / / 5 @ twoIineHeight]).

selectedDictionary :— browsedClass.
topPane addSubpane:

(IistPane new
model: self;
name: # selectors;
menu: # selector Menu;
change: #selector:;
framingBlock: [:boxl

box origin + (0 (8) twoIineHeight)
extent: box width / / 5 @

(box height - twoIineHeight)]).
topPane addSubpane:

(TextPane new
model: self;
name: #text;
change: # accept:from:;
framingBlock: [:boxl

box origin + ((box width / / 5) @ 0)
corner: box corner]).

topPane dispatcher open schedule Window

Chapter 14: Smalltalk/ V 286 Classes 255

Invoking this method will create a window with three subpanes:

dictionaries (a ListPane)
selectors (a ListPane)
text (a TextPane)

In order for the window to work properly, the messages dictionaries, dictionary:,
selectors, selector:, selectorMenu, text, and accepr.from: must be defined as instance
methods in the model.

Initialize Contents of Panes

The application model must provide for each subpane a method with the same name as
the pane name which, when invoked, answers the data of the pane. For example, the
ClassBrowser has three methods to initialize its three subpanes:

dictionaries
"Answer the array of dictionaries"

A # (class instance)

selectors
"Answer a sorted list of selectors for the selected dictionary"

AselectedDictionary selectors asSortedCollection

text
"Answer the source text for the selected method"

AselectedDictionary sourceCodeAt: selectedMethod

Note that the first two methods answer an instance of a subclass of class IndexedCol-
lection whose elements must be printable like Strings or Symbols. The third one answers
a string (lines within the string are separated by line feeds). In case there is more data than
a string can hold, the method filelnFrom: in TextPane can be used to initialize its data
from an external file (refer to source code of the file method in the DiskBrowser class).

Cany Out Communication and Synchronization

When you make a selection or change the contents of pane data, the effect can be either
local or global. Global effects the model or other panes. Anything else is local. For
example, in the Class Browser, when you make a selection in the dictionaries pane, both
the selectors pane and text pane need to be synchronized. Thus the effect is global. If you
make editing changes in the Class Browser's text pane, the change is local because it does
not effect other panes or the model. When you save these changes, however, the text
needs to be compiled into the selected class and logged to the change log file. This can
only be done by the model, so the effect of saving the text is global.

236 Chapter 14: Smalltalk/ V 286 Classes

Specifying change messages in the open or openOn: method provides each pane with a
message to send when these global effects occur. The argument of a change message is
usually a piece of data passed from the pane to the model. For example, when you select
a method in the selectors pane, the following method in ClassBrowser is invoked by the
pane:

selector: aSymbol
"Display the selected method in the text pane"

selectedMethod := aSymbol.
self changed: #text

where the first statement changes the application state by assigning aSymbol to the
instance variable selectedMethod, and the second statement informs the text pane that
the state has changed and it needs to update its contents.

When the global effect calls for one or more updates in another pane, the changed: or
changed-.with: method defined in class Object can be used to broadcast the effect to all
subpanes of the model. In the previous example, selecting a method in the selectors pane
displays the source of the method in the text pane. The changed: message is used to
notify the text pane that the selectedMethod had been changed. The other message,
changed:with:, in addition to notifying subpanes, also passes an object as the argument
of the with: keyword to provide communication from the model to the panes.

When the subpane receives the update message (sent by method changed:) and its name
matches the argument of the changed: keyword, the pane name is sent as a message to
the model retrieving the new pane contents. To continue the previous example, after the
text pane receives the update message, it updates its own data by sending the text
message to the ClassBrowser to perform the text method which in turn answers a string
of the new text pane contents. This concludes the update, and the Dispatcher regains
control and waits for the next keyboard or mouse event.

Define Menus for Panes

If the menu: message is sent during the creation of a pane, a method with the same name
as the message argument must be defined in the model. This method answers an instance
of class Menu which contains the desired menu items for the pane. In the openOn:
method of the ClassBrowser, the message menu: #selectorMenu is sent to the selectors
pane. Thus a corresponding method is defined in the ClassBrowser:

selectorMenu
"Answer the selector pane menu"

A Menu
labels: 'remove\senders\implementors' withCrs
lines: # ()
selectors: # (removeSelector senders implementors)

Chapter 14: Smalltalk/ V 286 Classes 23 7

The string argument to labels: contains the items to be shown in the menu. Message
withCrs replaces backslashes (\) with line feeds in its receiver string. The argument to
selectors: is an array of messages to send when you select the corresponding item in the
menu. The methods carrying out these messages can be optionally defined in the model.
If you do not define them, the ones in the Dispatcher class (associated with the pane) are
used as defaults. If they are not defined in either class, an error results. The ClassBrowser
defines all three methods needed in the menu:

removeSelector
"Remove the selected method"

selectedMethod isNil
ifTrue: [A nil].

selectedDictionary
removeSelector: selectedMethod.

Smalltalk logEvaluate:
selectedDictionary name,
'removeSelector: # ' ,
selectedMethod.

selectedMethod := nil.
self

changed: #selectors with: # restore;
changed: #text

senders
"Popup a window with the senders of the selectedMethod"

selectedMethod = = nil
ifFalse: [Smalltalk sendersOf: selectedMethod]

implementors
"Popup a window with the implementors of the selectedMethod"

selectedMethod = = nil
ifFalse: [

Smalltalk implementorsOf: selectedMethod]

The removeSelector method provides another example of changing the current state and
using message changed: to inform the selectors pane to update.

238 Chapter 14: Smalltalk/ V 286 Classes

Pane

An instance of class TopPane is responsible for all the functions pertaining to the whole
window:

• Display the window frame and invoke each SubPane to display its pane
contents.

• Save, display, and highlight the window label.
• Activate the window and all subpanes.
• Answer whether the window contains a certain point.
• Close the TopPane and invoke each SubPane to close itself.

Class SubPane and its three subclasses, GraphPane, IistPane and TextPane are
responsible for functions that are specific to subpanes:

• Display the pane frame.
• Activate itself.
• Answer whether the pane contains a certain point.
• Display a portion of its data in the pane.
• Scroll data in four directions.
• Make a selection on a piece of its data.
• Close itself.

In addition, a TextPane provides the capabilities to cut, paste, copy, and execute portions
of its data.

Dispatcher

The main function of an instance of class Dispatcher and its subclasses is to interpret the
input from the keyboard or mouse and send an appropriate message to the corresponding
pane. It also has the following functions:

• Activate or de-activate the corresponding pane.
• Return the cursor to the top-left corner of its pane.
• Open or close the window.
• Cycle windows or panes in the window.

A TopDispatcher has the following additional functions:

• Provide methods to execute items in the window menu.

• Set or change the content of the window label bar.

Other Dispatchers have the following additional functions:

• Tell the pane to scroll its data by a specified amount.
• Tell the pane to handle selections.

Chapter 14: Smalltalk/ V 286 Classes 239

• Provide methods to execute items in the pane menu.

Prompter

Class Prompter gives an application writer a simple mechanism to pose a question and
solicit an answer. A Prompter is a window with its label showing the intended question
and a single text pane for editing the answer. It is a window application itself, but is often
used by other window applications as a building block. For example, when you create a
file using the Disk Browser, the first thing you see is a Prompter asking you to respond
with the file name.

To open a Prompter, you can send one of the following two messages to class Prompter:

Prompter prompt: question default: answer
Prompter prompt: question defaultExpression: answer

where both question and answer are strings. After the Prompter window is opened, the
answer string will be shown in its text pane as a default. The first message returns a string
as answered by the application user, while the second message returns an object resulting
from evaluating the answer. For instance,

Prompter prompt: 'Give me a string please'
default: '2 + 3'

returns '2 + 3', and

Prompter prompt: 'Give me an expression please'
defaultExpression: '2 + 3*

returns 5 after the default answer is accepted. If you cancel the Prompter, an answer of
nil will be returned by both messages.

Notice that when a Prompter is accepted or canceled, the program flow control is given
back to the caller of the Prompter. When most other kinds of windows are closed,
control is given to the Scheduler (described below) to cause another window to become
active.

Dispatch Manager

A DispatchManager schedules all the windows under its control. Normally only one
such instance exists in the system which is contained in the global variable Scheduler.
The Scheduler maintains an ordered collection of TopDispatchers and schedules
windows by sending messages to these TopDispatchers. It performs the following
functions:

• Add and remove dispatchers (thus windows).

240 Chapter 14: Smalltalk/ V 286 Classes

• Answer the TopDispatcher associated with the active window.
• Display all the windows.
• Cycle the ordering of windows.
• Search for the window containing the cursor and make it the active window.
• Re-initialize the system by removing all windows and then drawing the

System Transcript window.

Applications with Multiple Windows

One way to coordinate windows within a multi-windowed application is to have one
application model for all the windows in the application. You make each subpane of
these windows a dependent of the model. When a change is made to a subpane which
will have global effects, one of the change methods in the model will be invoked. It will
then decide what other subpanes will be affected and updated.

In Smalltalk, subpanes in one window can have non-unique names. Subpanes with the
same name are updated simultaneously in one broadcasting of changes. Since this is also
true for the one model multi-window approach, take care in giving the same name to
subpanes in different windows.

Another way to coordinate windows is to leave the current scheme of one model per
window as it is. In this case, one super model is created with all other models as its
dependents. In the super model, one change message is defined for each dependent.
When the lower-level model receives a change message, it updates its own panes as in the
single window application. In addition, the lower-level model sends an appropriate
change message to the super model which then broadcasts the change to other dependent
models. Each lower-level model should implement an update method to accept the
broadcasting from the super model.

A window can also be associated with the super model which can, for example, allow you
to select different functions in the application. Each selection triggers a sequence of
windows being activated. This approach provides more modularity. For instance, subpane
names are related to a particular lower-level model, so you do not have to be concerned
about name collisions among windows. This gives you an opportunity to use single-
window applications as building blocks. The disadvantage is that more levels of message
sends will be generated.

When an application wants to update a subpane which is outside of the current active
window, it should make the subpane's window the active window first. If it does not, the
portions of the subpane obscured by other windows will be overwritten.

Chapter 14: Smalltalk/ V 286 Classes 241

Graphic Classes

Smalltalk/V graphics are generated by bitmapped operations. In fact, Small talk/V uses
bitmapped graphics to generate the entire user interface.

A Bitmap is simply a linear array of bits. Each bit has a value of 1 or 0, with 1 representing
white and 0 black. Since a monochrome display screen is a two dimensional plane of
pixels, instances of class Form provide a two dimensional view of the bitmap to represent
the monochrome screen. A Form has a bitmap, a width and a height, which allows you
to manipulate the bitmap as if it were a two dimensional array of bits. The DisplayScreen
represents a monochrome screen which is a special kind of Form, and hence a subclass
of class Form.

A ColorScreen or a ColorForm (both are subclasses of Form) consists of an array of
bitmaps. This additional dimension allows colors other than black and white to be
recorded. All bits at the same location of each bitmap collectively represent the color of
the pixel at that location. For example, if the bit at location 0@0 in the first bitmap is
1, and the bits at the same location in the second, third, and fourth bitmap are 1, 0, and
0, then the color code for the top left pixel is the binary number 0011 (the bit in the first
bitmap is least significant) or 3 in decimal. The EGA and VGA graphics controllers allow
a maximum of four bitmaps, thus a maximum of 16 colors are available to be displayed
at any one time.

Almost all bitmapped operations involve moving bits from one place to another.
Naturally, you might think that you would implement this by simply sending messages
to a Form. Due to the complexity of these operations, however, another class, called
BitBlt, is created to handle all bitmapped operations.

Bitmapped operations address a bit or an area of bits in a Form. A Point addresses an
individual bit, while a Rectangle refers to a block of bits.

Bitmapped graphics, then, is centered around four classes and their subclasses: Point,
Rectangle, Form, and BitBlt. The rest of the chapter describes each of these classes in
detail.

Point

A Point addresses a bit within the bitmap of a two dimensional Form. It has two instance
variables: x, representing the column (horizontal) coordinate, and y, representing the row
(vertical) coordinate. The value of x increases to the right and y to the bottom.

The most efficient way to create a Point is by sending the @ message to an Integer. For
example, the top left corner of a Form can be addressed by the Point:

242 Chapter 14: Smalltalk/ V 286 Classes

i I '

0<S>0

where the first integer (receiver) is the x coordinate and the second integer (argument) the
y coordinate. The x: and y: messages alter the coordinates of a Point, while the x and y
messages retrieve these coordinates. A Point can also be compared with another Point.
Following are some examples:

Expression

(1 @ 100) x
(1 @ 100) y
(1 @ 100) x: 50
(1 @ 100) y: 50
(-2 @ 10) < (-1 @ 11)
(-2 @ 10) < (-1 @ 10)
(-2 @ 10) > (-3 @ 11)
(-2 (3) 10) max: (-3 (5) 11)
(-2 @ 10) min: (-3 @ 11)
1 @ 2 between: 0 @ 2 and: 2 @ 2 true

Result

1
100
50 @ 100
1 @ 50
true
false
false
-2@11
-3@ 10

Arithmetic can be performed on a Point with either a Point or a Number (as a scalar)
argument. The message transpose creates a new Point by swapping the two coordinates
of the receiver Point, while dotProduct gives the sum of the x product and y product
of two Points:

Expression Result

12)

2)

(1 @ 10) + (2
(3 <3> 22) - 10
(1 @ 10) * (3
(1 @ 10) / / 2
(-2 @ -3) abs
(2 @ 3) negated
(2 @ 4) dotProduct: (5
(2 (8) 4) transpose

@ 6)

3 (a
-7(i
3 ^
0(S
2(3
-2(5
34
4^S

9 22
| 12
^20

5-3

) 2

Rectangle

A Rectangle references a rectangular block of bits contained in a Form. It is represented
by two Points: the top left Point, called origin, and the bottom right Point, called
corner. Its width and height can then be calculated by:

width := corner x - origin x
height := corner y - origin y

Chapter 14: Smalltalk/ V 286 Classes 243

which represent the number of columns and the number of rows of bits contained in the
Rectangle. The Point represented by width @ height is called the extent of the
Rectangle. A simpler way to calculate the extent is:

extent := corner - origin.

A Rectangle is usually created by sending the corner: or extent: message to a Point. For
example, the following two expressions create two Rectangles covering the same area:

1 @ 1 corner: 100 @ 100
1 @ 1 extent: 99 @ 99

To illustrate the Rectangle instance messages, consider these rectangles, Boxl and Box2:

Boxl := 20 @ 0 corner: 150 @100.
Box2 := 70 @ 80 corner: 170 @ 120.

Expression Result

Boxl top 0
Boxl bottom 100
Box2 left 70
Box2 right 170
Boxl center 85 @
Boxl width 130
Boxl height 100
Boxl origin 20 @
Boxl corner 150
Boxl containsPoint: 50 @ 50 true
Boxl expandBy: 10 10 @
Box2 insetBy: 10 80 @
Boxl intersects: Box2 true
Boxl intersect: Box2 70 @
Boxl merge: Box2 20 @
Boxl translateBy: 10 @ 10 30 @
Boxl moveBy: 10 @ 10 30 @
Box2 moveTo: Boxl origin 30 @

50

@ 100

-10 corner: 160 @ 110
90 corner: 160 @ 110

80 corner: 150 @ 100
0 corner: 170 @ 120
10 corner: 160 @ 110
10 corner: 160 @ 110
10 corner: 130 @ 50

Notice that the last two expressions modify Boxl and Box2 themselves, while others
create new rectangles.

244 Chapter 14: Smalltalk/ V 286 Classes

Form

Class Form is a subclass of DisplayMedium, which in turn is a subclass of
DisplayObject. DisplayObject and DisplayMedium are abstract classes; they do not
hold any data. Their purpose is to group related methods together to be inherited by their
subclasses. (Part 4 lists their protocols.)

As we said earlier, the main purpose of a Form is to provide a two dimensional view for
a bitmap. It therefore has three instance variables: bits (which contains the bitmap), width
(which contains the number of pixels horizontally), and height (containing the number
of pixels vertically).

A Form also has three additional instance variables:

• offset is the Point on the DisplayScreen from which this Form was originally
copied by sending message fromDisplay: to class Form.

• byte Width is the number of bytes (8 bits) horizontally. For efficiency reasons,
each row of a Form is allocated in an integral number of words (16 bits).
Therefore, if its width is not an integral of the word size, the remainder bits
in the last word of each row (the right hand side of the Form) are not used.
This, however, is transparent to the user.

• deviceType denotes the type of device to which this Form belongs. When an
instance of class Form is created, its deviceType is automatically set to 0,
indicating that the Form resides in regular memory. When an instance of class
DisplayScreen (a subclass of Form) is created, it is set to 1, indicating that
the Form serves as the buffer for the display screen, whose address and size
are dictated by the graphics adapter and graphics mode being used. The
values of deviceType for instances of class ColorScreen, ColorForm, and
BiColorForm are 1, 3, and 2, respectively.

A global variable, called Display, contains an instance of either ColorScreen or
DisplayScreen. Every time you change the graphics mode, this variable is reinitialized to
the exact size of the screen. It can be used as any other Form; when pixels are moved to
Display, however, they are automatically shown on the screen. In other words, the
contents of Display reflect your monitor's display screen.

The following messages can be sent to class Form, BiColorForm, or ColorForm to
create new instances:

fromDisplay: aRectangle
Answer a new Form whose extent equals aRectangle's extent and whose
content is copied from aRectangle area of the display screen.

width: wlnteger height: hlnteger
Answer a white Form whose width is wlnteger and height is hlnteger.

Chapter 14: Smalltalk/ V 286 Classes 245

You can also use the message Form new to create an instance of Form, and then use one
of the following messages to initialize its variables:

extent: aPoint
Change the receiver width and height to the coordinates of aPoint.

width: w height: h
Change the receiver width to w and height to h, and allocate its bitmap with the
appropriate size.

width: w height: h initialByte: aByte
Change the receiver width to w and height to h, and initialize every byte in the
bitmap to aByte.

Other useful messages are copy:from:to:rule:, which copies the contents of one Form to
another Form; display At: and displayOn:at:clippingBox:rule:mask:, which display the
contents of a Form on the screen; and outputToPrinter, which shows the contents of
a Form on a printer. Refer to the description of Form in Part 4, The Encyclopedia of
Classes, for the definition of these messages.

BitBIt

Class BitBIt ("bit block transfer") describes all the parameters in a basic bitmapped
operation. This basic bitmapped operation is to move a block of bits from one place to
another. More complicated operations, such as drawing a line, involve a sequence of such
basic moves. This basic operation can sometimes become rather complicated when all the
parameters are involved.

This basic operation works as follows. You first define a source rectangle on the source
form. The bits from the source rectangle are combined with the bits from the mask form
with a logical AND operation. The resulting rectangle of bits are combined into the
destination Form rectangle with a specified combination rule and clipping rectangle.

The following figure shows how the parameters of a BitBIt determine which bits are
involved in the bit transfer:

246 Chapter 14: Smalltalk/ V 286 Classes

source form

Figure 14.2
BitBlt Clipping

destination form

clipping rectangle

destination rectangle

And the following figure shows how the resultant bits are produced by combining the
source bits, mask bits, and destination bits with a combination rule:

source bits mask bits

destination
bits -Xfule) result bits

Figure 14.3
BitBlt Operation

For example, suppose

source bits = 11110000
mask bits = 10101010
dest bits = 00001111
rule = logical OR

the resultant bits would be 10101111. These resultant bits are then stored back to the
destination Form.

Chapter 14: Smalltalk/ V 286 Classes 247

A mask form has a fixed width and height of 16. If its extent is smaller than the source
rectangle extent, its bits are repeated both horizontally and vertically up to the extent of
the source form rectangle so that they can be ANDed with each bit in the source
rectangle. The effect of this is to provide a halftone texture for the 1 bits in the source
rectangle. The mask Form, therefore, is also called halftone Form. The following
expressions obtain a prebuilt mask Form whose halftone is the same as the message name:

Form white
Form black
Form gray
Form darkGray
Form lightGray

When the destination is a ColorForm or ColorScreen and the source is a Form or
BiColorForm, a BiColorForm mask can be used to obtain colors other than black and
white. This is not a rare case. For example, both Pen and CharacterScanner instances are
in this category. BiColorForm has two additional instance variables: foreColor and
backColor. When a BiColorForm is used as a mask form, its foreColor specifies the
color for 1 bits and the backColor the color of 0 bits after source bits are ANDed with
the mask form bits. To obtain a BiColorForm mask, the following messages can be used:

BiColorForm color: 1.
BiColorForm gray foreColor: 2 backColor: 4.

The first message returns a 16 by 16 BiColorForm whose bitmap consists of all 1 bits and
whose foreground color is 1 (blue) and background color is 0. The second message
returns a 16 by 16 BiColorForm whose bitmap consists of alternating 0 and 1 bits and
whose foreground color is 2 and background color is 4.

When the ANDed source bits are combined into the destination form rectangle, two
additional parameters must be specified. One is the combination rule, which indicates how
the source bits are to be combined with the destination bits. The other is the clipping
rectangle, which limits the affected area on the destination form. To access the
combination rules supported by Smalltalk/V, send a message to class Form:

Form over
Form orRule
Form andRule
Form under
Form erase
Form reverse
Form orThru

destination becomes source
source OR into destination
source AND into destination
source AND into destination
if source is 1 then destination becomes 0
source XOR into destination
first erase without specifying mask Form,
then OR with mask Form specified

The final affected area on the destination Form can be simulated as follows:

248 Chapter 14: Smalltalk/ V 286 Classes

AffectedRect : = sourceRect intersect:
sourceForm boundingBox.

AffectedRect moveBy: destRect origin - sourceRect origin.
AffectedRect : =

((AffectedRect intersect: destRect)
intersect: destForm boundingBox)
intersect: clipping Rect

The instance variables of BitBlt are:

sourceForm destForm halftone rule width height
sourceX sourceY destX destY clipX clipY clip Width clipHeight

Refer to BitBlt in Part 4, The Encyclopedia of Classes for a description of all instance
variables.

In terms of instance variables, the source rectangle is defined as:

sourceX @ sourceY extent: width (8) height

The destination rectangle is defined as:

destX @ destY extent: width (S> height

And the clipping rectangle is defined as:

clipX @ clipY extent: clip Width @ clipHeight

The sourceForm must be either nil or an instance of Form or its subclasses. The halftone
must be either nil or an instance of Form or BiColorForm with width and height equal
to 16. The destForm must be an instance of Form or its subclasses. All other instance
variables must be a Smalllnteger. When sourceForm or halftone is nil, it implies an
infinitely large form with contents of all 1 bits.

Note that the source form and destination form can be the same form. In this case, the
only complication is that the source rectangle may overlay the destination rectangle.
When such overlay occurs, the operation is carried out as if the source bits were first
copied to an intermediate Form, and then copied to the destination rectangle. The actual
implementation still amounts to a single move and is as efficient as moving between
different Forms.

To create an instance of class BitBlt, use the class message:

destForm:sourceForm:

with only destination and source forms specified. Other instance variables are supplied
with the following default values:

Chapter 14: Smalltalk/V 286 Classes 249

sourceX := source Y := 0.
destX := destY := 0.
clipX := clipY : = 0.
width := destForm width,
height : = destForm height,
clip Width := destForm width.
clipHeight := destForm height,
rule := Form over

If you want to specify all parameters, use BitBlt new to create an instance, and then send
the following message to the new instance to set the instance variables:

destForm:
sourceForm:
halftone:
combinationRule:
destOrigin:
sourceOrigin:
extent:
clipRect:

Class BitBlt supplies numerous messages to change a small number of parameters. Refer
to BitBlt in Part 4, The Encyclopedia of Classes for a list of all messages.

After the parameters have been correctly set up, two messages in class BitBlt actually
move the bits:

copyBits

does exactly what it says: moves bits from one place to another.

drawLoopX: xDelta Y: yDelta

draws a line from the destination origin to:

(destX @ destY) + (xDelta @ yDelta).

The line is drawn by performing a sequence of copyBits, starting from the destination
origin up to the other end of the line. For each copyBits, the destination origin is moved
by one pixel horizontally and/or vertically towards the other end.

250 Chapter 14: Smalltalk/ V 286 Classes

l <

CharacterScanner

CharacterScanner is a subclass of BitBlt. Its main function is to convert a String of
ASCII characters to displayable bitmapped shapes. It therefore adds an instance variable,
curFont, which contains the current Font being used for conversion. A Font provides a
Form containing all the bitmap images of characters. It also has an index table which
gives the source origin of each character within the Form. (Class Font is discussed in
Chapter 15.) To display a Character, you use its ASCII value to obtain the source origin
from the index table and then move the bitmap image to the destination form.

To create a CharacterScanner, use either trie expression:

CharacterScanner new
initialize: clipRect
font: aFont

or

CharacterScanner new
initialize: clipRect
font: aFont
dest: aForm

The former method uses Display as the destination form, while the latter specifies aForm
as its destination. Both specify aFont as the current font and clipRect as the clipping
rectangle.

CharacterScanner has an instance variable, frame, which is initialized by both of the
above messages to contain clipRect. This allows you to temporarily change the clipping
rectangle and later restore it back to frame.

To specify colors, CharacterScanner has another two variables: foreColor specifies the
color of the character, and backColor specifies the color of the background. They default
to black and white, respectively, with both of the above messages.

To display a string, send the following message to a CharacterScanner:

display: aString
at: startPoint

where startPoint is the top left corner, relative to the origin of the frame, of the displayed
string. To display a portion of a string, send the message:

display: aString
from: startChar
to: endChar
at: startPoint

Chapter 14: Smalltalk/ V 286 Classes 251

where startChar and endChar bracket the portion of the string to be displayed. Another
message,

display: aString
from: startChar
at: startPoint

displays aString from startChar up to its last character at startPoint in the frame. In
addition, it blanks out the rest of the line after the last character. This is often used when
replacing a portion of the line with another string. Blanking out the rest of the line is
needed since the length of the line may change after the replacement.

If you want to display a string without bothering its background, use the message:

show: aString from: start at: aPoint

which displays aString from start character up to its last character at aPoint in the frame
without changing the background.

Other useful messages are:

displayForm: aForm at: aPoint rule: aRule
Display aForm at aPoint in the frame using aRule.

gray: aRect
Color aRect in frame with gray tone.

reverse: aRect
Reverse the color of aRect in frame.

setFont: aFont
Change the font to aFont.

setForeColor: fColor backColor: bColor
Set the foreground color to fColor and background color to bColor.

Pen

Class Pen provides a graphics interface similar to turtle graphics. It adds the following
parameters to BitBlt:

• location consists of destX and destY, which represent the integer coordi-
nates of a Pen's current location, and fractionX and fractionY, which
represent the hundredth fractional part of the coordinates.

• direction is an instance variable containing a number between 0 and 359
degrees, which specifies where the Pen is heading. 0 makes the Pen go east,
90 makes it go south, and 270 north.

252 Chapter 14: Smalltalk/ V 286 Classes

• downState is an instance variable containing true or false, indicating whether
the Pen draws while it moves.

The source form of a Pen represents its nib. Thus, to draw a thicker line, simply expand
the extent of the source form. The mask form provides the color of the Pen. The
destination form is the form on which the Pen is going to draw. The clipping rectangle
limits the area on which the drawing can have any effect.

The expression:

Pen new

creates a Pen with a nib of size 1 by 1, black color, Display as its destination form, the
entire Display area as its clipping rectangle, the center of the Display as its location, a
direction of north, and its downState equal to true. The expression:

Pen new: aForm

creates a similar Pen except, that it draws on aForm rather than Display.

The following messages (in addition to the ones provided in BitBlt) can be used to
modify a Pen's parameters:

black
Change the Pen color to black.

gray
Change the Pen color to gray.

white
Change the Pen color to white.

changeNib: aForm
Change the source Form (nib) to aForm.

defaultNib: shape
Change the size of the nib to shape which can be either a number or a point.

direction: aNumber
Set the direction to aNumber degrees.

turn: anlnteger
Turn the receiver Pen anlnteger number of degrees which can be either positive
or negative.

down
Set down the pen.

Chapter 14: Smalltalk/ V 286 Classes 253

up
Lift up the pen.

home
Center the pen on the destination form.

north
Set the direction to 270 degrees.

place: aPoint
Position the receiver Pen at aPoint.

The following messages move the Pen by a certain pattern. If the Pen is down, the pattern
will be drawn:

grid: scale
Draw a grid within the clipping rectangle where scale is the space between lines.

bounce: increment
If the Pen touches the clipping rectangle after going for increment, change its
direction so that it looks like bouncing off the wall.

ellipse: r aspect: asp
Draw an ellipse with pen position as its center, r as half of the width, asp as the
ratio of ellipse height to width. The height will be adjusted by Aspect.

nllAt: aPoint
Color all pixels that are connected to aPoint and have the same color as that of
aPoint by the pattern contained in mask form.

go: distance
Move the receiver Pen for length distance in the current direction. The y-axis
will be adjusted by Aspect.

goto: aPoint
Move the receiver Pen to aPoint.

polygon: length sides: n
Draw a polygon with n sides, each length long.

Notice that the ellipse:aspect: and go: messages both adjust their y-axis by the ratio
contained in the global variable Aspect. With this adjustment, you can draw a real circle
or a real square. To find out the correct Aspect ratio for your screen, first display a Form
with the same width and height, measure with a ruler the width and height of the
displayed rectangle, and evaluate:

254 Chapter 14: Smalltalk/ V 286 Classes

Aspect := measuredWidth / measuredHeight.

Class Pen has a subclass called Commander. An instance of Commander contains an
Array of Pens. Many messages implemented by Pen are reimplemented in Commander
so that every Pen in the Commander receives the same message. This creates the illusion
that all pens are moving at the same time. To create a Commander, evaluate the following
expression:

Commander new: numberOfPens.

A Commander has two unique messages:

fanOut
Turn each Pen's direction by an increment of 360 / (number of Pens).

lineUpFrom: startPoint to: endPoint
Place all pens on a line specified by startPoint and endPoint with pens equally
spaced between the two points.

Animation

Class Pen also has another subclass, called Animation. Each instance of Animation
contains an object kept as a Pen with a name, a color, and an Array of pictures. When
an object moves, the Animation erases its old image before displaying it at the new
location. To create an Animation, evaluate:

Animation new initialize: aRectangle

where aRectangle is the clipping rectangle on Display. To add an object to an
Animation, send the message:

add: formArray name: aName color: aSymbol

The formArray is an Array of Forms simulating the continuous movement of the object.
The argument aName is normally a String or a Symbol to identify the object. The
argument aSymbol is the selector for a unary message which can be sent to class Form
to return a mask form (such as # black, # white, etc.).

Animation has the following messages to change the behavior of its objects:

tell: name bounce: increment
Tell the object with the name to bounce for increment distance.

tell: name direction: anlnteger
Tell the object with the name to change its direction to anlnteger.

tell: name go: distance
Tell the object with the name to go for distance.

Chapter 14: Smalltalk/ V 286 Classes 2.5.5

tell: name place: aPoint
Tell the object with the name to be placed at aPoint.

tell: name turn: anlnteger
Tell the object with the name to turn by anlnteger degrees.

speed: anlnteger
Change the distance between the consecutive copies to anlnteger. The larger
the distance, the faster the object moves.

shiftRate: anlnteger
Specify how many times the current picture will be copied before shifting to the
next one. By increasing the value of anlnteger, the motion within the object
will appear slower even though it is traveling the same distance.

Integrating Color and Monochrome Displays

Many applications expect to run on both monochrome and color displays with one
Smalltalk/V image. Following are some guidelines for developing such applications.

When you want to create a Form that contains a portion of the display, use the message:

Display compatibleForm

to obtain the class of the new Form. It returns either class Form or class ColorForm
depending on whether the class of Display is DisplayScreen or ColorScreen, respec-
tively. For example:

Display compatibleForm fromDisplay: (0 @ 0 extent: 100 @ 100)

creates a Form or ColorForm containing the top left 100 by 100 area of the screen
without worrying about whether the screen has color or not.

When you want to create a mask that is compatible with the destination, use the message
compatibleMask. It returns class Form if the receiver of the message is a Form,
BiColorForm, or DisplayScreen; or returns class BiColorForm if the receiver is a
ColorForm or ColorScreen. This message is often used in conjunction with the message
color: to obtain the desired color. For example:

Display compatibleMask color: 1

returns either a Form with all 0 bits if Display is a DisplayScreen, or a BiColorForm
with all 1 bits and a foreground color 1 if Display is a ColorScreen. The way the color:
message works is as follows. If the receiver is class BiColorForm, then the color:
message returns a 16 by 16 BiColorForm with all 1 bits and its foreground color set to
the argument and background color set to 0. If the receiver is class Form, the message
returns a 16 by 16 Form with all bits set to 0 if the argument of the message is between

256 Chapter 14: Smalltalk/ V 286 Classes

0 and 7, or set to 1 if the argument is between 8 and 15. In other words, for a Form mask,
the color: message maps the first eight colors into 0 bits and the remaining 8 colors into
1 bits. Because of this mapping, when you use a Pen or a CharacterScanner, you had
better choose the foreground colors from one set of eight colors and background colors
from the other set of eight colors. Otherwise, when you run on a monochrome display,
you will end up drawing white on white, or black on black, making the result invisible.

Multiprocessing Classes

Object-oriented computing in Smalltalk involves communicating objects which send
messages to each other to perform useful work. Although this suggests parallel
computation, it actually is not. An object always waits to receive a response after sending
a message. The situation corresponds to that of using a procedural language, where at any
point in time there is a stack of incomplete procedure calls, and there is a single procedure
which is active. In Smalltalk, there is a stack of incomplete message sends, and there is
a single method which is active.

Smalltalk/V provides parallel processing by defining multiple stacks of incomplete
message sends, where each stack is represented by a separate object of class Process.
Since there is a single processor, the parallelism is simulated. At any time, only a single
process is executing. However there may be many processes ready to execute and there
are well defined conditions under which Smalltalk/V switches to a new current process.
Semaphore objects are provided for synchronization among processes.

A new process is created by sending the message fork to a block. For example:

[Transcript show: 'Hello'; cr] fork.
Transcript show: 'Goodbye'; cr

This example creates a separate process to execute the code within the block and
continues execution of the current process in the code following the block. The result
displayed in the System Transcript is:

Hello
Goodbye

The output shows that the new process is initiated before the current process is
continued, although both processes operate at the same priority. Processes can be given
different priorities by sending the forkAt: message to a block. For example:

[[Transcript show: 'world!'; cr] forkAt: 2.
Transcript show: 'Hello '] forkAt: 3

The example above creates two new processes, one at priority two and the other at
priority three. Since higher priority processes are scheduled first, the output on the System
Transcript is:

Chapter 14: Smalltalk/ V 286 Classes 237

Hello world!

Multiprocessing is especially useful in discrete event simulation because it allows each
simulation object to carry out its behavior as a separate process, using semaphores to
synchronize processes. Multiprocessing is implemented in Smalltalk/V by classes
Process, ProcessScheduler and Semaphore.

For some interesting examples of multiprocessing applications in Smalltalk, see the
following publications:

A Little Smalltalk, Timothy Budd, Addison-Wesley 1987, page 116, "The
Dining Philosophers Problem".

Smalltalk-80, the Language and its Implementation, Adele Goldberg and
David Robson, Addison-Wesley 1983, page 262, "Resource Sharing".

Semaphore

Semaphore is a subclass of Object. A Semaphore is an object used to synchronize
multiple processes. A process waits for an event to occur by sending the message wait
to a semaphore. A process signals that an event has occurred by sending the message
signal to a semaphore.

A semaphore has two instance variables:

signalCount
Contains an Integer representing the number of signal messages minus the
number of wait messages sent to the semaphore during its entire lifetime.

waitingProcesses
Contains an OrderedCollection of processes that have sent the message wait to
the semaphore without a corresponding signal message. New waiting processes
are added at the end of the collection.

An example of the use of semaphores is the following:

Isl
s : = Semaphore new.
[Transcript show: '1'] fork.
[Transcript show: '2'.s wait. Transcript show: '3']

forkAt: 3.
[Transcript show: '4'.s signal. Transcript show: '5'; cr]

forkAt: 2

258 Chapter 14: Smalltalk/ V 286 Classes

This example creates three new processes. The output displayed on the System Transcript
is:

12 4 3 5

This output is created as follows. The fork message creates a process which shows 'I'.
The forkAt: 3 message creates a process which shows '2' and then is blocked waiting on
the semaphore. The forkAt: 2 message creates a process which shows '4' and signals the
semaphore. This allows the higher priority process to resume, show '3 ' and terminate.
Then the process at priority 2 resumes, shows '5 ' and terminates. The initiating process,
the user interface, is running concurrently with these processes.

Process

Process is a subclass of OrderedCollection. A process is a sequence of computations in
Smalltalk carried out by objects sending messages to other objects and waiting for the
results. An object of class Process describes such a computation sequence. A process has
a name and a priority. A process exists in one of several states. Figure 14.4 shows the
state transitions a process can make.

Figure 14.4
Process State Transitions

The process state transitions occur for the following reasons:

• A new process is created and becomes ready as a result of sending the fork
and forkAt: messages to a block.

Chapter 14: Smalltalk/ V 286 Classes 259

• A ready process becomes active if it is the longest waiting at its priority and
there are no higher priority ready processes and: (l) the active process
becomes blocked or dead, (2) the ready process has higher priority than the
active process, or (3) the ready process has the same priority as the active
process and the following expression is executed:

Processor yield

• The active process becomes ready when it is replaced by a ready process
under the conditions described above for transition 2.

• An active process becomes blocked when the message wait is sent to a
semaphore which has no excess signals.

• A blocked process becomes ready when it is the first in the waiting queue of
a semaphore and the message signal is sent to the semaphore.

• The active process becomes dead when it reaches the end of the block which
caused process creation as a result of the fork or forkAt: messages, or when
the following expression is executed:

Processor schedule

The User Interface Process

The Smalltalk/V user interface is driven by a single process which responds to all
keyboard and mouse input events for all windows. The user interface process alternates
between (l) responding to an input event, and (2) waiting for the next input by sending
the message wait to global variable KeyboardSemaphore. When there is no input
activity, other lower-priority processes can run. The process scheduler guarantees that
there is always a lowest priority idle process to run when there is no other system activity.

Errors are handled by a debugger running under the user interface process whether or not
the error occurs in the user interface process. If the error: message is sent under the user
interface process, the current process is suspended and a new user interface process is
created. This allows the process with the error to be debugged with the debugger. If
error: is sent by a non-user-interface process, an entry describing the error is placed in
the PendingEvents queue (a global variable). PendingEvents is polled for activity by the
user interface process when there is no other input activity.

ProcessScheduler

Class ProcessScheduler is a subclass of Object. A ProcessScheduler controls process
execution. There is a single instance of class ProcessScheduler maintained in global
variable Processor. The process scheduler determines which ready process is the active
process and maintains a queue of ready but inactive processes. The highest priority ready

260 Chapter 14: Smalltalk/V 286 Classes

process is selected as the active process. If there is more than one process at the highest
priority, the process that has been ready the longest is chosen.

Process priorities may range between 1 and Processor topPriority.

Interrupts

Interrupts are the mechanism used for communicating asynchronous external events to
Smalltalk/V. Examples of external events are keyboard inputs, mouse movements and
clock ticks. The set of interrupt events can be extended by you.

The Smalltalk/V interrupt model corresponds to typical computer hardware interrupt
architectures. Interrupts may be explicitly enabled and disabled. When an interrupt event
occurs and interrupts are enabled, interrupts are disabled and a vmlnterrupt: message is
sent to the object at the top of the execution stack for the current process. The argument
to vmlnterrupt: is the selector of the method defined in Process class which services the
interrupt. An interrupt routine concludes by enabling interrupts and returning to
vmlnterrupt:, which answers self, leaving the execution stack exactly as before the
interrupt.

When an interrupt event occurs and interrupts are disabled, the Smalltalk/V places the
interrupt event in a pending interrupts queue. Each time interrupts are enabled, the
pending interrupts queue is examined to see if there are additional interrupts to be
serviced.

The typical interrupt processing method merely signals a semaphore to resume a process
to handle the event. For eaxmple, the keyboard interrupt handler in class Process is as
follows:

keyboardlnterrupt
'Handle keyboard interrupt."

KeyboardSemaphore signal

Note that the semaphore signal message enables interrupts if they are disabled. Interrupts
are explicitly enabled and disabled by sending the message enablelnterrupts: to Process
class. Disabling interrupts should be used with extreme caution, because Smalltalk/V
cannot respond to external events while interrupts are disabled. The interrupt state may
be preserved around a critical code section as follows:

I oldState I
oldState := Process enablelnterrupts: false, "disable and save state"
" ... critical code ... "
Process enablelnterrupts: oldState "restore interrupt state"

Chapter 14: Smalltalk/ V 286 Classes 261

Global variable InterruptSelectors contains an array of selectors corresponding to
interrupt events defined as follows:

Interrupt
Number Selector

1 undefinedlnterrupt
2 controlBreaklnterrupt
3 timerlnterrupt
4 ioErrorlnterrupt
5 tracelnterrupt
6 breakpointlnterrupt
7 lowMemorylnterrupt
8 keyboardlnterrupt
9 overrunlnterrupt

10 commlnterrupt

Event

Interrupt number outside array bounds
Control and break keys struck
Millisecond clock tick
DOS critical error
Debugger hop and skip completion
Debugger breakpoint reached
Not much memory left after garbage collect
Mouse events and keyboard inputs
Interrupts lost because queue full
Communication port event

Interrupts to Smalltalk/V can be generated from device drivers (see Appendix 2,
Primitive Methods). Add the selectors for the new interrupt handling methods to the
end of the InterruptSelectors array.

15 SMALLTALK/V 286 ENVIRONMENT

This chapter describes the Smalltalk/V environment, including

• how to use windows, panes and menus;
• how to use the Smalltalk/V text editor;
• how to evaluate Smalltalk expressions; and
• how to maintain your Smalltalk/V system

Figure 15.1 shows a typical Smalltalk/V screen with three windows. A System Transcript,
a Workspace, and a Class Browser.

Figure 15.1
Smalltalk/V Screen

•MiltiEUipse
nu It ilianda la
wultiPentagon

"Draw a Mandala."
Display fill: rectangle *

rule: Fora over
mask: (Display coapatibleHask color: 8).

pen homo!
north;
mask: (Display compatihleHask color: 8);
•tandala: 24 diameter: 388.

Every window in Smalltalk/V has a label bar and is surrounded by a border. The area
inside the border is divided into one or more panes. In our example, the Workspace and
the System Transcript each have a single pane, and the Class Browser has three panes.

The Keypad

The arrow that moves around the screen is the cursor. You move the cursor by pressing
the cursor arrow keys on the keypad, as shown in Figure 15.2. Pressing an arrow key
moves the cursor one space in the direction of the arrow. Pressing the arrow key while
holding down the shift key makes the cursor jump several spaces in the direction of the
arrow.

If you have a mouse, the left button serves as the select key and the right button for other
functions. These keys are described throughout this chapter. You can reassign these keys,
and any other keyboard keys if you wish.

II. I

264 Chapter 15: Smalltalk/V 286 Environment

Figure 15.2
Cursor Movement Keys

F9
cycle
windows

F10
cycle
panes

7
scroll
left

4

<—

1
scroll
right

window
menu

8T
5

2

A

9
scroll
up

6

- »

3
scroll
down

pane
menu

extend
select

+

select

If your mouse has three buttons, pressing the middle button produces a beep. You can,
however, modify the behavior of the mouse, as well as anything else in the environment.
Soon you will feel comfortable enough with Smalltalk/V to customize your system. If
you want to program the third mouse button, start with the method initialState in class
TerminalStream. Or, if you find that the scroll speed is too fast or too slow you may
want to modify the method scrollDelay: in the class ScrollDispatcher.

Active Window

To select a window, move the cursor into the window and press the select key, or, if you
have a mouse, position the cursor within the window and click (quickly press and release)
the left mouse button.

The window that you have selected is called the active window. The active window is
always on top of all other windows and its label bar is reversed. A window remains active
regardless of whether or not the cursor is inside it. To deactivate a window, move the
cursor outside of the window, and press the select key or the left mouse button.

The screen is considered the active window if you last pressed the select key when the
cursor was outside of all windows. When no window is active, all of the label bars have
a normal appearance.

Chapter 15: Smalltalk/V 286 Environment 265

Cycling

Smalltalk/V provides a fast way to move the cursor about the screen. Pressing the cycle
windows key moves the cursor to the next window in a clockwise direction and
automatically activates it. This is called window cycling.

Similarly, pressing the cycle panes key moves the cursor from pane to pane in a clockwise
direction within a window. This is called pane cycling.

Using Menus

System Menu

Menus are the standard way of giving commands to Smalltalk/V. The system menu has
commands for creating new windows, saving your work, exiting the environment, and
redrawing the screen.

To pop up the system menu, move the cursor outside all windows on the screen, and
press either the window menu key or the pane menu key, or, if you have a mouse, click
the right button.

To select a menu function, move the cursor to the desired function and press the select key
(the line on which the cursor sits becomes reversed to show that it is selected).
Smalltalk/V immediately performs the action, and the menu disappears.

To leave a menu without performing any function, move the cursor outside the menu in
any direction. If you have a mouse, then click the left mouse button. The menu
disappears.

The other functions of the system menu are described in detail in subsequent chapters.

Window and Pane Menus

Smalltalk/V includes several menus, some of which are shown in Figure 15.3. You must
leave a menu before you can pop up a different menu. The menu that you get at any time
is determined by the cursor location and which menu key you use.

To pop up a window menu, move the cursor into a window and press the window menu
key or, if you have a mouse, click the right button. If you have a mouse, the cursor must
be on the label bar, any border line of the window, or any pane border line within the
window. The window menu contains functions specific to that window.

266 Chapter 15: Smalltalk/V 286 Environment

1 u

Figure 15.3
Smalltalk/V Menus

broMse disk
open workspace
broMse classes
redraw screen
save inage
run dean

To pop up a pane menu, move the cursor into a pane of the window and press the pane
menu key or, if you have a mouse, click the right button. The pane menu contains
functions specific to that pane.

If you press either menu key or the right mouse button when the cursor is outside of
every window, the system menu is popped up.

Manipulating Windows

Opening a Workspace

Windows are usually opened from menus. To open a new workspace, select open
workspace from the system menu. An active workspace window opens up. This window
can be closed, collapsed or resized using the label bar buttons and manipulated like other
windows using the window menu.

Label Bar

The label bar, shown in Figure 15.4, displays the window title along with two or more
small buttons, depending on which Smalltalk/V window is open. The buttons provide
quick access to specific window activities.

To select a button, place the cursor on the button and click the left mouse button or use
the numeric keypad + key.

Close Button: When selected, the window closes and disappears from the screen.

Chapter 15: Smalltalk/V 286 Environment 267

This window is in the process of being

collapse

resize

Figure 15.4
Label Bar
and Window
Resizing

Zoom Button: When selected, Smalltalk/V zooms in on the text pane so that it fills the
whole screen. To unzoom the text pane, click on the label bar and the window redraws
to its original configuration. You can also use the F8 function key to zoom a text pane.

Collapse Button: When selected, the window collapses to show only the label bar. If the
window is already collapsed, selecting this button expands the window to its original size
and position on the screen.

Resize Button: Select this button and the system responds with a rectangle outline for
resizing the window, shown in Figure 15.4.

With a mouse. With the cursor on the resize button, press and hold down the left
mouse button while you move the mouse to drag the cursor and resize the
rectangle outline. Release the mouse button to redraw the window.

With the keypad. Select the resize button with the numeric keypad + key; then
use the keyboard cursor keys to move the cursor and resize the rectangle outline.
Press and release the numeric keypad + key to redraw the window.

Common Window Menu Functions

The window menu of every window has functions that apply to the window as a whole.

To move a window, select move from the window menu of the window you want to move
or move the cursor over the window label and hold down the left mouse button. You'll
then see a rectangle outline that is the size of the window being moved. Move the cursor
until the rectangle outline is in the desired location and press the select key or release the
left mouse button. Smalltalk/V moves the window to its new location.

268 Chapter 15: Smalltalk/ V 286 Environment

To frame or resize a window, pop up the window menu and select the frame function.
Smalltalk/V responds with a rectangle outline, as shown in Figure 15.4. Move the
rectangle until the lower right corner is in the location you want, and press the select key
or click the left mouse button. Smalltalk/V and changes the window's size.

To change the color of a window, pop up the window menu and select the color option.
A second menu comes up from which you can choose text color or background color.
Selecting either one causes a third menu containing a palette of 16 colors to appear.
Choosing a color makes either the text or background color of the window change
accordingly.

Collapse causes the window to be collapsed so that only the label bar is visible. The
contents of the window remain intact; you just can't see them. To make the contents
visible again, select frame from the menu and reframe the window or select collapse a
second time and the window will open to its previous size and position.

Cycle causes a window underneath other windows to pop up on top and become the
active window. This is the same as pressing the window cycle (F9) key.

Label lets you type in a new label for the window. When label is selected, Smalltalk/V
pops up a prompter window where you can type a new label. Just type the new label, and
press the return key when finished.

Close causes the window and its contents to disappear.

Panes

Windows are composed of one or more panes. There are three kinds of panes: text panes,
list panes, and graph panes.

Many of the windows in the Smalltalk/V environment have panes that allow you to
modify or edit text. These are called text panes. The System Transcript is a window with
only a single text pane, as is any Workspace. These and all other text panes use the same
text editor.

Other windows in the Smalltalk/V environment have panes that allow you to select from
a list of items. These are called list panes. Windows that have list panes are usually
referred to as browsers. The Class Browser is an example of a window with two list panes
and one text pane.

The third kind of pane, graph pane, allows you to draw pictures. Since graph panes are
not used by any of the standard windows in the Smalltalk/V environment, they are not
explained in this chapter. Refer to the graphics and windows tutorials and reference
sections for more information.

Chapter 15: Smalltalk/V 286 Environment 269

scroll bar

scroll cursor

Figure 15.5
Pane with
Scroll Bar
and Cursor

This is sample text. It will scroll upward and out
of sight as you click and drag the mouse downward

' within this pane.

Scrolling will cause this text to nove upward in this
pane, revealing the text which is below and currently
not ,,1,11,1.

Scrolling

There are many instances when the contents of a pane are larger than the pane itself. You
can think of a pane as a screen which lets you see only a portion of a pane's contents,
as shown in Figure 15.5. Scrolling lets you move this screen around the text so that you
can see a different portion of it.

You can scroll through a file using either the mouse or keypad keys. However, when you
use the mouse, you have access to the scroll bar.

The scroll bar displays the relative location of the visible contents of the file to the file
as a whole. By positioning the scroll cursor on the scroll bar and releasing the right mouse
button, you quick jump around the file.

Experiment with this often missed feature. It is particularly useful for use with large files
where scrolling would be time consuming.

Scrolling With the Keyboard

To scroll vertically, use the PgUp and PgDn keys. Pressing PgUp moves the pane
contents up one line, while pressing PgDn moves the pane contents down one line.

To scroll horizontally, use the Home and End keys. Pressing Home moves the pane
contents four characters to the right. Pressing End moves the pane contents four
characters to the left.

270 Chapter 15: Smalltalk/ V 286 Environment

Holding down the shift key when pressing any of the four scrolling keys causes the pane
contents to move a larger amount in the indicated direction. For vertical scrolling, the
pane contents move almost the entire height of the pane. For horizontal scrolling, the
pane contents move one-half of the pane width.

Scrolling With a Mouse

There are two ways to scroll a pane using a mouse. One way is to grab a character and
pull it to the position in the pane where you want it. Continuous scrolling is also available.

In the grab and pull technique, the grab location is the position of the cursor when you
press the right mouse button. Position the cursor at a character in the last line of a text
pane in the active window. Press the right mouse button. Keeping the button down,
move the cursor to the first line of the pane and a few characters over to the left. Release
the button. If you did not move the cursor out of the pane before you released the
button, you will see that the text has been pulled to the location of the cursor when the
button was released.

For a horizontal continuous scroll, press the right button while the cursor is in the pane you
want to scroll. Holding the button down, move the cursor to the right of the pane, then
back inside the pane, then move it outside to the left of the pane. Do not allow the cursor
to go above or below the pane. Now release the button. While the cursor is back inside
the pane, scrolling pauses. When the cursor is moved back out of the pane, scrolling is
resumed. When the button is released, scrolling ends.

For a vertical continuous scroll, press the right button down while the cursor is in the pane
you want to scroll. Holding the button down, move the cursor above the pane or on the
top border of the pane. Notice that the pane scrolls down. Similarly, if you move the
cursor below the pane or on the bottom border, the pane scrolls up.

Vertical scrolling speed is controlled by the horizontal position of the cursor in relation
to the width of the pane. As you move the cursor to the left, the speed slowly decreases
until you move the cursor past the left border of the pane. At this point, scrolling speed
is at its slowest. As you move the cursor to the right, the speed gradually increases until
you move past the right border of the pane. Now scrolling is at its maximum speed,
almost a page at a time.

To pause during the scroll, move the cursor back into the pane. To resume scrolling, move
the cursor out of the pane as you did to start the scroll. To terminate scrolling, release the
button.

To quick jump through large chunks of text without scrolling, position the scroll cursor
on the scroll bar to locate the section of the file you want to see, and release the right
mouse button. The pane will now show the area of the file you located on the scroll bar.

Chapter 1}: Smalltalk/ V 286 Environment 271

Text Editor

Inserting Text

Whenever you press the select key, an I-beam is drawn between two characters to mark
the text insertion point. As you type characters, they appear in front of the text insertion
point, which moves to the right with each keystroke. If you press the backspace key, the
characters in front of the insertion point is deleted, and the insertion point moves a space
to the left.

To move the insertion point, place the cursor at the new position and press the select key.
The insertion point jumps to the cursor position.

Whenever the cursor is outside the text editing pane, if you try to type a character, your
system beeps, and the character does not appear. You can only edit the contents of a text
pane if the cursor is inside the pane.

Return, Tab, and Backspace Keys

Pressing the return key moves the insertion point to the beginning of a new line. If the
insertion point was in the middle of a line, the line is split into two lines at the insertion
point.

If you press the tab key, blanks will be inserted at the insertion point to make it move
to the next tab stop. In this editor, tab stops occur every four spaces.

If you press the backspace key, the character in front of the insertion point is deleted.
Notice that if the insertion point is at the beginning of a line and backspace is pressed,
the line is joined to the line above.

Selecting, Replacing, and Deleting

To select text, move the cursor to either the beginning or end of the text to be selected.
This position can be at any character, even in the middle of a word. Press the select key
to bring the insertion point to the cursor. Now move the cursor to the other end of the
text to be selected (again, at any character position) and press the extend selection key
The entire selected area is reversed. Notice what happens if you move the cursor and press
the extend selection key again. The selected (reversed) area of text now ends at the new
cursor position. You can continue to move the cursor and adjust the selected text by
pressing the extend selection key until you've selected the text you want as shown in
Figure 15.6.

212 Chapter 15: Smalltalk/ V 286 Environment

This text is not selected.

D, but this is not.

Figure 15.6
Selected Text

If you press the select key, the selected text is deselected (no longer reversed) and the
insertion point appears at the cursor.

Selecting text with a mouse works in a similar fashion.

To insert text in a text pane of the active window, position the cursor where you want the
insertion point to be, then click the left mouse button. Now the I-beam appears and you
can type.

To select text in the active window, you can use a method similar to using the extend
selection key. First move the cursor to the point where you want to begin or end your
selection, and click the left button. To extend the selection, move the cursor to the other
end of the text then hold down the shift key, and press the left mouse button. The text
selection will now extend to the current cursor location.

You can also select text using the draw through method. Position the cursor at one end
of the text you want selected. Now press the left mouse button. Hold the button down
as you move the cursor to the other end of the selection. Notice that as you move the
cursor, the selection (the reversed text) follows and includes the current cursor location.
Draw through terminates when you release the button. Note that if you move the cursor
outside the pane while holding the left mouse button down, the pane will scroll while
extending the selection.

To select a single character, position the cursor at the character you want to select. Then
press down the left button and hold it until the character is reversed. This takes only a
fraction of a second.

To select a whole word, position the cursor anywhere on the word to be selected and
double click the left mouse button. The word is reversed.

Chapter 15: Smalltalk/ V 286 Environment 273

To select a line, place the cursor just inside the window border to the left of the line you
wish to select and click the left mouse button twice.

To replace text, select the text to replace and then type the new text. As you type,
Smalltalk/V replaces the selected text with the new text.

To deletefotge amounts of text, select the text and press the backspace key. To delete text
one character at a time, place the insertion point at the end of the text to be deleted and
press the backspace key.

Saving and Restoring

The text editor in Smalltalk/V is always working with a text copy of some underlying
object in the system. Among other things, this can be a file, a string, or some Smalltalk
code. For example, the System Transcript and any Workspace edit strings of characters,
and the text pane in the Class Hierarchy Browser edits Smalltalk code. Because a copy
is being edited, you must tell the environment when editing is complete. Smalltalk/V
can then store the edited text back in the original place. You can also restore the text in
the pane to its previous state, if you wish.

Every pane that allows text editing has editing functions on its pane menu.

The restore function replaces the text in the pane with the text representation of the
underlying object being edited. If you are editing a string, then the string replaces the text
in the pane. If you are editing a file, the text in the file is reread into the pane. If you are
editing Smalltalk code, then the source code currently being used by the system is put
in the pane.

The save function in the pane menu tells Smalltalk/V that editing is complete.
Smalltalk/V responds by updating the underlying object being edited with the text
currently in the pane. For example, if a file is being edited, then the file is rewritten with
the text in the pane.

Cutting, Copying, and Pasting

The text editor has a buffer that can be used to transfer text from place to place. Text
is placed in this buffer by either cutting or copying it from the pane. After text has been
placed in the edit buffer, it can be pasted anywhere inside of a text pane. This is shown
in Figure 15.7.

To place text in the edit buffer you must first select the text. Then, pop up the pane menu
and select either cut or copy. If the cut function is selected, Smalltalk/V responds by
replacing the contents of the edit buffer with the selected text, and then deleting the
selected text from the pane. If the copy function is selected, the selected text is not deleted
from the pane. Instead a copy of the text replaces the contents of the edit buffer.

274 Chapter 15: Smalltalk/V 286 Environment

Figure 15.7
Cutting and Pasting

Smalltalk^ Transcript

This text has been cut and pasted
into several places in three
windows.

Workspace

This text has been cut and pasted
into several places in three
windows.

This text has been cut and pasted
into several places in three

This text has been cut and pasted
into several places in three
windows.

This text has been cut and pasted
into several places in three
windows.

This text has been cut and pasted
into several places in three
windowsT

Text in the edit buffer can be pasted into the pane by either inserting it into a new place
or replacing some existing text. To insert the contents of the edit buffer, place the
insertion point at the desired position and then select the paste function from the pane
menu. To replace some text with the contents of the edit buffer, first select the text to
be replaced and then select the paste function from the pane menu.

The paste function leaves the contents of the edit buffer unchanged. This means that the
same text can be pasted several times and in different places.

Since the same edit buffer is shared by all of the text panes, you can easily transfer text
between windows. First select the text to be transferred. Next, place this text into the edit
buffer by using the pane menu to either cut it or copy it. Then move the cursor into the
new window and either place the insertion point where the text is to be inserted or select
some existing text that is to be replaced. Now, use the paste function from the pane
menu. The text appears in the new window.

.! Saving the Image

The image is all of the Smalltalk objects, both code and data, that make up the
Smalltalk/V environment. The image is read from the image file when the system starts
up. In this way, the objects are loaded into memory. These objects include the windows
that appear on the screen.

Since Smalltalk/V is an interactive and modifiable environment, the image is constantly
being changed as you use and modify Smalltalk/V. These modifications are not written
on the disk until you ask them to be written. This can be done at any time by selecting

Chapter 15: Smalltalk/V 286 Environment 275

the save image function from the system menu. You can also save the image while exiting
as described below. The next time you start up the system, it resumes exactly as it was
when the image Hie was last written.

The image file on the disk represents the last saved version; therefore it also becomes the
starting point in the event of a system crash or a major mistake. For these reasons, you
should maintain a recent backup of the image file along with the source file and the
change log that is associated with these files. Maintaining Smalltalk/V, later in this
chapter, explains the relationships between these files in more detail, and gives
instructions on maintaining them. It also gives advice on how to recover from a system
crash or other problem.

Exiting Smalltalk/V

To exit Smalltalk/V, select exit Smalltalk from the system menu. You'll then see
another menu, asking whether to remember or throw away the changes made since the
environment was started.

Selecting the save image function causes the state of the system, including the location and
contents of all the windows, to be saved. When you start Smalltalk/V the next time, it
will be restored to the saved state.

Selecting the forget image function causes all of the changes made since Smalltalk/V was
started to be forgotten. When Smalltalk/V is started the next time, it will be restored to
the previous saved state (the way it was when it was started this time).

Selecting the continue function returns you back to the Smalltalk/V environment. This
has the same effect as leaving the menu without selecting anything.

Evaluating Smalltalk Expressions

The Smalltalk language includes expressions which are similar to expressions in other
programming languages. In the Smalltalk/V environment, you can enter the text for an
expression in any text pane, evaluate it, and display the result. You specify what you want
to do in the environment by using pop-up menus and by evaluating Smalltalk
expressions, which serve as the Smalltalk/V command language.

1.

216 Chapter 15: Smalltalk/ V 286 Environment

Doing and Showing

All text panes in the system support immediate expression evaluation via their pane
menus. To evaluate an expression, you must first select it, then pop up the pane menu and
select either the do it or the show it function. If you choose show it, the expression is
evaluated and a character representation of the expression value is inserted in the pane
after the evaluated text. If you choose do it, the expression is evaluated and the expression
value is thrown away. Notice that only the selected text is evaluated; the other text in the
pane is ignored. Extra blanks at the beginning or the end of the selected text are similarly
ignored.

Any legal Smalltalk expression or expression series can be selected in a text pane and
evaluated. Temporary variables can be declared as needed.

Compilation Errors

When you select and evaluate an expression, Smalltalk/V compiles and then evaluates
it. If it detects a compilation error, Smalltalk/V inserts an error message in the source
code at the point of error. To fix the error, simply edit the text in the window, and
evaluate the expression again.

Making Command Templates

You do not need to type the expression that you want to evaluate. You can edit some
existing text in the pane and then select and evaluate it. This feature makes it possible to
build a window or even a file of useful expressions that you can edit as command
templates to construct new expressions for evaluation. File sample.sml contains several
useful expressions. You can use the Disk Browser to look at and evaluate the expressions
contained in this file. These expressions all have comments explaining them.

You can add to the expressions in this file (or make files of expressions of your own)
using the Disk Browser. You can include comments with your expressions by merely
enclosing the comment in double quotes like this: "this is a comment".

Prompters

Prompters are a special kind of text editing window that appear on the screen when you
request something that requires additional information. The label of a Prompter is a
message called a prompt, which tells you what information Smalltalk/V needs to finish
the operation. You enter your response into a single text pane of the Prompter. Often a
default response appears in the text pane as shown in Figure 15.8.

Chapter 13: Smalltalk/ V 286 Environment 277

Figure 15.8
Prompter

The text editor used by a Prompter is the same as the text editor described under Text
Editor above, except for the following differences:

Smalltalk/V uses Prompters to request a single piece of information from you. You
must answer the request or tell Smalltalk/V that you want to cancel whatever operation
is requesting the information. Since you must respond to the request, Smalltalk/V will
not deactivate the prompter window until you do so. In addition, a Prompter has no
window menu. Smalltalk/V will beep if you press the window menu key.

The pane menu of a Prompter (which you pop up by pressing the pane menu key) gives
you two choices which are specific to Prompters. When you select the accept function, the
Prompter sends the text in the pane to the requestor of the information. When you select
the cancel function, the Prompter sends nil to the requestor. The requestor will cancel the
operation. Pressing the return key is the same as selecting the accept function from the
pane menu. After the request is answered, either by accepting or canceling, the prompter
window disappears.

The System Dictionary

There is a class in Smalltalk/V known as SystemDictionary. There is only one instance
of this class, the System Dictionary. The System Dictionary defines methods for
system-oriented functions such as compressing the change log and determining available
memory. It also contains all of the names known globally in the system. This includes the
names of the classes, global variables, and pool dictionaries. The System Dictionary is
referred to in Smalltalk code with the name Smalltalk which identifies a global variable.
All global variable names must begin with a capital letter. An example of a message to
the System Dictionary is the following expression:

278 Chapter 15: Smalltalk/ V 286 Environment

Smalltalk unusedMemory

This computes the number of bytes of available memory in your system.

This chapter describes the System Dictionary and some of the system commands
(messages) that are sent to it.

System Dictionary Contents

The System Dictionary contains all of the names of the classes, global variables and pool
dictionaries in the system. In addition, as you define classes, global variables, and pool
dictionaries, their names are added to the System Dictionary.

For the classes present in the dictionary, the key is the class name and the value is the class
itself. For the global variables present in the dictionary, the key is the variable name and
the value is an object. If the variable has been defined but not initialized, its value is nil.
Some of the more important global variables present in the system are listed below, along
with their values and a brief description. The pool dictionaries are explained in more
detail at the end of this chapter.

Variable

Aspect

CharacterConstants

CurrentEvent

CurrentProcess

Cursor

Disk

Display

FunctionKeys

Description

A Fraction which contains the aspect ratio of your
display.

A pool dictionary. CharacterConstants associate
names with special character values such as:
carriage return, line feed, escape, form feed, etc.

An InputEvent used by the environment for
reading all keyboard and mouse events.

The Process that is currently running.

A CursorManager used to store the location of
the cursor.

A Directory. The current directory when the
system is booted.

A DisplayScreen which is used to access the video
screen as a form.

A pool dictionary. This dictionary defines names
for keyboard function key values and for mouse
input codes.

Chapter 15: Smalltalk/ V 286 Environment 279

Variable

KeyboardSemaphore

Processor

Scheduler

Smalltalk

Sources

SysFont

Terminal

Transcript

Description

A Semaphore that is signaled every time there is a
keyboard or mouse interrupt. CurrentEvent waits
on this Semaphore.

The ProcessScheduler of the system.

A DispatchManager which manages the
scheduling of windows. Scheduler should be the
only instance of class DispatchManager in the
system.

The SystemDictionary.

An Array containing two file streams for accessing
the source code of Smalltalk/V. The first entry is
the source file. The second entry is the change
log file.

The default Font used for the current graphics
resolution.

A TerminalStream which is used for reading the
keyboard and mouse, if any.

A TextEditor which is the System Transcript.
Transcript is used primarily for system messages.
The user can also send his messages to it (e.g., for
debugging traces).

System Dictionary Methods

There are many useful functions or methods which operate on the System Dictionary.
They include:

Method

at: key put: anObject

Description

Creates a new global variable, key, with the value
anObject. If the global variable exists, changes its
value to anObject.

280 Chapter 15: Smalltalk/V 286 Environment

Method

compressChanges

compressSources

implementorsOf:
aSymbol

keys

removeKey: key

sendorsOf: aSymbol

unusedMemory

Description

Compresses the change log file, removing all but
the latest version of the methods.

Compresses the source file after updating it with
the latest version of the methods in the change
log file.

Returns a Method Browser containing all of the
classes which define a method with the name
aSymbol. This is equivalent to choosing the
implementors function on the method list pane
menu of the Class Hierarchy Browser.

Returns all of the keys currently defined in the
System Dictionary.

Removes the specified key from the System
Dictionary.

Returns a Method Browser containing all of the
methods, and their corresponding class names,
which send a message with name aSymbol. This is
equivalent to choosing the senders function on the
method list pane menu of the Class Hierarchy
Browser.

Returns the number of bytes free in the system.

Pool Dictionaries

A dictionary contained in a global variable can be used as a pool dictionary.

CharacterConstants

CharacterConstants is a pool dictionary associating names to special ASCII character
values such as line feed and escape. The keys of this dictionary are descriptive strings and
the values are the associated ASCII characters as shown below:

Key String

Bell

Bs

ASCII Character

Bell character (ASCII value 7)

Back space character (ASCII value 8)

Chapter 15: Smalltalk/V 286 Environment 281

Key String

Cr

Del

Esc

Ff

FunctionPrefix

Lf

MouseButton

SetLoc

ASCII Character

Carriage return (ASCII value 13)

Delete character (ASCII value 127)

Escape character (ASCII value 27)

Form feed character (ASCII value 12)

First character of a function key two characte
sequence (ASCII value 0)

Line feed character (ASCII value 10)

Character sent when any mouse button chang
state (ASCII value 254)

Character sent when the mouse moves (ASCII
value 255)

Space

Tab

UpperToLower

Space character (ASCII value 32)

Horizontal tab character (ASCII value 9)

Smalllnteger of value 32, the numeric difference
between upper and lower-case ASCII value
characters

FunctionKeys

FunctionKeys is a pool dictionary associating names to the function key values such as
cursor movement keys and menu keys. By assigning a new value to a function key name,
a different key on the key board can be associated to the named function.

Maintaining Smalltalk/V

In this section, the procedures for maintaining the system are discussed. These include:

• How to keep the files that the system uses from getting too big.
• Some simple steps that you can take to protect yourself from losing all your

work in the event of a total failure (crash) of the system.
• What to do if the system does crash.

282 Chapter 15: Smalltalk/ V 286 Environment

Automatic Logging of Changes

As you define and modify classes or methods, Smalltalk/V is logging all of these
changes to the change log. Smalltalk/V maintains pointers from the compiled methods
in the environment to the latest version of the source code. If the source code has never
been changed, the pointer goes to the source file. Otherwise, the pointer goes to the
change log. As a result, the disk is accessed as you browse the methods in a class.
Furthermore, since the image file contains pointers to the source file and the change log,
you must maintain these three files as a group.

For these reasons, you must not edit or modify the change log! You can view it with the Disk
Browser and you can reinstall methods and class definitions from it into your system.
This capability can be used to facilitate recovery from a system crash and is explained in
more detail in the section on Surviving a System Crash in this chapter.

Other important events are automatically logged by Smalltalk/V. Every time the image
is saved, a message with the date and time is written to the change log. Every Smalltalk
expression that you evaluate with either do it or show it is also logged. In addition, every
time you remove a method from a class, a message is logged.

The format of the change log is very similar to the one described by Glenn Krasner in
Chapter 3 of Smalltalk-80: Bits of History and Words of Advice, Addison-Wesley, 1983. A
brief description of this format using the EBNF notation described in Appendix 1
follows.

Chapter 1$: Smalltalk/ V 286 Environment 283

changeLog =
{textChunk}.

<rule> textChunk =
sourceCode I classDefinition I expression I imageComment.

sourceCode =
'!' class Name* methods!' {method"!'} ' !'.

classDefinition =
' "define class" ' classDefinitionMessage'!'.

expression =
' "evaluate" ' evaluatedText'!'.

imageComment =
« «*** saved image on: ' dateAndTime****" !'.

where: className is
the name of a class.

method is
a valid method as defined in Part 2 of this manual with occurrences
of "!" replaced by "!!".

classDefinitionMessage is
a valid class definition message to the class's superclass as defined
in Part 2 of this manual.

evaluatedText is
the text evaluated by do it or show it with all occurrences of "!"
replaced by "!!".

dateAndTime is
the character representation of the date and time the image was
saved.

The change log is an ASCII text file which means that you can print it at any time. A
simple examination of the file should remove any questions regarding its format.

Importance of Saving the Image

Smalltalk/V is written entirely in Smalltalk. The image that is referred to in this manual
is the collection of all Smalltalk objects that make up the environment.

When you save an image, descriptions of all of these objects are written out on the image
file. When you start the system at a later time, all of the objects described in the image
file are recreated exactly as they were at the time the image was saved. Since these objects
contain everything that makes up the Smalltalk/V environment, the system starts up
exactly as you saved it.

As you use the system by writing Smalltalk code or using the environment for other
purposes, new objects are created and existing objects have their contents changed. You
must save the image to make your changes permanent. You can save the image by either

& • •

284 Chapter 15.• Smalltalk/ V 286 Environment

selecting the save image function from the system menu or by selecting the save image
function as you are exiting the environment. If you do not save the image, the
environment will not have any of your changes the next time it is started.

If you forget to save the image, you can recover these changes. Items that were logged
in the change log are still present, and you can install them again using the Disk Browser
(see Surviving a System Crash later in this chapter). Not saving the image is useful when
you are developing something new and you decide that you have made a major mistake
that you would like to discard.

Compressing the Change Log
I *

Compressing the change log reduces it to only the latest copy of each new or changed
method. Class definitions are removed. A new image file is written automatically.

You should compress the change log when it starts to get large. There must be enough
space on the disk for both the new and the old change log at the same time, so make
sure you compress the change log before the disk gets too full.

To compress the change log, evaluate the following expression in any text pane (the System
Transcript for example):

Smalltalk compressChanges
i ,

j If there is not enough room on the disk, delete some files and then try it again.

Compressing the Source File

Compressing the source file creates a new source file for all of the methods currently in
the system by taking the latest copy of the source code for each method from the old
source rile or change log. A new image file and an empty change log are automatically
written.

The source file is written in a compressed format to preserve space on the disk. There are
pointers from the compiled methods in the image to the source file and to the change
log. For these reasons, it is imperative that the source file not be edited or altered except
by Smalltalk/V. Copying the source is okay. You should always use the same image file
with the same source file (or a copy of it) and the same change log.

After you compress the sources, you will have a new image file and a new source file.
The change log will be empty. Therefore, you should make backup copies of the source
file, the change log file, and the image file before compressing the sources so if anything
goes wrong, you can recover.

Chapter 15: Smalltalk/ V 286 Environment 285

To compress the sources, evaluate the following expression in any text pane (the System
Transcript, for example):

Smalltalk compressSources

After compressing the sources, you have a new base system. You should make a backup
copy of the new source, image, and change log files. Maintaining backup copies will
allow you to recover from most, if not all, problems that might occur.

Retaining your old change logs gives you a record of all the changes you have made to
the system. This will prove invaluable when you receive a new release of Smalltalk/V.

Surviving a System Crash

Smalltalk/V is very resilient to errors. Unfortunately, disasters can and will happen,
especially if you are making modifications to Smalltalk/V. The automatic logging
feature of Smalltalk/V makes it possible to recover from most disasters. Disasters
happen not because Smalltalk/V has bugs in it, but because it is a modifiable program
development environment. Smalltalk/V will let you change anything, even if it destroys
the environment.

For example, if you make a mistake changing the method for the walkback window, or
if the hardware fails, you may see the error message: doesNotUnderstand: is missing.
This means that Smalltalk/V cannot find the code that displays the appropriate
walkback message and has terminated.

This presents no problem since you can recover most, if not all, of your work very
quickly. In fact, experimenting with the system is a good way to learn about it, but make
sure you take the following precautions:

1. Always have a backup copy of the source file that you are currently using.
Smalltalk/V never modifies the source file and neither should you. When
you compress the sources, as explained in Compressing the Source File, a
new source file is made. Make a backup copy of it immediately.

2. Always have a reliable backup copy of the image file and change log file.
Remember that the image and the change log work together. If you use an
image file with an older version of the change log, you may not be able to
access the source code for some methods. After you compress the changes
(see Compressing the Change Log), the image and change log files are
both replaced. You cannot use an old image file with a new compressed
change log file. You can use an old image with a later version of the same
change log if the change log has not been compressed between the time
when the image was made and when you use the change log. In short, back
up the image and change log together, and you shouldn't have any problems.

286 Chapter 15: Smalltalk/ V 286 Environment

3. You should save the image onto the disk (you can do this from the system
menu) before trying something that might crash the system. Doing so will
preserve most of your work. If the system crashes, you can restart
Smalltalk/V using this saved image. If you fail to save the image and the
system crashes, you can use the Disk Browser to examine the change log.

4. If you have been experimenting with Smalltalk/V and you have any reason
to believe you have damaged the system or if there are changes you do not
want to make permanent, do not save the image. Exit the Smalltalk/V
environment using the forget image function. Remember, most of the

.-_• changes you have made are in the change log and they can be reinstalled
'' selectively.

5. If Smalltalk/V crashes, don't panic. Make a copy of your image and
change.log file. Usually, you can recover your work, and if you make a copy,
you can try repeatedly. Read the next section for information on how to
recover.

Recovering From a System Crash

If the system crashes you should make a copy of your image and change.log file before
proceeding. To recover your work, follow these steps:

1. Check if you have a good image file. To find out, try to start Smalltalk/V
| in the usual way using this file. If it does not start up, then you should get

your most recent backup of the image and change log and start Smal-
ltalk/V with that version.

2. Now that you have Smalltalk/V running, use the Disk Browser to look at
the change.log file that you were using when the system crashed. The
change log has all of the modifications that you made and all of the
expressions that you evaluated.

3. Find the point in the change log where you saved the image that you are
currently running. Every time that the image is saved, Smalltalk/V writes a
comment into the change log giving the time and date when the image was
saved. Scan the change log backwards, if you were using a recently saved
image.

4. Now that you have found the point at which you saved the image, you know
that your lost work is from this point to the end of the change log.
Remember that the change log is formatted as a series of chunks. The exact
format is given in the section Automatic Logging of Changes in this
chapter. To restore your work, select one or more consecutive chunks of text.
You must select complete chunks—watch the exclamation points (!). Next,

Chapter 15: Smalltalk/ V 286 Environment 287

pop up the pane menu and select the install function. If a chunk is an
expression, it will be evaluated. If a chunk is a method definition, it will be
recompiled and installed into the system. Choose the chunks that you install
carefully—one of them represents the error, and you don't want to put it back
into the system.

When you have finished recovering what you want, save the image.

Purging Unused Symbols

Unused symbols tend to accumulate slowly over time in Smalltalk/V because instances
of class Symbol are not collected as garbage. Evaluate the following expression to
remove all symbols that are no longer referenced.

Smalltalk purgeUnusedSymbols

The number of symbols recovered and the amount of space reclaimed is usually quite
small.

Cloning

Cloning is a process which builds a new image file from the current image. The Cloner
does a complete memory walk of all of the objects in Smalltalk/V. Cloning does not in
and of itself reclaim any space or objects. The image file is fully compacted every time
the image is saved. Cloning does not remove unused symbols. Cloning the system is a
good way of verifying that all of the objects in the image are undamaged.

The Cloner can also be used to build a version of the system that has many of the classes
removed. In order to specify these classes and objects, you must edit the method
initializeClones in file cloner.

Note that when you clone, the image file will be re-written. Therefore, you should back
up your image file before cloning.

The Cloner classes are not resident in Smalltalk/V. To clone Smalltalk/V, an expression
must be evaluated to read and execute a file. The file installs several classes into
Smalltalk/V and then uses them to clone the system. The cloned system does not
contain the cloning classes.

If the file cloner is in your disk directory, (the same directory as the image file), then
evaluate the following expression in any text pane, (e.g. the System Transcript):

(Disk file: 'cloner.st') fileln.

When cloning is finished, Smalltalk/V will exit to DOS. You should make a backup of
your image file.

288 Chapter 15: Smalltalk/ V 286 Environment

DOS Shell

The DOS Shell capability allows you to quickly exit Smalltalk/V to execute DOS
commands and programs, and then return to Smalltalk/V when finished. For example,
you could use this capability to format a floppy disk or to run a word processing
program, and then return to Smalltalk/V.

Choosing dos shell from the system menu pops up another menu with several choices of
single DOS commands you can execute. In addition, a to dos choice exits you to the
DOS command processor COMMAND.COM from which you can run several DOS
commands and programs. To resume Smalltalk/V use the DOS EXIT command.

Reserving Space for DOS

In order to use this feature you must reserve space for DOS when starting up
Smalltalk/V. The memory you reserve is not used by Smalltalk/V. You specify the
amount of space to reserve for DOS as the argument to the /d: parameter on the
command line that invokes Smalltalk/V. For example, the following command invokes
Smalltalk/V and reserves 200K for DOS to use.

v /d:200

Notice that the argument is a decimal number and specifies the amount of memory to
reserve in multiples of 1024 bytes. Appendix 3, Configuring Smalltalk/V 286, explains
all of the command line options in detail.

How It Works

The method executeCommands: in class ScreenDispatcher does all of the work. For
example, this expression displays text on the display screen using the DOS echo
command:

Scheduler systemDispatcher
executeCommands: #('ECHO hello from Smalltalk/V 'PAUSE')

The argument is a collection of strings containing the DOS commands to execute, in this
case an array with two strings containing the echo command and the pause command.
These strings are written to the file smaltalk.bat, along with a few DOS commands to
return to the appropriate directory so Smalltalk/V can resume properly. Smalltalk/V
runs the DOS commands by executing this batch file.

As a final example, here is the method executed in ScreenDispatcher when you select go
to DOS from the DOS menu; it exits to the DOS command processor COM-
MAND.COM:

Chapter 15: Smalltalk/ V 286 Environment 289

gotoDOS
"Exit to COMMAND.COM"

self executeCommands:
#(ECHO OFF
'ECHO TO resume SmaUtalk/V, enter EXIT'
CD V
COMMAND.COM)

Font and Cursor Shapes

Font

SmaUtalk/V represents characters in strings using their ASCII codes. In order to display
them on the screen or printer in bitmapped graphics mode, these ASCII values must be
converted into bitmap images. Class CharacterScanner (refer to Chapter 14) performs the
conversion while instances of class Font provide the character bitmap image needed for
conversion, and information about how to retrieve the image.

Smalltalk/V includes two fonts. This section provides you with the information about
how to install your own fonts.

The expression Font eightline returns a Font whose characters have a size of 8 by 8
pixels, while the expression Font fourteenline returns a Font with characters of 8 by 14
pixels.

The following global variables govern the fonts used by different parts of the system:

Global Variable

LabelFont
IistFont
TextFont
SysFont

Used by

window labels
ListPane
TextPane
all others

You can change the first three global variables to contain different fonts; when you open
new windows, you'll see the new fonts being used. To change the SysFont to aFont, use
the expression

Font setSysFont: aFont.

The instance variables of Font are the following:

charSize
Contains a Point representing the width and height of each character.

290 Chapter 15: Smalltalk/V 286 Environment

glyphs
Contains a Form of bitmap images of all characters. The images are attached
horizontally. For example, if the font contains 100 characters and charSize is 8
by 14, then its glyphs Form will have a width of 800 (100 * 8) and height of 14.
Each Font can contain a maximum number of 256 characters.

xTable
Contains an Array of the x coordinate of the origin of each character image in
the glyphs Form. It contains one entry more than the number of characters
contained in the Font.

startChar, endChar
Contain the ASCII value of the first and last character, respectively, in the Font.
There cannot be any missing values between startChar and endChar. For
characters with an ASCII value outside of the range startChar to endChar, the
glyph for endChar is used.

basePoint
Contains a Point whose x value is always 0 and whose y value indicates the base
line of the font.

To install a fixed width new font, evaluate the following expression:

Font new
installFixedSize: glyphForm
charSize: sizePoint
startChar: x
endChar: y
basePoint: bPoint

This initializes all the instance variables and automatically creates the xTable.

Cursor Shapes

Smalltalk/V uses different cursor shapes to visually indicate system status. For example,
the hourglass cursor shape is used to indicate a computation is in progress. Cursor shapes
are also a good way to convey status information about your applications.

Smalltalk/V supports the Microsoft Mouse and its compatibles (e.g. PC Mouse,
Logitech Mouse). It therefore has two interfaces to deal with cursors. When you have a
mouse, the cursor is managed by class CursorManager. When you do not have a mouse,
it is managed by class NoMouseCursor. CursorManager merely provides an interface
between Smalltalk/V and the mouse driver supplied by the mouse manufacturer.
NoMouseCursor, on the other hand, handles with Smalltalk code everything related to

Chapter 13: Smalltalk/V 286 Environment 291

the cursor. Smalltalk/V automatically detects whether or not there is a mouse and sets
a global variable, Cursor, to be an instance of the appropriate class. The user interface
to Cursor is identical for either class.

Normally when you display something that covers the cursor, you should first hide the
cursor; otherwise, cursor writing by the mouse driver may interfere. To simplify this
problem, all system primitives that can alter the contents of the screen currently make
sure that the cursor is hidden before the altering, and restored after.

For the advanced user, the expression Cursor hide hides the cursor and Cursor display
displays it. These two messages work like parentheses: they must be balanced. For
example, suppose the cursor is currently being shown; if you hide it twice and then
display it once, you must still display it again to show it. If you are not sure which level
the cursor is at, and it is not displayed, evaluate the following expression:

Cursor reset

This forces a balance of hide and display and shows the cursor.

To change the cursor shape, simply send the message change to the cursor instance to
which you want to change. For example:

CursorManager execute change

changes the cursor shape to an hour glass (indicated by execute). Smalltalk/V includes
11 prebuilt cursor shapes:

Message to
CursorManager

normal
execute
origin
corner
downArrow
upArrow
leftArrow
rightArrow
crossHair
hand
scroll

Shape

an arrow pointing north west
an hour glass
an angle bracket pointing north west
an angle bracket pointing south east
an arrow pointing down
an arrow pointing up
an arrow pointing left
an arrow pointing right
a cross
a hand
four arrows pointing out from the center

To temporarily see a cursor shape on the screen, use the same expression followed by a
Terminal read. For example:

292 Chapter 15: Smalltalk/ V 286 Environment

CursorManager hand change. Terminal read

displays the hand cursor, and then returns to normal when you type anything.

Creating a cursor of your own is equally simple. First create a cursor form using the
BitEditor included with Smalltalk/V. (The cursor form must have an extent of 16 @
16.) Then evaluate the following expression:

NewCursor : =
CursorManager new

initialize: cursorForm hotSpot: aPoint

The argument cursorForm is the Form containing the cursor image. The hot spot aPoint
is the point of the image that will be aligned with the actual cursor position. To make
the new cursor the active cursor, evaluate:

NewCursor change

16 SMALLTALK/V 286 STANDARD WINDOWS

This section describes the special windows which Smalltalk/V provides for maintenance
and debugging purposes.

The Disk Browser displays the files on a given directory, and their contents. It also lets you
edit those contents.

The Class Hierarchy Browser shows you the interrelationship of the classes within
Smalltalk/V, and lets you edit the code for each class.

Inspectors let you examine and edit objects. They serve as a low-level debugging aid.

Walkback and Debugger give views of the state of your program at the point of an error.
They are high-level debugging aids.

Method Browsers let you browse and edit a list of methods.

Browsers use indexes to access information. Often the information is organized in a
hierarchical manner. A browser is a window consisting of at least two panes, a list pane
and a text pane. Selecting from the list displays related information in the text pane. This
text may be modified, and eventually saved.

Disk Browser

The Disk Browser lets you browse the files on a disk device. To open a Disk Browser,
select browse disk on the system menu. Smalltalk/V responds with a menu of available
disk devices. Select the drive whose directory you want to see. Smalltalk/V then opens
the new Disk Browser. You can have as many Disk Browsers open at a time as you want.

The Disk Browser is divided into four panes, as shown in Figure 16.1.

The directory hierarchy list appears in the upper-left pane. In this pane, the names of all the
directories on the disk are listed. You will see a backslash symbol (\) in the top corner
of the pane. This symbol stands for the root or parent dictionary of the entire disk. The
names of the directories in the parent directory are indented and appear in hierarchical
order. Initially only the first level of subdirectories are displayed and an ellipsis (...) is used
to indicate that there may be subdirectories. By selecting hide/show from the pane menu
or double-clicking on a directory name, the full subdirectory hierarchy will be shown.

The file list is in the pane to the right of the directory hierarchy list. When a directory is
selected in the directory hierarchy list pane, its files will appear in this pane.

The contents pane shows the text of a selected file or further directory information if no
file has been selected.

294 Chapter 16: Smalltalk/ V 286 Standard Windows

Figure 16.1
Disk Browser

Smalltalk/Of

*""] infer
music

tempdocs
mpdibmap

! " " • • • • • •
access.usranimal.els
animallB.s
animal6.st
aninal?.s1
biteditr.c
button, els

i t

t
:1s
i

change.log
chapter.18
chapter. 11
chapter.2
chaoter.3

Transcript

•
6912
2993
6554
2372

962
7483
1826

389648
6177
3296

772
5193

Z

85-82-85
88-82-21
86-87-31
86-87-31
88-81-25
87-12-28
88-81-25
88-84-21
86-87-21
88-84-18
86-B7-87
86-87-16

ipi[.
t

HQMMKffiBRRj
^^|animal.cls

animall8.s
Ianimal6.st
Iani«al7.st
Ibiteditr.c

_ ^ B J button. c Is
•^•^BrihjitMm. Inn

16:37:46 a
15:57:48 i
89:16:24 i
89:18:18 <
88:85:28 <
22:39:52 i
17:88:16 <
83:55:36 <
14:57:52 i
28:16:28 i
11:38:34 t

18:27:12 i

The directory order pane contains a statement telling you how the information in a
directory is ordered when it is displayed in the contents pane. The pane menu associated
with the directory order pane gives you the choice of ordering the directory by date,
name, or size.

The label bar of the Disk Browser displays other useful information. If the disk being
browsed is labeled, the label is displayed between the brackets, [and]. The full path
name of the currently selected directory in the browser is displayed. If no directory is
selected, then only the device drive character appears. The numbers at the right side of
the label represent the amount of free space on the disk. This number is automatically
updated as you use the browser.

Browsing Directories

To select a directory to browse, move the cursor into the directory list pane and press the
select key when the cursor is on top of the directory you wish to browse. Smalltalk/V
displays a list of file names in the file list pane (the right-hand pane) and a complete listing
of the directory information in the contents pane (the bottom pane). You can move the
cursor or scroll the directory list pane and select a different directory any time you wish.

The directory hierarchy list pane menu has four selections:

Remove eliminates a subdirectory from the disk. You will get an error if there are files in
the subdirectory

Update allows you to browse another disk in the same drive. Selecting this function tells
the window to update itself by rereading the directory structure on the disk. You should
select this function only after you have inserted the second disk.

Chapter 16: Smalltalk/ V 286 Standard Windows 293

Hide/ Show expands the subdirectory hierarchy if the selected directory has an ellipsis (...)
at the end, or hides the subdirectories if they are displayed. Note that the same effect can
be achieved by merely clicking on a selected directory name.

Create makes a new directory as a subdirectory of the selected directory. When you select
this function, a prompter appears, asking for the path (directory) name.

Browsing Files

To select a file to browse, move the cursor on top of the file name in the file list pane and
press the select key. Smalltalk/V responds by displaying the file contents in the contents
pane. You can select another file to browse by selecting it in the file list pane.

The menu for the file list pane displays a variety of functions for files. The file list pane
is the top-right pane of the Disk Browser.

Remove eliminates the selected file and its contents.

Print causes the selected file to be printed.

Mode permits you to change the system file mode bits (see your PC or MS-DOS manual)
of the selected file.

Rename lets you change a selected file's name.

Copy duplicates a selected file in another location.

Create generates an empty new file.

Editing Contents

Figure 16.2 shows the three menus for the file contents pane, the pane at the bottom of
the window. Which menu appears is dependent upon what you select in the other panes.

If you are looking at a directory, you can pop up the menu shown at center. The menu
at left can be brought up only if part of a large file has been read into the pane. You can
pop up the menu on the right if you have selected a smaller file. All of these menus are
popped up by pressing the pane menu key (Smalltalk/V knows which one to use) or the
right mouse button.

As you can see, the three menus share some common functions. The copy, cut, and paste
functions are the same as those used in normal text editing (described in Chapter 15). In
addition, the do it and show it functions are identical to those previously described for
Smalltalk expression evaluation. Save and restore have been explained under text editing
as well.

296 Chapter 16: Smalltalk/ V 286 Standard Windows

SmalltalK/V Transcript

Figure 16.2
File Contents
Pane Menus

1*1 '
goodiesl **
infer
music

tempdocs
mpdibmap

c: ̂ ,n.,It.,lk /1H'M4H !@|B|S||

restore
install
copg
cut
paste
show it
do it
read it
next menu

access.usr
animal.els
animalIB.st
animate.st
anii.al7.st
biteditr.cls
button.els
change.log

restore
copg
cut
paste
show it
do it
save as
next menu

restore
install
copg
cut
paste
show it
do it
save
save as
next menu

The save as function allows the directory information to be written on a file. You can also
edit the information in the contents pane (for example, adding file comments) before
writing it on the file.

The other functions of the file contents pane menus are the following:

Read //is used to read the entire contents of a large file. Normally, when the text of a file
exceeds 10,000 bytes, the pane will only display the first 2,000 bytes, followed by the final
8,000 bytes. Any editing changes performed before read it is selected are lost. After you
select this function, the entire file is read into the pane. The pane menu will change to
the one for small files (one on the right). Now you can perform the save functions.

Save as is used to save edited material in a file different from the selected one {save rewrites
the selected file with the text in the pane). Selecting this function causes a Prompter to
appear which asks for the file name. You must respond with the name of a new or
existing file.

Install compiles the selected text into the system. The selected text must be in the same
format as the text in the change log or text in a class definition file. It is used to evaluate
Smalltalk expressions and to compile and install Smalltalk source code from files.
Typically, these would be from the change log or from a file containing a class
definition. This use of the change log is described in more detail in Chapter 15.
Remember that the code you want to install must be in change log format.

Viewing Directory Contents

The directory order pane is located immediately below the directory list pane. It allows
you to see the full information associated with each file in a directory, as well as to
control the order in which this information is displayed.

Chapter 16: Smalltalk/ V 286 Standard Windows 291

To display the directory in the contents pane, move the cursor into the directory order pane
and press the select key. Smalltalk/V responds by displaying in the contents pane
information about the files in the currently selected directory (the one selected in the
directory list pane).

The directory order pane menu contains selections to determine how to sort the directory
listing. To display the files in the directory in a different order, pop up the pane menu of
the directory order pane by pressing the pane menu key. You now have a choice of
ordering by date, name, or size. After you choose, Smalltalk/V will reorder the files.

Class Hierarchy Browser

The Class Hierarchy Browser lets you examine the interrelationships of the classes within
Smalltalk/V, and to edit their contents.

Opening a Class Hierarchy Browser

Select the browse classes function of the system menu to open a Class Hierarchy Browser.

The Class Hierarchy Browser is divided into five panes as shown in Figure 16.3.

panterText: aString font: aFont
"Urite aString whose center is at
the destination origin using aFont."

CharacterScanner i m
initialize: self clipRect font: aFont;
setForeColor: halftone

backColor: halftone class Mhite;
display: aString

at: self location - (aFont width « aString size
8 aFont height // 2)Figure 16.3

Class Hierarchy
Browser

The class hierarchy list appears in the upper-left pane. In this pane, the names of all of the
classes in the system are presented in a hierarchical order. Notice that Object appears first
in the list. Class Object is uppermost in the hierarchy. All other classes are subclasses to
Object and therefore appear indented. Subclasses of these classes are indented further.

298 Chapter 16: Smalltalk/ V 286 Standard Windows

The method list pane is the pane to the right of the class hierarchy list. In this pane, either
a list of the instance methods or a list of the class methods is presented. The two small
panes underneath the method list pane are used to select the desired list. You can choose
one by moving the cursor over either the class pane or the instance pane and then pressing
the select key or the left mouse button. There is no pane menu associated with the class
or instance pane. If you press the pane menu key, Smalltalk/V will pop up the same
menu that the window menu key pops up.

The Smalltalk code itself is seen in the contents pane which occupies the bottom half of
the window. When you select a class in the hierarchy pane, the message which defines the
class selected is displayed in this pane. Select a method and its code appears. The contents
pane is a text pane so it can be edited.

Browsing the Hierarchy

To select a class to browse, move the cursor into the class hierarchy list pane, the top-left
pane of the window, and select a class by pressing the select key. Smalltalk/V displays
the class definition in the contents pane and a list of methods implemented by the class
in the methods list pane. You can scroll the class hierarchy list pane, like all list panes,
with the vertical scrolling keys, Pg Up and Pg Dn, or the mouse.

The class hierarchy list pane menu contains functions which permit you to write the
definition of a class and all of its methods on a file, browse a particular class, add a
subclass and remove a class.

File out writes the class definition along with all of the instance and class messages of the
selected class to a file. The file is in a special change log format (see Automatic Logging
of Changes in Chapter 15 for more information). Smalltalk/V derives the file name from
the class name with the extension .els and places it in the directory from which
Smalltalk/V was invoked. Subclasses are not automatically filed out. The file out
function does not affect the class in the system.

Update tells the Class Hierarchy Browser to recompute the class hierarchy list. You must
do this if you have removed a class or added a class using another browser.

Hide/show lets you hide or show the subclasses of the selected class. It is useful for
shortening the list of classes by hiding the ones not currently of interest. If the subclasses
of a class are hidden, an ellipsis (...) appears after the class name. Note that the same effect
can be achieved by simply double-clicking on the desired class.

Add subclass permits you to add a subclass to the selected class.

Remove class lets you remove the selected class.

Chapter 16: Smalltalk/ V 286 Standard Windows 299

Adding Classes

To add a subclass of a class, first select in the hierarchy list pane the class that will be the
superclass of the new class. Now pop up the pane menu and select the add subclass
function. A prompter with the selected class name in the label then asks for a subclass
name.

When you reply to the prompter, a menu then appears asking you what type of subclass
you want. The subclass type depends upon whether the objects belonging to the class are
to contain named instance variables, indexed instance variables, or byte arrays. After you
make a choice, the new subclass is built and the class hierarchy list is automatically
updated. This subclass is already selected in order to allow you to define its instance and
class variables, add methods to it, or define subclasses of it.

Defining Classes

To define the instance variables, class variables, and pool dictionaries of a class, you must
first select the class in the class hierarchy list pane. Smalltalk/V responds by displaying
the current class definition in the contents pane. The definition includes the class's
superclass, instance variables, class variables, and pool dictionaries. You change the class
definition by editing the text in the contents pane and then selecting the save function
from the contents pane menu.

When you change a class definition, Smalltalk/V automatically recompiles all of the
methods in the class and all of its subclasses. In addition, a message is written on the
system change log giving the new class definition.

Changes to a class definition take effect immediately so that all future instances of the
class will have the new structure. You should therefore be very careful when modifying
classes that are used by the Smalltalk/V environment because you are changing the
environment. Until you are confident with these procedures, you should define subclasses
as opposed to modifying the structure of existing classes.

Removing Classes

To remove a class, first select in the hierarchy list pane the class to be removed. Now pop
up the pane menu and select remove class. The system will prompt you for confirmation.

All of the methods in the class are automatically removed when the class is removed.
Smalltalk/V will not let you remove a class if it has subclasses or if there are instances
of the class anywhere in the environment. If either of these exists, you will get a walkback
window explaining the problem. Remember that Smalltalk automatically removes

300 Chapter 16: Smalltalk/ V 286 Standard Windows

(collects as garbage) any object that is not referred to by some other object in the system.
To remove all instances of a class, you must change all references to instances of the class
to refer to something else.

You can send the message allReferences to an object to find out all objects that refer
to the receiver object.

Browsing the Methods

The method list pane is the top-right pane of the window. Remember that there are two
kinds of methods in a class, instance methods and class methods. The list that appears
is determined by the two panes directly beneath the method list pane, the class and the
instance panes. You select the list by moving the cursor over the class or instance pane
and then pressing the select key or the right mouse button.

To select a method, move the cursor into the methods list pane and press the select key
when the cursor is on top of the desired message selector you wish to select. Smalltalk/ V
responds by placing the source code for the method that implements the message in the
contents pane below. You can move the cursor or scroll the methods list pane and then
select a different method by pressing the select key or the right mouse button.

The method list pane menu contains four functions:

To remove a method from the selected class, select the method, pop up the method list
menu, and select the remove function. The method list is immediately updated.

To addz. new method, you can use the new method function. A template that you can
edit appears. You can also edit the text of any existing method in the class. The name
of the new method is taken from the first line of the text. In either case, you use the save
function to invoke the compiler and install the new method. Remember that there are
two kinds of methods—class and instance methods. The kind of method you get is
determined by whether you have currently selected the class or instance pane.

If a compilation error is detected, you will see a message in your source in the pane at
the point where the error was detected. The error message is selected (reversed). Edit the
text and use the save function again to recompile.

When the method is successfully compiled with no errors, Smalltalk/V installs it into the
class automatically and all future invocations of this method use this new version. The
source code of the new or modified method is written onto the change log file.

Senders causes Smalltalk/V to search all of the methods in the environment for senders
(callers) of the selected message selector. A senders window, which is a kind of Method
Browser, pops up to display each method (and its class) that sends a message with the
selected message selector.

J)

Chapter 16: Smalltalk/ V 286 Standard Windows 301

Implementors causes Smalltalk/V to search all of the classes in the environment for
implementors (definers) of the selected message selector. An implementors window, which
is a kind of Method Browser, pops up to display the names of all the classes that
implement methods for the selected message selector.

Modifying the Source Code for a Method

To see the source code of a different method, move the cursor into the methods list pane
and select another message selector. The contents pane is a text pane used for modifying
and adding methods.

All of the functions on the contents pane menu behave exactly as described under Text
Editor in Chapter 15.

To modify an existing method, you must first select it in the method list pane. The source
currently being used by the system is displayed in the contents pane. Edit the source code
in this pane. After editing the source text, you then use the save function on the contents
pane menu to invoke the compiler and install the new method in the environment.

Class Browser

A Class Browser can be opened in either of two ways. You can send the message edit
to any class or you can select the browse function from the hierarchy pane menu of the
Class Hierarchy Browser described previously in this chapter.

Move the cursor into any text pane. Type in the name of the class you want to browse
followed by edit and select it. Select the do it function from the pane menu.
Smalltalk/V then opens a Class Browser for the class.

Figure 16.4 shows a Class Browser for the class DemoClass. Class Browsers have three
panes: the dictionary list pane, the method list pane, and the contents pane.

The label of a Class Browser identifies the class you are browsing. In this window, only
the methods for the selected class can be browsed, added, or modified.

The dictionary list pane is the top-left pane that contains the two choices: class and
instance. If you select instance, then the list of instance methods is displayed in the
method list pane immediately below this pane. If you select class, then the list of class
methods is displayed in the method list pane. There is no pane menu associated with the
dictionary list pane. If you press the pane menu key, Smalltalk/V will pop up the same
menu that the window menu key pops up.

302 Chapter 16: Smalltalk/ V 286 Standard Windows

Figure 16.4
Class Browser

bounceBall

dragon
dragon:
Mandala
aultiEUipse
•ultiHandala
•ultiFantagon
au It{Polygon:
aultiSpiral

ilkLine
"Draw a rotating line."

I incrK incrV nuaberOfLines boundX I
Display fill: rectangle

rule: Fora over
•ask: (Display coapatibleHask color: 8).

nuaberOfLines := 68.
incrK := rectangle width // nuaberOfLines.
incrV := rectangle height // nuaberOfLines.
boundX : = incrK « (nuaberOfLines • 1).
1 to: nuaberOfLines • 1 do: [:i I

pen
aask: (Display coapatibleltask color:

(Count := Count • 1)
// 3 W 7):

dranFroa: i * incrX 0 8 + rectangle origin
to: boundX - (i * incrX) 0 (i » IncrV)

The method list pane is immediately below the dictionary list pane. It displays the list of
class or instance methods implemented by the class depending on what you choose (class
or instance) in the dictionary list pane. This pane lets you choose a particular method
implementation for viewing.

The contents pane is the large pane to the right of the two list panes. It displays the
currently selected method in the method list pane. You can edit and recompile methods
in this text pane.

Browsing Method Lists

The method list pane displays a list of the message selectors for either the class methods
or the instance methods defined in the class. The choice you make in the dictionary list
pane (immediately above this pane) determines which list you see.

The functions on the methods list pane menu let you remove methods and display the
implementors (definers) and the senders (callers) of messages. Note that this is very similar
to the method list pane described for the Class Hierarchy Browser. The items appearing
in both menus function in the same manner. See Browsing the Methods for the Class
Hierarchy Browser in this chapter for a description of how to select a method and for
explanations of the menu functions.

Modifying and Adding Methods

The contents pane is a text pane used to modify and add methods to the class being
browsed. All of these functions behave exactly as described under Text Editor.

Chapter 16: Smalltalk/ V 286 Standard Windows 303

The process of adding and modifying methods is the same as described for the Class
Hierarchy Browser. The Class Browser, however, uses a dictionary list pane while the
Class Hierarchy Browser has a class pane and an instance pane.

The Inspector

Figure 16.5 shows an inspector window. Inspectors are used to examine and change objects
in the system. They are a low-level debugging aid.

Figure 16.5
Inspector Window

To open an Inspector, send the message inspect to any object. For example, to open an
inspector on the global variable Demo, evaluate the following text:

Demo inspect. •

Inspectors have two panes. The list pane on the left is the instance variable list pane. The
pane on the right is the instance variable contents pane.

The instance variable list pane shows all of the instance variables of the object being
inspected. The first item in the list is always the name self, which is the object being
inspected. The named instance variables, if any, are listed next. If the object being
inspected has indexed instance variables, then they are listed last with numerical indices.

When you select one of the variables from the list, its current value is displayed in the
instance variable contents pane. If you select self, the current value of the inspected
object is displayed.

The pane menu of the list pane has only one function, inspect. When you select this
function, a new Inspector is opened on the currently selected instance variable. Also, if
you click on a selected item, an Inspector window is opened on that item.

304 Chapter 16: Smalltalk/ V 286 Standard Windows

The instance variable contents pane is a text pane. The pane menu has the normal text
pane functions on it. You can use this pane to evaluate any type of expression that you
wish. There are two very important features of this pane:

1. Any expression that you evaluate is compiled in the scope of the object being
inspected. This means that you can use the names of all of the instance
variables in your expressions.

2. If you select the save function from the pane menu, the entire contents of the
text pane will be compiled and evaluated. The result of this expression will
replace the current value of the selected instance variable in the list pane to
the left. Similarly, if you select the restore function, Smalltalk/V places the
current value of the selected instance variable into this text pane.

Inspecting Dictionaries

A Dictionary is an object which contains associations between keys and values. The
Inspector created for objects which are dictionaries are special. The Dictionary Inspector
has two panes: an instance variable list pane and an instance variable contents pane, just like
regular Inspectors. Dictionary Inspectors, however, list the keys in the dictionary in the
instance variable list pane, rather than instance variable names and indices. When you
choose a key in the pane, the associated value is displayed in the instance variable
contents pane. Notice that self is not on the list pane of a dictionary inspector.

The dictionary inspector pane menu has three selections. Notice that there are two
functions not present on a normal inspector's pane menu.

Remove allows you to remove the association for a selected key from the Dictionary.

Inspect opens an Inspector on the value associated with the currently selected key.

Add allows you to add a new element to the dictionary. The system pops up a Prompter
asking for the new key. The associated value is nil until you select the new key, change
the nil value in the contents pane, and save it.

Debugger Windows

There are two debugger windows: a walkback window and a debug window. A walkback
window pops up automatically when errors are detected. When you need more
information than provided in the walkback window, you explicitly request a debug
window using the walkback window menu.

Chapter 16: Smalltalk/ V 286 Standard Windows 303

Walkback Window

You request a walkback window by sending the error: message to any object with a
string describing the error as argument. For example,

self error: 'Index is outside of collection bounds'

Smalltalk/V also places a walkback window on the screen when any of the following
occur.

• The message halt is sent to any object, for example:

self halt

• The break key is typed at the same time that the control key is pressed,
causing a control-break interrupt.

• The message-send nesting gets too deep, resulting in a stack overflow
condition.

Figure 16.6 shows a walkback window produced by evaluating the expression in the
System Transcript. This expression attempts to access the eighth character in the string
'hello', an obvious error.

itringCObject)»error:
Str ing(I ndexsdCo 1 lect ion)»errorl nBounds:
5tr ingCI ndexedCo 1 lect ion) »checkl ndax:
String»«t:
Jndef inedObj ect»Do i t

Figure 16.6
Walkback Window

The label of the window describes the error. The text pane of the window contains a
method walkback showing the incomplete message sends that led to the error. Each line
in the text pane represents a single message send, with the most recent send listed first.
On each line, the class of the receiver is given first. If the method used is defined in a
superclass of the receiver, the class in which the method is defined appears next in
parentheses. The string on the right following " > > " is the message selector.

306 Chapter 16: Smalltalk/V 286 Standard Windows

Sometimes you will see lines of the form:

[] in ClassName > > methodName

This indicates that an error occurred during the evaluation of a block in the method
methodName of the class ClassName.

Whenever you get a walkback window, you generally do one of three things:

1. You can determine what the problem is from the information contained in
the walkback window. In this case, you normally close the walkback window
and then go fix the problem.

2. You can resume execution at the point of interruption, provided that the
walkback window occurred either as a result of a control-break interrupt, or
because a halt message was sent. In these cases, there is nothing wrong with
the program, so you can pop up the pane menu for the walkback window and
select resume. The walkback window closes and execution continues.

3. You can decide that you need more information, and would like to use the
debuggerto obtain it. In this case, you pop up the pane menu for the walkback
window and select debug. The walkback window closes and you are
prompted for the corners of the debugger window:

Debugger Window

The debugger window gives you an expanded view of the walkback and allows
controlled execution of a process. The window has six panes. Figure 16.7 shows a
debugger window.

Figure 16.7
Debugger Window

|at: anInteger
"Answer the character at position
«nInteger in the receiver string."

<prii*itive: 63>

i " maiiuUMmai^miiuitusat-
If priMitiveFailed

Chapter 16: Smalltalk/ V 286 Standard Windows 307

The top left list pane serves two purposes: presenting a walkback and listing breakpoints.
If the pane labeled walkback is selected, the pane above has the same walkback list that
appears in a walkback window. When you select a walkback line, the other panes contain
related information.

If the pane labeled breakpoints is selected, the pane above lists the class name and
method selector for all methods which have breakpoints set. When you select a
breakpoint line, the pane below displays the source code for the selected method. Setting
a breakpoint in a method causes execution to stop when the method is entered, provided
that execution is under control of the debugger (see the description of the hop, skip and
jump buttons below).

The bottom pane displays the source code for the selected method and, if walkback is
selected, the source code for the currently executing statement is highlighted. This pane
also serves as a text editor so you can change the code as you do with the Class Hierarchy
Browser. You update a method by selecting the save entry on the pane menu. If a
selected walkback method is updated in this way, all walkback entries above the
bottom-most occurrence of the method in the walkback list are discarded, because a
method they would return to has changed.

The two panes on the top right serve as an inspector for the receiver, arguments and
temporary variables of the selected method. The variable name pane on the left of the two
contains self, representing the receiver, and the names of all arguments and temporary
variables. The variable pane on the right displays the value of the selected variable.

The menu of the variable name pane contains a single entry: inspect which allows you
to spawn another inspector on the selected object. For example, you can inspect the
instance variables of the receiver by double-clicking on self.

The menu of the variable value pane is a standard text editing menu. When you select
save, the value of the selected variable is changed to contain the results of evaluating the
expression in the value pane.

The label bar of the debugger window contains three buttons related to debugging: hop,
skip and jump. These work as follows:

• hop - executes the next expression in the debugged process.
• skip - executes the next expression in the selected method or up to the next

breakpoint, whichever comes first. Note that skip may execute several
expressions in lower-level methods.

• jump - executes up to the next breakpoint.

The menu of the walkback list pane contains the entries resume, restart, senders,
implementors, add breakpoint and remove breakpoint, defined as follows:

308 Chapter 16: Smalltalk/ V 286 Standard Windows

• resume - as in the walkback window, allows you to continue execution after
a halt message or a control-break interrupt. The debugger window
disappears and execution continues from the point of interruption. You will
not be allowed to resume, however, if you have changed a method in the
walkback list.

• restart - if a method is selected, the debugger window disappears and
execution is restarted by re-sending the message in the selected walkback
entry.

• senders - as in the Class Hierarchy Browser, a Method Browser window is
popped up listing all methods in Smalltalk/V which send the message
corresponding to the selected method.

• implementors - as in the Class Hierarchy Browser, a Method Browser
window is popped up listing all methods in Smalltalk/V which implement
a method with the same name as the selected method.

• add breakpoint - two prompter windows appear, requesting the class and
selector of the method to add to the breakpoint list.

• remove breakpoint - the selected breakpoint entry is removed from the
breakpoint list.

Method Browser

The Method Browser lets you browse and edit a list of methods. There are two ways to
open a Method Browser. Selecting senders in any of the list pane menus (e.g., the
method list pane menu of the Class Hierarchy Browser) will open a Method Browser on
the list of all methods in the system that send the selected message selector. Selecting
implementors in any of the list pane menus will open a Method Browser on the list of
all methods that implement the selected message selector. These two windows are often
referred to as the senders window and the implementors window respectively. Figure 16.8
shows a Method Browser on all senders of the message open.

Method Browsers have two panes. The list pane on the top is the method list pane, the
pane on the bottom is the text pane.

The method list pane shows a list of methods identified by the class and message selector.
When you select a method in the list, the source code for the method is displayed in the
text pane. The pane menu of the list pane has two functions:

senders causes Smalltalk/V to search all of the methods in the environment for methods
that send (call) the selected message selector. A new Method Browser is opened on the
methods found.

implementors causes Smalltalk/V to search all of the methods in the environment for
methods that implement (define) the selected message selector. A new Method Browser
is opened on the methods found.

Chapter 16: Smalltalk/ V 286 Standard Windows 309

Figure 16.8
Method Browser

Fi leCo«pare»open
I nspector»openOn:
Debugger»debug
HethodBrowser>>openOn:

TopPane>>open
UndefinedObject>>Doit

fileOutOn: aFileStreati
"Urite the pane data out on aFileStrean.

aFileStrean close.
File remove: aFiTeStreaM pathNane.

DBI
aFileStrean

setCollection: aFileStrean file;
setLinits.

textHolder fileOutOn: aFileStrean.
aFileStrean flush

The text pane lets you view and edit the source code for a selected method. This pane
has the normal text pane editing menu. When you save the edited text, the method is
recompiled.

Part 4

Encyclopedia
of Classes

Animation 311

Animation

An Animation contains a collection of pens representing objects being animated. Each pen
is moved by erasing its image from the old location and then displaying the image in a new
location. The message interface is similar to class Pen except that a name must be given to
identify the object to move. Each pen in the collection behaves differently than a non-
animation pen, for example, the instance variable sourceForm of each pen contains an Array
of Forms representing pictures in successive stages of a motion. These pictures are displayed
in a cyclical fashion for each BitBlt copy. The overlapped objects are displayed in the order
as they are entered into the Animation object. Thus an object entered first will appear to
always move behind the object entered later.

Inherits From:

Inherited By:

Named Instance Variables:

Pen BitBlt Object

(None)

backForm
Contains a Form which is a copy of the background of the animation. A region of
this form is pasted onto the under Form to carry out the erasing operation.

clipHeight
(From class BitBlt)

clip Width
(From class BitBlt)

clipX
(From class BitBlt)

clipY
(From class BitBlt)

curPen
Contains a Pen which is one of the animated objects that is currently moving.

destForm
(From class BitBlt)

destX
(From class BitBlt)

destY
(From class BitBlt)

direction
(From class Pen)

downState
(From class Pen)

fractionX
(From class Pen)

fractionY
(From class Pen)

halftone
(From class BitBlt)

312 Animation

height
(From class BitBlt)

hideBlt
Contains a BitBlt which is used to erase the old image.

pens
Contains an OrderedCollection of pens with information about each animated
object.

rule
(From class BitBlt)

shiftRate
Contains an Integer specifying the number of times the same picture will be used
before shifting to the next picture of an animated object. For example, a spinning
ball will appear to be spinning more slowly when its shiftRate is larger.

sourceForm
(From class BitBlt)

sourceX
(From class BitBlt)

sourceY
(From class BitBlt)

speed
Contains an Integer specifying the number of pixels to skip between successive
moves. Skipping a larger number of pixels gives the illusion of moving at a higher
speed.

underForm
Contains a Form used as an intermediate place for merging the erasing rectangle
and the new displaying rectangle so that the blinking effect is reduced.

width
(From class BitBlt)

Class Variables:

DoubleCenter

(From class Pen)

Pool Dictionaries: (None)

Class Methods: (None)

Instance Methods:
add: anArray name: aName color: aColor

Add the forms in anArray to the receiver with the name aName and color aColor
(integer from 0 to 15, or a halftone symbol).

display
Display the currently moving object and all the objects it overlaps with.

initialize: aRectangle
Initialize the receiver to do animation within aRectangle.

Array 313

se tBackground
Set the background form to the contents of the display screen.

shiftRate: aninteger
Specify how many times the current picture will be copied before shifting to the
next one.

speed: aninteger
Change the distance between consecutive copies to aninteger.

tell: aName bounce: aninteger
Tell the pen with the name aName to bounce by a distance of aninteger.

tell: aName direction: aninteger
Tell the pen with the name aName to change its direction to aninteger number of
degrees.

tell: aName go: aninteger
Tell the pen with the name aName to go for a distance of aninteger.

tell: name goto: aPoint
Tell the object with name to go to aPoint.

tell: aName place: aPoint
Tell the pen with the name aName to be placed at aPoint.

tell: aName turn: aninteger
Tell the pen with the name aName to turn by aninteger number of degrees.

Array

An Array is a collection of any objects accessed through a fixed range of integer indices
(representing the positions of the elements within the Array). Most of the protocol to handle
arrays is inherited from its superclasses. The only methods contained in this class are the
methods to print and store an Array on a stream.

Inherits From: FixedSizeCollection IndexedCollection Collection Object

Inherited By: CompiledMethod

This class contains indexed instance variables.

Named Instance Variables: (None)

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods: (None)

314 Array

Instance Methods:

printOn: aStream
Append the ASCII representation of the receiver to aStream.

storeOn: aStream
Append the ASCII representation of the receiver to aStream from which the
receiver can be reinstantiated.

Association

Class Association provides the means of associating two objects known as the key/value pair,
and defines the protocol to manipulate them. Association objects are often used as the
elements of class Dictionary.

Magnitude Object

(None)

Inherits From:

Inherited By:

Named Instance Variables:

key
Contains the first object of the key/value pair. It is primarily used as a key to
retrieve the second object (the value) of the association when dealing with instances
of class Dictionary.

value
Contains the second object of the key/value pair.

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods:

key: anObject
Answer an instance of class Association whose key is initialized to anObject.

key: aKey value: anObject
Answer an instance of class Association whose key is initialized to aKey and whose
value is initialized to anObject.

Instance Methods:

<C anAssociation
Answer true if the receiver key is less than anAssociation key, else answer false.

^ ™ anAssociation
Answer true if the receiver key is less than or equal to anAssociation key, else
answer false.

Bag 315

— anAssociation
Answer true if the receiver key is equal to anAssociation key, else answer false.

^ anAssociation
Answer true if the receiver key is greater than anAssociation key, else answer false.

> •« anAssociation
Answer true if the receiver key is greater than or equal to anAssociation key, eke
answer false.

hash
Answer the integer hash value for the key of the receiver.

key
Answer the key of the receiver.

key: anObject
Set the key of the receiver to be anObject. Answer the receiver.

print On: aStream
Append the ASCII representation of the receiver to aStream.

storeOn: aStream
Append the ASCII representation of the receiver to aStream from which the
receiver can be reinstantiated.

value
Answer the value of the receiver.

value: anObject
Set the value of the receiver to be anObject. Answer the receiver.

A Bag is a collection of unordered elements in which duplicates are allowed. It cannot be
accessed through external keys. Bags are useful for containing arbitrary objects and for
counting occurrences of equal objects. Bags are hashed for rapid searching.

Inherits From:

Inherited By:

Collection Object

(None)

Named Instance Variables:

elements
Contains a Dictionary. For each key /value pair, the key contains an element of
the bag and the associated value represents the number of occurrences of the
element in the bag.

Class Variables:

(None)

316 Bag

Pool Dictionaries: (None)

Class Methods:

new
Answer an empty Bag.

Instance Methods:

add: anObject
Answer anObject. Add anObject to the elements of the receiver.

add: anObject withOccurrences: aninteger
Answer anObject. Add anObject to the elements of the receiver aninteger number
of times.

at: aninteger
Answer the element of the receiver at index position aninteger. Report an error
since bags are not indexable.

at: aninteger put: anObject
Replace the element of the receiver at index position aninteger with anObject.
Report an error, since bags are not indexable.

do: aBlock
For each element in the receiver, evaluate aBlock with that element as the
argument.

includes: anObject
Answer true if the receiver contains an element equal to anObject, else answer
false.

occurrencesOf: anObject
Answer the number of elements of the receiver equal to anObject.

remove: anObject ifAbsent: aBlock
Answer anObject. Remove one occurrence of anObject from the receiver collection.
If anObject is not an element of the receiver, evaluate aBlock (with no arguments).

size
Answer the number of elements in the receiver collection.

Behavior

Class Behavior is the abstract class that defines and implements the common protocol for
all the classes and metaclasses in Smalltalk. Behavior provides methods that support source
code access, compilation, object creation, and class hierarchy access.

Inherits From:

Inherited By:

Object

Class MetaClass

Behavior 317

Named Instance Variables:

comment
This is reserved for future use.

dictionary Array
Contains an Array of method dictionaries, in message lookup order.

instances
Contains an Array of instance variable names defined by this class. The names are
stored as strings.

name
Contains the Symbol that is the name of this class.

structure
Contains a Smalllnteger that describes the physical structure of instances of this
class. See the class variables of Behavior for the definition of the encoding.

subclasses
Contains an Array of all the subclasses of this class.

superclass
Contains the superclass of this class.

Class Variables:

InstlndexedBit
Contains a Smalllnteger which, when logically ANDed with the instance variable
structure, determines whether or not an instance of the class can have indexed
instance variables. The value contained is 8192.

Ins tNumber Mask
Contains a Smalllnteger which, when logically ANDed with the instance variable
structure, determines the number of named instance variables for each instance
of the class. The value contained is 127.

InstPointerBit
Contains a Smalllnteger which, when logically ANDed with the instance variable
structure, determines whether or not an instance of the class contains object
pointers in their instance variables. The value contained is 16384.

Pool Dictionaries: (None)

Class Methods: (All private)

Instance Methods:

addSelector: aSymbol withMethod: aCompiledMethod
Add aCompiledMethod to the receiver messageDictionary using aSymbol as the
key. If aSymbol is not a Symbol report an error.

addSubclass: aClass
Add aClass to the subclasses of the receiver. Make the the receiver the superclass
of aClass.

allClasses
Answer a Set of all of the classes contained in Smalltalk.

318 Behavior

allClassVarNames
Answer a Set of strings of all of the class variable names defined in the receiver
and its superclasses.

alllnstances
Answer an Array of all of the instances of the receiver.

alllnstVarNames
Answer an Array of strings of all of the instance variable names defined in the
receiver and its superclasses.

allSubclasses
Answer an OrderedCollection of all the subclasses of the receiver in hierarchical
order. Classes at the same hierarchical level are sorted alphabetically.

allSuperclasses
Answer an OrderedCollection of all the superclasses of the receiver. The
superclasses are in inverse hierarchical order, i.e class Object is last.

canUnderstand: aSymbol
Answer true if the receiver or any of the receiver superclasses implement the
method named aSymbol, else answer false.

classVariableString
Answer a String of all the class variable names defined by the receiver. The names
are separated with blanks.

compile: codeString
Compile the Smalltalk method contained in codeString. The class to use for
resolving variables is the receiver. If there are no errors, add the method to the
receiver messageDictionary and answer the Association with the message selector
as the key and the compiled method as the value. If there is an error, answer nil.

compile: codeString notifying: requestor
Compile the Smalltalk method contained in codeString. The class to use for
resolving variables is the receiver. If there are no errors, add the method to the
recevier messageDictionary and answer the Association with the message selector
as the key and the compiled method as the value. If there is an error the requestor
is sent a message by the compiler identitfying the error and this method answers
nil.

compiledMethodAt: aSymbol
Answer the compiled code of the method named aSymbol defined in the receiver.

compile Logic: codeString
Compile the Prolog method contained in codeString. The class to use for resolving
variables is the receiver. If there are no errors, add the method to the receiver
messageDictionary and answer the Association with the message selector as the key
and the compiled method as the value. If there is an error, answer nil.

compile Logic: codeString notifying: requestor
Compile the Prolog method contained in codeString.

Behavior 319

deepCopy
Answer a copy of the receiver with shallow copies of each instance variable. Because
classes are unique (cannot be copied), answer the receiver.

implementorsOf: aSymbol
Answer a collection of methods of myself and my subclasses that implement
aSymbol.

includesSelector: aSymbol
Answer true if the message dictionary of the receiver includes a method of name
aSymbol, else answer false.

inheritsFrom: aClass
Answer true if receiver can inherit methods from aClass, else answer false.

instance VariableString
Answer a String containing all the instance variable names defined by the receiver.
The names are separated with spaces.

instSize
Answer the number of named instance variables contained in instances of the
receiver.

instVarNames
Answer the array of instance variable names defined by the receiver.

isBits
Answer true if instances of the receiver contain 8 bit values instead of object
pointers, else answer false.

isBytes
Answer true if instances of the receiver contain 8 bit byte values, else answer false.

isFixed
Answer true if instances of the receiver do not contain indexed instance variables,
else answer false.

isPointers
Answer true if instances of the receiver contain object pointers instead of 8 bit
values, else answer false.

isVariable
Answer true if instances of the receiver contain indexed instance variables, else
answer false.

methodDictionary
Answer the dictionary of methods defined in the receiver.

methods
Answer an instance of ClassReader initialized for the receiver.

new
Answer an instance of the receiver. If the receiver is indexable, then allocate zero
indexed instance variables. This method is frequently reimplemented as a class
message in classes that need special initialization of their instances.

320 Behavior

new: anlnteger
Answer an instance of the receiver. Allocate anlnteger number of indexed instance
variables. If the receiver does not have indexed instance variables an error is
reported. This method is frequently reimplemented as a class message in classes
that need special initialization of their instances.

print On: aStream
Print the name of the receiver on aStream.

removeSelector: aSymbol
Remove the method named aSymbol from the methods defined in the receiver.

selectors
Answer a Set of symbols of the names of the methods defined by the receiver.

sendersOf: aSymbol
Answer a collection of methods of myself and my subclasses that send aSymbol.

shallowCopy
Answer a copy of the receiver which shares the receiver instance variables. Because
classes are unique (cannot be copied), answer the receiver.

sourceCodeAt: aSymbol
Answer a String of the source code for the method named aSymbol in the receiver.

structure
Answer the integer that describes the structure of instances of the receiver. Refer
to the class variables of Behavior for a definition of this integer.

subclasses
Answer an Array of subclasses of the receiver.

superclass
Answer the superclass of the receiver.

withAUSubclasses
Answer an OrderedCollection of the receiver and all of its subclasses in hierarchical
order.

BiColorForm

A BiColorForm is like a Form except that it contains two additional instance variables,
foreColor and backColor. This enables the BiColorForm to take on two arbitrary colors rather
than just black and white. The foreColor is associated with 1 bits and the backColor with
0 bits in the bitmap.

Inherits From:

Inherited By:

Form DisplayMedium DisplayObject Object

(None)

I !

BiColorForm 321

Named Instance Variables:

backColor
Contains an integer representing the background color (for 0 bits in bitmap).

bits
(From class Form)

byte Width
(From class Form)

deviceType
(From class Form)

foreColor
Contains an integer representing the foreground color (for 1 bits in bitmap).

height
(From class Form)

offset
(From class Form)

width
(From class Form)

Class Variables:

BlackMask
(From class Form)

DarkGrayMask
(From class Form)

GrayMask
(From class Form)

LightGrayMask
(From class Form)

PrinterMode
(From class Form)

WhiteMask
(From class Form)

Pool Dictionaries: (None)

Class Methods:

black
Answer a black mask form.

color: aColor
Answer a mask form with aColor as the foreground color and black as the
background color.

darkGray
Answer a dark gray mask form.

foreColor: aColor backColor: bColor
Answer a mask form with foreground aColor and background bColor.

322 BiColorForm

gray
Answer a gray mask form.

UghtGray
Answer a light gray mask form.

new
Answer a new BiColorForm.

white
Answer a white mask form.

Instance Methods:

backColor
Answer the background color.

backColor: aColor
Set receiver's background color to aColor.

foreColor
Answer the foreground color.

foreColor: aColor
Set receiver's foreground color to aColor.

foreColor: aColor backColor: bColor
Set receiver's foreground color to aColor and background color to bColor.

fromDisplay: aRectangle
Copy aRectangle area of the display screen to receiver. Screen bits that are the
receiver foreground color become 1, the rest become 0.

BitBIt

This class defines all the basic graphics operations. Its main function is to transfer bits from
one area to another. This involves three forms: the source form, destination form, and mask
form. The bits in the source form are first ANDed with the bits in the mask form (tiled if
size is smaller than the source rectangle), and then merged into the destination form with
a combination rule. The combination rule specifies a logical operation (e.g. AND, OR, XOR,
etc.) as to how to combine a masked source bit with its corresponding destination bit. The
areas involved in this bit transfer are specified by a source rectangle on the source form, a
destination rectangle on the destination form, and a clipping rectangle also on the destination
form. After alligning the source rectangle origin with the destination rectangle origin, the
final affected area is the intersection of all three rectangles. The prebuilt mask forms and
supported combination rules can be obtained by sending class messages to Form or
BiColorForm (if colors other than black and white are desired).

Inherits From:

Inherited By:

Object

Animation Characterscanner Commander Pen

BitBlt 323

Named Instance Variables:

clipHeight
Contains the height of the clipping rectangle.

clip Width
Contains the width of the clipping rectangle.

clipX
Contains the x coordinate of the clipping rectangle origin.

dipY
Contains the y coordinate of the clipping rectangle origin.

destForm
Contains the destination form for bit transfers.

destX
Contains the x coordinate of the destination rectangle origin.

destY
Contains the y coordinate of the destination rectangle origin.

halftone
Contains the mask form which provides the graytone effect.

height
Contains the height of the source (and destination) rectangle.

rule
Contains an integer denoting the combination rule.

sourceForm
Contains the source form for bit transfers.

sourceX
Contains the x coordinate of the source rectangle origin.

sourceY
Contains the y coordinate of the source rectangle origin.

width
Contains the width of the source (and destination rectangle).

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods:

destForm: dForm sourceForm: sForm
Answer a BitBlt with dForm and sForm as its destination and source Forms.

Instance Methods:

clipRect
Answer the clipping rectangle of the receiver.

clipRect: aRectangle
Set the clipping rectangle of the receiver to aRectangle.

324 BitBlt

clipX
Answer the x coordinate of the clip rectangle.

clipY
Answer the y coordinate of the clip rectangle.

combinationRule: anlnteger
Set the rule for combining the bits of the source and destination forms to anlnteger.

copyBits
Copy the bits from the source to the destination form. Hide the cursor if it is within
the area of the transfer.

destForm
Answer the destination form of the receiver.

destForm: aForm
Set the destination form of the receiver to aForm.

destForm: dForm sourceForm: sForm
Answer the receiver with dForm and sForm as its destination and source Forms.

destForm: destination
sourceForm: source halftone: mask combinationRule: combinationRule
destOrigin: destOrigin sourceOrigin: sourceOrigin extent: extent
clipRect: clipRect

Initialize all the instance variables of the receiver.

destOrigin: aPoint
Set the origin of the destination rectangle to aPoint.

destRect: aRectangle
Set the destination rectangle to aRectangle.

destX
Answer the x-coordinate of the destination origin.

destX: anlnteger
Set the x-coordinate of the destination origin to anlnteger.

destY
Answer the y-coordinate of the destination origin.

destY: anlnteger
Set the y-coordinate of the destination origin to anlnteger.

drawFrom: startPoint to: stopPoint
Draw a line from startPoint to stopPoint.

extent
Answer a point whose cordinates are the width and height of the transfer area.

extent: aPoint
Set the width and height of the transfer area to the coordinates of aPoint.

height
Answer the height of the transfer area.

Bitmap 325

height: anlnteger
Set the height of the transfer area to anlnteger.

mask
Answer the mask form which provides the halftone effect.

mask: mask
Set the mask (halftone) form to mask.

sourceForm
Answer the source form of the receiver.

sourceForm: aForm
Set the source form of the receiver to aForm.

sourceOrigin: aPoint
Set the origin of the source rectangle to aPoint.

sourceRect: aRectangle
Set the source rectangle to aRectangle.

sourceX
Answer the x-coordinate of the source origin.

sourceX: anlnteger
Set the x-coordinate of the source origin to anlnteger.

sourceY
Answer the y-coordinate of the source origin.

sourceY: anlnteger
Set the y-coordinate of the source origin to anlnteger.

width
Answer the width of the transfer area.

width: anlnteger
Set the width of the transfer area to anlnteger.

Bitmap

A Bitmap is a fixed size indexable sequence of integers in the range 0 through 255. The
elements of a Bitmap are efficiently packed into memory, one per byte. They represent bit
maps of forms.

Inherits From: FixedSizeCollection IndexedCollection Collection Object

Inherited By: (None)

This class contains indexed byte values.

Class Variables:

(None)

326 Bitmap

Pool Dictionaries:

Class Methods:

Instance Methods:

(None)

(None)

atAUPut: aByte
Replace the bytes of the receiver with aByte. Answer aByte.

replaceFrom: start
to: stop with: aString startingAt: repStart

Replace the bytes of the receiver at index positions start through stop with
consecutive bytes of aString beginning at index position repStart. Answer the
receiver.

replaceFrom: start to: stop withObject: aByte
Replace the bytes of the receiver at index positions start through stop with aByte.
Answer aByte.

Boolean

Class Boolean is an abstract class which defines the common protocol for logical values. The
logical values are represented by its two subclasses, True and False.

Inherits From: Object

Inherited By: False True

Named Instance Variables: (None)

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

(None)

(All private)

Instance Methods:

deepCopy
Answer a copy of the receiver with shallow copies of each instance variable. Because
there is only one true and one false, answer the receiver.

print On: aStream
Append the ASCII representation of the receiver to aStream.

shallowCopy
Answer a copy of the receiver which shares the receiver instance variables. Because
there is only one true and one false, answer the receiver.

Character 327

storeOn: aStream
Answer the receiver. Append the character sequence of the receiver to aStream
from which the receiver can be reconstructed.

ByteArray

A ByteArray is a fixed size indexable sequence of integers in the range 0 through 255. The
elements of a ByteArray are efficiently packed into memory, one per byte.

Inherits From: FixedSizeCollection IndexedCollection Collection Object

Inherited By: FileHandle

This class contains indexed byte values.

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods: (None)

Instance Methods:

replaceFrom: start
to: stop with: aCollection startingAt: repStart

Replace the elements of the receiver at index positions start through stop with
consecutive elements of aCollection beginning at index position repStart. Answer
the receiver.

Character

Class Character defines the protocol for all the characters in the system (ASCII codes from
0 to 255). Instances of this class are immutable, meaning that they cannot be removed and
new ones cannot be created. There is one and only one instance of each character in
Smalltalk.

Inherits From: Magnitude Object

Inherited By: (None)

Named Instance Variables:

asciilnteger
Contains the ASCII encoding of the character.

328 Character

Class Variables:

(None)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

Class Methods:

digitValue: anlnteger
Answer the character representation of the digit anlnteger.

new
Disallow the instantiation of characters because characters are immutable.

value: anlnteger
Answer the character whose ASCII encoding matches anlnteger.

Instance Methods:

K. aCharacter
Answer true if the receiver ASCII value is less than the ASCII value of
aChararacter, else answer false.

< =* aChararacter
Answer true if the receiver ASCII value is less than or equal to the ASCII value
of aChararacter, else answer false.

— aChararacter
Answer true if the receiver ASCII value is equal to the ASCII value of aChararacter,
else answer false.

> aChararacter
Answer true if the receiver ASCII value is greater than the ASCII value of
aChararacter, else answer false.

> ™ aChararacter
Answer true if the receiver ASCII value is greater than or equal to the ASCII value
of aChararacter, else answer false.

asciiValue
Answer the number corresponding to the ASCII encoding of the receiver.

asLowerCase
Answer the lower case value of the receiver if it is a letter, else answer the receiver.

asUpperCase
Answer the upper case value of the receiver if it is a letter, else answer the receiver.

deepCopy
Answer a copy of the receiver with shallow copies of each instance variable. Because
characters are immutable (cannot instantiate a copy), answer the receiver.

CharacterScanner 329

digitValue
Answer a number corresponding to the digit value of the receiver.

hash
Answer the integer hash.

isAlphaNumeric
Answer true if the receiver is in the range of characters from 0 to 9 or in the range
from a to z or in the range from A to Z, else answer false.

isDigit
Answer true if the receiver is in the range of characters from 0 to 9, else answer
false.

isLetter
Answer true if the receiver is in the range of of characters from a and z or in the
range from A and Z, else answer false.

isLowerCase
Answer true if the receiver is in the range of characters from a to z, else answer
false.

is Separator
Answer true if the receiver character is either a space, tab, carriage-return, line-feed
or form-feed character, else answer false.

isUpperCase
Answer true if the receiver is in the range of character from A to Z, else answer
false.

isVowel
Answer true if the receiver is any one of the characters a,A,e,E,i,I,o,0,u,U, else
answer false.

printOn: aStream
Append the ASCII representation of the receiver to aStream.

shallowCopy
Answer a copy of the receiver which shares the receiver instance variables. Because
characters are immutable (cannot instantiate a copy), answer the receiver.

storeOn: aStream
Append the ASCII representation of the receiver to aStream from which the
receiver can be reconstructed.

CharacterScanner

The function of this class is to convert characters represented by ASCII values into
display able bit patterns. It contains a font describing the bit patterns of all characters and
carries out the conversion operation by transferring bits from the font (as the source form)
to the destination form.

Inherits From: BitBlt Object

330 CharacterScanner

Inherited By: (None)

Named Instance Variables:

backColor
Contains a mask form whose contents are used as the color of the background of
characters.

blankBitBlt
Contains a BitBlt used to blank a designated area.

clipHeight
(From class BitBlt)

clip Width
(From class BitBlt)

clipX
(From class BitBlt)

clipY
(From class BitBlt)

destForm
(From class BitBlt)

destX
(From class BitBlt)

destY
(From class BitBlt)

font
Contains the font used for displaying characters.

foreColor
Contains a mask form whose contents are used as the color of the characters.

frame
Contains a Rectangle limiting the area on the destination form to receive the
converted bit patterns. Normally the clipping rectangle is the same as this frame
but sometimes can be made smaller for special purposes and then restored to be
the same as the frame.

halftone
(From class BitBlt)

height
(From class BitBlt)

rule
(From class BitBlt)

sourceForm
(From class BitBlt)

sourceX
(From class BitBlt)

sourceY
(From class BitBlt)

textEnd
Contains an integer specifying the ending character in the text String to be
displayed.

CharacterScanner 331

textPos
Contains an integer specifying the starting character in the textString to be
displayed.

textString
Contains a String of characters to be displayed on the destination form.

width
(From class BitBlt)

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

Instance Methods:

(None)

(None)

blank: aPoint width: anlnteger
Paint to the background color, the rectangle whose origin is aPoint, width is
anlnteger, and height is the font height.

blankRestFrom: anlnteger
Blank the bottom portion of the frame starting from anlnteger row.

clipRect: aRectangle
Set the clipping rectangle of the receiver.

display: aString at: aPoint
Display the bit pattern of aString at aPoint in the frame of the receiver.

display: aString from: anlnteger at: aPoint
Display the bit pattern of aString starting at index position anlnteger up to the last
character of the string at aPoint in the frame. The remaining line after the last
character will be blanked.

display: aString
from: start to: stop at: aPoint

Display the bit pattern of aString from index position start to stop at aPoint in the
frame of the receiver.

displayAU: aCollection
from: firstLine to: lastLine at: columnlndex

Display the part of aCollection between firstLine and lastLine.

displayForm: aForm
at: aPoint rule: aRule

Display aForm at aPoint in the frame using aRule.

font
Answer the current font used by the receiver.

332 CharacterScanner

frame
Answer the framing rectangle of the receiver. Usually it is the same as the clipping
rectangle while the latter is sometimes changed to a smaller rectangle.

gray: aRectangle
Color aRectangle in the frame with gray tone.

initialize: aRectangle font: aFont
Initialize the instance variables of the receiver such that its clipping rectangle is
aRectangle and the font is aFont. The destination form is assumed to be the display
screen.

initialize: aRectangle
font: aFont dest: aForm

Initialize the instance variables of the receiver such that its clipping rectangle is
aRectangle, the font is aFont, and the destination form is aForm.

recover: aRectangle
Reverse the color of aRectangle in the frame.

reframe: aRectangle
Change the frame of the receiver.

reverse: aRectangle
Reverse the color of aRectangle in the frame.

setFont: aFont
Change the current font to aFont.

setForeColor: fColor backColor: bColor
Set the foreground color to fColor and background color to bColor. They can be
either an integer color or a mask form.

show: aString
from: start at: aPoint

Display the bit pattern of aString from index position start at aPoint in the frame
of the receiver.

Class

Class Class is the superclass of all class classes (i.e. metaclasses) in Smalltalk. It provides the
common protocol for defining and accessing class variables and pool dictionaries. The
subclass creation messages are implemented here as well. Every class is an instance of a
metaclass of the same name. The class contains the instance methods while the metaclass
contains the class methods.

Inherits From:

Inherited By:

Behavior Object

(None)

Class 333

Named Instance Variables:

classPool
Contains a Dictionary of all the class variables defined by this class. The keys are
strings containing the class variable names and the values are the current values
of the class variables,

comment
(From class Behavior)

dictionary Array
(From class Behavior)

instances
(From class Behavior)

name
(From class Behavior)

sharedPools
Contains an Array of symbols for the pool dictionary names referred to by this class.

structure
(From class Behavior)

subclasses
(From class Behavior)

superclass
(From class Behavior)

Class Variables:

InstlndexedBit
(From class Behavior)

InstNumberMask
(From class Behavior)

InstPointerBit
(From class Behavior)

Pool Dictionaries: (None)

Class Methods:

sortBlock
Answer a sort block for sorting classes alphabetically.

Instance Methods:

addClassVarName: aString
Add a new class variable named aString to the receiver.

addSharedPool: aSymbol
Add the shared pool named aSymbol to the receiver shared pool references.

classPool
Answer the dictionary containing the class variables defined in the receiver.

334 Class

class VarNames
Answer a Set of class variable names defined in the receiver.

edit
Open a ClassBrowser window on the receiver.

fileOutOn: aStream
Append the class definition message for the receiver to aStream.

initialize
Initialize the class variables defined in the receiver. Subclasses usually override this
message. The default is to set all class variables to nil.

name
Answer a String containing the receiver name.

removeFromSystem
Remove the receiver from Smalltalk. Report an error if there are any subclasses
or instances of the receiver.

rename: aString
Rename the receiver to aString.

sharedPools
Answer an Array of symbols of pool dictionary names referred to by the recevier.

subclass: classSymbol
instance VariableNames: instance Variables
classVariableNames: class Variables poolDictionaries: poolDictNames
Create or modify the class classSymbol to be a subclass of the receiver with the
specifed instance variables, class variables, and pool dictionaries.

variableByteSubclass: classSymbol
classVariableNames: class Variables poolDictionaries: poolDictNames

Create or modify the class classSymbol to be a variable byte subclass of the receiver
with the specified class variables and pool dictionaries.

variableSubclass: classSymbol
instance VariableNames: instance Variables
classVariableNames: class Variables poolDictionaries: poolDictNames
Create or modify the class classSymbol to be a variable subclass of the receiver with
the specifed instance variables, class variables, and pool dictionaries.

ClassBrowser

Qass ClassBrowser implements a window on all the methods for a single class. Methods can
be browsed, edited and cross-referenced. A ClassBrowser window consists of three panes. The
first contains the type of methods being browsed (instance or class). The second contains
the list of method selectors for the selected type. And the third contains the source code for
the selected method. The window's label shows the class name being browsed.

Inherits From: Object

ClassHierarchyBrowser 335

Inherited By: (None)

Named Instance Variables:

browsedClass
Contains the class on which the browser was opened.

selectedDictionary
Contains browsedClass or browsedClass class, depending upon whether instance or
class methods are selected.

selectedMethod
Contains the selector of the selected method, or nil if no method is selected.

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

(None)

(None)

Instance Methods:

openOn: aClass
Create a class browser window on aClass. Define the type, behavior and relative
size of each pane and schedule the window.

ClassHierarchyBrowser

Class ClassHierarchyBrowser implements a window on all the classes in Smalltalk/V. It
allows for class definitions and methods to be browsed and edited; the source code for a class
to be written to a file; and the senders and implementors of messages to be displayed. A
QassHierarchyBrowser window consists of five panes. The first contains the class hierarchy.
The second contains the method selectors for the selected class. The third contains the source
code for the selected method or the class definition method for the selected class. The fourth
and fifth panes are mutually exclusive, containing the type of the method dictionary selected
(instance methods or class methods).

Inherits From:

Inherited By:

Object

(None)

Named Instance Variables:

browsedClasses
Contains an OrderedCollection of strings of class names with the subclasses
indented to show the hierarchy.

hiddenClasses
Contains a Set of classes whose subclasses should not be displayed. These classes
have an ellipsis (...) appended to their name in the hierarchy.

336 ClassHierarchyBrowser

instanceSelectedLast
Contains true if the instance pane was selected last, false if the class pane selected
last.

methodSelectedLast
Contains true if a method selector was selected last, false if a class name was selected
last.

originalClasses
Contains the collection of classes passed as the argument to the openOn: message.

selectedClass
Contains the most recently selected class, or nil if no class is selected.

selectedMethod
Contains the most recently selected method selector, or nil if no method is selected.

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

(None)

(None)

Instance Methods:

openOn: aCollection
Create a class hierarchy browser window giving access to the classes in aCollection
and their subclasses.

ClassReader

A ClassReader supports Smalltalk source code reading and installation (compilation) from
a stream, and writing to a stream. The source code is in 'chunk' format (See Chapter 13,
Maintaining Smalltalk/V, for a definition of chunk). A ClassReader is used for writing the
entire source code of a class to a file, for reading a file to define a class, and for reading
portions of a file to selectively recover methods (for example, using the DiskBrowser to read
the change log).

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

class
Contains the class to be worked on by the ClassReader.

Class Variables:

(None)

Collection 337

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

Class Methods:

forClass: aClass
Answer an instance of the receiver for aClass.

Instance Methods:

filelnFrom: aStream
Read chunks from aStream until an empty chunk (a single '!') is found. Compile
each chunk as a method for the class described by the receiver. Log the source code
of the method to the change log.

fileOutOn: aStream
File out all the methods for the class described by the receiver to aStream, in chunk
format.

Collection

Class Collection is the superclass of all the collection classes. It is an abstract class defining
the common protocol for all of its subclasses. Collections are the basic data structures used
to store objects in groups in either a linear or nonlinear fashion (e.g. hashed). This class
provides the protocol to directly access (or store) a particular element in a collection, to access
all the elements of a collection in a particular order, or to perform some block of code for
each element accessed.

Inherits From:

Inherited By:

Object

Array Bag Bitmap ByteArray CompiledMethod Dictionary
FileHandle FixedSizeCollection IdentityDictionary
IndexedCollection Interval MethodDictionary
OrderedCollection Process Set SortedCollection String
Symbol SymbolSet SystemDictionary

Named Instance Variables: (None)

Class Variables:

(None)

Pool Dictionaries: (None)

338 Collection

Class Methods:

with: anObject
Answer a collection with only one element, anObject.

with: firstObject with: secondObject
Answer a collection of two elements, firstObject and secondObject.

with: firstObject with: secondObject with: thirdObject
Answer a collection of three elements, firstObject, secondObject, and thirdObject.

with: firstObject
with: secondObject with: thirdObject with: fourthObject

Answer a collection of four elements, firstObject, secondObject, thirdObject, and
fourthObject.

Instance Methods:

add: anObject
Answer anObject. Add anObject to the receiver collection.

addAU: aCollection
Answer aCollection. Add each element of aCoDection to the elements of the
receiver.

asArray
Answer an Array containing all the elements of the receiver.

asBag
Answer a Bag containing the elements of the receiver.

asOrderedCollection
Answer an OrderedCollection containing the elements of the receiver.

asSet
Answer a Set containing the elements of the receiver.

asSortedCollection
Answer a SortedCoUection containing the elements of the receiver sorted in
ascending order.

asSortedCollection: aBlock
Answer a SortedCoUection containing the elements of the receiver sorted according
to aBlock.

collect: aBlock
For each element in the receiver, evaluate aBlock with that element as the
argument. Answer a new coUection containing the results as its elements from the
aBlock evaluations.

deepCopy
Answer a copy of the receiver with shaUow copies of each element.

detect: aBlock
Answer the first element of the receiver that causes aBlock to evaluate to true (with
that element as the argument). If no such element is found, report an error.

Collection 339

detect: aBlock ifNone: exceptionBlock
Answer the first element of the receiver that causes aBlock to evaluate to true (with
that element as the argument). If no such element is found, evaluate exceptionBlock
(with no arguments).

do: aBlock
For each element in the receiver, evaluate aBlock with, that element as the
argument. This method should be implemented in the class of the receiver.

includes: anObject
Answer true if the receiver contains an element equal to anObject, else answer
false.

inject: initialValue into: aBinaryBlock
For each element in the receiver collection, evaluate aBinaryBlock with that
element as the argument. Starting with initialValue, the block is also provided with
its own value from the previous evaluation. Answer this value at the end of the block
evaluations.

isEmpty
Answer true if the receiver collection contains no elements, else answer false.

notEmpty
Answer true if the receiver collection contains one or more elements, else answer
false.

occurrencesOf: anObject
Answer the number of elements contained in the receiver collection that are equal
to anObject.

printOn: aStream
Append the ASCII representation of the receiver to aStream.

reject: aBlock
For each element in the receiver, evaluate aBlock with that element as the
argument. Answer a new collection containing those elements of the receiver for
which aBlock evaluates to false.

remove: anObject
Answer anObject. Remove the element equal to anObject from the receiver
collection. If such an element is not found, report an error.

remove: anObject ifAbsent: aBlock
Answer anObject. Remove an element equal to anObject from the receiver
collection. If such an element is not found, evaluate aBlock (with no arguments).

removeAH: aCollection
Answer aCollection. Remove all the elements contained in aCollection from the
receiver collection.

select: aBlock
For each element in the receiver, evaluate aBlock with that element as the
argument. Answer a new collection containing those elements of the receiver for
which aBlock evaluates to true.

340 Collection

shallowCopy
Answer a copy of the receiver which shares the receiver elements.

storeOn: aStream
Append the ASCII representation of the receiver to aStream from which the
receiver can be reinstantiated.

ColorForm

A ColorForm contains an array of bitmaps. All bits in the same location of each bitmap
collectively represent the color of the pixel at that location.

Inherits From:

Inherited By:

Named Instance Variables:

bits
(From class Form)

byte Width
(From class Form)

deviceType
(From class Form)

height
(From class Form)

offset
(From class Form)

width
(From class Form)

Class Variables:

BlackMask
(From class Form)

DarkGrayMask
(From class Form)

GrayMask
(From class Form)

LightGrayMask
(From class Form)

PrinterMode
(From class Form)

WhiteMask
(From class Form)

Pool Dictionaries:

Form DisplayMedium DisplayObject Object

(None)

(None)

ColorScreen 341

Class Methods:

color: aColor
Answer a mask form filled with aColor.

new
Answer a new ColorForm.

Instance Methods:

at: aPoint
Answer the color for pixel at aPoint.

byteValueAtX: xlnteger Y: ylnteger
Answer the byte at the position specified by the point (xlnteger @ ylnteger) in
the first plane.

compatibleForm
Answer the class of internal form most similar to the receiver.

compatibleMask
Answer the class of mask form most suitable for use with the receiver.

width: winteger height: hinteger initialByte: aByte
Change the receiver width to winteger and height to hinteger, and initialize every
byte in the bitmap to aByte.

width: winteger height: hinteger initialColor: aColor
Change the receiver width to winteger and height to hinteger, and fill with aColor.

ColorScreen

A ColorScreen is like a DisplayScreen except that it has multiple planes (like ColorForm)
and thus support multiple colors.

Inherits From: DisplayScreen Form DisplayMedium DisplayObject Object

Inherited By: (None)

Named Instance Variables:

bits
(From class Form)

byteWidth
(From class Form)

deviceType
(From class Form)

height
(From class Form)

offset
(From class Form)

342 ColorScreen

width
(From class

Class Variables:

BackColor
(From class

BlackMask
(From class

Form)

DisplayS creen)

Form)
DarkGrayMask

(From class
GrayMask

(From class

Form)

Form)
HighResIBeam

(From class DisplayS creen)
Light GrayMask

(From class
LowResIBeam

(From class
Mode

(From class
PrinterMode

(From class
WhiteMask

(From class

Pool Dictionaries:

Class Methods:

Instance Methods:

Form)

DisplayS creen)

DisplayS creen)

Form)

Form)

(None)

(None)

compatibleForm
Answer the class of internal form most similar to the receiver.

compatibleMask
Answer the class of mask form most suitable for use with the receiver.

refreshColor
Load the default color palette.

Commander

A Commander commands an Array of pens. When it receives a pen related message, it passes
the operation to every pen under its command. When a Commander is in action, it gives
the illusion that all of its pens are operating simultaneously.

Inherits From: Pen BitBlt Object

Commander 343

Inherited By:

Named Instance Variables:

(None)

clipHeight
(From class BitBlt)

clip Width
(From class BitBlt)

clipX
(From class BitBlt)

clipY
(From class BitBlt)

destForm
(From class BitBlt)

destX
(From class BitBlt)

destY
(From class BitBlt)

direction
(From class Pen)

downState
(From class Pen)

fractionX
(From class Pen)

fractionY
(From class Pen)

halftone
(From class BitBlt)

height
(From class BitBlt)

pens
Contains an Array of pens being commanded.

rule
(From class BitBlt)

sourceForm
(From class BitBlt)

sourceX
(From class BitBlt)

sourceY
(From class BitBlt)

width
(From class BitBlt)

Class Variables:

DoubleCenter
(From class Pen)

Pool Dictionaries: (None)

344 Commander

Class Methods:

new: anlnteger
Answer aCommander initialized to anlnteger number of pens.

Instance Methods:

clip RectAll: aRectangle
Set the clipping rectangle of every pen to aRectangle.

destX
Answer the x coordinate of the first pen.

destY
Answer the y coordinate of the first pen.

direction: anlnteger
Set the direction of every pen to anlnteger number of degrees.

down
Set all the pens down.

ellipse: anlnteger aspect: aFraction
Make each pen draw an ellipse with aspect ratio aFraction.

fanOut
Change the direction of each pen by an increment of 360 / number of pens.

go: anlnteger
Move all pens a distance of anlnteger in their current direction.

goto: aPoint
Move the first pen to aPoint and then move the remaining pens by the same
distance and direction as the first move.

lineUpFrom: startPoint to: endPoint
Place all the pens on equi-distant points on the line defined by startPoint and
endPoint.

location
Answer a Point indicating the position of the first pen.

place: aPoint
Set the position of the first pen to aPoint and modify the position of the remaining
pens by the amount of change in the first pen. No drawing takes place.

turn: anlnteger
Change the direction of all the pens by anlnteger number of degrees.

up
Lift all the pens.

Compiler 345

CompiledMethod

A CompiledMethod is produced by the Smalltalk/V compiler and interpretively executed by
the Smalltalk/V virtual machine.

Inherits From: Array FixedSizeCollection IndexedCollection Collection

Object

Inherited By: (None)

This class contains indexed instance variables.

Named Instance Variables:
byteCodeArray

Contains a ByteArray with codes to be executed.
class

Contains the class whose method dictionary contains the method.
primitive

Contains the user primitive number, or zero if none.
selector

Contains a Symbol representing the message selector.

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods: (All private)

Instance Methods: (All private)

Compiler

Oass Compiler is used for converting Smalltalk source code to compiled methods and for
evaluating Smalltalk expressions. There are no instances of this class because its behavior
is entirely defined with class messages.

Inherits From: Object

Inherited By: LCompiler

Named Instance Variables: (None)

Class Variables:

(None)

346 Compiler

Pool Dictionaries:

Class Methods:

(None)

compile: aString in: aClass
Compile the method aString in aClass. If the method compiles correctly, answer
an Association whose key is the method selector and whose value is the compiled
method. If not, answer nil and report the error on the Transcript.

compile: aString
in: aClass notifying: requestor ifFail: exceptionBlock

Compile the method aString in aClass. If the method compiles correctly, answer
an Association whose key is the method selector and whose value is the compiled
method. If not, send the messages: requestor compilerError: errorString at: position
in: codeString for: aClass. exceptionBlock value.

evaluate: aString
Compile and evaluate the method ('Doit ', aString) in the context of
UndefinedObject. If the method compiles correctly, answer the result of the
evaluation. If not, report the error on the Transcript and answer nil.

evaluate: aString
in: aClass to: doitReceiver notifying: requestor ifFail: exceptionBlock

Compile and install the method ('Doit', aString) in aClass. If the method compiles
correctly, answer: doitReceiver Doit. If not, send the messages: requestor
compilerError: errorString at: position in: aString. exceptionBlock value. In any
case remove the selector #Doit from aClass' method dictionary.

positionsOf: aString in: aClass
Answer highlighting information for source aString in class aClass.

positionsOf: aString
in: aClass notifying: requestor ifFail: exceptionBlock

Answer highlighting information for source aString in class aClass. If compile error,
notify requestor and evaluate exceptionBlock.

Instance Methods: (None)

Context

A Context is used to describe the execution state of blocks of code (enclosed in square
brackets). They are the objects to which value, value:, value rvalue: messages are sent to start
block evaluation.

Inherits From:

Inherited By:

Object

HomeContext

Context 347

Named Instance Variables:

blockArgumentCount
Contains an integer representing the number of block arguments.

homeContext
Contains the first context for the method, which includes the method arguments
and temporaries as indexed instance variables.

startPG
Contains an integer which is the initial program counter for the block.

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

(None)

(None)

Instance Methods:

fork
Create and schedule a new process for the expressions in the receiver block, at the
current priority.

fork At: aNumber
Create and schedule a new process for the expressions in the receiver block, at
priority aNumber.

homeContext
Answer the home context.

value
Answer the result of evaluating the no argument block described by the receiver.

value: anObject
Answer the result of evaluating the one argument block described by the receiver.

value: argl value: arg2
Answer the result of evaluating the two argument block described by the receiver.

whileFalse: aBlock
Repetitively evaluate the receiver block and aBlock, until the result of receiver
block evaluation is true. Answer nil.

whileTrue: aBlock
Repetitively evaluate the receiver block and aBlock, until the result of receiver
block evaluation is false. Answer nil.

348 CunorManager

CursorManager

An instance of CursorManager contains the bit pattern to display a cursor shape. In addition,
it contains the methods for managing the moving, hiding, and displaying of the cursor. This
class serves as an interface between the Smalltalk code and the mouse driver when a mouse
driver is loaded in the memory.

Inherits From:

Inherited By:

Named Instance Variables:

Object

NoMouseCursor

hotSpot
Contains a Point relative to the top left corner of the cursor shape which alligns
the cursor image to the cursor position on the display screen.

image
Contains a String of the cursor image in the format required by the Microsoft mouse
when the mouse driver is loaded. Contains a Form of the cursor image when the
mouse driver is not loaded.

Class Variables:

NoMouse
Contains a Boolean indicating whether the mouse driver is loaded (false) or not
(true).

Position
Contains a Point representing the cursor position on the display screen.

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

Cursors
Defines variables for the various cursor shapes.

FunctionKeys
Defines variables for the function key codes (of class Character) input from the
keyboard or mouse.

Class Methods:

corner
Answer the corner cursor.

crossHair
Answer the cross hair cursor.

downArrow
Answer the down arrow cursor.

CursorManager 349

execute
Answer the hour glass cursor.

hand
Answer the hand cursor.

leftArrow
Answer the left arrow cursor.

normal
Answer the arrow cursor.

origin
Answer the origin cursor.

rightArrow
Answer the right arrow cursor.

scroll
Answer the scroll cursor.

upArrow
Answer the up arrow cursor.

Instance Methods:

change
Change Cursor to be the receiver.

display
Display the receiver on the screen.

hide
Hide the cursor from the screen.

hotSpot
Answer the hot spot of the receiver cursor.

initForm: aForm hotSpot: aPoint
Initialize the contents of the receiver cursor from aForm (mask on top of cursor
shape) using aPoint as its hot spot.

initialize: aForm hotSpot: aPoint
Initialize the contents of the receiver cursor from aForm using aPoint as its hot spot.

isTherelnput
Answer true if there is input from keyboard or mouse, else answer false.

offset
Answer a copy of the cursor position.

offset: aPoint
Set the cursor position to aPoint. Answer the new position.

350 Date

Date

A Date represents a particular day since the start of the Julian calendar. Class Date defines
the protocol for creating, comparing, and computing dates.

Magnitude Object

(None)

Inherits From:

Inherited By:

Named Instance Variables:

day
Contains the number of days from January 1, 1901 up to the date represented by
this instance.

Class Variables:

MonthNames
Contains a Dictionary. The keys of the dictionary are instances of class Symbol
representing the month names in both the full and abbreviated form. For each of
the keys, the corresponding value is an integer from 1 to 12 indicating the index
of the month in the year.

MonthStrings
Contains a Dictionary. The keys of the dictionary are instances of class String
representing the month names in both the full and abbreviated form. For each of
the keys, the corresponding value is an instance of class Symbol representing the
name of the month in the abbreviated 3 character form.

Pool Dictionaries:

Class Methods:

(None)

calendar For Month: aSymbol year: anlnteger
Answer a String containing the formatted calendar for the month name aSymbol
in the year anlnteger.

dateAndTimeNow
Answer an Array of two elements. The first element is a Date representing the
current date and the second element is a Time representing the current time.

dayOfWeek: aSymbol
Answer a number from 1 to 7 indicating the weekday number for aSymbol (1
meaning Monday, to 7 meaning Sunday).

daysInMonth: aSymbol for Year: anlnteger
Answer the total number of days for the month aSymbol in the year yInteger.

daysInYear: anlnteger
Answer the total number of days for the year anlnteger.

Date 351

fromDays: anlnteger
Answer a Date that is anlnteger number of days before or after January 1, 1901
depending on the sign of anlnteger.

fromString: aString
Answer a Date specified by aString. aString contains first the day number then
the month name and then the year separated with blanks.

indexOfMonth: aSymbol
Answer a number from 1 to 12 indicating the month index for the aSymbol.

leap Year: anlnteger
Answer true if the year anlnteger is a leap year, else answer false.

leapYearsTo: anlnteger
Answer the number of leap years from 1901 to the year number before anlnteger.

monthNameFromString: aString
Answer a Symbol for a month name corresponding to the month name in aString.

nameOfDay: anlnteger
Answer the weekday name as a Symbol corresponding to the weekday index
anlnteger (Monday for index 1, to Sunday for index 7).

nameOfMonth: anlnteger
Answer the month name as a Symbol corresponding to the month index anlnteger
(January for index 1, to December for index 12).

newDay: dlnteger month: aSymbol year: ylnteger
Answer a Date of the day dlnteger in the month aSymbol for the year ylnteger.

newDay: dlnteger year: ylnteger
Answer a Date of the day dlnteger in the year ylnteger.

today
Answer the current date.

Instance Methods:

< aDate
Answer true if the receiver is before aDate.

< * aDate
Answer true if the receiver is before or the same as aDate.

™ aDate
Answer true if the receiver is the same as aDate.

> aDate
Answer true if the receiver is after aDate.

>«* aDate
Answer true if the receiver is the same or after aDate.

addDays: anlnteger
Answer a Date that is anlnteger number of days after the receiver.

352 Date

a s Seconds
Answer the number of seconds that have elapsed from January 1, 1901 to the
receiver.

day
Answer the number of days from the receiver to January 1, 1901.

daylndex
Answer a number from 1 to 7 indicating the weekday number of the receiver (1
meaning Monday, to 7 meaning Sunday).

dayName
Answer the name of the weekday of the receiver.

dayOfMonth
Answer a number from 1 to 31 indicating the day number within the month of
the receiver.

dayOfYear
Answer a number from 1 to 366 indicating the day within the year of the receiver.

daysInMonth
Answer the total number of days for the receiver month.

daysInYear
Answer the total number of days for the receiver year.

daysLeftlnMonth
Answer number of days remaining in the receiver month.

daysLeftlnYear
Answer number of days remaining in the receiver year.

elapsedDaysSince: aDate
Answer the number of elapsed days between the receiver and aDate.

elapsedMonthsSince: aDate
Answer the number of elapsed months between the receiver and aDate.

elapsedSecondsSince: aDate
Answer the number of elapsed seconds between the receiver and aDate.

firstDaylnMonth
Answer the number of the first day in the receiver month relative to the beginning
of the receiver year.

firstDayOfMonth
Answer a Date representing the first day in the receiver month.

formPrint
Answer a string representing the receiver Date in the form: mm/dd/yy.

hash
Answer the integer hash value for the receiver.

monthlndex
Answer a number from 1 to 12 indicating the month of the receiver.

Debugger 353

monthName
Answer a Symbol representing the month name of the receiver.

previousWeekday: aSymbol
Answer a Date reflecting the most recent day name represented by aSymbol
preceding the receiver.

print On: aStream
Append the ASCII representation of the receiver to aStream in the form: mmm
dd, yyyy. (The form yyyy is satisfied only for positive year numbers of 4 digits).

subtractDate: aDate
Answer the number of days between the receiver and aDate.

subtractDays: anlnteger
Answer the date that is anlnteger number of days before the receiver Date.

year
Answer the year number of receiver Date.

Debugger

A Debugger is a window application which allows debugging a Process in two different
windows: a single pane walkback window and a six pane debugger window. The Debugger
initially creates a walkback window. If requested via the —debug'*' menu choice, the
walkback window is replaced with the debug window. The debug window allows the debugged
process to be resumed from the point of interruption or restarted by resending a selected
message. Traced execution can be controlled by hop, skip, and jump buttons in the window
label.

Inherits From: Inspector Object

Inherited By: (None)

Named Instance Variables:

breakpointArray
Contains an Array of pairs of classes and selectors for methods which have
breakpoints set.

breakpoints
Contains a SortedCollection of methods which have breakpoints set.

browse Walkback
Contains true if browsing the walkback and false if browsing breakpoints.

instlndex
(From class Inspector)

instList
(From class Inspector)

instPane
(From class Inspector)

354 Debugger

label
Contains a String used to give a debugger window the same label as a walkback
window

method
Contains the selected CompiledMethod or nil if none.

methodPane
Contains a TextPane which contains the method source.

object
(From class Inspector)

positions
Contains information for highlighting the method source.

process
Contains the Process object being debugged.

resumable
Contains true if the process is resumable, otherwise false.

source
Contains a String representing the source code of the selected method.

stream
Contains (1) a ReadStream for scanning the source of the selected method or (2)
a WriteStream used to generate walkback lines for the debug window.

temps
Contains an OrderedCollection of lines containing the names of temporary variables
for the selected method.

walkback
Contains an OrderedCollection of walkback lines for the debug window.

walkbacklndex
Contains the index of the selected walkback line or nil if none.

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

(None)

(None)

Instance Methods:

walkbackFor: aProcess label: aString
Pop-up a walkback window with label equal to aString). Display the stacked
message sends for the receiver in the window.

walkbackLabel: aString
Pop-up a walkback window with the label equal to aString. Display the stacked
message sends for the current process in the window.

DeletedClass

An instance of deleted class is used to replace classes removed from the system.

DemoClass 355

Inherits From: Object

Inherited By: (None)

Named Instance Variables: (None)

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods: (None)

Instance Methods: (None)

DemoClass

This class demonstrates graphics and animation.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

pen
Contains a Pen for drawing the demonstrations.

rectangle
Contains a Rectangle which limits the drawing area.

Class Variables:

Count
Contains an integer used as the current drawing color.

Pool Dictionaries:

Class Methods:

Instance Methods:

bounceBall

(None)

(None)

Dbplay a bouncing ball where speed of the ball depends on the position of the
cursor.

demoMenu
Answer the menu for the receiver.

356 DemoClass

dragon
Draw a dragon pattern.

dragon: aninteger
Draw a dragon pattern where aninteger is the recursion factor.

mandala
Draw a mandala.

multiEllipse
Draw 5 ellipses.

multiMandala
Draw 8 mandalas.

multiPentagon
Draw multiple pentagons.

multiPolygon: aninteger
Draw mutiple polygons where each polygon has aninteger number of sides.

multiSpiral
Draw 4 spirals.

run
Initialize and start the animation demonstration.

walkLine
Draw a rotating line.

Dictionary

A Dictionary is a collection of key/value pairs of objects. The keys in a dictionary are unique,
whereas values may be duplicated. A Dictionary may be searched either by key or by value.
Key searches use hashing for efficiency. Elements may be entered into and extracted from
a dictionary either as a pair of objects (e.g., atrput:) or as an Association (e.g., add:).
Internally, a Dictionary stores the key /value pairs as a set of associations whereas an
IdentityDictionary stores the key/value pairs in successive array elements (see
Identity Dictionary).

Inherits From:

Inherited By:

Named Instance Variables:

contents
(From class Set)

elementCount
(From class Set)

Set Collection Object

IdentityDictionary MethodDictionary SystemDictionary

Dictionary 357

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

Instance Methods:

(None)

(None)

add: anAssociation
Answer anAssociation. Add anAssociation to the receiver.

associationAt: aKey
Answer the Association whose key equals aKey from the receiver. If not found,
report an error.

associationAt: aKey ifAbsent: aBlock
Answer the Association whose key equals aKey from the receiver. If not found,
evaluate aBlock (with no arguments).

associationsDo: aBlock
Answer the receiver. For each key/value pair in the receiver, evaluate aBlock with
that pair as the argument.

at: aKey
Answer the value of the key /value pair whose key equals aKey from the receiver.
If not found, report an error.

at: aKey ifAbsent: aBlock
Answer the value of the key/value pair whose key equals aKey from the receiver.
If not found, evaluate aBlock (with no arguments).

at: aKey put: anObject
Answer anObject. If the receiver contains the key/value pair whose key equals
aKey, replace the value of the pair with anObject. Else add the aKey/anObject pair.

deepCopy
Answer a copy of the receiver with shallow copies of each element.

do: aBlock
Answer the receiver. For each value in the receiver, evaluate aBlock with that value
as the argument.

includes: anObject
Answer true if the receiver contains the key/value pair whose value equals
anObject, else answer false.

indudesKey: aKey
Answer true if the receiver contains aKey, else answer false.

inspect
Open a dictionary inspector window on the receiver.

358 Dictionary

keyAtValue: anObject
Answer the key in the receiver whose paired value equals anObject. If not found,
answer nil.

keyAtValue: anObject ifAbsent: aBlock
Answer the key in the receiver whose paired value equals anObject. If not found,
evaluate aBlock (with no arguments).

keys
Answer a Set containing all the keys in the receiver.

keysDo: aBlock
Answer the receiver. For each key in the receiver, evaluate aBlock with the key
as the argument.

occurrencesOf: anObject
Answer the number of key/value pairs in the receiver, whose values are equal to
anObject.

remove: anObject ifAbsent: aBlock
Remove the key/value pair whose value is anObject from the receiver dictionary.
This method reports an error since the values are not unique in a dictionary, the
keys are.

removeAssociation: anAssociation
Answer the receiver after anAssociation has been removed from it. If anAssociation
is not in the receiver, report an error.

removeKey: aKey
Answer the receiver with the key/value pair whose key equals aKey removed. If
such a pair is not found, report an error.

removeKey: aKey ifAbsent: aBlock
Answer aKey. Remove the key/value pair whose key equals aKey from the
receiver. If such a pair is not found, evaluate aBlock (with no arguments).

select: aBlock
For each key/value pair in the receiver, evaluate aBlock with the value part of the
pair as the argument. Answer a new object containing those key/value pairs for
which aBlock evaluates to true.

shallowCopy
Answer a copy of the receiver which shares the receiver elements.

storeOn: aStream
Append the ASCII representation of the receiver to aStream from which the
receiver can be reinstantiated.

values
Answer a Bag containing all the values of the key/value pairs in the receiver.

Directory 359

Dictionarylnspector

Class Dictionarylnspector implements a window on a dictionary which allows the entries of
a dictionary to be viewed and changed. The left list pane displays the ASCII representation
of all the dictionary keys. The right text pane displays an ASCII representation of the value
associated with the selected key.

Inherits From:

Inherited By:

Named Instance

instlndex
(From

instlist
(From

instPane
(From

object
(From

Class Variables:

(None)

Inspector Object

(None)

Variables:

class

class

class

class

Pool Dictionaries:

Class Methods:

Instance Methods:

Inspector)

Inspector)

Inspector)

Inspector)

(None)

(None)

(All private)

Directory

A Directory represents a disk directory with a device letter and a path name string. Files
are generally described in terms of a directory and a file name. A FileStream may be created
by sending the message file: or newFile: to a Directory.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

drive
Contains a Character representing the disk drive letter.

pathName
Contains a String representing the path name (from the root directory) of the
directory, not including the drive letter.

360 Directory

volumeLabel
Contains a String representing the label of the disk containing the directory.

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods:

create: newPathName
Create a DOS directory on disk with complete path name newPathName.

current
Answer a Directory representing the current DOS directory.

currentDisk
Answer the current default drive (0 = A, 1 = B, etc.).

extractDateTimeFrom: aString
Answer a String in form 'yy-mm-dd hh:mm:ss' describing date and time from DOS
directory entry aString.

extractFileNameFrom: aString
Answer a string representing the file name from a DOS directory entry aString.

extract Flags From: aString
Answer a String containing attribute flags from a DOS directory entry aString.
Attributes are: V read only, 'h' hidden, V system, and 'a' archive.

extractSizeFrom: aString
Answer the file size extracted from a DOS directory entry aString.

pathName: aString
Answer a Directory described by the complete path name in aString.

remove: aString
Remove the DOS directory with the path name of aString.

Instance Methods:

•• aDirectory
Answer true if aDirectory represents the same directory as the receiver, else answer
false.

create
Create a DOS directory on disk for the receiver directory.

drive
Answer the disk drive letter of the receiver.

drive: aCharacter
Initialize the drive for the receiver to aCharacter.

DiskBrowser 361

file: aString
Answer a FileStream for the file named aString in the current directory. If the file
does not exist, it wiD be created.

formatted
Answer a collection of arrays of file information for the receiver directory. Each
array has four entries: file name, size, date/time and attributes.

freeDiskSpace
Answer the free space in bytes on the disk containing the current directory.

hasSubdirectory
Answer true if the receiver has a subdirectory.

makeCurrent
Make the receiver the current DOS directory.

newFile: aString
Answer a FileStream for the file named aString in the current directory. If the file
exists, it will be removed and a new file will be created.

pathName
Answer a String representing the path name of the receiver directory (drive letter
not included).

pathName: aString
Set the receiver directory path name to aString.

remove
Remove the directory described by the receiver from the disk.

subdirectories
Answer an OrderedCollection of arrays, where each Array contains the complete
path name and the file name of a subdirectory of the receiver.

volumeLabel
Answer the volume label of the disk containing the receiver.

DiskBrowser

Class DiskBrowser implements a window on the complete directory hierarchy on a disk. It
replaces most DOS file commands. Directories can be created, deleted and browsed. Files
can be created, deleted, copied, renamed, browsed, printed, edited and their attributes may
be modified.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

allFileMenu
Contains the contents pane menu when the entire file has been read.

362 DiskBrowser

contentsPane
Contains the TextPane used to display file contents.

device
Contains the disk drive character.

directory Index
Contains the index of the selected directory.

directory List
Contains an OrderedCollection of strings describing the directory hierarchy.

hiddenDirectories
Contains a set of directories currently being hidden.

noFileMenu
Contains the contents pane menu when no file has been read.

partFileMenu
Contains the contents pane menu when part of the file has been read.

pathNameArray
Contains an Array that parallels directoryList. Each entry contains the complete
path name of a directory.

selectedDirectory
Contains a Directory for the selected DOS directory, or nil if no directory is
selected.

selectedFile
Contains a String representing the selected file name, or nil if no file is selected.

sortCriteria
Contains a block which describes how to sort the files in a directory: by name, size
or creation date/time.

sortedFileLJst
Contains an OrderedCollection of arrays describing the files in the selected
directory. Each Array entry has four elements: the file name, size, creation date/
time and attributes (mode).

sortPane
Contains a ListPane which describes the sort criteria.

volumeLabel
Contains a String representation of the volume label.

wholeFileRequest
Contains true if the entire file is to be displayed in the text pane, false if only the
head and tail are to be displayed.

Class Variables:

(None)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

FunctionKeys
Defines variables for the function key codes (of class Character) input from the
keyboard or mouse.

Dispatcher 363

Class Methods:

Instance Methods:

(None)

openOn: driveCharacter
Open a disk browser window on the device identified by driveCharacter. Define
the type, behavior and relative size of each pane and schedule the window.

Dispatcher

Class Dispatcher is an abstract class which provides the common protocol for its subclasses.
Its main function is to provide default methods for processing input from both the keyboard
and mouse. It communicates with its associated pane to keep the pane contents up to date.
It also provides the protocol for opening, closing, activating, and deactivating a window.

Inherits From:

Inherited By:

Named Instance Variables:

Object

GraphDispatcher ListSelector PointDispatcher
PromptEditor ScreenDispatcher ScrollDispatcher
TextEditor TopDispatcher

active
Contains true when the pane associated with this dispatcher is active and false when
it is not active.

pane
Contains the pane associated with this dispatcher.

Class Variables:

WindowActivateKey
Contains the first character to process when the window is activated and the
character is not nil.

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

FunctionKeys
Defines variables for the function key codes (of class Character) input from the
keyboard or mouse.

Class Methods:

new
Answer a new initialized Dispatcher.

364 Dispatcher

Instance Methods:

activate
Make the receiver active. Most subclasses supplement this method.

activate Window
Make the receiver window active by displaying it and then giving control to the
main processing loop for the active window.

active
Answer true if the receiver is the active dispatcher, else answer false.

boxOfSize: aPoint
Answer a Rectangle with extent of aPoint and centered at cursor position.

closelt
Close the receiver window and resume the Scheduler main processing loop.

close Window
Close the receiver window and remove the receiver from the Scheduler dispatchers.

cycle
Deactivate the receiver window and cause the windows to rotate.

cyclePane
Move to the next pane in the receiver window.

deactivate
Make the receiver inactive.

deactivate Window
Mark the receiver to be inactive and change the pane visual cues to reflect it.

display
Display the receiver window.

displayln: visibleRegions
Display the portion of the pane of the receiver within visibleRegions.

doesNotHandle
Ring the bell for input not handled by the receiver.

homeCursor
Move the cursor to the receiver home position.

isControlActive
Answer true if the receiver is active and contains the cursor. Some subclasses will
override and/or supplement this test.

isControlWanted
Answer true if the pane contains the cursor, else answer false.

modified
Indicate whether or not the contents of the receiver pane have been modified.
Answer fake as default.

DispatchManager 365

open
Open and activate the receiver window of default size.

openln: aRectangle
Open the receiver window as the active one in aRectangle.

open Window
Open the receiver window.

pane
Answer the pane of the receiver.

pane: aPane
Set the receiver pane to be aPane and initialize the receiver.

schedule Window
Activate the receiver window.

searchForActivePane
Give control to the pane that contains the cursor. This is the main processing loop
for the active window.

select
Ring the bell since this function should be implemented by subclasses of this class.

topDispatcher
Answer the top dispatcher for the receiver window.

DispatchManager

A DispatchManager schedules windows by providing messages for adding and removing
windows, displaying all the windows, or making a specific window be the top one and
activating it. A global variable, Scheduler, contains an instance of class DispatchManager
and this should be the only instance in the system.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

dispatchers
Contains an OrderedCollection of dispatchers used to control windows. Windows
can be overlaid and the first one in the collection is always the top one displayed
on the screen. A top window may not be active, but an active window is always
the top one.

Class Variables:

None
Contains a ScreenDispatcher which has control when no window is active.

366 DispatchManager

Transient Write
Contains the Dispatcher of the TextPane that a process in the active window uses
to do output to an inactive window.

Pool Dictionaries: (None)

Class Methods:

new
Answer a DispatchManager with no dispatchers.

Instance Methods:

add: aDispatcher
Add the window associated with aDispatcher to the receiver's stack.

clearScreen
Paint the display screen black.

cycle
Rotate the order of the windows displayed on the screen.

dispatchers
Answer the OrderedCollection of dispatchers known to the receiver.

display
Display all the windows except the top one.

displayAU
Display all windows.

includes: aDispatcher
Answer true if aDispatcher is included in the receiver, else answer false.

initialize
Close all the windows including the System Transcript and then create a new
Transcript.

reinitialize
Qose all the windows including the System Transcript and then create and schedule
the new Transcript.

remove: aDispatcher
Remove aDispatcher from the collection of dispatchers in the receiver.

resume
Restart the main processing loop of the user interface.

run
Drop all the pending message sends, restart the main processing loop by giving
control to the top dispatcher.

systemDispatcher
Answer the screen dispatcher.

. ' i

DisplayMedium 367

topDispatcher
Answer the dispatcher for the top window.

DisplayMedium

A DisplayMedium is an abstract class without any instance variables. It contains methods
to color and to draw borders around rectangular areas.

Inherits From: DisplayObject Object

Inherited By: BiColorForm ColorForm ColorScreen DisplayScreen Form

Named Instance Variables: (None)

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods: (None)

Instance Methods:

black
Paint the receiver black.

black: aRectangle
Paint aRectangle in the receiver black.

border: aRectangle
Frame aRectangle with a width 1 border.

border: aRectangle
clippingBox: clipRectangle rule: anlnteger mask: aForm

Frame aRectangle with a width 1 border on the display screen bounded by
clipRectangle. The border is formed by combining aForm with the destination
using anlnteger as the rule.

border: aRectangle rule: anlnteger mask: aForm
Frame aRectangle with a width 1 border. The border is formed by combining
aForm with the destination using anlnteger as the rule.

fill: aForm
Tile the receiver with aForm.

fill: aRectangle
clippingBox: clipRectangle rule: anlnteger mask: aForm

TUe the receiver with aForm bounded by clipRectangle. The combination rule is
anlnteger.

368 DisplayMedium

fill: aRectangle rule: anlnteger mask: aForm
Tile the receiver with aForm bounded by aRectangle. The combination rule is
specified by anlnteger.

gray
Paint the receiver gray.

gray: aRectangle
Paint aRectangle in the receiver gray.

white
Paint the receiver white.

white: aRectangle
Paint aRectangle in the receiver white.

DisplayObject

Class DisplayObject is an abstract class which provides the common protocol for transferring
a rectangular block of characters from the receiver display object to a DisplayMedium. Note
that the source of the transfer can be an instance of class DisplayObject or its subclasses while
the destination must be an instance of class DisplayMedium or its subclasses.

Inherits From:

Inherited By:

Object

BiColorForm Color Form ColorScreen DisplayMedium
DisplayS creen Form

Named Instance Variables: (None)

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

Instance Methods:

(None)

(None)

boundingBox
Answer a Rectangle which bounds the receiver.

display
Show the receiver on the display screen at the position indicated by offset.

display At: aPoint
Show the receiver on the display screen at aPoint.

displayAt: aPoint clippingBox: aRectangle
Display the contents of the receiver at aPoint on the display screen using aRectangle
as the clipping box.

DisplayScreen 369

display On: aDisplayMedium
at: aPoint clippingBox: aRectangle rule: anlnteger mask: aForm

Display the receiver on aDisplaymedium at aPoint with aRectangle as the clipping
rectangle, anlnteger as the combination rule, and aForm as the halftone.

extent
Answer the width and height of the receiver as a Point.

height
Answer the height of the receiver.

offset
Answer the offset of the receiver.

offset: aPoint
Change the offset to aPoint.

width
Answer the width of the receiver.

DisplayScreen

A DisplayScreen is a special kind of form whose bit map address and size is determined by
the hardware graphics adapter and whose content will be shown directly on the display screen
by the adapter. A global variable, Display, contains an instance of either class DisplayScreen
or ColorScreen.

Inherits From: Form Display Medium DisplayObject Object

Inherited By: ColorS creen

Named Instance Variables:

bits
(From class Form)

byte Width
(From class Form)

deviceType
(From class Form)

height
(From class Form)

offset
(From class Form)

width
(From class Form)

Class Variables:

BackColor
Contains a mask Form representing the display screen background color.

I'i

370 DisplayScreen

BlackMask
(From class Form)

DarkGrayMask
(From class Form)

GrayMask
(From class Form)

HighResIBeam
Contains a Form of the gap selector image in high resolution graphics.

LightGrayMask
(From class Form)

LowResIBeam
Contains a Form of the gap selector image in low resolution graphics.

Mode
Contains the current graphics mode of the display adapter.

PrinterMode
(From class Form)

WhiteMask
(From class Form)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, L£ for the line-feed character, etc.).

Class Methods:

ATTmono
Set graphics mode to AT&T monochrome 640 by 400.

backgroundColor: aForm
Tile the screen background with aForm.

checkMode: aSymbol withAspect: aFraction
Check if the Screen mode has changed. If so, reinitialize the environment.

EGAcolor
Set graphics mode to EGA color 640 by 350.

E G Acolor LowRes
Set graphics mode to EGA color 640 by 200.

EGAlowRes
Set graphics mode to EGA mono 640 by 200.

EGAmono
Set graphics mode to EGA mono 640 by 350.

hercules
Set graphics mode to Hercules monochrome 720 by 348.

IBM3270
Set graphics mode to IBM3270 mono 720 by 350.

Dos 371

initSystem
Initialize the environment.

lowRes
Set graphics mode to monochrome 640 by 200.

new
Answer a new DisplayScreen.

newPage2
Answer a new DisplayScreen using the second page of the graphics adaptor.

toshiba
Set graphics mode to toshiba monochrome 640 by 400.

VGA640x480
Set graphics mode to VGA color 640 by 480.

Wyse640x400
Set graphics mode to Wyse mono 640 by 400.

Instance Methods:

background: aRectangle
Retile aRectangle area of the screen with the background mask.

change: aRectangle from: oldColor to: newColor
Change oldColor to newColor in aRectangle of receiver.

outputToPrinter
Output the contents of the display screen to the printer in landscape orientation.

outputToPrinterUpright
Output the contents of the display screen to the printer in portrait orientation.

refreshColor
Load the default color palette. For DisplayScreen, do nothing since it has no color.

set Width: wlnteger height: hlnteger
Set the width and height of the display screen to wlnteger and hlnteger
respectively.

Dos

Class Dos allows DOS interrupt calls or interface with I/O ports directly from Smalltalk code.
It contains an Array of registers whose values are loaded into machine registers prior to the
call. Upon return from the call, the values in the registers reflect the machine state at the
end of the interrupt or I/O port call.

Inherits From:

Inherited By:

Object

(None)

372 Dos

Named Instance Variables:

registers
Contains an Array of 17 elements. The first 16 are AH, AL, BH, BL, CH, CL,
DH, DL, SI(H), SI(L), DI(H), DI(L), DS(H), DS(L), ES(H), ES(L). The 17th
element is the flag register.

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

(None)

checkDosError: registers
Generate a walkback if the carry flag is set in registers. The error code is obtained
from AL in registers.

dosError: aninteger
Initiate a walkback for a DOS error described by aninteger.

environmentVariable: aString
Answer a String which is the value of DOS environment variable aString if the
variable exists, else answer nil.

new
Answer a new instance of Dos.

Instance Methods:

call: aPoint
Far call to seg @ offset

dosPrimitive: function
registers: an Array value: aninteger

Perform a DOS function with an immediate value aninteger and registers in
anArray. Functions are: interrupt = 0 in Word = 1 inByte = 2 outWord = 3
outByte = 4 peek = 5 poke = 6 blockMove = 7 farCall = 8

initialize
Initialize registers.

interrupt: aninteger
Issue software interrupt number aninteger.

outByte: byte Value toPort: portAddress
Output byte Value to portAddress.

peekFrom: aPoint
Answer the byte value at address aPoint (x = segment, y — offset).

poke: aByte to: aPoint
Store aByte into address aPoint (x = segment, y = offset).

False 373

registers
Answer the register array.

setPaletteRegister: anlnteger to: aColor
Set palette register anlnteger to aColor.

setReg: reglnteger to: anObject
Set register reglnteger to anObject. AX = O, BX = 1, CX = 2, DX = 3, SI = 4,
DI = 5, DS=6, ES = 7

setRegHigh: reglnteger to: vallnteger
Set the high byte of register reglnteger to vallnteger. AX = O, BX = 1, CX = 2,
DX = 3, SI = 4, DI = 5, DS=6, ES = 7

setRegLow: reglnteger to: vallnteger
Set the low byte of register reglnteger to vallnteger. AX = 0, BX = 1, CX = 2,
DX = 3, SI = 4, DI = 5, DS=6, ES=7

EmptySlot

This class represents a deleted element in certain hashed systeni data structures. There is
only a single instance.

Inherits From:

Inherited By:

Named Instance Variables:

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

Instance Methods:

Object

(None)

(None)

(None)

(None)

(None)

False

Class False has a single instance, false, representing logical falsehood. This class defines the
protocol for logical operations on false.

Inherits From: Boolean Object

Inherited By: (None)

Named Instance Variables: (None)

374 False

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods: (None)

Instance Methods:

& aBoolean
Answer true if both the receiver and aBoolean are true, else answer false.

and: aBlock
If the receiver is true, answer the result of evaluating aBlock (with no arguments),
else answer false.

eqv: aBoolean
Answer true if the receiver is equivalent to aBoolean, else answer false.

ifFalse: aBlock
If the receiver is true, answer the result of evaluating aBlock (with no arguments),
else answer nil.

ifFalse: falseBlock ifTrue: trueBlock
If the receiver is true, answer the result of evaluating trueBlock, else answer the
result of evaluating falseBlock. Both blocks are evaluated with no arguments.

ifTrue: aBlock
If the receiver is true, answer the result of evaluating aBlock (with no arguments),
else answer nil.

ifTrue: trueBlock ifFalse: falseBlock
If the receiver is true, answer the result of evaluating trueBlock, else answer the
result of evaluating falseBlock. Both block are evaluated with no arguments.

not
Answer true if the receiver is false, else answer false.

or: aBlock
If the receiver is false, answer the result of evaluating aBlock (with no arguments),
else answer true.

xor: aBoolean
Answer true if the receiver is not equivalent to aBoolean, else answer false.

I aBoolean
Answer true if either the receiver or aBoolean are true, else answer false.

File 375

File

A File provides sequential or random access to a DOS file. Each read operation answers one
page (maximum 2K bytes) of the file with the exception of the last page which may have fewer
than page size bytes. The number of bytes to write may be from one to the page size. A
FileStream provides buffered stream access on a File. A File provides the logical page access
using a FileHandle.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

directory
Contains the Directory which includes the file.

fileld
Contains the FileControlBlock used to access the file.

name
Contains a String representing the file name.

Class Variables:

PageSize
Contains an integer representing the number of bytes in a page to read from or write
to a file. When this variable is set, all the files opened afterwards will assume the
new page size.

Pool Dictionaries:

Class Methods:

(None)

changeModeOf: aString to: attrString
Change the attributes of the file named aString to those of attrString. Attributes
are: $r - read only, $h - hidden, $s - system, $a - archive (see DOS manual).

copy: oldFile to: newFile
Copy the file named oldFile to the file named newFile.

fileName: nString extension: eString
Answer a String which is a file name abbreviated from nString and eString. Lower
case vowels are dropped from the right of nString until it is less than or equal to
8 characters.

open: aString in: aDirectory
Answer a File opened on a file named aString in aDirectory.

pageSize
Answer the number of bytes in a file page.

pageSize: anlnteger
Set the page size to anlnteger for the files opened from now on.

376 File

pathName: aString
Answer a FileStream with path name aString.

pathName: aString in: aDirectory
Answer a FileStream with path name aString with default directory aDirectory.

remove: aString
Erase the file named aString.

r e n a m e : oldString to: newString
Rename the file named oldString to newString.

Instance Methods:

close
Close the receiver.

directory
Answer the directory which contains the receiver.

flleld
Answer the file handle used to access the receiver.

flush
Force all data written to the receiver to be recorded on disk.

getDate
Answer an Array of time and date of the file (in DOS format).

name
Answer a String containing the receiver file name.

open
Open the file with a new file handle.

readBuffer: aString atPosition: aninteger
Read the page of the receiver file containing the position aninteger into aString.
Answer the number of bytes read.

setDate: anArray
Set the time and date of the the receiver file to an Array (in DOS format).

size
Answer the receiver file size in bytes.

writeBuffer: aString ofSize: n atPosition: aninteger
Write the first n bytes of aString into the receiver file at position aninteger.

FileHandle

A FileHandle is an Array of two bytes. Its sixteen bit value represents a DOS file handle
number which is used to access files.

Inherits From: Byte Array FixedSizeCollection IndexedCollection
Collection Object

FileStream 377

Inherited By: (None)

This class contains indexed byte values.

Class Variables:

FileHandles

Pool Dictionaries:

Class Methods:

(None)

open: aString in: aDirectory
Answer a file handle for an opened file named aString in aDirectory.

Instance Methods:

close
Close the file identified by the receiver.

endByte
Answer the size in bytes of the file identified by the receiver.

openln: fileName
Answer an opened FileHandle for the file named fileName.

readlnto: aString atPosition: anlnteger
Read a page or less (if at end of file) at position anlnteger modulo aString size from
the receiver file into aString. Answer the number bytes read.

writeFrom: aString toPosition: anlnteger for: size
Write size bytes of aString to the receiver file at position anlnteger modulo aString
size.

FileStream

A FileStream allows streaming over the characters of files for read and write access. It has
an internal record of the current position. It has messages to read and write the character(s)
at the current position and cause the position to be advanced. Messages are defined for
changing the stream position, so that random access is possible. A FileStream accesses its
file in pages, and actually streams across the string object containing the current file page.
Note that because writes are buffered, a flush or close message must be sent to the FileStream
to insure that the written data is physically recorded.

Inherits From:

Inherited By:

ReadWriteStream WriteStream Stream Object

(None)

378 FileStream

Named Instance Variables:

collection
(From class Stream)

file
Contains a File being streamed over.

lastByte
Contains the high water mark for the file. For file streams, writeLimit contains the
high water mark for the current buffer.

lineDelimiter
Contains a character, either carriage-return or line-feed. File lines are delimited
by either the carriage-return line-feed pair, or line-feed only.

pageStart
Contains the position of the current buffer relative to the beginning of the file. A
FileStream position is pageStart + position.

position
(From class Stream)

readLJmit
(From class Stream)

writeLimit
(From class WriteStream)

writtenOn
Contains a Boolean indicating whether or not the current file page buffer has been
changed.

Class Variables:

(None)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

Class Methods: (None)

Instance Methods:

atEnd
Answer true if the receiver is positioned at the end (beyond the last object), else
answer false.

close
Close the file associated with the receiver stream after writing all the data to the
file.

copyFrom: first to: last
Answer a String containing the characters of the receiver stream from positions
first to last.

FixedSizeColleetion 379

copyFrom: first to: last into: aByteObject
Copy the characters of the receiver stream from positions first to last into an object
containing bytes.

cr
Write the line terminating character (carriage-return line-feed pair or line-feed) to
the receiver stream.

file
Answer the file over which the receiver is streaming.

flush
Guarantee that any writes to the receiver stream are physically recorded on disk.

lineDelimiter
Answer the line delimiter character for the receiver file stream, either carriage-
return or line-feed.

lineDelimiter: aCharacter
Change the line delimiter character to aCharacter.

next
Answer the next character accessible by the receiver and advance the stream
position. Report an error if the receiver stream is positioned at end.

nextLine
Answer a String consisting of the characters of the receiver up to the next line
delimiter.

next Put: aCharacter
Write aCharacter to the receiver stream.

nextPutAU: aCollection
Write each of the chararacters in aCollection to the receiver stream.

pathName
Answer the complete pathname of the file over which the receiver is streaming.

position
Answer the current receiver stream position.

position: anlnteger
Set the receiver stream position to anlnteger.

FixedSizeColleetion

Class FixedSizeColleetion is an abstract class for all the indexable fixed size collections. A
fixed size collection cannot grow or shrink, hence elements cannot be added or removed from
it. Only the element values can be changed.

Inherits From: IndexedCollection Collection Object

380 FixedSizeCollection

Inherited By: Array Bitmap ByteArray CompiledMethod FileHandle
Interval String Symbol

Named Instance Variables: (None)

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

(None)

with: anObject
Answer a collection with only one element, anObject.

with: firstObject with: secondObject
Answer a collection of two elements, firstObject and secondObject.

with: firstObject with: secondObject with: thirdObject
Answer a collection of three elements, firstObject, secondObject, and thirdObject.

with: firstObject
with: secondObject with: thirdObject with: fourthObject

Answer a collection of four elements, firstObject, secondObject, thirdObject, and
fourthObject.

Instance Methods:

add: anObject
Add anObject to the receiver. This method reports an error since fixed size
collections cannot grow.

collect: aBlock
For each element in the receiver, evaluate aBlock with that element as the
argument. Answer a collection containing the results from the aBlock evaluations
as its elements.

copyReplaceFrom: start to: stop with: aCollection
Answer a collection containing the elements of the receiver with entries indexed
from start through stop being replaced by the elements of aCollection.

remove: anObject if Absent : aBlock
Remove anObject from the receiver. This method reports an error since elements
cannot be removed from fixed size collections, they can only be changed.

select: aBlock
For each element in the receiver, evaluate aBlock with that element as the
argument. Answer a collection containing those elements of the receiver for which
aBlock evaluates to true.

size
Answer the number of indexed instance variables of the receiver.

Float 381

storeOn: aStream
Append the ASCII representation of the receiver to aStream from which the
receiver can be reinstantiated.

Float

Class Float defines the protocol to perform arithmetic operations on floating point numbers.
The use of this class requires the 8087 coprocessor. If float is used and the coprocessor is
not present, the system will report an error.

Inherits From: Number Magnitude Object

Inherited By: (None)

This class contains indexed byte values.

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods:

floatError
Query the floating point coprocessor as to the type of exception and report it.

fromlnteger: anlnteger
Answer a floating point representation of the argument anlnteger.

P»
Answer the floating point representation of pi.

status
Answer the status of the floating point coprocessor as a small integer (refer to
coprocessor status word definition).

Instance Methods:

* aNumber
Answer the result of multiplying the receiver by aNumber.

+ aNumber
Answer sum of the receiver and aNumber.

- aNumber
Answer the difference between the receiver and aNumber.

/ aNumber
Answer the result of dividing the receiver by aNumber.

382 Float

/ / aNumber
Answer the integer quotient after dividing the receiver by aNumber with truncation
towards negative infinity.

<C aNumber
Answer true if the receiver is less than aNumber, eke answer false.

< = aNumber
Answer true if the receiver is less than or equal to aNumber, else answer false.

•• aNumber
Answer true if the receiver is equal to aNumber, else answer false.

> aNumber
Answer true if the receiver is greater than aNumber, else answer false.

> « aNumber
Answer true if the receiver is greater than or equal to aNumber, else answer false.

\ \ aNumber
Answer the integer remainder after dividing the receiver by aNumber with
truncation towards negative infinity.

arcTan
Answer the arc-tangent, an angle in radians, of the receiver.

asFloat
Answer the receiver as a floating point number.

cos
Answer the cosine of the receiver. The receiver is an angle measured in radians

deepCopy
Answer the receiver.

degreesToRadians
Answer the number of radians the receiver represents in degrees.

exp
Answer the exponential of the receiver.

exponent
Answer the floating point number whose value is the exponent part of the floating
point representation of the receiver.

hash
Answer the integer hash value for the receiver.

hi
Answer the natural log of the receiver.

negated
Answer the receiver subtracted from zero.

print On: aStream
Answer the receiver. Append the ASCII representation (maximum of 8 digits) of
the receiver to aStream.

:i:'!

Font 383

radiansToDegrees
Answer the number of degrees the receiver represents in radians.

reciprocal
Answer one divided by the receiver.

shallowCopy
Answer the receiver.

significant!
Answer the floating point number whose value is the significand part of the floating
point representation of the receiver.

s i n

sqrt

Answer the sine of the receiver. The receiver is an angle measured in radians

t
Answer the square root of the receiver.

tan
Answer the tangent of the receiver. The receiver is an angle measured in radians

timesTwoPower: anlnteger
Answer 2 to the exponent anlnteger multiplied by the receiver.

truncated
Answer the receiver as a kind of Integer truncating the fraction part.

Font

A Font defines the bitmap patterns and attributes of all characters to be displayed.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

basePoint
Contains a Point whose x is currently undefined and y is the base line relative to
the top of the font. Thus the ascent of the font is y and the descent of the font is
(font height - y).

charSize
Contains a Point whose x and y coordinates are the width and height of each
character in the font.

endChar
Contains an Integer representing the ASCII value of the last character in the font.

fixedWidth
Contains a Boolean which is true if each character has fixed width; is false otherwise.

384 Font

glyphs
Contains a Form whose contents are the bit patterns of all characters in the font.
The image of each character is appended horizontally. Thus the height of the Form
is the same as that of each character and the width is the aggregate of all characters.

startChar
Contains an Integer representing the ASCII value of the first character in the font.

xTable
Contains an Array of Integers specifying the x coordinate of each character within
the glyphs.

Class Variables:

EightLine
Contains the eight line high font.

FourteenLJne
Contains the fourteen line high font.

SixteenLine
Contains the sixteen line high font.

Pool Dictionaries: (None)

Class Methods:

eightLJne
Answer the 8 pixel height font.

fourteenLine
Answer the 14 pixel height font.

setSysFont: aFont
Set the global system font to aFont.

sixteenLine
Answer the 16 pixel height font.

Instance Methods:

basePoint
Answer a Point where the y-coordinate is the ascent of the font. Note: charSize y
- basePoint y is the descent.

charSize
Answer a Point, the pixel extent of the largest character in the font.

char Width: aCharacter
Answer the width of aCharacter.

fixedWidth
Answer true if the font is of fixed width, else answer false.

getlndex: aCharacter
Answer the index of aCharacter into xTable.

Form 385

glyphs
Answer the form containing the image of each character.

height
Answer the height of the font.

installFixedSize: glyphForm
charSize: aPoint startChar: slnteger endChar: elnteger basePoint: bPoint

Install a font with fixed size characters. The bit pattern of all the characters is in
glyphForm. The width and height of each character is specified by aPoint. The
slnteger and elnteger are the ASCII values of the first and last characters in the
font. The base point is specified by bPoint.

string Width: aString
Return the pixel width of aString written in the receiver font.

width
Answer the width of the widest character in the font.

Form

A Form contains a bit map and other instance variables to describe the bit map as a two
dimensional array of bits. Class Form provides the protocol to initialize a Form or change
the size of a Form. The contents of a Form can be changed by using the messages defined
in class BitBlt and its subclasses.

Inherits From:

Inherited By:

Named Instance Variables:

bits

DisplayMedium DisplayObject Object

BiColorForm Color Form ColorScreen Display Screen

Contains the bit map.
byteWidth

Contains the witdth of the bit map as an integral number of bytes (e.g., a bit width
of 9 has a byte width of 2).

deviceType
Contains an integer indicating the type of hardware that the form describes.
Currently defined forms are: 0 for main memory and 1 for the display screen
memory.

height
Contains the height of the bit map in bits.

offset
Contains a Point which is the origin of the form relative to the origin of the display
screen.

width
Contains the width of the bit map in bits.

386 Form

Class Variables:

BlackMask
Contains a mask form whose contents are all black.

DarkGrayMask
Contains a mask form whose contents are all dark gray.

GrayMask
Contains a mask form whose contents are all gray.

LightGrayMask
Contains a mask form whose contents are all light gray.

PrinterMode
Contains a String representing the printer graphics mode (e.g.: Esc K).

WhiteMask
Contains a mask form whose contents are all white.

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

Class Methods:

andRule
Answer the logical AND combination rule.

biColorForm
Answer the device type for bi-color forms.

black
Answer a black mask form.

changeColor
Answer the combination rule for changing colors.

color: aColor
Answer a black mask for colors 0-7, or a white mask for colors 8-15.

colorForm
Answer the device type for ColorForm.

darkGray
Answer a dark gray mask form.

displayPage2
Answer the device type for the second page of display screen.

displayScreen
Answer the device type for the display screen.

erase
Answer the erase combination rule.

Form 387

exchangeColor
Answer the combination rule which exchanges the foreground color with
background.

foreColor: aColor backColor: bColor
Answer a mask form with foreground aColor and background bColor.

fromDisplay: aRectangle
Answer a Form which is a copy of the area aRectangle of the display screen.

gray
Answer a gray mask form.

internalForm
Answer the device type for Form.

lightGray
Answer a light gray mask form.

new
Answer a new Form.

orRule
Answer the logical OR combination rule.

orThru
Answer the combination rule which erases the destination bits corresponding to
source one bits and then applies the under rule.

over
Answer the over combination rule.

printer Mode: aString
Set the graphic printer mode to aString (e.g. <ESC> K).

reverse
Answer the logical XOR combination rule.

under
Answer the under combination rule.

white
Answer a white mask form.

width: winteger height: hlnteger
Answer a white Form whose width is winteger and height is hlnteger.

Instance Methods:

at: aPoint
Answer the bit at location aPoint.

at: aPoint put: aBit
At location aPoint, put aBit.

backColor
Answer the background color, black.

388 Form

backColor: aColor
Set the background color to aColor. For Forms do nothing.

bitmap
Answer the bitmap of the receiver.

byteValueAt: aPoint put: aByte
Replace the byte at the position aPoint by aByte.

byteValueAtX: xlnteger Y: ylnteger
Answer the byte at the position specified by the point (xlnteger @ ylnteger).

compatibleForm
Answer the class of internal form most similar to the receiver.

compatibleMask
Answer the class of mask form most suitable for use with the receiver.

copy: aRectangle from: aForm to: aPoint rule: anlnteger
Copy from aRectangle in aForm to aPoint on the receiver by the rule anlnteger.

deviceType: anlnteger
Set the device type of the receiver.

extent
Answer a Point whose coordinates are the width and height of the receiver.

extent: aPoint
Change the receiver width and height to the coordinates of aPoint.

foreColor
Answer the foreground color, white.

foreColor: aColor
Change the foreground color to aColor. For Form, do nothing.

fromDisplay
Copy the receiver contents from the display screen.

fromDisplay: aRectangle
Copy the receiver contents from aRectangle area of the display screen.

height
Answer the height of the receiver.

magnify: aRectangle by: scale
Answer a form containing the image of aRectangle in the receiver magnified by
scale whose x is the horizontal magnifying factor and y the vertical factor.

offset
Answer the offset of the receiver.

offset: aPoint
Change the offset of the receiver to aPoint.

outputToPrinter
Output the contents of the receiver to the printer sideways (landscape).

Fraction 389

outputToPrinterUpright
Output the contents of the receiver to the printer (with 8 pins) upright (portrait).

reverse
Reverse the bit map of the receiver.

width
Answer the width of the receiver.

width: winteger height: hinteger
Change the receiver width to winteger and height to hinteger, and allocate its
bitmap with the appropriate size.

width: winteger height: hinteger initialByte: aByte
Change the receiver width to winteger and height to hinteger, and initialize every
byte in the bitmap to aByte.

Fraction

Qass Fraction defines the protocol to perform arithmetic operations on rational numbers.
A Fraction consists of a numerator denominator pair each of which is an integer so that no
precision is lost during computations.

Inherits From: Number Magnitude Object

Inherited By: (None)

Named Instance Variables:

denominator
Contains an integer representing the denominator,

numerator
Contains an integer representing the numerator.

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods:

numerator: n denominator: d
Answer an instance of class Fraction and initialize both numerator and
denominatior instance variables to n and d respectively.

Instance Methods:

* aNumber
Answer the result of multiplying the receiver by aNumber.

390 Fraction

+ aNumber
Answer sum of the receiver and aNumber.

- aNumber
Answer the difference between the receiver and aNumber.

/ aNumber
Answer the result of dividing the receiver by aNumber.

/ / aNumber
Answer the integer quotient after dividing the receiver by aNumber with truncation
towards negative infinity.

K aNumber
Answer true if the receiver is less than aNumber, else answer false.

< — aNumber
Answer true if the receiver is less than or equal to aNumber, else answer false.

= aNumber
Answer true if the receiver is equal to aNumber, else answer false.

> aNumber
Answer true if the receiver is greater than aNumber, else answer false.

> — aNumber
Answer true if the receiver is greater than or equal to aNumber, else answer false.

\ \ aNumber
Answer the integer remainder after dividing the receiver by aNumber with
truncation towards negative infinity.

asFloat
Answer the receiver as a floating point number.

denominator
Answer the denominator of the receiver.

hash
Answer the integer hash value for the receiver.

negated
Answer an instance of class Fraction which is the negative of the receiver.

numerator
Answer the numerator of the receiver.

print On: aStream
Append the ASCII representation of the receiver to aStream.

reciprocal
Answer the reciprocal of the receiver by dividing the denominator by the
numerator.

truncated
Answer the receiver as a kind of Integer truncating the fraction part.

GraphPane 391

GraphDispatcher

A GraphDispatcher handles the user input directed to a GraphPane. The input can be either
from the keyboard or from the mouse.

Inherits From:

Inherited By:

Named Instance Variables:

Dispatcher Object

(None)

active
(From class Dispatcher)

pane
(From class Dispatcher)

Class Variables:

WindowActivateKey
(From class Dispatcher)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

FunctionKeys
Defines variables for the function key codes (of class Character) input from the
keyboard or mouse.

Class Methods:

Instance Methods:

GraphPane

(None)

(All private)

A GraphPane allows generalized graphic drawing in the pane. Each GraphPane is associated
with a Form which contains a copy of the bitmap image shown in the pane so, that the pane
can recover its contents after being obscured by other windows.

Inherits From:

Inherited By:

Named Instance Variables:

SubPane Pane Object

(None)

changeSelector
(From class SubPane)

392 GraphPane

curFont
(From class Pane)

dispatcher
(From class Pane)

formHolder
Contains a Form with the image in the pane.

frame
(From class Pane)

framingBlock
(From class Pane)

margin
(From class SubPane)

model
(From class Pane)

name
(From class SubPane)

paneMenuSelector
(From class Pane)

paneScanner
(From class Pane)

scrollBar
(From class SubPane)

selection
Contains a Point which is the position on the screen where the last selection is made.

subpanes
(From class Pane)

superpane
(From class Pane)

topCorner
(From class SubPane)

Class Variables:

WindowCHp
(From class Pane)

ZoomedPane
(From class Pane)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

Class Methods:

notifler: labelString content: aString at: aPoint
Pop up a window at aPoint with labelString as its label and aString magnified as
its content.

i

GraphPane 393

notifier: labelString
content: aString at: aPoint menu: aMenu

Pop up a window at aPoint with labelString as its label and magnified aString as
its content. Answer the selected symbol on aMenu which is automatically popped
up for the notifier window.

Instance Methods:

activatePane
Mark the dispatcher of the receiver pane as active and inform its model.

charsInColumn
Answer the receiver frame height in characters.

close
Close the pane.

deactivatePane
Mark the receiver pane dispatcher as inactive and inform the model.

defaultDispa tcherCla as
Answer the default dispatcher of a GraphPane.

form
Answer the backup form for the receiver.

form: aForm
Change the backup form to aForm.

reframe: aRectangle
Change the frame of the receiver pane to aRectangle.

saveGraph
Save the screen image to the backup form.

selectAtCursor
Change the selection to the current cursor position and inform the model.

selection: aPoint
Change the selection to aPoint.

show Window
Draw the borders of the pane and copy the backup form to the pane.

topCorner
Answer a Point which represents the current position of the pane on the backup
form.

totalLength
Answer the height of the form.

update
Refresh the screen.

394 HomeContext f

HomeContext

A HomeContext is used to contain method temporaries and arguments and to describe blocks
of code (enclosed in square brackets). They are the objects to which value, value:, value rvalue-
messages are sent to start the block evaluations.

Inherits From: Context Object

Inherited By: (None)

This class contains indexed instance variables.

Named Instance Variables:

blockArgumentCount
(From class Context)

frameOffset
Contains an integer offset of the associated stack frame.

homeContext
(From class Context)

method
Contains the compiled method in which the block appears.

receiver
Contains the receiver for the method containing the block.

reserved
Reserved for future use.

startPC
(From class Context)

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

Instance Methods:

(None)

(None)

(All private)

Icon

An Icon is a graphical shape displayed on the screen. Its purpose is to provide a graphical
representation of an object and to respond to mouse clicks for the object.

Inherits From:

Inherited By:

Object

(None)

Icon 395

Named Instance Variables:

form
Contains a form representing the icon image.

hideFlag
Contains true if icon should not be shown, else false,

n a m e
Contains a Symbol which denotes the message to be performed when the icon is
selected.

origin
Contains a Point defining the location of the icon on the screen.

Class Variables:

(None)

(None)Pool Dictionaries:

Class Methods:

new
Answer a new Icon.

Instance Methods:

containsPoint: aPoint
Answer true if the icon contains aPoint, else answer false.

display
Display the icon on screen.

form
Answer the form of the icon.

form: aForm
Set the form of the icon to aForm.

frame
Answer the Rectangle containing the icon.

hide
Mark the icon as hidden.

isHidden
Answer true if the icon is hidden, else false.

name
Answer the name of the icon.

name: anObject
Set the name of the icon to anObject.

origin: aPoint
Set the origin of the icon to aPoint.

396 Icon

show
Mark the icon as visible.

width
Answer the width of the icon.

IdentityDictionary

An IdentityDictionary is a collection of key/value pairs of objects. The keys in an
IdentityDictionary are unique, whereas the values may be duplicated. It can be searched
either by key or by value. Key searches use hashing for efficiency. Elements may be entered
into and extracted from an IdentityDictionary either as a pair of objects (e.g., at:put:) or as
an Association (e.g., add:). Internally, an IdentityDictionary stores the key/value pairs in
successive elements of the contents array whereas a Dictionary stores the key/value pairs
as a set of associations. For this class, two keys are equal when they are actually the same
object.

Inherits From:

Inherited By:

Named Instance Variables:

contents
(From class Set)

elementCount
(From class Set)

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

new

Dictionary Set Collection Object

MethodDictionary

(None)

Answer a new IdentityDictionary.

new: aninteger
Create a new instance with an initial capacity of aninteger elements. This method
reports an error since the size of an idendity dictionary must be a power of 2.

Instance Methods:

add: anAssociation
Answer anAssociation. Add anAssociation to the receiver.

associationAt: aKey if Absent : aBlock
Answer an Association, with aKey and its corresponding value if aKey exists in the
receiver, else evaluate aBlock (with no arguments).

IndexedCoUection 397

associationsDo: aBlock
Answer the receiver. For each key/value pair in the receiver, evaluate aBlock with
that pair as the argument.

at: aKey
Answer the value of the key/value pair whose key equals aKey from the receiver.
If not found, report an error.

at: aKey ifAbsent: aBlock
Answer the value of the key/value pair whose key equals aKey from the receiver.
If not found, evaluate aBlock (with no arguments).

at: aKey put: anObject
Answer anObject. If aKey exists in the receiver, replace the corresponding value
with anObject, else add the aKey/anObject pair to the receiver.

do: aBlock
Answer the receiver. For each value in the receiver, evaluate aBlock with that value
as the argument.

includesKey: aKey
Answer true if the receiver contains aKey, else answer false.

key At Value: anObject ifAbsent: aBlock
Answer the key in the receiver whose paired value equals anObject. If not found,
evaluate aBlock (with no arguments).

keys
Answer a Set containing all the keys in the receiver.

removeKey: aKey ifAbsent: aBlock
Answer aKey. Remove the key/value pair whose key is aKey from the receiver.
If aKey is not in the receiver, evaluate aBlock (with no arguments).

values
Answer a Bag containing all the values of the key/value pairs in the receiver
dictionary.

IndexedCoUection

Class IndexedCoUection is an abstract class providing the common protocol for all the
indexable collection subclasses. It includes methods to concatenate elements between
collections, to replace elements of one collection with another, to iterate over the collection
and perform some block of code on each element. Indexable collections can be accessed using
integer indices.

Inherits From: Collection Object

398 IndexedCollection

Inherited By: Array Bitmap ByteArray CompiledMethod FileHandle
FixedSizeCoUection Interval OrderedCollection Process
SortedCollection String Symbol

Named Instance Variables: (None)

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

Instance Methods:

(None)

(None)

, aCollection
Answer a new collection containing the elements of the receiver followed by the
the elements of aCollection.

= aCollection
Answer true if the elements contained by the receiver are equal to the elements
contained by the argument aCollection.

atAU: aCollection put: anObject
Answer the receiver after replacing those elements, indexed by the indices
contained in aCollection, with anObject.

atAHPut: anObject
Answer the receiver after each element has been replaced with anObject.

copyFrom: start to: stop
Answer a new collection containing the elements of the receiver indexed from start
through stop.

copyReplaceFrom: start to: stop with: aCollection
Answer a new collection containing a copy of the receiver with the elements at
index positions from start through stop replaced with the elements of aCollection.

copyWith: anObject
Answer a copy of the receiver with anObject added to it as an element.

copy Without: anObject
Answer a copy of the receiver excluding the first element that equals anObject, if
any.

do: aBlock
Answer the receiver. For each element in the receiver, evaluate aBlock with that
element as the argument.

f indFirst : aBlock
Answer the index of the first element of the receiver that causes aBlock to evaluate
to true (with that element as the argument). If no such element is found, report
an error.

IndexedCollection 399

findLast: aBlock
Answer the index of the last element of the receiver that causes aBlock to evaluate
to true (with that element as the argument). If no such element is found, report
an error.

first
Answer the first element of the receiver. Report an error if the receiver has no
elements.

grow
Answer the receiver expanded in size to accomodate more elements.

includes: anObject
Answer true if the receiver contains an element equal to anObject, else answer
false.

indexOf: anObject
Answer the index position of the element equal to anObject in the receiver. If no
such element is found, answer zero.

indexOf: anObject ifAbsent: aBlock
Answer the index position of the element equal to anObject in the receiver. If no
such element is found, evaluate aBlock (without any arguments).

last
Answer the last element of the receiver. Report an error if the receiver has no
elements.

replaceFrom: start to: stop with: aCollection
Answer the receiver. Replace the elements of the receiver at index positions start
through stop, with the elements of aCollection. The number of elements being
replaced must be the same as the number of elements in aCollection, else report
an error.

replaceFrom: start
to: stop with: aCollection startingAt: repStart

Replace the elements of the receiver at index positions start through stop with
consecutive elements of aCollection beginning at index position repStart. Answer
the receiver.

replaceFrom: start to: stop withObject: anObject
Replace each of the elements of the receiver at index positions start through stop
with anObject. Answer anObject.

reversed
Answer a new object containing the elements of the receiver in reverse order.

reverseDo: aBlock
For each element in the receiver, starting with the last element, evaluate aBlock
with that element as the argument.

shallowCopy
Answer a copy of the receiver which shares the receiver elements.

400 IndexedColleetion

size
Answer the number of elements of the receiver.

with: aCollection do: aBlock
For each pair of elements (the first from the receiver and the second from
aCollection), evaluate aBlock with those elements as the arguments. The receiver
and aCollection must contain the same number of elements, else report an error.

InputEvent

An InputEvent reads all keyboard and mouse events. The global variable CurrentEvent
contains the instance of InputEvent used by the environment. Events are requested by using
the message getNextEvent which waits on the Keyboards emaphore. The
Keyboards emaphore is signaled by keyboard and mouse interrupts.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

button
Contains a Smalllnteger corresponding to the mouse button currently depressed.
0 = no button, l = left button, 2 = right button, 3 = middle button. Shift key state
at time of button press is indicated by adding 4 if shift key was depressed.

type
Contains a Symbol describing the event type last read by the primitive. This
corresponds to the symbol returned by the getNextEvent message.

typeArray
Contains an Array of 5 symbols used by the get next event primitive to set the type
of the event. The 5 primitive events and the corresponding event types are:
1 = characterlnput, 2 = functionlnput, 3 = mouseMove, 4 = mouseButton,
5 = nullEvent.

value
Contains an object which is the value of the event. For mouse events it is the button
involved. For keyboard events it is the character or scan code of the key depressed.

x
Contains the x-coordinate of the mouse at the time of the event as a Smalllnteger.

y
Contains the y-coordinate of the mouse at the time of the event as a Smalllnteger.

Class Variables:

(None)

Pool Dictionaries: (None)

Inspector 401

Class Methods:

new
Answer a new InputEvent.

Instance Methods:

nextEvent
Answer the next event from the terminal (keyboard or mouse).

type
Answer the event type of the receiver.

type: aSymbol
Set the event type of the receiver to aSymbol.

value
Answer the event value of the receiver.

Inspector

Class Inspector implements a window on an object which allows the instance variables to be
viewed and changed for that object. The window consists of two panes. The left pane contains
the names (for the named instance variables) and/or numbers (for the indexed instance
variables). The right pane contains the ASCII representation of the value of the selected
instance variable. The left pane menu allows the opening of a new inspector on the selected
instance variable. The right pane menu has all the text editing functions. The 'save' function
replaces the value of the selected instance variable by the evaluated pane contents.

Inherits From:

Inherited By:

Object

Debugger Dictionarylnspector

Named Instance Variables:

instlndex
Contains the index of the selected entry in the list pane. If no entry is selected,
instlndex contains 1 representing self (the object being inspected).

instlist
Contains an OrderedCollection of strings to be displayed in the list pane which are
the names and/or numbers of the inspected object.

instPane
Contains the ListPane which displays the list of inspected object instance variable
names and/or numbers.

object
Contains the inspected object.

Class Variables:

(None)

402 Inspector

Pool Dictionaries:

Class Methods:

(None)

(None)

Instance Methods:

openOn: anObject
Open an inspector window on anObject. Define the pane sizes and behavior, and
shedule the window.

Integer

Class Integer is an abstract class used for comparing, counting, and measuring instances of
its subclasses representing integral numbers. The precision of integral numbers is virtually
infinite (the integer bit representation must be less than 64K bytes).

Inherits From: Number Magnitude Object

Inherited By: LargeNegativelnteger LargePositivelnteger Smalllnteger

Named Instance Variables: (None)

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods: (None)

Instance Methods:

* aNumber
Answer the result of multiplying the receiver by aNumber.

+ aNumber
Answer the sum of the receiver and aNumber.

- aNumber
Answer the difference between the receiver and aNumber.

/ aNumber
Answer the result of dividing the receiver by aNumber.

/ / aNumber
Answer the qotient of dividing the receiver by aNumber with truncation towards
negative infinity.

< aNumber
Answer true if the receiver is less than aNumber, else answer false.

Integer 403

< = aNumber
Answer true if the receiver is less than or equal to aNumber, else answer false.

88 aNumber
Answer true if the receiver is equal to aNumber, else answer false.

> aNumber
Answer true if the receiver is greater than aNumber, else answer false.

^ *• aNumber
Answer true if the receiver is greater than or equal to aNumber, else answer false.

\ \ aNumber
Answer the integer remainder after dividing the receiver by aNumber with
truncation towards negative infinity.

asCharacter
Answer the character whose ASCII encoding matches the value of the receiver.

asFloat
Answer the floating point representation of the receiver.

basicHash
Answer the positive integer hash value for the receiver.

bitAnd: aninteger
Answer an Integer representing the receiver bits ANDed with the argument
aninteger.

bit At: aninteger
Answer 0 if the bit at index position aninteger in the receiver is 0, else answer 1.

bitlnvert
Answer an integer whose bit values are the inverse of the bit values of the receiver.

bitOr: aninteger
Answer an Integer representing the receiver bits ORed with the argument
aninteger.

bitShift: aninteger
Answer an integer which is the receiver shifted left aninteger number of bit
positions if aninteger is positive, or shifted right for aninteger negated number of
bit positions if aninteger is negative.

bitXor: aninteger
Answer the receiver bit XORed with the argument aninteger.

deepCopy
Answer a copy of the receiver with shallow copies of each instance variable. Because
integers cannot be changed, answer the receiver.

factorial
Answer the factorial of the receiver.

gcd: aninteger
Answer the greatest common divisor between the receiver and aninteger.

404 Integer

hash
Answer the positive integer hash value for the receiver.

lcm: anlnteger
Answer the least common multiple between the receiver and anlnteger.

negated
Answer the negative value of the receiver.

printOn: aStream
Append the ASCII representation (radix 10) of the receiver to aStream.

print On: aStream base: anlnteger
Append the ASCII representation of the receiver with radix b to aStream.

printPaddedTo: anlnteger
Answer the string containing the ASCII representation of the receiver padded on
the left with blanks to be at least anlnteger characters.

quo: aNumber
Answer the integer quotient of the receiver divided by aNumber with truncation
toward zero.

radix: anlnteger
Answer a string which is the ASCII representation of the receiver with radix
anlnteger.

reciprocal
Answer one divided by the receiver.

rem: aNumber
Answer the integer remainder after dividing the receiver by aNumber with
truncation towards zero.

rounded
Answer the receiver.

shallowCopy
Answer a copy of the receiver which shares the receiver instance variables. Because
integers cannot change, answer the receiver.

timesRepeat: aBlock
Evaluate aBlock n number of times, where n is the receiver.

truncated
Answer the receiver.

~~ — aNumber
Answer true if the receiver is not equal to aNumber, else answer false.

Interval

An Interval is a collection used to represent mathematical progressions. It is characterized
as having a first number, a limit for the last computed number, and an increment amount
for computing the next number in the progression.

Interval 405

Inherits From: FixedSizeCollection IndexedCollection Collection Object

Inherited By: (None)

Named Instance Variables:

beginning
Contains the beginning number of the interval.

end
Contains the limit for the last computed number of the interval.

increment
Contains the increment amount to compute the next number from the previous
number.

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods:

from: beginninglnteger to: endlnteger
Answer an Interval from beginninglnteger to endlnteger incrementing by one.

from: beginninglnteger
to: endlnteger by: incrementlnteger

Answer an Interval from beginninglnteger to endlnteger incrementing by
incrementlnteger.

Instance Methods:

at : aninteger
Answer the number at index position aninteger in the receiver interval.

a t : aninteger put: aNumber
Replace the number in the receiver indexed by aninteger with the argument
aNumber. This message is not valid for intervals since interval collections are
implicitely defined (the elements are computed).

increment
Answer the increment of the receiver Interval.

size
Answer the number of elements of the receiver.

species
Answer class Array as the species of Interval.

406 LargeNegativelnteger

LargeNegativelnteger

Class LargeNegativelnteger is used to define the data structure for instances of integral
numbers less than -32767. The precision of these instances is virtually infinite (the integer
bit representation must be less than 64K bytes).

Inherits From: Integer Number Magnitude Object

Inherited By: (None)

This class contains indexed byte values.

Qass Variables:

(None)

Pool Dictionaries: (None)

Class Methods: (None)

Instance Methods: (None)

LargePositivelnteger

Class LargePositivelnteger is used to define the data structure for instances of integral
numbers greater than 32767. The precision of these instances is virtually infinite (the integer
bit representation must be less than 64K bytes).

Inherits From: Integer Number Magnitude Object

Inherited By: (None)

This class contains indexed byte values.

Qass Variables:

(None)

Pool Dictionaries: (None)

Class Methods: (None)

Instance Methods: (None)

LCompiler

Qass LCompiler is used for converting Prolog source code to compiled methods. There are
no instances of this class because its behavior is entirely defined with class messages.

ListPane 407

Inherits From: Compiler Object

Inherited By: (None)

Named Instance Variables: (None)

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

(None)

compile: aString
in: aClass notifying: requestor ifFail: exceptionBlock

Compile the Prolog method aString in aClass. If the method compiles correctly,
answer an Association whose key is the method selector and whose value is the
compiled method. If not, send the messages: requestor compilerError: errorString
at: position in: codeString for: aClass. exceptionBlock value.

evaluate: aString
in: aClass to: doitReceiver notifying: requestor ifFail: exceptionBlock

Compile the Prolog method: ('Doit ', aString) in aClass. If the method compiles
correctly, answer: doitReceiver Doit. If not, send the messages: requestor
compilerError: errorString at: position in: aString. exceptionBlock value. In any
case remove the selector #Doit from aClass' method dictionary.

Instance Methods:

ListPane

(None)

Class ListPane provides functions to display and scroll a portion of the data held by the pane.
The data is represented as an indexed collection of strings. When one of the strings in the
collection is selected, either the selected string or its index in the list is passed to the
application model for further processing.

Inherits From:

Inherited By:

Named Instance Variables:

SubPane Pane Object

(None)

changeSelector
(From class SubPane)

curFont
(From class Pane)

currentLine
Contains the line index where the cursor is positioned.

408 ListPane

dispatcher
(From class Pane)

frame
(From class Pane)

framingBlock
(From class Pane)

list
Contains the pane data which can be any IndexedCollection of strings.

margin
(From class SubPane)

model
(From class Pane)

name
(From class SubPane)

paneMenuSelector
(From class Pane)

paneScanner
(From class Pane)

returnlndex
Contains a Boolean. When true, it indicates that the index of the selected string
should be passed to the application model when a selection is made. When false,
it indicates that the string itself should be passed back.

scrollBar
(From class SubPane)

selection
Contains the line index of the selected string.

subpanes
(From class Pane)

superpane
(From class Pane)

topCorner
(From class SubPane)

Class Variables:

WindowClip
(From class Pane)

ZoomedPane
(From class Pane)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

Class Methods: (None)

ListSelector 409

Instance Methods:

close
Close the pane.

deactivatePane
Change visual cues to reflect an inactive pane and make the pane dispatcher
inactive.

defaultDispatcherClass
Answer the default dispatcher.

restore
Refresh the list from the model and maintain the position in the list without
selecting it.

restoreSelected
Refresh the list from the model and keep the old selection.

restoreSelected: anObject
Display the list with the line indicated by anObject selected. anObject is either the
index into the list or a string with which the list is to be searched with.

restore WithRefresh: aString
Refresh the list from the model and keep the line equal to aString showing and
selected.

returnlndex: aBoolean
Set the returnlndex to aBoolean.

selection
Answer an Integer representing the index of the currently selected item.

selection: anlnteger
Set selection to anlnteger.

showSelection
Highlight the selected line.

show Window
Display the receiver pane and the selection.

topCorner
Answer the topCorner.

topCorner: aPoint
Change topCorner to aPoint.

update
Refresh the list from the model and display it.

ListSelector

A ListSelector processes input for its associated ListPane. Valid input can be a cursor
movement, scrolling command, menu request, or line selection.

410 ListSelector

Inherits From:

Inherited By:

Named Instance Variables:

ScrollDispatcher Dispatcher Object

(None)

active
(From class Dispatcher)

pane
(From class Dispatcher)

Class Variables:

PageScroll
(From class ScrollDispatcher)

Window ActivateKey
(From class Dispatcher)

Pool Dictionaries:

FunctionKeys
Defines variables for the function key codes (of class Character) input from the
keyboard or mouse.

Class Methods:

Instance Methods:

Magnitude

(None)

(All private)

Class Magnitude is an abstract class used for comparing, counting, and measuring instances
of its subclasses.

Inherits From:

Inherited By:

Object

Association Character Date Float Fraction Integer
LargeNegativelnteger LargePositivelnteger Number
Smalllnteger Time

Named Instance Variables: (None)

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods: (None)

Menu 411

Instance Methods:

< aMagnitude
Answer true if the receiver is less than aMagnitude, else answer false.

< — aMagnitude
Answer true if the receiver is less than or equal to aMagnitude, else answer false.

— aMagnitude
Answer true if the receiver is equal to aMagnitude, else answer false.

> aMagnitude
Answer true if the receiver is greater than aMagnitude, else answer false.

> — aMagnitude
Answer true if the receiver is greater than or equal to aMagnitude, else answer false.

between: min and: max
Answer true if the receiver is greater than or equal to min and less than or equal
to max, else answer false.

hash
Answer the positive integer hash value for the receiver.

max : aMagnitude
Answer the receiver if it is greater than aMagnitude, else answer aMagnitude.

min: aMagnitude
Answer the receiver if it is less than aMagnitude, else answer aMagnitude.

Menu

Class Menu defines the protocol for an application to present a menu of items to the user,
allow the selection of an item, and then take some action based on the selection. Therefore,
to define a menu, two ingredients must be supplied -- a String of menu items (separated by
line-feeds) to be shown to the user and an Array of action selectors to be invoked when its
corresponding item gets selected. A Menu is usually created by the class message
labels:lines:selectors:. It can be activated by either the popUpAt: or popUpAt:for: instance
message.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

currentLJne
Contains an integer representing the index of the line in the menu where the cursor
is positioned.

frame
Contains the rectangle that the menu occupies on the screen.

412 Menu

hiddenArea
Contains a Form containing a copy of the display screen image underneath the
popped up menu.

offset
Contains a Point describing the position of the top left corner of the menu.

popUpForm
Contains a Form with the image of the menu.

priorCursor
Contains a Point describing the position of the cursor prior to the pop-up of the
menu.

selectors
Contains an Array of symbols representing the action selectors corresponding to
the items in the menu.

Class Variables:

(None)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

FunctionKeys
Defines variables for the function key codes (of class Character) input from the
keyboard or mouse.

Class Methods:

colors: colorArray selectors: selectorArray
Answer a menu with colorArray for the items, selectorArray for actions.

labelArray: labelArray lines: lineArray selectors: selectorArray
Answer a menu with labelArray for the items, selectorArray for actions, and lines
drawn under the item numbers contained in lineArray.

labels: aString lines: lineArray selectors: selectorArray
Answer a menu with aString for the items, selectorArray for actions, and lines
drawn under the item numbers contained in lineArray.

message: aString
Display aString as a one line menu.

Instance Methods:

popUpAt: aPoint
Pop up menu at aPoint, give it control, and answer the user response or nil if no
response.

popUpAt: aPoint for: anObject
Pop up menu at aPoint, give it control, and send response to anObject.

MetaClass 413

Message

Class Message defines a data structure with an Array of message arguments and a message
selector to describe a Smalltalk message. When an undefined message is encountered during
execution, the virtual machine passes an instance of class Message describing the undefined
message to the method 'doesNotUnderstand:' in class Object which in turn displays an
appropriate error message in the walkback window.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

arguments
Contains an Array which contains the message arguments.

selector
Contains the message selector.

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

Instance Methods:

(None)

(None)

arguments
Answer the arguments array for the message.

arguments: an Array
Set the arguments array for the message.

selector
Answer the message selector.

selector: aSymbol
Set the message selector.

MetaClass

Class MetaClass is the class of all metaclasses (e.g., of Array). It contains the common
protocol for creating classes. Every metaclass has exactly one instance which is the class of
the same name (e.g., Point is the only instance of Point class). The metaclass contains the
class methods while class contains the instance methods. Metaclasses are referred to by
sending the message 'class' to the class.

Inherits From: Behavior Object

414 MetaClass

Inherited By:

Named Instance Variables:

(None)

comment
(From class Behavior)

dictionary Array
(From class Behavior)

instances
(From class Behavior)

name
(From class Behavior)

structure
(From class Behavior)

subclasses
(From class Behavior)

superclass
(From class Behavior)

Class Variables:

InstlndexedBit
(From class Behavior)

InstNumberMask
(From class Behavior)

InstPointerBit
(From class Behavior)

Pool Dictionaries: (None)

Class Methods: (All private)

Instance Methods:

classPool
Answer the pool dictionary of the only instance (a class) of the receiver (a
metaclass).

class VarNames
Answer a Set of the class variable names defined in the receiver.

name
Answer a String containing the receiver name.

sharedPools
Answer an Array of symbols of pool dictionary names referred to by the recevier.

MethodBrowser 415

MethodBrowser

A MethodBrowser is a window used for browsing a collection of related methods, such as
senders or implementors of a message. It can also be used to edit the browsed methods.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

highlightLiteral
Contains an object (usually a Symbol) whose first reference in the source should
be highlighted.

label
Contains the window label String.

methodPane
Contains the TextPane which contains the method source.

methods
Contains an OrderedCollection of methods being browsed.

positions
Contains information for highlighting the method source.

selectedMethod
Contains the method selected in the list pane.

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

Instance Methods:

(None)

(None)

label: aString
Set the window label to aString.

literal: anObject
Request highlighting of source code that refers to anObject.

openOn: aMethodCollection
Create a method browser window on aMethodCollection

416 MethodDictionary

MethodDictionary

A MethodDictionary is a special kind of identity dictionary used to describe the compiled
methods for each class. For each dictionary entry, the key is a message selector symbol and
the associated value is a compiled method. Any updates to an instance of this class cause the
method cache to be flushed, so that a subsequent method lookup will use the updated method
dictionaries.

Inherits From:

Inherited By:

Named Instance Variables:

IdentityDictionary Dictionary Set Collection Object

(None)

contents
(From class Set)

elementCount
(From class Set)

reserved
Reserved for future use.

Class Variables:

Removing
Contains a Boolean to indicate whether or not a selector is being removed from the
method dictionary.

Pool Dictionaries:

Class Methods:

Instance Methods:

(None)

(All private)

add: anAssociation
Answer anAssociation. Add anAssociation to the receiver. Flush the method cache
in case an old method has changed.

at: aSymbol put: aMethod
Answer aMethod. Enter aSymbol and aMethod as a key/value pair in the receiver.
Flush the method cache in case an old method has changed.

remove Key: aSymbol ifAbsent: aBlock
Answer aSymbol. Remove entry with key aSymbol from the receiver. If aSymbol
is not a key of the receiver, evaluate aBlock (with no arguments). Flush the method
cache.

NoMouseCursor 417

NoMouseCursor

An instance of NoMouseCursor contains the bit pattern needed to display a cursor shape.
In addition, it contains the methods for managing the moving, hiding, and displaying of the
cursor. This class is used when there is no mouse driver loaded in memory. Thus the
displaying and hiding of the cursor is done with Smalltalk code.

Inherits From: CursorManager Object

Inherited By: (None)

Named Instance Variables:

aBitBlt
Contains a BitBlt which displays the cursor by transferring from the image Form
and hides the cursor by transferrring from the under Form.

hotSpot
(From class CursorManager)

image
(From class CursorManager)

level
Contains an Integer. When it is less than zero, the cursor is hidden; otherwise, the
cursor is shown. It is incremented by one everytime the cursor is displayed, and
decremented by one everytime it is hidden.

oldPosition
Contains a Point which is a copy of the cursor's old position.

under
Contains a Form which is a copy of the screen image under the cursor. It is used
to hide the cursor.

Class Variables:

ConditionShown
Contains a Boolean: if false it means that the cursor has been hidden during a
previous conditional hide operation; if true it means that the cursor remained shown
during the conditional hide operation.

NoMouse
(From class CursorManager)

Position
(From class CursorManager)

Pool Dictionaries: (None)

Class Methods:

new
Answer a NoMouseCursor, used when no mouse driver is present.

418 NoMouseCursor

Instance Methods:

change
Change Cursor to be the receiver.

display
Display the receiver on the screen.

hide
Hide the cursor from the screen.

hideX: x y: y width: width height: height
Hide the cursor if it moves within the rectangle of x @ y extent: width (2)
height.

offset: aPoint
Set the cursor position to aPoint. Answer the new position.

Number

Class Number is an abstract class used for comparing, counting, and measuring instances
of its numerical subclasses.

Inherits From:

Inherited By:

Magnitude Object

Float Fraction Integer LargeNegativelnteger
LargePositivelnteger Smalllnteger

Named Instance Variables: (None)

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods:

new
Answer an instance of the receiver. This method reports an error.

new: argumentlgnored
Answer an instance of the receiver. This method reports an error.

Instance Methods:

* aNumber
Answer the result of multiplying the receiver by aNumber.

+ aNumber
Answer the sum of the receiver and aNumber.

Number 419

- aNumber
Answer the difference between the receiver and aNumber.

/ aNumber
Answer the result of dividing the receiver by aNumber.

/ / aNumber
Answer the integer result of dividing the receiver by aNumber with truncation
towards negative infinity.

@ aNumber
Answer a point with the receiver as the x-coordinate and aNumber as the
y-coordinate.

\ \ aNumber
Answer the integer remainder after dividing the receiver by aNumber with
truncation towards negative infinity.

aba
Answer the absolute value of the receiver.

arcCos
Answer the arc-cosine, an angle in radians, of the receiver.

arcSin
Answer the arc-sine, an angle in radians, of the receiver.

arcTan
Answer the arc-tangent, an angle in radians, of the receiver.

ceiling
Answer the integer nearest the receiver towards positive infinity.

cos
Answer a Float which is the cosine of the receiver. The receiver is an angle
measured in radians.

degreesToRadians
Answer the receiver converted from degrees to radians.

denominator
Answer the denominator of the receiver. Default is one which can be overridden
by the subclasses.

even
Answer true if the integer part of the receiver is even, else answer false.

exp
Answer a Float which is the exponential of the receiver.

floor
Answer the integer nearest the receiver truncating towards negative infinity.

integerCos
Answer the integer cosine of the receiver angle, measured in degrees, scaled by
100.

420 Number

integerSin
Answer the integer sine of the receiver angle, measured in degrees, scaled by 100.

In
Answer a Float which is the natural log of the receiver.

log: aNumber
Answer a Float which is the log base aNumber of the receiver.

negated
Answer the negation of the receiver.

negative
Answer true if the receiver is less than zero, else answer false.

numerator
Answer the numerator of the receiver. Default is the receiver which can be
overridden by the subclasses.

odd
Answer true if the integer part of the receiver is odd, else answer false.

positive
Answer true if the receiver is greater than or equal to zero, else answer false.

printFraction: numberFractionDigits
Answer a string, the ASCII representation of the receiver truncated to
numberFractionDigits decimal places.

print On: aStream
Append the ASCII representation of the receiver to aStream.

printRounded: numberFractionDigits
Answer a string, the ASCII representation of the receiver rounded to
numberFractionDigits decimal places.

quo: aNumber
Answer the integer quotient with truncation toward zero.

radiansToDegrees
Answer the receiver converted from radians to degrees.

raisedTo: aNumber
Answer a Float which is the receiver raised to the power of aNumber.

raisedToInteger: anlnteger
Answer the receiver raised to the power of anlnteger.

reciprocal
Answer one divided by the receiver.

rent: aNumber
Answer the integer remainder after dividing the receiver by aNumber with
truncation towards zero.

rounded
Answer the nearest integer to the receiver.

Number 421

roundTo: aNumber
Answer the receiver rounded to the nearest multiple of aNumber.

sign
Answer 1 if the receiver is greater than zero, answer -1 if the receiver is less than
zero, else answer zero.

sin
Answer a Float which is the sine of the receiver. The receiver is an angle measured
in radians.

sqrt
Answer a Float which is the square root of the receiver.

squared
Answer the receiver multiplied by the receiver.

storeOn: aStream
Append the ASCII representation of the receiver to aStream from which the
receiver can be reconstructed.

strictlyPositive
Answer true if the receiver is greater than zero, else answer false.

tan
Answer a Float which is the tangent of the receiver. The receiver is an angle
measured in radians.

t imesTwoPower: anlnteger
Answer the result of multiplying the receiver by 2 to the exponent anlnteger.

to: aNumber
Answer an Interval for the numbers between the receiver and the argument
aNumber where each number is the previous number plus 1.

to: sNumber by: iNumber
Answer an Interval for the numbers between the receiver and the argument
sNumber where each number is the previous number plus the argument iNumber.

to: sNumber by: iNumber do: aBlock
Evaluate the one argument block aBlock for the numbers between the receiver and
the argument sNumber where each number is the previous number plus the
argument iNumber.

to: aNumber do: aBlock
Evaluate the one argument block aBlock for the numbers between the receiver and
the argument aNumber where each number is the previous number plus 1.

truncateTo: aNumber
Answer the receiver truncated (towards zero) to the nearest multiple of aNumber.

4i2 Object

Object

Class Object is the superclass of all other classes and defines the protocol common to all
objects. It defines the default behavior for displaying, comparing, copying, hashing,
inspecting objects, evaluating blocks, accessing indexed instance variables and error
handling. It includes capabilities to maintain dependency relationships between objects and
to broadcast messages from an object to its dependents. It also provides the entry point for
interrupt handling.

Inherits From: (None)

Inherited By: (All classes)

Named Instance Variables: (None)

Class Variables:

Dependents
Contains an IdentityDictionary representing object dependents. For each entry, the
key is an object and the associated value is the set of all other objects which are
dependent on the key object. It is initialized to an empty dictionary.

RecursionlnError
Contains a Boolean indicating whether an error has occurred while reporting an
error in a walkback window. If so, the destination of the error output switches from
the walkback window to the display screen. It is initialized to false.

RecursiveSet
Contains a Set of objects whose display has started but not finished. It is used for
gracefully detecting the display of self referencing data structures (e.g., show it from
TextPane menu).

Pool Dictionaries: (None)

Class Methods:

initDependents
Initialize the Dependents dictionary to empty.

initialize
Initialize the class variables for detecting recursive data structures.

Instance Methods:

™ anObject
This is the default equality test. Answer true if the receiver and anObject are the
same object, else answer false.

— >• anObject
Answer true if the receiver and anObject are the same object, else answer false.

addDependent: anObject
Add anObject to the class variable Dependents of class Object.

Object 423

allDependents
Answer a Set containing all the dependents of the receiver.

allReferences
Answer an Array of all of the references to the receiver.

at: anlnteger
Answer the object in the receiver at index position anlnteger. If the receiver does
not have indexed instance variables, or if anlnteger is greater than the number of
indexed instance variables, report an error.

at: anlnteger put: anObject
Answer anObject. Replace the object in the receiver at index position anlnteger
with anObject. If the receiver does not have indexed instance variables, or if
anlnteger is greater than the number of indexed instance variables, report an error.

basic At: anlnteger
Answer the object in the receiver at index position anlnteger. If the receiver does
not have indexed instance variables, or if anlnteger is greater than the number of
indexed instance variables, report an error.

basicAt: anlnteger put: anObject
Answer anObject. Replace the object in the receiver at index position anlnteger
with anObject. If the receiver does not have indexed instance variables, or if
anlnteger is greater than the number of indexed instance variables, report an error.

basicHash
Answer the integer hash based on its hash field.

basicSize
Answer the number of indexed instance variables in the receiver.

become: anObject
The receiver takes on the identity of anObject. All the objects that referenced the
receiver will now point to anObject.

broadcast: aSymbol
Send the argument aSymbol as a unary message to all of the receiver's dependents.

broadcast: aSymbol with: anObject
Send the argument aSymbol as a keyword message with argument anObject to all
of the receiver's dependents.

changed
The receiver changed in some general way. Inform all dependents by sending each
dependent an update message.

changed: aParameter
Something has changed releated to the dependents of the receiver. Send the
'update: aParameter' message to all the dependents.

changed: firstParameter with: secondParameter
Something has changed releated to the dependents of the receiver. Send the
'update: firstParameter with: secondParameter' message to all the dependents.

424 Object

changed: firstParameter
with: secondParameter with: thirdParameter

Something has changed releated to the dependents of the receiver. Send the
'update: firstParameter with: secondParameter' message to all the dependents.

class
Answer the class of the receiver.

copy
Answer a shallow copy of the receiver.

deepCopy
Answer a copy of the receiver with shallow copies of each instance variable.

dependents
Answer a collection of all dependents of the receiver.

dependsOn: anObject
Add the receiver to anObject's collection of dependents.

doesNotUnderstand: aMessage
Initiate a walkback because a message was sent which is not understood, i.e., there
is no matching method.

error: aString
Create a walkback window describing an error condition with the error message
aString in the window label.

halt
Initiate a walkback with 'halt encountered' message for debugging.

hash
Answer the integer hash value of the receiver. This is the default implementation
which uses the object hash value assigned at the creation time.

hash: anlnteger
Set the hash value of the receiver to anlnteger.

implementedBySubclass
Initiate a walkback because a subclass doesn't implement a message that it should.

inspect
Open an inspector window on the receiver.

invalidMessage
Initiate walkback because inappropriate message was sent to the receiver.

isKindOf: aClass
Answer true if receiver is an instance of aClass or one of its subclasses, else answer
false.

isMemberOf: aClass
Answer true if the receiver is an instance of aClass, else answer false.

isNil
Answer true if the receiver is the object nil, else answer false.

Object 425

notNil
Answer true if the receiver is not the object nil, else answer false.

perform: aSymbol
Answer the result of sending a unary message to the receiver with selector aSymbol.
Report an error if the number of arguments expected by the selector is not zero.

perform: aSymbol with: anObject
Answer the result of sending a binary message to the receiver with selector aSymbol
and argument anObject. Report an error if the number of arguments expected by
the selector is not one.

perform: aSymbol with: firstObject with: secondObject
Answer the result of sending a keyword message to the receiver with selector
aSymbol and arguments firstObject and secondObject. Report an error if the
number of arguments expected by the selector is not two.

perform: aSymbol
with: firstObject with: secondObject with: thirdObject

Answer the result of sending a keyword message to the receiver with selector
aSymbol and arguments firstObject, secondObject and thirdObject. Report an
error if the number of arguments expected by the selector is not three.

perform: aSymbol with Arguments: an Array
Answer the result of sending a message to the receiver with selector aSymbol and
arguments the elements of anArray. Report an error if the number of arguments
expected by the selector is not equal to anArray size.

printOn: aStream
Append the ASCII representation of the receiver to aStream. This is the default
implementation which prints 'a' ('an') followed by the receiver class name.

printString
Answer a String that is an ASCII representation of the receiver.

release
Discard all dependents of the receiver, if any.

respondsTo: aSymbol
Answer true if the receiver class or one of its superclasses implements a method
with selector equal to aSymbol.

shallowCopy
Answer a copy of the receiver which shares the receiver instance variables.

size
Answer the number of indexed instance variables in the receiver.

species
Answer a class which is similar to (or the same as) the receiver class which can be
used for containing derived copies of the receiver.

storeOn: aStream
Append the ASCII representation of the receiver to aStream from which the
receiver can be reinstantiated.

426 Object

storeString
Answer the receiver represented as a String from which it can be reconstructed.

update: aParameter
An object on whom the receiver is dependent has changed. The receiver updates
its status accordingly (the default behavior is to do nothing). The argument
aParameter usually identifies the kind of update.

update: firstParameter with: secondParameter
An object on whom the receiver is dependent has changed. The receiver updates
its status accordingly (the default behavior is to do nothing). The argument
firstParameter usually identifies the kind of update and the secondParameter is a
unary message defined in the receiver protocol.

update: firstParameter
with: secondParameter with: thirdParameter

An object on whom the receiver is dependent has changed. The receiver updates
its status accordingly (the default behavior is to do nothing). The argument
firstParameter usually identifies the kind of update and the secondParameter is a
unary message defined in the receiver protocol.

yourself
Answer the receiver.

"" ** anObject
Answer true if the receiver and anObject do not compare equal (using =) , else
answer false.

anObject
Answer true if the receiver and anObject are not the same object, else answer false.

OrderedCollection

An OrderedCollection can be used like a dynamic array, stack or queue. Unlike fixed size
collections, an OrderedCollection can grow to accomodate more elements if the original
collection is not big enough.

Inherits From:

Inherited By:

Named Instance Variables:

IndexedCollection Collection Object

Process SortedCollection

contents
Contains an Array of objects included in the OrderedCollection.

endPosition
Contains the contents index position of the last element of the collection. All
successive index positions (to contents size), are assumed to be empty.

startPosition
Contains the contents index position of the first element of the collection. All
preceding index positions (to contents position 1), are assumed to be empty.

OrderedCollecdon 427

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods:

new
Answer an instance of OrderedCollection capable of holding 12 elements initially.

new: anlnteger
Answer an initialized instance of OrderedCollection capable of holding anlnteger
number of elements.

Instance Methods:

, aCollection
Answer an OrderedCollection containing all the elements of the receiver followed
by all the elements of aCollection.

add: anObject
Answer anObject. Add anObject after the last element of the receiver collection.

add: newObject after: oldObject
Answer newObject. Insert newObject immediately after the element oldObject in
the receiver collection. If oldObject is not in the collection, report an error.

add: anObject afterlndex: anlnteger
Answer anObject. Insert anObject at index position anlnteger + 1 in the receiver
collection. If anlnteger is out of the collection bounds, report an error.

add: newObject before: oldObject
Answer newObject. Insert newObject immediately before the element oldObject
in the receiver collection. If oldObject is not in the collection, report an error.

add: anObject beforelndex: anlnteger
Answer anObject. Insert anObject at index position anlnteger - 1 in the receiver
collection. If anlnteger is out of the collection bounds, report an error.

addAUFirst: aCollection
Answer aCollection. Add all the elements contained in aCollection to the receiver
before its first element.

addAULast: aCollection
Answer aCollection. Add all the elements contained in aCollection to the receiver
after its last element.

addFirst: anObject
Answer anObject. Add anObject before the first element of the receiver.

addLast: anObject
Answer anObject. Add anObject after the last element of the receiver.

428 OrderedCollection

after: anObject
Answer the element that immediately follows anObject in the receiver collection.
If anObject is not an element of the receiver, report an error.

after: anObject ifNone: aBlock
Answer the element that immediately follows anObject in the receiver collection.
If anObject is not an element of the receiver, aBlock is evaluated (with no
arguments).

at: anlnteger
Answer the element of the receiver at index position anlnteger. If anlnteger is an
invalid index for the receiver collection, report an error.

at: anlnteger put: anObject
Answer anObject. Replace the element of the receiver at index position anlnteger
with the anObject. If anlnteger is an invalid index for the receiver collection, report
an error.

before: anObject
Answer the element that immediately precedes anObject in the receiver collection.
If anObject is not an element of the receiver, report an error.

before: anObject ifNone: aBlock
Answer the element that immediately precedes anObject in the receiver collection.
If anObject is not an element of the receiver, aBlock is evaluated (with no
arguments).

copyFrom: beginning to: end
Answer an OrderedCollection containing the elements of the receiver from index
position beginning through index position end.

do: aBlock
Answer the receiver. For each element in the receiver, evaluate aBlock with that
element as the argument.

includes: anObject
Answer true if the receiver contains an element equal to anObject, else answer
false.

remove: anObject ifAbsent: aBlock
Answer anObject. Remove the element anObject from the receiver collection. If
anObject is not an element of the receiver, aBlock is evaluated (with no arguments).

removeFirst
Remove and answer the first element of the receiver. If the collection is empty,
report an error.

removelndex: anlnteger
Answer the receiver. Remove the element of the receiver at index position
anlnteger. If anlnteger is an invalid index for the receiver, report an error.

removeLast
Remove and answer the last element of the receiver. If the collection is empty,
report an error.

Pane 429

replaceFrom: start to: stop with: aCollection
Answer a new OrderedCollection containing the receiver whose elements at index
position start through stop have been replaced by the elements of aCollection.

size
Answer the number of elements contained by the receiver collection.

Pane

Class Pane is an abstract class which provides the common protocol for all its subclasses. A
pane is a subarea of a window. It is responsible for displaying a portion of its contents in
a designated area on the display screen. It is one of the three major elements (pane,
dispatcher, and application model) of a window application. Each pane is associated with one
dispatcher. All the panes of a window are normally tied to one application model.

Inherits From:

Inherited By:

Object

GraphPane ListPane SubPane TextPane TopPane

Named Instance Variables:

curFont
Contains the current font used in the pane.

dispatcher
Contains the dispatcher associated with the pane object,

frame
Contains the Rectangle on the display screen into which the pane object can display
its contents.

framingBlock
Contains a block of code which computes the frame rectangle of the pane based
on an argument representing the pane's outer frame.

model
Contains the application model that controls this pane object.

paneMenuSelector
Contains a no-argument message selector which, when invoked, answers a Menu
customized for the pane.

paneScanner
Contains a StringBlt which is responsible for all the output to the borders form
(refer to class TopPane) and transfer from the borders form to the display screen.

subpanes
Contains an OrderedCollection of subpanes which are under the control of this Pane
object.

superpane
Contains the parent pane that controls this pane object. Note that a TopPane has
no superpane.

430 Pane

Class Variables:

WindowClip
Contains the clipping Rectangle of the display screen to update following the move
or a close of a window.

ZoomedPane
Contains the TextPane currently being zoomed.

Pool Dictionaries:

Class Methods:

(None)

initWindowClip
Reinitialize the clipping rectangle of redrawing windows to be the whole display
screen.

new
Answer a new pane.

windowClip
Answer the clipping rectangle for redrawing windows.

windowClip: aRectangle
Set the clipping rectangle for redrawing windows to aRectangle.

Instance Methods:

activatePane
Mark the dispatcher of the receiver pane as active.

border
Draw a border around the receiver frame.

border: aRectangle
Draw two lines around aRectangle. The outside one has the foreground color and
the inside one the background color.

close
Close the subpanes and release their dependencies from the model.

cyclePane
Move the cursor to the pane next to the receiver. If none, home the cursor in the
receiver pane.

deactivatePane
Mark the receiver pane dispatcher as inactive.

deactivate Window
Mark the dispatcher of the receiver as inactive and change their visual cues to
reflect an inactive window.

dispatcher
Answer the dispatcher for the pane.

Pane 431

dispatcher: aDispatcher
Make aDispatcher the dispatcher of the receiver pane and initialize it.

font
Answer a Font, the font currently associated with the receiver pane.

frame
Answer a Rectangle, the frame of the receiver.

hasCursor
Answer true if the pane contains the cursor, else answer false.

hasZoomedPane
Answer true if a textPane has been zoomed.

homeCursor
Move the cursor to the top left corner of the pane.

menu: aSymbol
Set the paneMenuSelector to the message selector contained in aSymbol which is
used to generate the pane menu.

model
Answer the model for the receiver.

model: anObject
Set the model of the receiver to anObject and add the receiver as a dependent of
the model.

paneScanner
Answer the Characters canner associated with the pane.

popUp: aMenu
Display aMenu at the cursor and perform the menu selection.

popUp: aMenu at: aPoint
Display aMenu at aPoint. If the user choice is nil, do nothing. If the model can
respond to the choice, let it perform the choice. Else, let the dispatcher perform
it.

release
Remove model dependency and disconnect the model from the pane.

superpane: aPane
Set the receiver superpane to aPane.

unzoom
Return zoomed pane to normal.

432 Pattern

Pattern

An instance of Pattern contains a finite state pattern to be used to match against another
object. The pattern itself and the object to be matched against can be any subclass of
IndexedCollection. In addition, the Pattern class contains methods needed for performing
the match. There are two ways to invoke the pattern matching. One is to pass the entire
matching collection to the pattern. Another is to setup a loop and pass one element at a time
from the matching collection to the Pattern and a prebuilt block will be executed each time
a match occurs. The first way is more efficient when there is only one matching collection.
The second way is normally used when there are several matching collections.

Inherits From:

Inherited By:

Object

WildPattern

Named Instance Variables:

fail
Contains an Array of integers corresponding to elements in the pattern collection.
Each integer denotes the next element to go to when the current pattern element
fails to match the element in the matching collection.

first
Contains the first element in the pattern collection. This is used to increase
matching speed.

input
Contains the collection to be used as the pattern.

matchBlock
Contains a block of code to be executed when a match occurs using the second way
of invoking the pattern match.

state
Contains an Integer denoting the current state of the pattern collection which is
the index of the current pattern element being matched.

Class Variables:

WildcardChar
Contains a Character which when appears in the pattern collection will match zero
or more elements in the matching collection.

Pool Dictionaries:

Class Methods:

(None)

new: aString
Answer a new pattern with aString as the pattern to match.

wildcardChar
Answer the wild card character.

Pen 433

Instance Methods:

match: anObject
Compare anObject against the pattern. If anObject completes the matching of the
pattern, evaluate the match block.

match: aCollection index: anlnteger
Answer a Point representing the start and stop of the subcollection within
aCollection that matches the receiver starting at index position anlnteger. Answer
nil if no match.

matchBlock: aBlock
Set the match block of the receiver to aBlock. This block will be evaluated when
the pattern is fully matched.

reset
Reset the receiver to start matching at the beginning of the pattern.

Pen

This class extends the functions of BitBlt to provide a turtle graphics type of drawing
interface. The source form serves as the nib of the pen, the mask form the color of the pen,
and the destination form the canvas for drawing. It draws by repeatedly copying the masked
bits from the source form to the destination form. For each copy made, the destination origin
is moved according to the specified drawing pattern, e.g. a line or a circle.

Inherits From:

Inherited By:

Named Instance Variables:

BitBlt Object

Animation Commander

clipHeight
(From class BitBlt)

clip Width
(From class BitBlt)

clipX
(From class BitBlt)

clipY
(From class BitBlt)

destForm
(From class BitBlt)

destX
(From class BitBlt)

destY
(From class BitBlt)

direction
Contains an Integer denoting the current drawing direction in degrees from 0 to
359.

434 Pen

downState
Contains a Boolean specifying whether the pen is down (true) on the canvas or lifted
(false).

fractionX
Contains an Integer which is the hundredth fractional part of the x coordinate of
the current pen location. The integral part is contained in variable destX.

fractionY
Contains an Integer which is the hundredth fractional part of the y coordinate of
the current pen location. The integral part is contained in variable destY.

halftone
(From class BitBlt)

height
(From class BitBlt)

rule
(From class BitBlt)

sourceForm
(From class BitBlt)

sourceX
(From class BitBlt)

source Y
(From class BitBlt)

width
(From class BitBlt)

Class Variables:

DoubleCenter

Contains a point representing the center of an ellipse multiplied by two.

Pool Dictionaries: (None)

Class Methods:
new

Answer a Pen with its instance variables initialized using Display as destination
form.

new: aForm
Answer a Pen with its instance variables initialized using aForm as destination
form.

Instance Methods:

black
Change the pen color to black.

bounce: anlnteger
If the pen touches the clipping rectangle after moving for an increment of
anlnteger, change its direction so that it looks like it is bouncing off the wall.

Pen 435

centerText: aString font: aFont
Write aString whose center is at the destination origin using aFont.

changeNib: aForm
Change the source form (the nib) to aForm.

defaultNib: size
Change the size of the nib to size which can be either an Integer or a Point.

direction
Answer the current direction of the receiver pen in degrees from 0 to 359. East
is degree 0, south is 90.

direction: anlnteger
Set the direction to anlnteger number of degrees.

down
Set the pen down.

dragon: anlnteger
Draw a dragon pattern where anlnteger is the recursion factor.

drawRectangle
Draw a single pixel rectangle on the inside of the destination rectangle.

ellipse: anlnteger aspect: aFraction
Draw an ellipse with the pen position as its center, anlnteger as half of the width,
aFraction as the ratio of the ellipse height to width. The height will be adjusted by
the global variable Aspect.

fillAt: aPoint
Color all pixels that are connected to aPoint and have the same color as that of
aPoint with the pattern contained in the mask form.

frame
Answer the clipping rectangle of the pen.

frame: aRectangle
Set the clipping rectangle to aRectangle.

go: anlnteger
Move the pen for the distance anlnteger number of pixels in the current direction.
The y-axis is adjusted by Aspect.

goto: aPoint
Move the pen to aPoint.

gray
Change the pen color to gray.

grid: anlnteger
Draw a grid within the clipping rectangle where anlnteger is the number of pixels
between the lines.

home
Center the pen on the destination form.

436 Pen

location
Answer a Point, the current position of the pen.

mandala: slnteger diameter: dlnteger
Draw a mandala with slnteger number of sides and dlnteger as the diameter.

north
Set the direction of the pen to 270 degrees.

place: aPoint
Position the pen at aPoint.

polygon: llnteger sides: slnteger
Draw a polygon with slnteger number of sides where each is of length llnteger.

solidEllipse: aninteger aspect: aFraction
Draw an ellipse with aninteger as half the width and aFraction as the aspect ratio
with the pen position as the center, and fill its insides with the color of the mask
form.

spiral: aninteger angle: dlnteger
Draw a spiral with aninteger number of lines where dlnteger is the angle between
two successive lines.

turn: aninteger
Change the direction of the pen aninteger number of degrees, aninteger can be
either positive or negative.

up
Lift the pen up.

white
Change the color of the pen to white.

Point

A Point represents a position in two dimensions (e.g., a character's position in a form). It
consists of a pair of numbers, x and y. By convention, x increases to the right and y increases
downward.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

Contains a number representing the x-coordinate (column) of the point.

Contains a number representing the y-coordinate (row) of the point.

Point 437

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

(None)

(None)

Instance Methods:

* scale
Answer a new Point which is the product of the receiver and scale. Scale can be
a number or a Point. If scale is a Point, the x-coordinates are multiplied and the
y-coordinates are multiplied.

+ delta
Answer a new Point which is the sum of the receiver and delta. Delta can be a
number or a Point. If delta is a Point, the x-coordinates are added and the
y-coordinates are added.

- delta
Answer a new Point which is the difference of the receiver and delta, delta can be
a number or a Point. If delta is a Point, the x-coordinates are subtracted and the
y-coordinates are subtracted.

/ / scale
Answer a new Point which is the receiver Point divided by scale. Scale can be a
number or a Point. If scale is a Point, the x-coordinates are divided and the
y-coordinates are divided.

< aPoint
Answer true if the x and y coordinates of the receiver are less than the x and y
coordinates of aPoint, respectively, else answer false.

<™ aPoint
Answer true if the x and y coordinates of the receiver are less than or equal to the
x and y coordinates of aPoint, respectively, else answer false.

= aPoint
Answer true if the x and y coordinates of the receiver are equal to the x and y
coordinates of aPoint, respectively, else answer false.

> aPoint
Answer true if the x and y coordinates of the receiver are greater than the x and
y coordinates of aPoint, respectively, else answer false.

> « aPoint
Answer true if the x and y coordinates of the receiver are greater than or equal to
the x and y coordinates of aPoint, respectively, else answer false.

\ \ scale
Answer a new Point which is the integer remainder of the receiver Point divided
by scale. Scale can be a number or a Point. If scale is a Point, the x-coordinates
are divided and the y-coordinates are divided.

438 Point

aba
Answer a Point with coordinates that are the absolute value of the x and y
coordinates of the receiver.

between: aPoint and: bPoint
Answer true if the receiver is greater than or equal to aPoint and less than or equal
to aPoint, else answer false.

corner: aPoint
Answer a Rectangle with origin equal to the receiver and corner equal to aPoint.

dot Product: aPoint
Answer a number which is the sum of the product of the x-coordinates and the
product of the y-coordinates of the receiver and aPoint.

extent: aPoint
Answer a Rectangle with origin equal to the receiver and extent equal to aPoint.

hash
Answer the integer hash value of the receiver.

isBefore: aPoint
Answer true if receiver is text-wise earlier than aPoint, else answer false.

max: aPoint
Answer a Point with the maximum of the x-coordinates and the maximum of the
y-coordinates of the receiver and aPoint.

min: aPoint
Answer a Point with the minimum of the x-coordinates and the minimum of the
y-coordinates of the receiver and aPoint.

moveBy: aPoint
Answer the receiver with its x-coordinate incremented by aPoint x and y-coordinate
incremented by aPoint y.

negated
Answer a Point with the x and y coordinates of the receiver negated.

printOn: aStream
Append the ASCII representation of the receiver to aStream.

rounded
Answer a Point which has the receiver coordinates rounded to integers.

transpose
Answer a Point with x-coordinate equal to the receiver's y-coordinate and
y-coordinate equal to receiver's x-coordinate.

truncated
Answer a Point which has the receiver coordinates truncated to integers.

x
Answer the receiver's x-coordinate.

PoinlDispatcher 439

x: aNumber
Answer the receiver. Set the receiver's x-coordinate to aNumber.

y
Answer the receiver's y-coordinate.

y: aNumber
Answer the receiver. Set the receiver's y-coordinate to aNumber.

PointDispatcher

A PointDispatcher is used to interactively define or modify a rectangle on the screen. The
rectangle can be moved about the screen, be expanded or shrunk in size. A PointDispatcher
answers a Point if only move is allowed and a Rectangle if resizing is also allowed. It is largely
used for moving or framing a window.

Inherits From: Dispatcher Object

Inherited By: (None)

Named Instance Variables:

active
(From class Dispatcher)

aPen
Contains a Pen to draw the outline of the rectangle.

cursorOffset
Contains a Point representing the offset between the display box origin and the
cursor.

displayBox
Contains the Rectangle shown on the display screen.

minBoxExtent
Contains a Point describing the minimum width and height of the final rectangle.

moveOrSizeBox
Contains the Symbol #move, #frame, or #size. The Symbol #move means that
the displayBox can only be moved but not resized. During a framing operation, the
Symbol # frame is used to locate the origin and #size is used to define the corner
of the displayBox.

pane
(From class Dispatcher)

returoBlock
Contains a one-argument block of code which, when executed, will exit the
PointDispatcher and answer a Point or a Rectangle depending on whether it is a
move or a frame operation.

Class Variables:

Window ActivateKey
(From class Dispatcher)

440 PointDispatcher

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

FunctionKeys
Defines variables for the function key codes (of class Character) input from the
keyboard or mouse.

Class Methods:

cornerFromUserOfOrigin: aPoint minExtent: extent
Answer a Rectangle which resizes a rectangle with aPoint as the origin and extent
as the minimum extent.

new
Answer a new initialized PointDispatcher.

pointFromUserDisplaying: aRectangle offset: aPoint
Display a rectangle of size box which may be moved by the user to the desired
position. Answer the top left corner of the rectangle when the user selects a position.
'aPoint' is the offset between the cursor and the origin of aRectangle

Instance Methods:

drawBox: aRect
Draw a border around aRect.

Process

A Process is an object representing a sequence of Smalltalk computations. The computations
are performed by objects sending messages to other objects and waiting for the results. The
process describes the current execution state, including the stack of unanswered messages.

Inherits From:

Inherited By:

Named Instance Variables:

OrderedCollection IndexedCollection Collection Object

(None)

contents
(From class OrderedCollection)

debugger
Contains the debugger window associated with the process if it is being debugged,
or nil if not debugged.

endPosition
(From class OrderedCollection)

frameBias
Contains an integer which when added to a hardware stack pointer converts it to
a process object index.

Process 441

interruptFrame
Contains an integer used by the 'resume:' primitive.

isUserIF
Contains true if the process is a user interface process, else false,

name
Contains a String representing the process name.

priority
Contains an integer representing the process priority.

runable
Contains true if the process is runable, else false.

sendFrame
Contains an integer frame number used to trigger the step interrupt.

startPosition
(From class OrderedCollection)

topFrame
Contains the hardware stack pointer for the stack frame at the top of the stack.

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods:

breakpointlnterrupt
Implement breakpoint interrupt.

controlBreaklnterrttpt
Initiate a control-break walkback.

copyStack
Answer a Process object containing the current stack contents.

drop SenderChain
Discard stacked message sends (sent but not answered) to outermost send, the input
request loop.

enablelnterrupts: aBoolean
Answer the previous interrupt enable state. Set the interrupt enable state to
aBoolean.

interrupt: interruptNumber
Put an interrupt number in the virtual machine queue.

ioErrorlnterrupt
Initiate a DOS critical error walkback.

keyboardlnterrupt
Implement keyboard interrupt.

new
Answer a new Process.

442 Process

overrunlnterrupt
Initiate an interrupt queue overrun walkback.

queueWalkback: aString makeUserlF: ifBoolean resumable: resumeBoolean
Enter a walkback for current process in pending event queue. Create new user
interface process if ifBoolean is true.

timerlnterrupt
Implement the timer interrupt.

Instance Methods:

debugger
Answer the debugger associated with the receiver, or nil if none.

debugger: aDebugger
Set receiver's debugger to aDebugger.

isUserIF
Answer true if receiver is a user interface process.

makeUserlF
Make the receiver be the user interface process.

n a m e
Answer the process name.

name : aString
Set the process name to aString.

priority
Answer an integer representing the receiver process priority.

priority: aNumber
Change the priority of the receiver process to aNumber.

resume
Resume the receiver process.

ProcessScheduler

Qass ProcessScheduler provides the mechanism for scheduling process execution according
to process priorities. There is a single instance of the class maintained in the global variable,
Processor.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

ready-Processes
Contains an Array of OrderedCollections of ready to run processes. The array is
indexed by the process priority.

ProcessScheduler 443

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

(None)

(None)

Instance Methods:

fork: forkBlock
Create a new process to execute forkBlock and schedule it at same priority as the
active process.

fork: forkBlock at : aPriority
Create a new process to execute forkBlock and schedule it at priority priority.

highUserPriority
Answer the highest priority for a user process.

initialize
Initialize the receiver by discarding all processes and then creating a new user
interface process.

lowUserPriority
Answer the lowest priority for a user process.

resume: aProcess
Add aProcess to the process scheduler's queue of ready processes. If aProcess has
the highest priority, make it the current process.

schedule
Schedule the highest priority ready process, or if none, create the idle process.
Called with interrupts disabled.

suspendActive
Suspend the active process and schedule the highest priority ready process, if any.
Called with interrupts disabled and CurrentProcess already entered in proper
waiting queue.

topPriority
Answer the highest allowable priority for system processes.

userPriority
Answer the priority of the user interface process.

yield
Give other processes at the priority of the currently running process a chance to
run.

444 PromptEditor

PromptEditor

A PromptEditor processes input for its associated TextPane in a Prompter. Its allowed input
is more restrictive than a TextEditor. It will not give up control until the user either accepts
or cancels the Prompter. The user response is accepted by either pressing the carriage-return
key or selecting the accept item from the menu.

Inherits From:

Inherited By:

Named Instance Variables:

TextEditor ScrollDispatcher Dispatcher Object

(None)

active
(From class Dispatcher)

modified
(From class TextEditor)

newSelection
(From class TextEditor)

pane
(From class Dispatcher)

priorSelection
(From class TextEditor)

priorText
(From class TextEditor)

Class Variables:

CopyBuffer
(From class TextEditor)

PageScroll
(From class ScrollDispatcher)

PriorCommand
(From class TextEditor)

StandardEditMenu
(From class TextEditor)

WindowActivateKey
(From class Dispatcher)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

FunctionKeys
Defines variables for the function key codes (of class Character) input from the
keyboard or mouse.

Class Methods: (None)

Prompter 445

Instance Methods:

isControlActive
Answer true if the receiver is active.

Prompter

A Prompter is a window with one TextPane which allows an application to pose a question
and solicit an answer from the user. The question is shown as the label of the window. The
answer is typed in the TextPane by the user with full editing capabilities. Depending on which
class method is used to invoke a Prompter, the output from the Prompter can be either the
entered string from the user or an object as the result of evaluating the entered string.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

evaluating
Contains a Boolean which is set to true when the evaluation of the user response
is requested, else it is set to false.

exitBlock
Contains a block of code with no arguments. The block, when evaluated, answers
a result and exits the Prompter.

hiddenArea
Contains a Form containing a copy of the display screen image underneath the
Prompter window.

reply
Contains the result of the Prompter. It is a String if the answer is not evaluated,
else it is the resulting object of evaluating the String entered by the user.

replyPane
Contains the TextPane of the Prompter.

withBlank
Contains a Boolean. If true then accept the user input as is, else trim leading and
trailing white space.

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

(None)

prompt: questionstring default: answerString
Open a Prompter with questions tring as its question and answerString as its default
answer. Answer the user response (a String) with leading and trailing spaces
trimmed.

446 Prompter

prompt: questionString defaultExpression: answerString
Open a Prompter with questionString as its question and answerString as its default
answer. Answer the resulting object after evaluating the user response.

prompt WithBlanks: questionString default: answerString
Open a Prompter with questionString as its question and answerString as its default
answer. Answer the user response (a String) without trimming the blanks.

Instance Methods:

ReadStream

(All private)

A ReadStream allows streaming over an indexed collection of objects for read access, but
not write access. A stream has an internal record of its current position. It has access messages
to get the object (s) at the current position and cause the position to be advanced. Messages
are defined for changing the stream position, so that random access is possible.

Inherits From:

Inherited By:

Named Instance Variables:

collection
(From class Stream)

position
(From class Stream)

readLJmit
(From class Stream)

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

Instance Methods:

Stream Object

(None)

(None)

(None)

contents
Answer the collection over which the receiver is streaming.

next
Answer the next object accessible by the receiver and advance the stream position.
Report an error if the receiver stream is positioned at end.

ReadWriteStream 447

ReadWriteStream

A ReadWriteStream allows streaming over an indexed collection of objects for read and write
access. A stream has an internal record of its current position. It has access messages to get
and put the object (s) at the current position and cause the position to be advanced. Messages
are defined for changing the stream position, so that random access is possible.

Inherits From: WriteStream Stream Object

Inherited By: FileStream Terminalstream

Named Instance Variables:

collection
(From class Stream)

position
(From class Stream)

readLJmit
(From class Stream)

writeLJmit
(From class WriteStream)

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods: (None)

Instance Methods:

contents
Answer the collection over which the receiver is streaming.

next
Answer the next object accessible by the receiver and advance the stream position.
Report an error if the receiver stream is positioned at end.

nextByte
Answer the next byte accessible by the receiver and advance the stream position.
Report an error if the stream is positioned at end.

nextPut: anObject
Write anObject to the receiver stream. Answer anObject.

nextPutAU: aCollection
Write each of the objects in aCollection to the receiver stream. Answer aCollection.

setToEnd
Set the position of the receiver stream to the end.

448 ReadWriteStream

truncate
Set the size of the receiver stream to its current position.

Rectangle

A Rectangle represents a rectangular area (frequently used to define a subarea of a Form).
A Rectangle can be described by an origin (top left corner) and a corner (bottom right
corner) point, or by an origin and an extent point, where the extent describes the width and
height of the rectangle.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

corner
Contains a Point describing the bottom right corner.

origin
Contains a Point describing the top left corner.

Class Variables:

(None)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

Class Methods:

origin: originPoint corner: cornerPoint
Answer a Rectangle with origin and corner points described by originPoint and
cornerPoint.

origin: originPoint extent: extentPoint
Answer a Rectangle whose origin and extent (width and height) are described by
originPoint and extentPoint.

Instance Methods:

bottom
Answer the y-coordinate of the bottom of the receiver.

center
Answer a Point, the center of the receiver.

containsPoint: aPoint
Answer true if aPoint is contained within the receiver, else answer false.

Rectangle 449

corner
Answer a Point, the bottom right corner of the receiver.

corner: aPoint
Change the receiver so that its bottom right corner is aPoint without changing its
extent.

expandBy: delta
Answer a Rectangle which is the receiver expanded by delta, where delta is a
Rectangle, a Point or a Number.

extent
Answer a Point representing the receiver width and height.

extent: aPoint
Change the extent of receiver to aPoint.

height
Answer a number representing the receiver height.

height: aNumber
Change the receiver height to aNumber.

insetBy: delta
Answer a Rectangle which is the receiver inset by delta, where delta is a Rectangle,
a Point or a Number.

intersect: aRectangle
Answer a Rectangle representing the area in which the receiver and aRectangle
overlap.

intersects: aRectangle
Answer true if the receiver and aRectangle have any area in common, else answer
false.

left
Answer the x-coordinate of the origin.

merge: aRectangle
Answer the smallest Rectangle which contains the receiver and aRectangle.

moveBy; aPoint
Increment the receiver origin and corner by aPoint.

moveTo: aPoint
Move the receiver to aPoint.

nonlntersections: aRectangle
Answer an OrderedCollection of rectangles describing areas of the receiver outside
aRectangle.

origin
Answer a Point, the top left corner of the receiver.

450 Rectangle

origin: originPoint corner: cornerPoint
Change the receiver's top left corner to originPoint and its bottom right corner to
cornerPoint.

origin: originPoint extent: extentPoint
Change the receiver's top left corner to originPoint and its extent to extentPoint.

print On: aStream
Append the ASCII representation of the receiver to aStream.

right
Answer the the x-coordinate of the receiver's bottom right corner.

rounded
Answer the receiver with the coordinates of its origin and corner rounded to
integers.

scaleBy: delta
Answer a Rectangle with the receiver origin and corner multiplied by delta, where
delta is either a Number or a Point.

scaleTo: aRectangle
Answer a Rectangle whose size is proportional to the receiver with ratios specified
by aRectangle.

top
Answer the y-coordinate of the origin of the receiver.

translateBy: delta
Answer a Rectangle which is the receiver with position incremented by delta, where
delta is either a Number or a Point.

truncated
Answer the receiver with the coordinates of its origin and corner truncated to
integers.

width
Answer a number representing the receiver width.

width: anlnteger
Change the receiver width to anlnteger.

ScreenDispatcher

A ScreenDispatcher processes the user input directed to the background (the area outside
all windows). The primary user input to the screen background is to request the system menu.

Inherits From:

Inherited By:

Dispatcher Object

(None)

ScreenDispatcher 451

Named Instance Variables:

active
(From class Dispatcher)

pane
(From class Dispatcher)

Class Variables:

ScreenMenu
Contains the system menu.

WindowActivateKey
(From class Dispatcher)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

FunctionKeys
Defines variables for the function key codes (of class Character) input from the
keyboard or mouse.

Class Methods:

systemMenu
Answer the system menu.

Instance Methods:

activate Window
Make the screen background active. Begin the loop to process input.

execute: pathName parameters: aString
Execute a Dos program whose file name is pathName and parameter is aString.

executeCommands: aString Array
Create the batch file to execute aStringArray as DOS commands.

executeProgram: pathName parameters: aString
Close files in use and temporarily exit to DOS. Reopen files upon return from DOS.

exit
Pop-up the exit menu.

select
Select outside all windows. Do nothing.

452 ScrollDispatcher

ScrollDispatcher

Class ScrollDispatcher is an abstract class which processes scrolling related inputs from either
the keyboard or mouse. The scrolling commands issued from the keyboard are
straightforward. The scrolling caused by the mouse right-button are of two types: a move if
the cursor never goes out of the current pane while the button remains down; or a continuous
scroll if the cursor goes out of the pane while the button is down. A move slides the text from
the point where the mouse button is pressed to the point where the button is released. A
continuous scroll moves the text by some amount continuously as long as the mouse button
remains pressed down and outside the pane. In this case, the scrolling direction is determined
by the cursor position relative to the active pane (e.g., text goes up when the cursor is below
the active pane).

Inherits From:

Inherited By:

Named Instance Variables:

Dispatcher Object

ListS elector PromptEditor TextEditor

active
(From class Dispatcher)

pane
(From class Dispatcher)

Class Variables:

PageScroll
Contains true if the scrolling amount is the pane height for vertical scrolling or a
half of the pane width for horizontal scrolling. Contains false if the scrolling amount
is one line vertically or four characters horizontally.

WindowActivateKey
(From class Dispatcher)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

FunctionKeys
Defines variables for the function key codes (of class Character) input from the
keyboard or mouse.

Class Methods:

Instance Methods:

(None)

processFunctionKey: aCharacter
Process scrolling related input from keyboard or mouse.

Set 453

Semaphore

A Semaphore is an object used to synchronize multiple processes.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

signalCount
Contains an integer representing the number of signal messages minus the number
of wait messages sent to the semaphore during its entire lifetime.

waitingProcesses
Contains an OrderedCollection of processes that have sent the message wait to the
semaphore without a corresponding signal message.

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

new

(None)

Answer a new semaphore with empty waiting queue and zero signal count.

Instance Methods:

hasSignals
Answer true if there have been more signals than waits, else answer false.

signal
Increment the receiver's signal count. If there are processes waiting on the
semaphore, resume the longest waiting. Upon exit, interrupts are always enabled

wait
Force the current process to be suspended until the receiver semaphore is signalled.
Upon exit, interrupts are always enabled

Set

A Set represents an unordered collection of objects with no external keys. All elements of
a Set are unique, i.e., duplicates are not maintained. Sets are hashed for rapid searching.

Inherits From:

Inherited By:

Collection Object

Dictionary IdentityDictionary MethodDictionary
SymbolSet SystemDictionary

454 Set

Named Instance Variables:

contents
Contains an Array of objects included in the Set.

elementCount
Contains the number of elements of the Set which is the number of non-nil entries
in the contents array.

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods:

new
Answer a new Set.

new: aninteger
Answer a new Set with an initial capacity of aninteger elements.

Instance Methods:

add: anObject
Answer anObject. Add anObject to the receiver if the receiver does not already
contain it.

at: aninteger
Access the element at index position aninteger in the receiver. This method reports
an error since sets cannot be indexed.

at: aninteger put: anObject
Replace the element at index position aninteger in the receiver with anObject. This
method reports an error since sets are not indexable.

do: aBlock
Answer the receiver. For each element in the receiver, evaluate aBlock with that
element as the argument.

includes: anObject
Answer true if the receiver includes anObject as one of its elements, else answer
false.

occurrencesOf: anObject
Answer 1 if the receiver includes anObject as one of its elements, else answer zero.

remove: anObject ifAbsent: aBlock
Answer anObject. Remove the element anObject from the receiver collection. If
anObject is not an element of the receiver, aBlock is evaluated (with no arguments).

size
Answer the number of elements contained in the receiver.

Smalllnteger

SortedCoUection 455

•i ?

Class Smalllnteger is used to define additional protocol for numbers in the range of -32767
to + 32767. These numbers are represented directly in their object pointer so they do not
use object space.

Inherits From: Integer Number Magnitude Object

Inherited By: (None)

Named Instance Variables: (None)

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods: (None)

Instance Methods:

asPrinterErrorFlag
Set the receiver as the printer error flags mask.

printOn: aStream
Append the ASCII representation of the receiver to aStream.

SortedCoUection

A SortedCoUection contains elements sorted according to the two argument block of code
known as the sort block (sortBlock). The sortBlock, when evaluated with two elements as
the arguments, will dictate which element comes first in the collection. When elements are
added or removed from a sorted collection, the collection remains in sorted order.

Inherits From:

Inherited By:

Named Instance Variables:

OrderedCollection IndexedCollection Collection Object

(None)

contents
(From class OrderedCollection)

endPosition
(From class OrderedCollection)

sortBlock
Contains the block of code such that when it is evaluated for a pair of elements,
it dictates which element comes first in the SortedCoUection.

456 SortedCollection

startPosition
(From class OrderedCollection)

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

(None)

new: anlnteger
Answer a SortedCollection capable of holding anlnteger number of elements which
will sort in ascending order.

sortBlock: aBlock
Answer aSortedCollection which will sort in the order defined by aBlock.

Instance Methods:

add: anObject
Answer anObject. Add anObject to the receiver in sorted position.

add: newObject after: oldObject
Add newObject after the element oldObject in the receiver. This method reports
an error since the sortBlock determines element order.

add: newObject before: oldObject
Add newObject before the element oldObject in the receiver. This method reports
an error since the sortBlock determines element order.

addAU: aCollection
Answer aCollection. Add all the elements in aCollection to the receiver in sorted
order.

addAUFirst: aCollection
Add all the elements of aCollection to the receiver before its first element. This
method reports an error since the sortBlock determines element order.

addAULast: aCollection
Add all the elements of aCollection to the receiver after its last element. This
method reports an error since the sortBlock determines element order.

addFirst: anObject
Add anObject before the first element of the receiver. This method reports an error
since the sortBlock determines element order.

addLast: anObject
Add anObject after the last element of the receiver. This method reports an error
since the sortBlock determines element order.

Stream 457

at: anlnteger put: anObject
Replace the element at index position anlnteger in the receiver collection with
anObject. This method reports an error since the sortBlock determines element
order.

copyFrom: beginning to: end
Answer a SortedCollection containing the elements of the receiver from index
position beginning through index position end.

sortBlock
Answer the block that determines sort ordering for the receiver.

sortBlock: aBlock
Answer the receiver. Set the sort block for the receiver to aBlock and resort the
receiver.

Stream

Class Stream and its subclasses are used for accessing files, devices and internal objects as
a sequence of characters or other objects. A stream has an internal record of its current
position. It has access messages to get or put the object(s) at the current position and cause
the position to be advanced. Messages are defined for changing the stream position, so that
random access is possible.

Inherits From:

Inherited By:

Object

FileStream ReadStream ReadWriteStream
Terminals tream WriteStream

Named Instance Variables:

collection
Contains the indexed collection being streamed over. For FileStreams, it contains
the file page buffer string.

position
Contains an integer representing the current stream position.

readLimit
Contains an integer representing the current number of elements in the stream.

Class Variables:

(None)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

458 Stream

Class Methods:

on: anlndexedCollection
Answer a new instance of the receiver on anlndexedCollection.

Instance Methods:

atEnd
Answer true if the receiver is positioned at the end (beyond the last object), else
answer false.

close
Close the stream. Do nothing for non-file streams.

contents
Answer the collection over which the receiver is streaming.

copyFrom: firstlndex to: lastlndex
Answer the subcollection of the collection over which the receiver is streaming,
from firstlndex to lastlndex.

countBlanks
Skip over blank and tab characters. Answer the number of character positions
skipped, counting 1 for blanks and 4 for tabs.

do: aBlock
Evaluate aBlock once for each element in the receiver, from the current position
to the end.

fileln
Read and execute the Smalltalk source code chunks from the receiver. If a chunk
starts with ! send it the message filelnFrom: self

isEmpty
Answer true if the receiver stream contains no elements, else answer false.

lineDelimiter
Answer the default line delimiter, line-feed.

lineDelimiter: aCharacter
Change the line delimiter character to aCharacter. Ignore for non-file streams.

next: anlnteger
Answer the next anlnteger number of items from the receiver, returned in a
collection of the same species as the collection being streamed over.

next: anlnteger put: anObject
Answer anObject. Put anObject to the receiver stream anlnteger number of times.

nextChunk
Answer a String up to '!', undoubling embedded !'s. Trailing white space is skipped.
The methods in sources.sml and change.log are in chunk format.

Stream 459

nextChunkPut: aString
Output aString terminated with '!', doubling embedded !'s and replacing groups of
leading blanks with tabs. Destination is receiver stream. The methods in sources,
sml and change.log are in chunk format.

nextLine
Answer a String consisting of the characters of the receiver up to the next line
delimiter.

nextMatchFor: anObject
Access the next object in the receiver. Answer true if it equals anObject, else answer
false.

nextPiece
File sources.sml consists of compressed sequences of characters called pieces.
Answer a String containing the next piece of text to be compressed from the
receiver stream.

nextWord
Answer a String containing the next word in the receiver stream. A word starts
with a letter, followed by a sequence of letters and digits.

peek
Answer the next object in the receiver stream without advancing the stream
position. If the stream is positioned at the end, answer nil.

peekFor: anObject
Answer true if the next object to be accessed in the receiver stream equals anObject,
else answer false. Only advance the stream position if the answer is true.

position
Answer the current receiver stream position.

position: aninteger
Set the receiver stream position to aninteger. Report an error if aninteger is outside
the bounds of the receiver collection.

reset
Position the receiver stream to the beginning.

reverseContents
Answer a collection of the same species as the receiver collection, with the contents
in reverse order.

setToEnd
Set the position of the receiver stream to the end.

show: aCollection
Equivalent to nextPutAll: for streams. For text editor windows, causes immediate
display on screen.

size
Answer the size of (number of objects in) the receiver stream.

460 Stream

skip: anlnteger
Increment the position of the receiver by anlnteger.

skipTo: anObject
Advance the receiver position beyond the next occurrence of anObject, or if none,
to the end of stream. Answer true if anObject occurred, else answer false.

up To: anObject
Answer the collection of objects from the receiver starting with the next accessible
object and up to but not including anObject. Set the position beyond anObject. If
anObject is not present, answer the remaining elements of the stream.

String

A String is a fixed size indexable sequence of characters (ASCII codes from 0 to 255). This
class provides the protocol to compare strings, replace characters within the string, covert
characters to upper or lower case, output its instances to the printer, convert its instances
to Date objects, etc.

Inherits From: FixedSizeCollection IndexedCollection Collection Object

Inherited By: Symbol

This class contains indexed byte values.

Class Variables:

(None)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

Class Methods:

Instance Methods:

(None)

aString
Answer true if the receiver is before aString, else answer false. The comparison
is not case sensitive.

« aString
Answer true if the receiver is before or equal to aString, else answer false. The
comparison is not case sensitive.

aString
Answer true if the receiver is equal to aString, else answer false. The comparison
is case sensitive.

String 461

> aString
Answer true if the receiver is after aString, else answer false. The comparison is
not case sensitive.

> = aString ,
Answer true if the receiver is after or equal to aString, else answer false. The
comparison is not case sensitive.

a s Array OfSiibstrings
Answer an array of substrings from the receiver. The receiver is divided into
substrings at the occurrences of one or more space characters.

asAsciiZ
Answer a new String containing all the characters of the receiver followed by the
character of ASCII value zero.

asDate
Answer a Date representing the date described by the receiver. The receiver must
contain first the day number then the month name and then the year separated
by blanks.

aslnteger
Answer the integer conversion of the receiver; the receiver is expected to be a
sequence of digits only.

asLowerCase
Answer a String containing the receiver with alphabetic characters in lower case.

asStream
Answer a ReadWriteStream on the receiver.

asString
Answer the string representing the receiver (the receiver itself).

asSymbol
Answer a symbol whose characters are the same as the receiver string.

asUpperCase
Answer a String containing the receiver with alphabetic characters in upper case.

at: aninteger
Answer the character at position aninteger in the receiver string.

at: aninteger put: aCharacter
Answer aCharacter. At index position aninteger in the receiver put the character
aCharacter.

basic At: aninteger
Answer the character at position aninteger in the receiver string.

basicAt: aninteger put: aCharacter
Answer aCharacter. At index position aninteger in the receiver put the character
aCharacter.

displayAt: aPoint
Output the receiver directly onto the display screen at aPoint.

462 String

displayAt: aPoint font: aFont
Output the receiver onto the display screen in white at aPoint with font aFont.

edit
Open a workspace window with the receiver string as the contents.

equals: aString
Answer true if the receiver is equal to the argument aString, else answer false. Note
that the comparison is case sensitive.

fileExtension
Answer a three character String that follows the receiver's first period character
(for DOS file names).

fileName
Answer the characters of the receiver string up to the first period character. Report
an error if the resulting string is greater than eight or less than one character (for
DOS file names).

hash
Answer the integer hash value for the receiver.

magnifyBy: aPoint
Answer a Form containing the receiver using system font magnified by aPoint. The
coordinates of aPoint define the horizontal and vertical magnification factors
respectively.

outputToPrinter
Answer the receiver. Output the receiver string to the printer. Report an error if
unsuccessful.

printOn: aStream
Append the receiver as a quoted string to aStream doubling all internal single quote
characters.

replaceFrom: start
to: stop with: aString startingAt: repStart

Replace the characters of the receiver at index positions start through stop with
consecutive characters of aString beginning at index position repStart. Answer the
receiver.

replaceFrom: start to: stop withObject: aCharacter
Replace the characters of the receiver at index positions start through stop with
aCharacter. Answer aCharacter.

size
Answer the size of the receiver string.

storeOn: aStream
Append the ASCII representation of the receiver to aStream from which the
receiver can be reinstantiated.

stringHash
Answer the integer hash value for the receiver.

StringModel 463

trimBlanks
Answer a String containing the receiver string with leading and trailing blanks
removed.

withCrs
Answer the receiver string where each occurrence of the character \ has been
replaced with a line-feed character.

StringModel

A StringModel serves as a text holder and assists the TextEditor class by performing editing
functions on the text it contains. It holds an OrderedCollection of strings (as lines in a
document) and provides functions like cut, paste, and copy to modify the text. Most of these
editing functions are applied to a selection of characters in the text. A selection is a Rectangle
whose origin and corner represent the positions of the beginning and ending characters
included in the selection.

Inherits From: Object

Inherited By: (None)

Named Instance Variables:

char-Scanner
Contains a Characters canner used to display the contents of the receiver.

extent
Contains the Point that represents the position of the last character in the text.

frame
Contains the Rectangle that limits the display area of the receiver.

lastChild
Contains the TextPane associated with the StringModel.

lines
Contains an OrderedCollection of strings which are the text data held by a
StringModel. Each String is a line of the text.

topCoraer
Contains a Point describing the position of the top left corner of the frame in
relation to the beginning of the text.

Class Variables:

(None)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

464 StringModel

Class Methods:

for: aString
Answer a new instance of class StringModel containing an OrderedCollection of
strings created from aString by separating it at the line-feed characters.

Instance Methods:

appendChar: aCharacter
Append aCharacter to the end of the last line and inform the text pane to update.

appendText: aString
Append aString to the end of the last line and inform the text pane to update.

delete: selection
Delete the text contained in selection. Answer the Point position before the
deletion.

display: aRectangle
Display the text contained in aRectangle.

displayAU
Display the text contained in the pane.

extent
Answer the last character position in the text as a Point.

filelnFrom: aStream
Replace receiver's contents with the contents of aStream.

fileOutOn: aStream
Write the receiver contents to aStream.

frame: aRectangle
Change the frame to aRectangle.

getSelectionFrom: beginlndex to: endlndex
Answer a TextS election containing the characters from beginlndex to endlndex,
treating the lines of the receiver as one string.

line At: anlnteger
Answer the String in the line indexed by anlnteger.

linesln: aTextSelection
Answer an OrderedCollection of the lines contained in aTextS election.

maxLineBetween: x and: y
Answer the max line length between line x and line y.

replace: aTextS election withChar: aCharacter
Replace the text in aTextS election with aCharacter. Answer a Point describing the
position of the new character. Inform the text pane of the change.

replace: aTextSelection withText: aString
Replace the text in aTextSelection with aString. Answer a Point describing the
position of the last replacement character. Inform the text pane of the change.

SubPane 465

replaceAtColumns: aPoint by: aString start At: aText Selection
Replace the line contents between the coordinates of aPoint with aString in
aTextSelection. Answer a TextSelection of the new string.

scanForWordAt: aPoint
Find the word which surrounds the point.

scanner: aCharacterScanner
Set scanner to aCharacterScanner.

searchBack: aText Selection for: aPattern
Search backward for aPattern starting from the end of aTextS election. Answer the
matched selection if found, else answer nil.

searchFrom: aTextS election for: aPattern
Search for aPattern starting from the end of aTextS election. Answer the matched
selection if found, else answer nil.

string
Answer a String containing the receiver contents.

string: aString
Change the receiver contents to aString (lines are separated by line-feeds).

stringln: aTextS election
Answer a String which concatenates all the lines contained in the aTextSelection.

textPane: aTextPane
Associates aTextPane to the receiver by setting the lastChild to it.

topCorner: aPoint
Change topCorner to aPoint.

totalLength
Answer the number of lines held by the receiver.

SubPane

Class SubPane is an abstract class which provides the functions that are common to the
ListPane and TextPane classes.

Inherits From: Pane Object

Inherited By: GraphPane ListPane TextPane

Named Instance Variables:

changeSelector
Contains a message selector which is used when a change in the pane has global
effects (affects model or other panes).

curFont
(From class Pane)

466 SubPane

dispatcher
(From class Pane)

frame
(From class Pane)

framingBlock
(From class Pane)

margin
Currently not used.

model
(From class Pane)

name
Contains a Symbol which is used as both the name of the pane and a message
selector to be sent when an update of the pane is needed.

paneMenu Selector
(From class Pane)

paneScanner
(From class Pane)

scrollBar
Contains a BitBlt used in drawing the scroll bar.

subpanes
(From class Pane)

superpane
(From class Pane)

topCorner
Contains a Point describing the position of the top left corner of the frame in
relation to the beginning of the text.

Class Variables:

WindowClip
(From class Pane)

ZoomedPane
(From class Pane)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

Class Methods: (None)

Instance Methods:

activate Window
Perform the window activation function for the receiver pane. Default is do
nothing.

change: aSymbol
Set the changeSelector to aSymbol.

Symbol 467

charsInColumn
Answer the receiver frame height in characters.

charsInRow
Answer the receiver frame width in characters.

display Window
Display the portion of the receiver pane that intersects with WindowClip.

framingBlock: aBlock
Initialize the framingBlock to the one argument block aBlock which, when
executed, yields the pane frame rectangle.

framingRatio: aRectangle
Initialize the framingBlock to a one argument block which, when executed, yields
the pane frame rectangle proportional with the ratios specified by aRectangle.

name : aSymbol
Set the pane name to aSymbol.

reframe: aRectangle
Change the frame of the receiver pane to aRectagle. Also initialize the scroll bar
and the characters canner.

scrollBarUpdate
Update the mark in the scroll bar.

showGap
Show the gap selection if the pane has one.

topPane
Answer the top pane of the receiver pane.

update
Update the contents of the receiver pane. Default is do nothing.

update: aSymbol
If aSymbol is equal to the name of the receiver pane then update the contents of
the pane.

update: nameSymbol with: aSymbol
If nameSymbol is equal to the name of the receiver pane then perform the selector
aSymbol.

update: nameSymbol with: aSymbol with: anObject
If nameSymbol is equal to the name of the receiver pane then perform aSymbol
with anObject as its argument.

Symbol

A Symbol is a fixed size sequence of characters guaranteed to be unique throughout the
system. Hence, no copies can be made of the instances of this class and the existing instances
cannot be modified. Symbols are removed from the system through the cloning process.

468 Symbol

Inherits From: String FixedSizeCollection IndexedCollection Collection
Object

Inherited By: (None)

This class contains indexed byte values.

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods:

mustBeSymbol: aSymbol
Report an error if aSymbol is not a Symbol.

new: ignoreArgument
Answer an instance of the receiver. This method reports an error.

purge UnusedSymbols
Purge unused symbols from symbol table.

Instance Methods:

= aSymbol
Answer true if the receiver object is the the argument aSymbol, else answer false.

asString
Answer a String of the characters contained by the receiver.

as Symbol
Answer a Symbol for the receiver. The receiver itself is answered since it is a
Symbol.

at: aninteger put: aCharacter
Replace the character in the receiver indexed by aninteger with the argument
aCharacter. This message is not valid for symbols, since they are not allowed to
change.

deepCopy
Answer a copy of the receiver with shallow copies of each instance variable. Because
symbols are unique (cannot be copied), answer the receiver.

hash
Answer the integer hash of the receiver.

print On: aStream
Append the ASCII representation of the receiver to aStream.

shallowCopv
Answer a shallow copy of the receiver. Because symbols are unique (cannot be
copied), answer the receiver.

SystemDictionary 469

species
Answer class String as the species of symbols.

storeOn: aStream
Append the ASCII representation of the receiver to aStream from which the
receiver can be reconstructed.

SymbolSet

A SymbolSet is a set used to record all the Symbol instances. There is only one instance
of SymbolSet which is answered by the message Symbol symbolTable. The symbol set is
special in that entries are hashed and compared as strings rather than as symbols,
guaranteeing that all symbols are unique.

Inherits From:

Inherited By:

Named Instance Variables:

contents
(From class Set)

elementCount
(From class Set)

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

Instance Methods:

Set Collection Object

(None)

(None)

(None)

species
Answer class Set as the species of SymbolSet.

SystemDictionary

A SystemDictionary contains all the global variables. There is only one instance of class
SystemDictionary which may be referred to by the name Smalltalk. Each global variable is
represented by an Association. The key is a Symbol containing the global variable name
(beginning with an upper-case character). The associated value contains the value of the
global variable. Class SystemDictionary also defines the protocol for system utility functions.

Inherits From:

Inherited By:

Dictionary Set Collection Object

(None)

470 SystemDictionary

Named Instance Variables:

contents
(From class Set)

elementCount
(From class Set)

Class Variables:

(None)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

Class Methods: (None)

Instance Methods:

add: anAssociation
Answer anAssociation. Add anAssociation to receiver. Ensure that the key is a
symbol.

at: aSymbol put: anObject
Answer anObject. Enter anObject at key aSymbol in the receiver. Ensure that
aSymbol is a symbol.

compressChanges
Build a new change log file retaining only the latest version of changed methods
in the current change log. Save the image to the image file.

compressSources
Build a new source file which contains the latest version of all methods. Build a
zero length change log file. Save the image to the image file.

exit: aBoolean
Temporarily exit to DOS. If aBoolean is true, clear the screen upon exit, else leave
screen as is.

getSourceClasses
Answer an OrderedCoUection of all classes in hierarchical order.

implementorsOf: aSymbol
Pop-up an implementors window for selector aSymbol.

loadPrimitivesFrom: aFilePathName
Load a user primitive module from file aFilePathName.

sendersOf: aSymbol
Pop-up an senders window for selector aSymbol.

startUp
Initiate a Smalltalk/V session by filing in the 'go' file.

TerminalStream 471

unusedMemory
Answer an integer which is the number of bytes of unused memory available for
object storage.

TerminalStream

Class TerminalStream defines the streaming protocol to and from the terminal. There is a
global variable Terminal which is the instance of TerminalStream used throughout
Smalltalk/V. Output to a TerminalStream writes characters on the display screen, input from
TerminalStream returns user input from the keyboard and mouse. TerminalStream uses a
finite state machine to decode the user input from InputEvent.

Inherits From:

Inherited By:

Named Instance Variables:

ReadWriteStream WriteStream Stream Object

(None)

collection
(From class Stream)

mouseOffset
Contains the cursor location each time the right mouse button is pressed. When
scrolling is detected, this position is used as the scrolling start position.

mouseTime
Contains the time in milliseconds each time the left or right mouse button is
pressed. This variable is used to compute the delay between the press and the release
of the mouse button.

position
(From class Stream)

readLimit
(From class Stream)

state
Contains the current state which is the method to be performed next (when the
method read is invoked).

writeLimit
(From class WriteStream)

Class Variables:

(None)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

FunctionKeys
Defines variables for the function key codes (of class Character) input from the
keyboard or mouse.

472 TerminalStream

Class Methods: (None)

Instance Methods:

bell
Output the Bell character to the terminal.

initialize
Initialize the global variables FunctionKey and MouseEvent to false and the state
of the input mechanism to initialState.

mouseOffeet
Answer the cursor position where the mouse button was pressed.

mouseSelectOn
Answer true if left button is down.

next
Answer the next character from the terminal (keyboard or mouse).

next Put: aCharacter
Answer the argument aCharacter. Output aCharacter to the display screen.

next Put All: aString
Answer the argument aString. Output aString to the display screen.

read
Answer the next keyboard or mouse event.

write: aCharacter
Output aCharacter to the terminal.

TextEditor

A TextEditor processes input for its associated TextPane. Its input can be a cursor movement,
scrolling command, menu request, text selection, or editing command.

Inherits From:

Inherited By:

Named Instance Variables:

ScrollDispatcher Dispatcher Object

PromptEditor

active
(From class Dispatcher)

modified
Contains true if the text has been modified since last save, else it contains false.

newSelection
Contains a Rectangle describing the new selection.

pane
(From class Dispatcher)

priorSelection
Contains the selection Rectangle prior to a cut, copy, or paste operation.

TextEditor 473

priorText
Contains a String which is the selected text prior to a cut, copy, or paste operation.

Class Variables:

CopyBuffer
Contains a String which is the selected text of the last cut or copy operation.

PageScroll
(From class ScrollDispatcher)

PriorCommand
Contains the prior command for the again menu selection (search or replace).

StandardEditMenu
Contains the standard editing menu normally used by a TextPane.

WindowActivateKey
(From class Dispatcher)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

FunctionKeys
Defines variables for the function key codes (of class Character) input from the
keyboard or mouse.

Class Methods:

menu
Answer the standard edit menu.

windowLabeled: aString frame: aRectangle
Create a new window with label aString, frame aRectangle and answer its
dispatcher.

Instance Methods:

compilerError: aString at: anlnteger in: codeString for: aClass
Display the error message aString in reversed form at the indicated position
anlnteger in the source codeString.

contents
Answer the contents of the text pane as a String.

cr
Append a line-feed to the end of the text in the pane.

isControlActive
Answer true if the receiver is active.

modified
Answer true if the text has been modified since the last save, else answer false.

474 TextEditor

modified: aBoolean
Change modified to aBoolean.

next: anlnteger put: aCharacter
Put aCharacter to the receiver TextEditor anlnteger number of times.

nextPut: aCharacter
Add aCharacter at the end of the text in the pane.

next Put All: aString
Add aString at the end of the text in the pane.

show: aString
Add aString at the end of the text in the pane and force it to be shown.

space
Append a space to the end of the text in the pane.

tab
Append a tab to the end of the text in the pane.

zoom
Zoom the pane

TextPane

Class TextPane provides functions to display and scroll a portion of the text held by the pane.
In addition, it allows the user to edit the text. The text is usually represented as an instance
of StringModel. When the user saves the edited text, the application model is informed to
accomplish the saving.

Inherits From: SubPane Pane Object

Inherited By: (None)

Named Instance Variables:

changedArea
Contains a rectangle whose origin and corner are the begining and ending positions
of the changed area of the text in the pane.

changeSelector
(From class SubPane)

curFont
(From class Pane)

dispatcher
(From class Pane)

frame
(From class Pane)

framingBlock
(From class Pane)

TextPane 475

margin
(From class SubPane)

model
(From class Pane)

name
(From class SubPane)

paneMenuSelector
(From class Pane)

paneScanner
(From class Pane)

reserved
Reserved for future use.

scrollBar
(From class SubPane)

selection
Contains a rectangle whose origin and corner represent the beginning and ending
points of a selection. Note that only the first and last lines within a selection may
be partial lines and all the lines in between are entirely selected.

subpanes
(From class Pane)

superpane
(From class Pane)

textHolder
Contains the text of the pane which is normally a StringModel.

topCorner
(From class SubPane)

Class Variables:

NewString
Contains a String to replace occurrences of OldString during a replace operation.

OldFrame
Contains the original frame Rectangle of the text pane being zoomed.

OldString
Contains a String whose occurrences will be replaced by NewString during a
replace operation.

SearchString
Contains the String to be searched for during a search operation.

WindowClip
(From class Pane)

ZoomedPane
(From class Pane)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

476 TextPane

Class Methods:

unzoom
Unzoom the zoomed pane, if there is one.

Instance Methods:

appendChar: aCharacter
Append aCharacter to the end of the text.

appendText: aString
Append aString to the end of the text.

close
Close the pane.

compilerError: aString at: anlnteger in: codeString for: aClass
Display the error message aString as the selected text at the indicated position
anlnteger in the source codeString.

contents
Answer a String, the contents of the pane.

deactivatePane
Deactivate the receiver pane.

defaultDispatcherClass
Answer the default dispatcher.

display: aString reverseFrom: startlnteger to: endlnteger
Display aString and select characters between startlnteger and endlnteger.

displayChanges
Update the screen with all pending changes.

filelnFrom: aFileStream
Refresh the pane data with the current contents of aFileStream.

fileOutOn: aFileStream
Write the pane data out on aFileStream.

forceEndOntoDisplay
Force the end of the text to appear on the display screen.

forceSelectionOntoDisplay
Force the origin of the selection to appear on the display screen.

formCoordinates: aPoint
Convert string coordinates to form coordinates.

frame
Answer the receiver frame.

initialize
Initialize the receiver.

TextSelection 477

reframe: aRectangle
Change the frame of the receiver pane to aRectagle.

selectAfter: aPoint
Place the selection after aPoint.

selectAU
Select the entire text of the pane.

selectAtEnd
Place the gap selection at the end of the text.

selectBefore: aPoint
Place the gap selection before aPoint.

selectedString
Answer a String containing the text currently selected.

selectFrom: startPoint to: endPoint
Set the selection to the rectangle described by the origin startPoint and the corner
endPoint.

selection
Answer a TextSelection describing the current selection.

selectTo: aPoint
Extend the selection to aPoint either before or after the original one.

showSelection
Make the selection visible.

show Window
Redraw the contents of the receiver pane.

update
Refresh the pane area on the display screen through the model.

update: anObject
The model has changed. If anObject is a TextSelection, display it, else pass it up
to superclass.

TextSelection

In a TextPane, the text is represented as an OrderedCollection of Strings. It can be looked
upon as a two dimensional array. The position of each character can be identified by a Point
whose x coordinate (column) is the index within the String and y coordinate (row) is the index
in the OrderedCollection. When a selection is made in the TextPane, the selection is
represented internally as two points: the positions of the first and last characters included
in the selection. In the case of a gap selection, the column of the second point will be one
less than the first while their rows are the same. Besides remembering these two points, a
TextSelection also understands all the messages for manipulating the selection.

Inherits From: Object

478 TextSelection

Inherited By: (None)

Named Instance Variables:

begin
Contains a Point representing the position of the first character in the selection.

end
Contains a Point representing the position of the last character in the selection.

extendOrigin
Contains a Point indication the starting position when a selection is being extended.

pane
Contains the Pane that this selection belongs to. .

selectFlag
Contains a Boolean which is true when the selection is being shown; false when it
is not shown.

Class Variables:

(None)

Pool Dictionaries: (None)

Class Methods:

new
Answer a new TextSelection.

origin: beginPoint corner: endPoint
Answer an instance of the receiver whose origin is beginPoint and corner is
endPoint.

Instance Methods:

display
Display the gap selector or the selection.

gray
Color the non-gap selection gray.

hide
Hide the gap selector or the selection.

intersect: aTextSelection
Answer a Rectangle, the intersection of the receiver and aTextS election.

isGap
Answer true if the selection is a gap.

merge: aTextS election
Answer a TextSelection, the receiver merged with aTextS election.

origin: beginPoint corner: endPoint
Change the origin and corner of the receiver to beginPoint and endPoint
respectively.

Time 479

selectAfter: aPoint
Place the selection after aPoint.

selectBefore: aPoint
Place the selection before aPoint.

selectTo: aPoint
Extend the selection to aPoint either before or after the original one.

Time

Class Time is used to represent a particular time of day to the nearest second. It defines the
protocol for comparing, computing, and creating times.

Inherits From: Magnitude Object

Inherited By: (None)

Named Instance Variables:

seconds
Contains the number of seconds that have elapsed since midnight.

Class Variables:

TimeTickOn
Contains a Boolean indicating whether or not the clock ticks are to be monitored.

ValueArray
Contains a 4 element Array. The read current time primitive sets this variable to
the current time whenever the primitive is invoked. This variable is filled as follows:
(hours minutes secons milliseconds).

Pool Dictionaries: (None)

Class Methods:

clockTickPeriod: anlnteger
Enable the clock interrupt. Timer interrupts will occur every (55 * anlnteger)
milliseconds.

dockTicksOff
Turn off clock interrupts.

dateAndTimeNow
Answer an Array of two elements containing the current date and the current time.

fromSeconds: anlnteger
Answer a Time which represents anlnteger number of seconds from midnight.

millisecondClock Value
Answer the number of milliseconds from midnight of the current day to the current
time.

480 Time

millisecondsToRun: aBlock
Answer the number of milliseconds it takes to evaluate aBlock.

now
Answer a Time representing the current time in seconds.

totalSeconds
Answer the number of seconds from midnight of the current day to the current
time.

Instance Methods:

<C aTime
Answer true if the receiver is less than aTime, else answer false.

<=* aTime
Answer true if the receiver is less than or equal to aTime, else answer false.

— aTime
Answer true if the receiver is equal to aTime, else answer false.

> aTime
Answer true if the receiver is greater than aTime, else answer false.

> = aTime
Answer true if the receiver is greater than or equal to aTime, else answer false.

addTime: timeAmount
Answer a Time which is timeAmount seconds past the receiver time.

asSeconds
Answer an Integer representing the number of seconds of the receiver time.

hash
Answer the integer hash value for the receiver.

hours
Answer an Integer representing the number of hours of the receiver time.

minutes
Answer an Integer representing the number of minutes past the hour in the receiver
time.

print On: aStream
Append the ASCII representation of the receiver to aStream in the form: hh:mm:ss.

seconds
Answer an Integer representing the number of seconds past the minute in the
receiver time.

seconds: anlnteger
Answer the receiver. Set the number of seconds in the receiver to anlnteger.

subtractTime: timeAmount
Answer the time that is timeAmount seconds before the receiver time.

TopDispatcher 481

TopDispatcher

A TopDispatcher processes input for its associated TopPane. Its input can be a cursor
movement or menu request. It also provides functions for changing the visual cues of the
window and answering some default window menus.

Inherits From: Dispatcher Object

Inherited By: (None)

Named Instance Variables:

active
(From class Dispatcher)

pane
(From class Dispatcher)

Class Variables:

TopPaneMenu
Contains the standard window menu.

TranscriptMenu
Contains the menu for the system transcript window.

WindowActivateKey
(From class Dispatcher)

WorkSpaceMenu
Contains the menu for the work space window.

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

FunctionKeys
Defines variables for the function key codes (of class Character) input from the
keyboard or mouse.

Class Methods:

initialize
Set up the standard window menu.

menu
Answer the standard window menu.

Instance Methods:

highlightLabel
Inform the top pane to highlight the window label signaling the active window.

482 TopDispatcher

homeCursor
Move the cursor to home position of the first subpane.

isControlActive
Answer true if the receiver is the topDispatcher and its window has the cursor and
the cursor is not in any subpanes, else answer false.

label
Prompt the user for a new label of the window and answer the label.

TopPane

A TopPane is responsible for all the operations related to its entire window (as opposed to
operations related to the panes). For some operations (e.g., display window), it also invokes
subpanes in sequence to complete the work.

Inherits From:

Inherited By:

Pane Object

(None)

Named Instance Variables:

backColor
Contains a mask form describing the background color of the window.

borders
Contains a Form with an image of the window. All of the window updates and visual
cues are first output to this form which is then copied to the display screen.

collapsed
Contains a Boolean indicating whether or not the window is collapsed.

curFont
(From class Pane)

dispatcher
(From class Pane)

foreColor
Contains a mask form describing the text color of the window,

frame
(From class Pane)

framingBlock
(From class Pane)

iconArray
Contains an Array of two arrays of icons on the left and right of the window label.

label
Contains a Form whose content is an image of the window label.

minimumSize
Contains a Point describing the minimum width and height of the window.

model
(From class Pane)

paneMenuSelector
(From class Pane)

TopPane 483

paneScanner
(From class Pane)

previousFrame
Contains a Rectangle of the collapsed window if the window is uncoUapsed, else
the uncoUapsed window.

subpanes
(From class Pane)

superpane
(From class Pane)

Class Variables:

Labellcons
Contains a Dictionary of dictionaries of label icons. The keys of the top dictionary
are fonts. The keys of the lower dictionary are symbols of the icon names.

WindowClip
(From class Pane)

ZoomedPane
(From class Pane)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, L£ for the line-feed character, etc.).

Class Methods:

Instance Methods:

activate Window

(All private)

Activate the top dispatcher, display the label, and invoke window activation
methods of aU subpanes.

addSubpane: aPane
Add subpane aPane to the receiver.

backColor
Answer the background color of the window.

backColor: aColor
Set the window background color to aColor.

backup Window
If a backup window is requested, save the window image on backup form.

close
Close the receiver and all subpanes.

deactivatePane
Window has been deactivated. Do nothing for a TopPane.

484 TopPane

defaultDispatcherClass
Answer the default dispatcher.

display Window
Display the label and the contents of the subpanes excluding the portion outside
of WindowClip.

foreColor: aColor
Set the window foreground color to aColor.

frame
Answer the window frame.

highHghtLabel
Display the label string in reversed color.

label
Answer the label of the window.

label: aString
Change the window label to aString.

leftlcons: anArray
Request anArray of icons to be shown on the left side of the label.

minimumSize: aPoint
Change the minimum size of the window to aPoint.

reframe: aRectangle
Reframe the receiver window according to aRectangle.

rightlcons: anArray
Request anArray of icons to be shown on the right side of the label.

topPane
Answer the top pane of the window which is self.

update: aSymbol
If aSymbol equals #label then update the window label, else do nothing.

zapBackup
Purge the backup form for the speed mode.

True

Class True has a single instance, true, representing logical truth. This class defines the
protocol for logical operations on true.

Inherits From: Boolean Object

Inherited By: (None)

Named Instance Variables: (None)

True 485

Class Variables:

(None)

Pool Dictionaries:

Class Methods:

Instance Methods:

& aBoolean

(None)

(None)

Answer true if both the receiver and aBoolean are true, else answer false.

and: aBlock
If the receiver is true, answer the result of evaluating aBlock (with no arguments),
else answer false.

eqv: aBoolean
Answer true if the receiver is equivalent to aBoolean, else answer false.

hash
Answer the hash of true.

ifFalse: aBlock
If the receiver is false, answer the result of evaluating aBlock (with no arguments),
else answer nil.

ifFalse: falseBlock i fTrue: trueBlock
If the receiver is true, answer the result of evaluating trueBlock, else answer the
result of evaluating falseBlock. Both blocks are evaluated with no arguments.

ifTrue: aBlock
If the receiver is true, answer the result of evaluating aBlock (with no arguments),
else answer nil.

ifTrue: trueBlock ifFalse: falseBlock
If the receiver is true, answer the result of evaluating trueBlock, else answer the
result of evaluating falseBlock. Both block are evaluated with no arguments.

not
Answer true if the receiver is false, else answer false.

or: aBlock
If the receiver is false, answer the result of evaluating aBlock, else answer true.

xor : aBoolean
Answer true if the receiver is not equivalent to aBoolean, else answer false.

I aBoolean
Answer true if either the receiver or aBoolean are true, else answer false.

486 UndefinedObject

UndefinedObject

Class UndefinedObject has a single instance, nil, used to identify undefined values. The
instance variables of any object are initialized to nil upon creation. This guarantees that every
variable has a value which is an instance of some class.

Inherits From: Object

Inherited By: (None)

Named Instance Variables: (None)

Class Variables:

(None)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

FunctionKeys
Defines variables for the function key codes (of class Character) input from the
keyboard or mouse.

Class Methods :

new
Create a new instance of the receiver. Disallowed for this class because there is only
a single instance, nil.

new: anlnteger
Create a new instance of the receiver. Disallowed for this class because there is only
a single instance, nil.

Instance Methods:

deepCopy
Answer a copy of the receiver with shallow copies of each instance variable. Because
there is only one nil, answer the receiver.

isNil
Answer true because the receiver is nil.

notNil
Answer false because the receiver is nil.

print On: aStream
Append the ASCII representation of the receiver to aStream.

shallowCopy
Answer a copy of the receiver which shares the receiver instance variables. Because
there is only one nil, answer the receiver.

WildPatUm 487

storeOn: aStream
Append the ASCII representation of the receiver to aStream from which the
receiver can be reconstructed.

subclass: classSymbol
instance VariableNames: instance Variables
class VariableNames: class Variables poolDictionaries: poolDictNames

Create or modify the class named by classSymbol to be a subclass of receiver with
the specifed instance variables, class variables, and pools. Used only to define class
Object, because its superclass is nil.

WildPattern

An instance of WildPattern contains a finite state pattern for efficient matching which
includes at least one wild card character. The wild card character will match zero or more
elements in the matching collection until the rest of the pattern is matched or the end of
the matching collection is reached.

Inherits From: Pattern Object

Inherited By: (None)

Named Instance Variables:

fail
(From class Pattern)

first
(From class Pattern)

input
(From class Pattern)

matchBlock
(From class Pattern)

patternCollection
Contains an OrderedCollection of Patterns which are the subpatterns of the original
pattern separated at each wild card character.

state
(From class Pattern)

Class Variables:

WildcardChar

(From class Pattern)

Pool Dictionaries: (None)

Class Methods:
new: aCollection

Answer a new WildPattern with aCollection as the pattern to match.

488 WildPattem

Instance Methods:

match: anObject
Compare anObject against the pattern. If this object completes the matching of the
pattern, evaluate the match block.

match: aCollection index: anlnteger
Answer a Point representing the start and stop of the subcollection within
aCollection that matches the receiver starting at index position anlnteger. Answer
nil if no match.

reset
Reset the receiver to start matching at the beginning of the pattern.

WriteStream

A WriteStream allows streaming over an indexed collection of objects for write access, but
not read access. A stream has an internal record of its current position. It has access messages
to put the object (s) at the current position and cause the position to be advanced. Messages
are defined for changing the stream position, so that random access is possible.

Inherits From:

Inherited By:

Stream Object

FileStream Read WriteStream Terminals tream

Named Instance Variables:

collection
(From class Stream)

position
(From class Stream)

readLimit
(From class Stream)

write Limit
Contains the integer position of the highest position written in the collection being
streamed over.

Class Variables:

(None)

Pool Dictionaries:

CharacterConstants
Defines variables for some of the most frequently used characters (e.g., Space for
the space character, Lf for the line-feed character, etc.).

Class Methods : (None)

WriteStream 489

Instance Methods:

contents
Answer a collection representing the contents of the stream.

cr
Write the line terminating character (line-feed) to the receiver stream.

nextBytePut: aByte
Write the character whose ASCII value is aByte to the receiver stream. Answer
aByte.

nextFourBytesPut: anlnteger
Write anlnteger as the next four bytes of the receiver stream.

nextPut: anObject
Write anObject to the receiver stream. Answer anObject.

nextPutAU: aCollection
Write each of the objects in aCollection to the receiver stream. Answer aCollection.

nextTwoBytesPut: anlnteger
Write anlnteger as the next two bytes of the receiver stream.

position: anlnteger
Set the receiver stream position to anlnteger. Report an error if anlnteger is outside
the bounds of the receiver collection.

setToEnd
Set the position of the receiver stream to the end.

space
Write a space character to the receiver stream.

tab
Write a tab character to the receiver stream.

Appendices

Appendix 1: SMALLTALK SYNTAX SUMMARY

How Syntax is Specified

The formal syntax specification is presented using the Extended Backus Naur Formalism
(EBNF) used in Programming in Modula-2 by Niklaus Wirth, Springer-Verlag, 1982.
EBNF is used here in order to precisely and concisely specify the syntax.

What follows is a specification of EBNF syntax in EBNF. The syntax rules are:

<rule> syntax = {rule}
<rule> rule = "<rule>" identifier "=" expression ".".
<rule!> expression = term {"I" term}.
^ ^ term = factor {factor}.

factor = identifier I string I "(" expression ")" I "[" expression
"] " I "{"expression " } " .

An EBNF specification is a sequence of syntax rules. The right-hand side of each rule
defines syntax in terms of other rule names and terminal symbols of the language.
Parentheses, (and), group alternative terms. The vertical bar, I , separates alternative
terms. Brackets, [and], identify optional expressions. Braces, { and }, identify
expressions which may occur zero or more times. Character sequences in paired quotes,
either double-quote " or apostrophe ', identify terminal symbols of the defined language.
An identifier is a sequence of letters and digits beginning with a letter. A string is a
sequence of characters from the defined language.

The following is an example in which possible meals are defined with a sequence of
EBNF rules.

<Crule> appetizer = "artichoke" I "oysters".
<rule> dessert = "ice cream" I fruit.
<rule> fruit = "apple" I "orange" I "pear".
<rule> meat = "beef" I "lamb" I "fish".
<rule> vegetable = "broccoli" I "carrots" I "peas".
<rule> meal = [appetizer] meat ("potatoes" I "rice")

{vegetable} [dessert] .

Examples of meals defined by these rules are the following:

beef potatoes
artichoke fish rice peas broccoli ice cream
lamb rice carrots carrots carrots peas broccoli pear
oysters beef rice orange

492 Appendix 1: Smalltalk Syntax Summary

Smalltalk Syntax

The following is an EBNF syntax specification for Smalltalk and a cross-reference index
to the syntax. Each line in the syntax specification begins with a number which is used
to identify the line in the index. The index shows where each rule name is defined (line
number preceded by minus sign) and used.

1 method = messagePattern [primitiveNumber] [temporaries]
2 expressionSeries.
3 messagePattern = unarySelector I binarySelector variableName I
4 keyword variableName {keyword variableName}.
5 primitiveNumber = "<C" "primitive:" number "!>".
6 temporaries = "I" {variableName} "I".
7 expressionSeries ~ {expression " . " } [[" A "] expression].
8 expression = {variableName " :="}
9 (primary I messageExpression {";" cascadeMessage}).
10 primary = variableName I literal I block I "(" expression ")".
11 messageExpression = unary Expression I binary Expression I
12 keywordExpression.
13 cascadeMessage = unary Message I binary Message I
14 keywordMessage.
15 unary Expression = primary unary Message {unaryMessage}.
16 binaryExpression = (unaryExpression I primary) binaryMessage
17 {binaryMessage}.
18 keywordExpression = (binaryExpression I primary)
19 keywordMessage.
20 unaryMessage = unarySelector.
21 binaryMessage = binarySelector (unaryExpression I primary).
22 keywordMessage = keyword (binaryExpression I primary)
23 {keyword (binaryExpression I primary)}.
24 block = " [" [{":" variableName} "I"] expressionSeries "] " .
25 keyword = identifier ":".
26 binarySelector = "-" I selectorCharacter [selectorCharacter].
27 unarySelector = identifier.
28 literal = number I string I characterConstant I
29 symbolConstant I arrayConstant.
30 arrayConstant = " # " array.
31 array = "(" {number I string I symbol I array I
32 characterConstant} ")".
33 number = [digits "r"] ["-"] bigDigits ["." bigDigits]
34 [V [•'-"] digits].
35 string = " ' " {character I " ' ' " I ' " '} " ' ".
36 characterConstant = "$" character I "$ ' I "$" ' " '.

Appendix I: Smalltalk Syntax Summary 493

37 symbolConstant = " # " symbol.
38 symbol = unarySelector I binarySelector I keyword {keyword}.
39 identifier = letter {letter I digit}.
40 character = selectorCharacter I letter I digit I
41 "[" I ••]•• I "{•• I " } - I T I T I "A" I T I "$" I
42 " # " I ":".
43 selectorCharacter = "," I "+" I "/" I "\" I "*" I "~" I
44 " < " I ">» I " « " I "@" I "%" I "I" I "&" I "?" I '"!".
45 letter = capitalLetter I
46 "a" I "b" I V I "d" I "e" I " f I "g" I "h" I "i" I
47 " j " I "k" I "1" I "m" I "n" I "o" I "p" I V I V
48 "s" I "t" I "u" I "v" I "w" I "x'
49 capitalLetter =
50 "A" I "BM I "C" I "D" I "E" I "F" I "G" I "H" I "I" I
51 "J" I "K" I "L" I "M" I "N" I "O" I "P" I "Q" I "R" I
52 "S" I "T" I " IT I "V" I "W" I "X" I "Y" I "Z".
53 digits = digit [digit].
54 digit = "0" I " 1 " I "2" I "3" I "4" I "5" I "6" I "7" I
55 "8" I "9".
56 bigDigits = bigDigit {bigDigit}.
57 bigDigit = digit I capitalLetter.
58 comment = ' " ' {character I " ' "}
59 variableName = identifier.

"y"
q

"z"

array
arrayConstant
bigDigit
bigDigits
binary Expression
binaryMessage
binarySelector
block
capitalLetter
cascadeMessage
character
characterConstant
comment
digit
digits
expression
expressionSeries
identifier
keyword
keywordExpression

30
29
56
33
11 -
13
3
10
45
9
35
28
-58
39
33
7
2
25
4
12

-31
-30
56
33
16
16
21
-24
-49
-13
36
32

40
-53
7
-7
27
4
-18

31

-57
34
18
17
-26

57

-40
-36

53

-8
24
-39
22

-56
22 23
-21
38

58
•

53 -5'

10

23 -2:

57

38

494 Appendix 1: Smalltalk Syntax Summary

keywordMessage
letter
literal
messageExpression
messagePattem
method
number
primary
primitiveNumber
selectorCharacter
string
symbol
symbolConstant
temporaries
unaryExpression
unaryMessage
unary Selector
variableName

14
39
10
9
1
-1
5
9
1
26
28
31
29
1
11
13
3
3

19
39
-28
-11
-3

28
-10
-5
26
31
37
-37
-6
-15
15
20
4

-22
40

31
15

40
-35
-38

16
15
-27
4

-45

-33
16 18

-43

21
-20
38
6 8

21 22 23

10 24 -59

Appendix 2: PRIMITIVE METHODS

How Primitive Methods Work

Computing is done in a Smalltalk system by objects sending messages to each other. The
useful work, however, is performed in primitive methods. Primitive methods perform
low-level functions such as arithmetic operations, indexed instance variable access, and
device access. They are also used for higher-level but performance-critical methods such
as stream access and block transfers.

Primitive methods are identified with an integer primitive number enclosed in angle
brackets following the message pattern. For example, the implementation of the
subscripting method at: in class Object is as follows:

at: index
^primitive: 60 >
A self primitiveFailed

Primitive methods have two parts: (l) an assembly language part and (2) a Smalltalk part.
The assembly language part is identified by the number following primitive: in angle
brackets. The Smalltalk part follows the angle brackets.

The assembly language part of a primitive is executed first. It concludes by either
succeeding (returning an object that is the method result) or failing. If the assembly
language part fails, the Smalltalk part is executed to return the method result. This shared
responsibility works efficiently because the assembly language code handles the most
common but simple cases. Since Smalltalk is much easier to write than assembly
language, the Smalltalk code handles the infrequent but complex cases.

Primitive Number Assignments

The table below lists the primitive methods used by Smalltalk/V 286. For each primitive,
the primitive number, the method selectors, and the classes in which it is used are
presented.

Primitive

17
18
19
20
21

Used in method:

save
clockTickPrimitive:
clockOfTPrimitive
rem:

+

Implemented in class:

SystemDictionary
Time class
Time class
Integer
Integer

496 Appendix 2: Primitive Methods

Primitive

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60

Used in method:

<
>
< =

•

COS

w
//
quo:
bitAnd:
bitOr:
bitXor:
bitShift:
alllnstancesPrim
fromlnteger:

+

<
sqrt
exp
In
=
sin
*
/
truncated
fraction
exponent
timesTwoPower:
equals:
=
< =
primitiveLoadModule
write:
copyChars
basicAt:
at:

Implemented in class:

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Float
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Behavior
Float class
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
String
String
String
SystemDictionary
TerminalStream
CharacterScanner
Object
Object

Appendix 2: Primitive Methods 497

Primitive

61

62

63

64

65

66

61
68
69
70

71

72
73
74
75

76
77
78
79
80
81
82
83
84
85
86
87

Used in method:

basicAt:put:
at:put:
size
basicSize
size
at:
basicAt:
at:put:
basicAt:put:
next
next
next
primitiveNextPut:
nextPut:
atEnd
findnTSt:attribute:buffer:
allReferencesPrim
new
basicNew
new:
basicNew:
become:
instVarAt:
instVarAt:put:
hash:
asOop
basicHash
hash
dosPrimitive:registers:value:
drawRectangle
value
value:
value:value:
upTo:
tan
perform:withArguments:
arcTan
status
findNext:

Implemented in class:

Object
Object
String
Object
Object
String
String
String
String
ReadStream
ReadWriteStream
FileStream
FileStream
WriteStream
Stream
Directory
Object
Behavior
Behavior
Behavior
Behavior
Object
Object
Object
Character Object
Object
Object
Object
DOS
Pen
Context
Context
Context
Stream
Float
Object
Float
Float class
Directory

I

498 Appendix 2: Primitive Methods

Primitive

88

89
98
99
100
101
102
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
120
123
124
125
126
127

Used in method:

spreadFrom:to:width
startAt:mask:

fillAtX:andY:
configureAs:
ellipsePrim:aspectX:Y:
drawLoopX:Y:
mousePrimWith:with:with:with:
primitiveGetEvent
swapInAndRestore:
replaceFrom:to:with:startingAt:
replaceFrom:to:withObject:
hash
copyStack
dropSenderChain
=
=

= =
class
unusedMemoryPrim
flushFromCache:
interupt:
copyBits
signal
wait
enablelnterrupts:
currentDatelnto:
currentTimelnto:
primitiveEndByte
openln:
readInto:atPage:
writeFrom:toPage:for:
primitiveClose

Implemented in class:

Form

Pen
DisplayScreen class
Pen
BitBlt
CursorManager
InputEvent
Process
String
String
String
Process class
Process class
Character
Symbol
Object
Object
Object
SystemDictionary
MethodDictionary
Process class
BitBlt
Semaphore
Semaphore
Process class
Date class
Time class
FileHandle
FileHandle
FileHandle
FileHandle
FileHandle

Appendix 2: Primitive Methods 499

User-Defined Primitive Methods

User-defined primitives are implemented as protected mode subroutines. These subrou-
tines are collected into primitive modules that are loaded by Smalltalk/V 286 after the
image is loaded. The primitive modules are memory image files (.BIN format) and
contain a table of the names and entry points of the primitives (subroutines) included.

Object Pointers

Smalltalk/V 286 uses 32-bit memory addresses as object pointers. Pointers with a
segment value of 6 are positive Smalllntegers. Pointers with a segment value of 116H are
negative Smalllntegers. The offset of a Smalllnteger is a 15 bit magnitude (always
positive). This gives a range Of-32767 to +32767 for small integers. All other pointers are
the direct memory address of the object.

Smalltalk/V 286 uses a generation scavenging garbage collector. When an object
pointer is stored into an object, data structures internal to the memory manager may need
to be updated if cross generational references have been created or modified. An
assembly language macro is provided for this purpose.

Accessing Objects within Primitives

Certain object pointers may need to be referenced by a user primitive. These objects are
at fixed addresses. The file fixdptrs.usr contains assembly language definitions for these
fixed pointers.

All objects have a twelve byte header. This is followed by the instance variables. Instance
variables of an object are all of the same size. Objects that contain object pointers have
32 bit instance variables; all others have eight bit instance variables. The order of instance
variables in an object is the order in which the variables are defined by the class of the
object (don't forget about inherited instance variables). Assembly language definitions for
the structure of the object header and some common objects is in file object.usr.

Often you need to check the class of an object to see if it is appropriate for the primitive.
You can use the ClassPtrHash field in the object header for this purpose. The file
object.usr also contains assembly language definitions of the fixed class hashes in the
environment.

Smalltalk methods cannot corrupt object memory because an object is not allowed to
access outside itself. Primitive methods can access all of object memory, and therefore
have the opportunity to corrupt object memory. The implementor of a primitive has the
responsibility to guarantee that only the instance variables of the receiver object are
changed. If you have been using (debugging) a primitive that may have stored erroneously
in memory, discard the image.

300 Appendix 2: Primitive Methods

Loading Primitives j

A module containing user primitives is loaded into Smalltalk/V 286 by sending the
message loadPrimitivesFrom: to an instance of SystemDictionary. The argument is the
file path name where the file of primitives is located. For example:

Smalltalk loadPrimitivesFrom: 'example.bin'

If you have several files containing primitives, then evaluate the above expression for each
file. These expressions are usually included in the go file to make the loading of
primitives automatic.

Reserving Space for Primitives

Primitives are loaded into memory in the address space of DOS (below 64OK). Unless you
tell it otherwise, Smalltalk/V 286 will allocate all of memory to itself, therefore you must
reserve memory for your primitives. You specify the amount of space to reserve for
primitives and DOS as the argument to the /d: parameter on the command line that
invokes Smalltalk/V 286. For example, the following command invokes Smalltalk/V
and reserves 200K for DOS and primitives to use:

v /d:200

You must specify enough memory to load all of your primitives. If you are also using the
DOS shell feature you need to add that to your reservation request size. Notice that the
argument is a decimal number and specifies the amoung of memory to reserve in
multiples of 1024 bytes. Appendix 3, Configuring Smalltalk/V 286, explains all of the
command line options in detail.

Macros

Assembly language macros are provided to simplify writing user primitives. These handle
all of the details of interfacing with the Smalltalk interpreter. The macros are contained
in file access.usr. The following macros are provided.

enterPrimitive

This must be the first instruction in a user primitive. It saves the old stack frame
address and sets up BP to point to the arguments on the stack:

BP+6] is the DWORD containing the receiver object pointer.
BP+10] is the DWORD containing the first argument object pointer.
BP+14 is the DWORD containing the second argument object pointer.
BP+18 is the DWORD containing the third argument ohiecr noinfer.
BP+14
BP+18^

etc...

is the DWORD containing the second argument object point*
is the DWORD containing the third argument object pointer.

Appendix 2: Primitive Methods 301

exitWithSuccess

This macro is used to exit the primitive when it has successfully computed an
object pointer as the method result. The 32 bit method result is placed in
DX,AX with DX containing the segment part and AX containing the offset
part.

exitWithFailure

This macro is used to exit the primitive when it cannot compute the method
result. An example would be a floating point primitive that is passed an
argument that is not a floating point number.

oldToNewUpdate

This macro must be invoked after every store of an object pointer into an
object. It updates several memory management data structures, if necessary.
Failure to invoke this macro can lead to very bizarre and unpredictable results.

getElementSize segReg ,offsetReg ,resultWordReg ,resultByteReg

This macro returns the number of instance variables in the object referred to by
segReg:OffsetReg. The high order 8 bits of the result is in resultByteRejf and
the low order 16 bits is in result WordReg. Note that this is not the same as
the size of the object in bytes.

getByteSize seg Reg ,offsetReg ,result WordReg ,resultByteReg

This macro returns the number of bytes, including the header, occupied by the
object referred to by segReg-.OffsetReg. The high order 8 bits of the result is
in resultByteReg and the low order 16 bits is in result WordReg. Note that
this is not the same as the number of instance variables.

isPointerObject seg Reg,offset Reg

This macro tests whether the object referred to by segReg-.OffsetReg contains
object pointers or bytes. For example, Strings contain bytes and Arrays contain
object pointers. It sets the condition code zero if it contains bytes and sets the
condition code non-zero if it contains object pointers.

isIndexedObject segReg,offsetReg

This macro tests whether the object referred to by segReg:OffsetReg contains
indexed instance variables. For example, Strings and Arrays contain indexed
instance variables, and Dictionaries and Dates do not. It sets the condition
code zero if it does not contain indexable instance variables and sets the
condition code non-zero if does.

502 Appendix 2: Primitive Methods

isSmallObject segReg,offsetReg

This macro tests whether the object seqment referenced by segReg:OffsetReg
is contained in a single 64K byte segment. It sets the condition code zero if it
does not fit in a single segment and sets the condition code non-zero if it does.

isSmallPosInt segmentExpression

This macro tests whehter the object segment referenced by segmentExpression
is a positive Smalllnteger. It sets the condition code equal if it is and sets the
condition code non-equal if it is not.

isSmallNeglnt segmentExpression

This macro tests whether the object segment referenced by segmentExpression
is a negative Smalllnteger. It sets the condition code equal if it is and sets the
condition code non-equal if it is not.

interruptVM

This macro places the interrupt number contained in AL onto the interrupt
queue of the interpreter. It is used by primitives that need to issue Smalltalk
interrupts. This macro is used in protected mode primitives. There is another
macro for use in real mode interrupt service routines (described below).

Interrupt Service Routines

Smalltalk/V 286 lets you provide your own interrupt service routines, for example your
own communications driver. Interrupt service routines are different from primitives in
that they are not callable by the Smalltalk interpreter. Thy are entered in response to a
machine interrupt. They also run in real mode instead of protected mode. This means that
they do not have access to object memory. They do have access to all DOS and BIOS
interrupts. They communicate with Smalltalk via virtual machine interrupts and via
memory shared in the segment with Smalltalk primitives. It is for this reason that they are
included in the same primitive module as the Smalltalk primitives that access the shared
memory.

Interrupt service routines cannot store or refer to object pointers in any way. There is no
guarantee as to the state of the garbage collector at the time of the hardware interrupt,
so the pointers may not be valid.

The following macro is included in file access.usr to allow interrupt service routines to
issue Smalltalk virtual machine interrupts.

Appendix 2: Primitive Methods 503

ISVinterruptVM

This macro places the interrupt number contained in AL onto the interrupt
queue of the interpreter. It is used by interrupt service routines that wish to issue
Smalltalk interrupts, for instance a communications driver. This macro is only
used by interrupt servcie routines and is only invokable from real mode.

Constructing Primitive Modules

A primitive module is composed of four pieces that are assembled or linked into a single
memory image segment that starts at offset 0. These are the module header, the
initialization routine, one or more primitive subroutines and interrupt service routines,
and the entry point table. The file example.prm shows the assembly language source
code for a complete primitive module. To build the primitive module, first assemble this
source file into the file example.obj. Then link it with the linker to produce the
executable file example.exe.. Finally use the exe2bin program to turn it into the memory
image file example.bin. Here are some sample DOS commands:

masm example.prm;
link example.obj;
exe2bin example.exe

The header must be the first 16 bytes of the segment when it is loaded into memory. The
format of the 16 byte module header is:

0: module initialization entry point offset
2: reserved
4: reserved
6: physical segment address (filled in when loaded)
8: offset of table of primitive entry point offsets
10: physical segment address of interpreter parameter area (filled in when loaded)
12: reserved "
14: reserved

The installation routine for the primitive module is entered via a far call after the module
is loaded. This allows any load time initialization to be done by the module before any
of the primitives are called.

A primitive is entered via a far call when the associated Smalltalk method is invoked. The
primitive must either succeed or fail. If it succeeds, the resultant object pointer is returned
in the DX,AX register pair, with DX holding the segment part and AX the offset part.
If it fails, DX and AX must be set to zero.

User primitives are identified by names instead of numbers. The primitive entry point
table contains the names and offset of all the primitives in the module. It does not have
any of the interrupt service routines since these are not callable from Smalltalk. The

504 Appendix 2: Primitive Methods

format of the entry point table is:

DB "name of primitive 1*
DB 0
DW offset of entry point 1
DB 'name of primitive 2'
DB 0
DW offset of entry point 2

DW 0 ;marks end of table

Invoking User Primitives from Smalltalk

Whenever a method is invoked that gives the user primitive as its implementation, the
user primitive is entered via a far call. User primitives are referred to by the name given
them in the containing primitive module. For example, the sample primitive is named
userStringAt: so the following method could be added to class String.

examplePrimAt: index
"This method invokes the sample primitive in the file example.bin."

^primitive: userStringAt: >
A self error: 'user prim failed'

After the primitive module example.bin is loaded, the following expression would
invoke the user primitive:

'Now is the time' examplePrimAt: 5

Appendix 3: Configuring Smalltalk/V 286

This appendix presents information for configuring Smalltalk/V 286 for different
memory, hardware, and BIOS configurations. If you are having trouble starting the
system up for the first time and suspect hardware or software incompatibilities, please
read the read.me file for up-to-date information.

Smalltalk/V is configured by adding parameters to the DOS command line that invokes
the Smalltalk environment. There are five possible configuration parameters: three deal
with memory configurations and two deal with hardware and BIOS configuration. Briefly,
these parameters are (they are described in more detail in the following sections):

/d:nnn — Reserve nnn Kbytes (decimal) of memory for DOS shell and
primitives in the address space of DOS.

/x:nnn — Reserve nun Kbytes (decimal) of memory in the beginning of
extended memory for other protected mode programs to use.

/u:nnn — Use a maximum of nnn Kbytes (decimal) of extended memory for
Smalltalk.

/s:x where x is either s or h — Use hardware (h) or software (s) shutdown logic
to switch to real mode from protected mode.

/t:x where x is either p or s — Use either primary (p) or secondary (s) startup
logic to start up in real mode after a shut down in protected mode.

When more than one parameter is specified they may be separated by blanks. Letters may
be either upper or lower case. Numeric arguments are always decimal (base 10). There
cannot be a space between the : and the argument in a parameter. The following are both
valid command lines:

v /D-.100 /s:h
V /t:P /U-.2048

Memory Configuration

Unless told otherwise, Smalltalk/V 286 will use all of available memory. Logically
speaking there are two kinds of memory available when the interpreter is invoked,
available DOS memory (memory accessable in real mode) and available extended
memory (memory accessable in protected mode only).

.506 Appendix 3.Configuring Smalltalk/ V 286

DOS Memory

If you are going to use the DOS shell or if you are going to load user primitive modules
then you must reserve some of the DOS memory. The /d:nnn parameter specifies the
amount of DOS memory to reserve in IK (1024) byte increments. The nnn is in decimal.

When Smalltalk/V 286 is invoked, it allocates parts of itself in extended memory if
needed to reserve the amount of space requested. However certain parts must be in real
mode memory (approximately 100K).

Extended Memory

Smalltalk/ V 286 allocates its extended memory starting at the end of available extended
memory (high physical address) and going forward (towards low physical address). There
are two ways to control the amount of memory allocated in extended memory.

The /u:nnn parameter specifies the maximum amount of extended memory that
Smalltalk/V 286 is to allocate in IK byte increments. The nnn is in decimal. This sets
an upper bound. If less memory is available, less will be allocated.

The /x:nnn parameter specifies the amount of extended memory not to allocate at the
front (low physical address) of extended memory in IK byte increments- The nnn is in
decimal. This reserves a portion of extended memory for other protected mode programs
to use.

Note that Smalltalk/V 286 detects the memory at the front of extended memory (low
physical address) used by VDISK or multiple VDISKs and automatically treats the
memory as not available. The parameters above only refer to available memory and not
VDISK memory.

An Example

As an example, let's take the following situation:

1. 150K of DOS memory needs to be reserved for user primitives.
2. Two VDISKs of 256K each were created when the system was booted up.
3. A one megabyte area of extended memory was reserved at the high end of extended

memory when the system was booted up.
4. At least an additional one megabyte needs to be reserved for use after Smalltalk/V

286 is started up; more would be nice.
5. There are 8 megabytes of extended memory in the hardware.
6. The Smalltalk/V image we are going to run does not need more than two megabytes.

Appendix 3.-Configuring Smalltalk/ V 286 307

The command line would be:

v /d:15O /x:1024 /u:2O48

And the memory map is given in figure A3-1.

640 K

490 K

120 K

40 K

OK
Figure A3-1
Smalltalk/V 286
Memory Map

9M
available for DOS shell
and user primitives «

used by
Smalltalk/V 286

Smalltalk/V 286
real mode kernel

6M

2.5 M

DOS, BIOS and other -\ 5 M
resident programs

1 M

reserved at
power on time

used by
Smalltalk/V 286

available

reserved by
X parameter
VDISK #2
VDISK #1

DOS Memory Extended Memory

Hardware and BIOS Configuration

Smalltalk/V 286 dynamically determines the configuration of your hardware and the
type of BIOS installed when it is invoked. Due to the variety of hardware and
manufacturers available, we included the following two parameters in case we have
overlooked something. See file read.me for latest information about configuring for
specific machines. #

80386 cpu vs 80286 cpu

Since Smalltalk/V 286 runs in protected mode, and all of the BIOS and DOS facilities
are accessible only from real mode, switching from protected to real mode is necessary.
If you have a 80386 cpu, this switching is done via 80386 software instructions.
Smalltalk/V detects the presence of the 80386 cpu automatically.

If you have an 80286 cpu, then the switching between protected and real mode is
accomplished by using the 80286 cpu to shutdown and restart in real mode. There are two
issues, how to accomplish the shutdown and how the cpu is to start up.

508 Appendix 3.Configuring Smalltalk/ V 286

80286 Shutdown

The /s: parameter specifies the type of shutdown to use. There are two choices: shutdown
via hardware, /s:h, and via software, /s:s.

The hardware shutdown is done by intentionally causing what is commonly known as a
triple fault condition in the 80286 cpu. This does require that the mother board cause an
automatic restart condition when the 80286 enters the shutdown mode. All IBM PC/AT
machines and most clones do this.

The software shutdown is done by requesting a cpu reset via software. This involves
sending commands to the keyboard processor on AT class machines and issuing port I/O
commands on some PS/2 machines.

80286 Restart

The /t: parameter specifies how the 80286 is to start up after a shutdown. This is done
by writing a value into the CMOS memory (non-volatile mnemory) of the machine prior
to the shutdown. The BIOS boot up code in the ROM looks at this value to determine
the type of restart to do. There are two choices: primary start up, /t:p, and secondary start
up /t:s.

The primary start up is done by using the documented BIOS function for starting up after
switching from protected to real mode. For early PC/AT's and some clones, this function
does not work properly. The secondary start up uses the BIOS block memory move
function to cause the real mode start up.

Speed vs Space

The system menu contains a selection, speed/space, which lets you optimize Small-
talk/V for either speed (performance) or space (memory utilization). In speed mode,
every window maintains a backup bitmap of itself for use in redrawing. In space mode,
when a window is redrawn, it regenerates its screen image.

You can tell which mode the system is in by looking at the system menu. If it says
speed/space, you are in speed mode. If it says space/speed, you are in space mode.

Appendix 4: METHOD INDEX

This appendix is an index into Part 4 : Encyclopedia of Classes. It is a complete index
of all the methods implemented in Smalltalk/V 286 . The first column below contains the
selectors of all methods in sorted order. For each selector, the second column contains the
list of all classes that implement a method for that selector.

Method Selector

&
*

/
/ /
<

< =

>

@
\ \
abs
accept
accept :from:

acceptClass :from:
acceptPrompt
acceptReply:from:
accessEmptyCollection
activate
activatePane
activateWindow
active

Implementing Classes

False, True
Float, Fraction, Integer, Number, Point
Float, Fraction, Integer, Number, Point
IndexedCollection, OrderedCollection
Float, Fraction, Integer, Number, Point
Float, Fraction, Integer, Number
Float, Fraction, Integer, Number, Point
Association, Character, Date, Float, Fraction, Integer,
Magnitude, Point, String, Time
Association, Character, Date, Float, Fraction, Integer,
Magnitude, Point, String, Time
Association, Character, Date, Directory, Float, Fraction,
IndexedCollection, Integer, Magnitude, Object, Point,
String, Symbol, Time
Object
Association, Character, Date, Float, Fraction, Integer,
Magnitude, Point, String, Time
Association, Character, Date, Float, Fraction, Integer,
Magnitude, Point, String, Time
Number
Float, Fraction, Integer, Number, Point
Number, Point 0

DiskBrowser, PromptEditor, TextEditor, TextPane
ClassBrowser, ClassHierarchyBrowser, Debugger,
Dictionarylnspector, Inspector, MethodBrowser
ClassHierarchyBrowser
TextPane
Prompter
IndexedCollection
Dispatcher
GraphPane, Pane
Dispatcher, ScreenDispatcher, SubPane, TopPane
Dispatcher

510 Appendix 4: Method Index

Method Selector

add
add:

add rafter:
add:afterlndex:
add:before:
add :beforelndex:
add:name:color:
add: withOccurrences:
addAll:
addAllFirst:
addAULast:
addBreak
addGlasses:at:
addClass VarName:
addDays:
addDependent:
add First:
addLast:
addPrimitive: withEn try Point:
addS elector: withMethod:
addS haredPool:
addSubClass
addSubclass:
addSubpane:
addTime:
adjustBox
ad just Point:
adjustS ize
after:
after:ifNone:
again
allClasses
allClassVarNames
allDependents
alllnstances
alllnstancesPrim
alllnstVarNames
allReferences
allReferencesPrim

Implementing Classes

Dictionary Inspector
Bag, Collection, Dictionary, DispatchManager,
FixedS izeCollection, Identity Dictionary,
MethodDictionary, OrderedCollection, Set,
SortedCollection, SymbolSet, SystemDictionary
OrderedCollection, SortedCollection
OrderedCollection
OrderedCollection, SortedCollection
OrderedCollection
Animation

Collection, SortedCollection
OrderedCollection, SortedCollection
OrderedCollection, SortedCollection
Debugger
ClassHierarchy Browser
Class
Date
Object
OrderedCollection, SortedCollection
OrderedCollection, SortedCollection
Compiler class
Behavior
Class
ClassHierarchyBrowser
Behavior
TopPane
Time
PointDispatcher
StringModel
Identity Dictionary, Set
OrderedCollection
OrderedCollection
TextEditor
Behavior
Behavior
Object
Behavior
Behavior
Behavior
Object
Object

Appendix 4: Method Index 511

Method Selector

allSubclasses
allSubdirectoriesOf:level:into:
allSuperclasses
amountToPageLeft
amountToPageUp
amoun tToS crollLeft
amountToS crollUp
and:
andRule
appendChar:
appendText:
arcCos
arcSin
arcTan
areaOnFormOf:
argumentCount
arguments
arguments:
as Array
as Array OfS ubstrings
asAsciiZ
asBag
asCharacter
asciiValue
asDate
as Float
aslnteger
asLowerCase
asOrderedCollection
asPrinterErrorFlag
asSeconds
asSet
assignClassHash
association At:
associationAt:ifAbsent:
associationsDo:
asS ortedCollec t ion
asSortedCollection:
asStream
asString
asSymbol
asUpperCase

Implementing Classes

Behavior
DiskBrowser
Behavior
S crollDispatcher
S crollDispatcher
S crollDispatcher
S crollDispatcher
False, True
Form class
StringModel, TextPane
StringModel, TextPane
Number
Number
Float, Number
TextPane
CompiledMethod
Message
Message
Collection
String
String
Collection
Integer
Character
String
Float, Fraction, Integer
String
Character, String
Collection
Smalllnteger
Date, Time
Collection
Behavior
Dictionary
Dictionary, IdentityDictionary
Dictionary, IdentityDictionary
Collection
Collection
String
String, Symbol
String, Symbol
Character, String

512 Appendix 4: Method Index

Method Selector

at:

at :ifAbsent:
at:put:

atAll:put:
atAllPut:
atEnd
ATTmono
backColor
backColor:
background:
backgroundColor:
backspace
backspaces election
backup
backup Window
baseDay
basePoint
basic At:
basicAt:put:
basicHash
basicNew
basicNew:
basicSize
become:
before:
before:ifNone:
beginMenu
beginScroll
beginS elect
bell
between:and:
biColorForm
bit And:
bit At:
bitBltError:
bitCoordinate:
bitlnvert
bitmap
bitOr:

Implementing Classes

Bag, ColorForm, Dictionary, Form, IdentityDictionary,
Interval, Object, OrderedCollection, Set, String
Dictionary, IdentityDictionary
Bag, Dictionary, Form, IdentityDictionary, Interval,
MethodDictionary, Object, OrderedCollection, Set,
SortedCollection, String, Symbol, SystemDictionary
IndexedCollection
Bitmap, IndexedCollection
FileStream, Stream
DisplayS creen class
BiColorForm, Form, TopPane
BiColorForm, Form, TopPane
DisplayS creen
DisplayS creen class
TextEditor
TextPane
TopPane
TopPane
Date class
Font
Object, String
Object, String
Integer, Object, True
Behavior
Behavior
Object
Object
OrderedCollection
OrderedCollection
Terminals tream
Terminals tream
Terminals tream
Terminals tream
Magnitude, Point
Form class
Integer
Integer
BitBlt class
TextS election
Integer
Form
Integer

Appendix 4: Method Index 513

Method Selector

bitShift:
bitXor:
black
black:
blank: width:
blankRestFrom:
boldLine:
border
border:
border :clippingBox:rule :mask:
border :rule:mask:
bottom
bounce:
bounceBall
boundingBox
boxOfSize:
breakpointlnterrupt
broadcast:
broadcast: with:
broadcastChangesIn:

upTo:
withExcess:

browse
browseBreakpoints
browse Breakpoints:
browse Walkback
browse Walkback:
build:
buildDirectoryList
byteCodeArray
byteCode Array:
byte Value At :put:
byteValueAtX:Y:
calendarForMonth:year:
caU:
cancel
cancelPrompter
cantReturn
canUnderst and:
ceiling
center
center :in:

Implementing Classes

Integer
Integer
BiColorForm class, DisplayMedium, Form class, Pen
DisplayMedium
Characters canner
Characters canner
ListPane
Pane
DisplayMedium, Pane
DisplayMedium
DisplayMedium
Rectangle
Pen
DemoClass
DisplayObject
Dispatcher
Process class
Object
Object
StringModel

QassHierarchyBrowser
Debugger
Debugger
Debugger
Debugger
Pattern, WildPattern
DiskBrowser
CompiledMethod
CompiledMethod
Form
ColorForm, Form
Date class
Dos
TextEditor, TextPane
Prompter
Object
Behavior
Number
Rectangle
TopPane

514 Appendix 4: Method Index

Method Selector

centerText :font:
change
change:
change :from :to:
changeColor
changed
changed:
changed: with:
changed: with: with:
changeFileMode
changeModeOf:to:
changeNib:
changeTo:
characterlnput
charsInColumn
charsInRow
charSize
charWidth:
check Argument:
checkCharacter:
checkDay:month:year:
checkDay:year:
checkDosError:
checklndex:
checkMode: with Aspect:
checkMove
chkdsk
class
class:
classes
classField
classField:
classPool
class Variables tring
class VarNames
class Var Names:
cleanHandles
clearScreen
clipRect
clipRect:
clipRectAll:
clipX

Implementing Classes

Pen
CursorManager, NoMouseCursor
SubPane
DisplayS creen
Form class
Object
Object
Object
Object
DiskBrowser
File class
Pen
NoMouseCursor
InputEvent, Terminals tream
GraphPane, SubPane
SubPane
Font
Font
Context
String
Date class
Date class
Dos class
IndexedCollection
DisplayS creen class
TopDispatcher
S creenDispatcher
Object
ClassHierarchyBrowser
ClassHierarchyBrowser
CompiledMethod
CompiledMethod
Class, MetaClass
Behavior
Class, MetaClass
Class
FileHandle class
DispatchManager
BitBlt
BitBlt, Characterscanner
Commander
BitBlt

Appendix 4: Method Index 515

Method Selector

clipY
clockOffPrimitive
clockTickPeriod:
clockTickPrimitive:
clockTicksOff
close

closelt
close Window
collapse
collapsed
collapsedLabel
collect:
collection
color
color:
colorForm
coloring:
colors:
colors selectors:
combination Rule:
compatibleForm
compatibleMask
compile:
compile :in:
compile:in:notifying:ifFail:
compile: notifying:
compile:notifying:in:
compileAll
compile A11S ubclasses
compiledM ethod At:
compileLogic:
compileLogic motifying:
compilerError:at:in:for:
compress:
compressChanges
compressChangesOf:into:
compressSources
compressSourcesOf:into:
computelnstS ize
configureAs:withColor:
containsPoint:

Implementing Classes

BitBlt
Time class
Time class
Time class
Time class
File, FileHandle, FileStream, GraphPane, ListPane,
Pane, Stream, TextPane, TopDispatcher, TopPane
Dispatcher
Dispatcher
TopDispatcher, TopPane
TopPane
ClassHierarchyBrowser, DiskBrowser
Collection, FixedSizeCollection
WriteStream
TopDispatcher
BiColorForm class, ColorForm class, Form class
Form class
TopDispatcher
Menu
Menu class
BitBlt
ColorForm, ColorScreen, Form
ColorForm, ColorScreen, Form
Behavior
Compiler class
Compiler class, LCompiler class
Behavior
ClassHierarchyBrowser
Behavior
Behavior *
Behavior
Behavior
Behavior
TextEditor, TextPane
CompiledMethod class
S ystemDictionary
S ystemDictionary
S ystemDictionary
S ystemDictionary
Behavior
DisplayS creen class
Icon, Menu, Rectangle

516 Appendix 4: Method Index

Method Selector Implementing Classes

contents

contextFor:
continue
continues croll
controlBreaklnterrupt
convertToS tring:
copy
copy:from:to:rule:
copyrto:
copyBits
copyChars
copyFile
copyFrom:to:

copyFrom:to:into:
copy ReplaceFrom :to: with:
copy Selection
copy Stack
copyWith:
copy Without:
corner
corner:
corner FromUserOfOrigin:

minExtent:
cos
countBlanks
cr
create
create:
createDirectory
createFile
createlcons:
crossHair
current
currentDatelnto:
currentDisk
currentTimelnto:
cursorln:
cursorKey:
cursorMoved
cursorOffset:

Directory, ReadStream, ReadWriteStream, Set,
Stream, TextEditor, TextPane, WriteStream
Process
S creenDispatcher
ScrollDispatcher, Terminals tream
Process class
StringModel
Object
Form
File class
BitBlt
CharacterScanner
DiskBrowser
FileStream, IndexedCollection, OrderedCollection,
SortedCollection, Stream
FileStream
FixedSizeCollection, IndexedCollection
TextEditor
Process class, ProcessScheduler
IndexedCollection
IndexedCollection
CursorManager class, Rectangle, TextSelection
Point, Rectangle, TextSelection
PointDispatcher class

Float, Number
Stream
Debugger, FileStream, TextEditor, WriteStream
Directory
Directory class
DiskBrowser
DiskBrowser
TopPane
CursorManager class
Directory class
Date class
Directory class
Time class
SubPane
CursorManager
Terminals tream
PointDispatcher

Method Selector

cursorOut:
cutS election
cycle
cyclePane
cyclePane:
darkGray
dateAndTimeNow
day
day:
daylndex
dayName
dayOfMonth
dayOfWeek:
dayOfYear
daysInMonth
daysInMonth:forYear:
daysInYear
daysInYear:
daysLeftlnMonth
daysLeftlnYear
deactivate
deactivatePane
deactivate Window
debug
debugger
debugger:
decompress:
deepCopy

defaultDispatcherOass
defaultNib:
degreesToRadians
delay
delete:
deleteCharln:
demoMenu
denominator
dependents
dependsOn:
destForm
destForm:
destForm :sourceForm:

Appendix 4: Method Index

Implementing Classes

Dispatcher
TextEditor
Dispatcher, DispatchManager, ScreenDispatcher
Dispatcher, Pane, ScreenDispatcher
TopPane
BiColorForm class, Form class
Date class, Time class
Date
Date
Date
Date
Date
Date class
Date
Date
Date class
Date
Date class
Date
Date
Dispatcher
GraphPane, IistPane, Pane, TextPane, TopPane
Dispatcher, Pane
Debugger
Process
Process #
CompiledMethod class
Behavior, Boolean, Character, Collection, Dictionary,
Float, Integer, Object, Symbol, UndefinedObject
GraphPane, ListPane, TextPane, TopPane
Pen
Float, Number
Terminals tream
StringModel
StringModel
DemoClass
Fraction, Number
Object
Object
BitBlt
BitBlt
BitBlt, BitBlt class

517

518 Appendix 4: Method Index

Method Selector

destForm:
sourceForm:
halftone:
combinationRule:
destOrigin:
sourceOrigin:
extent:
clipRect:

destOrigin:
destRect:
destX
destX:
destY
destY:
detect:
detect :ifNone:
deviceType:
dictionaries
dictionary:
digitValue
digitValue:
dir
direction
direction:
directories
directory
directory:
directory ListMenu
directorySort
disappear
diskLabel
dispatcher
dispatcher:
dispatchers
display

display:
display :at:
display :from :at:
display :from: to :at:
display :reverseFrom :to:

Implementing Classes

BitBlt

BitBlt
BitBlt
BitBlt, Commander
BitBlt
BitBlt, Commander
BitBlt
Collection
Collection
Form
ClassBrowser
ClassBrowser
Character
Character class
S creenDispatcher
Pen
Commander, Pen
DiskBrowser
DiskBrowser, File
DiskBrowser
DiskBrowser
DiskBrowser
Menu
S creenDispatcher
Pane
Pane
DispatchManager
Animation, CursorManager, Dispatcher,
DispatchManager, DisplayObject, Icon, NoMouseCursor,
TextS election
StringModel
Characters canner
CharacterScanner
Characters canner
TextPane

Appendix 4: Method Index 519

Method Selector

displayAll
display AU:from:to:at:
display At:
display At :clippingBox:
display At :font:
displayBox:
displayChanges
display Form :at :rule:
displayCap
display In:
displayLabel
displayLabellcons
display On:

nf.

clippingBox:
rule:
mask:

displayPage2
display Patch:
displayS creen
displayS election
display Window
do:

doesNotHandle
doesNotUnderstand:
dolt
Doit
dolt:
doItResult:error:
dosError:
dosMenu
dosPrimitive registers: value:
dotProduct:
down
downArrow
dragon
dragon:
drawBox:
drawFrom:to:
drawLoopX:Y:
drawRectangle

Implementing Classes

DispatchManager, StringModel
Characters canner
Display Object, Menu, String
DisplayObject
String
PointDispatcher
TextPane
Characters cann er
TextS election
Dispatcher
TopPane
TopPane
DisplayObject

Form class
TextS election
Form class
TextS election
SubPane, TopPane
Bag, Collection, Dictionary, IdentityDictionary,
IndexedCollection, OrderedCollection, Set, Stream
Dispatcher
Object
TextEditor, TextPane '
UndefinedObj ect
Inspector, TextPane
Inspector
Dos class
S creenDispatcher
Dos
Point
Commander, CursorManager, Pen
CursorManager class
DemoClass
DemoClass, Pen
PointDispatcher
BitBlt
BitBlt
Pen

520 Appendix 4: Method Index

Method Selector

drive
drive:
driveBPresent
dropFrame
dropS enderChain
dropTo:
edit
EGAcolor
EGAcolorLowRes
EGAlowRes
EGAmono
eightLine
elapsedDaysS ince:
elapsedMon thsS ince:
elapsedS econdsS ince:
ellipse :aspect:
ellipsePrim:aspectX:Y:
enablelnterrupts:
endByte
environment Variable:
equals:
eqv:
erase
error:
error AbsentElement
errorAbsentKey
error AbsentObject
errorln:label:
errorlnBounds:
errorlnDay
errorlnMonth
errorNotlndexable
evaluate:
evaluate:in:to:notifying:ifFail:
evaluating:
even
exchangeColor
execute
execute :parameters:
executeCommands:
executeProgram parameters:
exit

Implementing Classes

Directory
Directory
S creenDispatcher
Process
Process class
Process
Class, String
DisplayS creen class
DisplayS creen class
DisplayS creen class
DisplayS creen class
Font class
Date
Date
Date
Commander, Pen
Pen
Process class
FileHandle
Dos class
String
False, True
Form class
Object
OrderedCollection
Dictionary
Collection
InputEvent
IndexedCollection
Date class
Date class
Behavior, Collection
Compiler class
Compiler class, LCompiler class
Prompter
Number
Form class
CursorManager class
S creenDispatcher
S creenDispatcher
S creenDispatcher
S creenDispatcher

Appendix 4: Method Index 521

Method Selector Implementing Classes

exit:
exp
expandBy:
exponent
extendOrigin:
extends elect
extendTo:
extent

extent:
extractDateTimeFrom:
extractDirNameFrom:
extractFileNameFrom:
extractFlagsFrom:
extracts izeFrom:
factorial
failAt:with:
fanOut
file
file:
fileExtension
fileld
fileld:
fileln
filelnFrom:
fileltln
fileListMenu
fileName
fileName: extension:
fileOut
fileOutOn:
files
fill:
fill:clippingBox:rule:mask:
fill:rule:mask:
fillAt:
fillAtX:andY:
findCurrentLine
findElementlndex:
findFirst:
findFirst:attribute:buffer:
findFraraelndexOf:

S ystemDictionary
Float, Number
Rectangle
Float
TextS election
Terminals tream
StringModel
BitBlt, DisplayObject, Form, Rectangle, StringModel,
TextS election
BitBlt, Form, Point, Rectangle
Directory class
Directory
Directory class
Directory class
Directory class
Integer
Pattern
Commander
DiskBrowser, FileS tream
Directory, DiskBrowser
String
File
File
Stream
ClassReader, StringModel, TextPane
TextEditor
DiskBrowser
String
File class
ClassHierarchyBrowser
Class, ClassReader, StringModel, TextPane
DiskBrowser
DisplayMedium
DisplayMedium
DisplayMedium
Pen
Pen
ListPane
Set, SymbolSet
IndexedCollection
Directory
Process

522 Appendix 4: Method Index

Method Selector

findKeylndex:
findLast:
findNext:
first
firstDaylnMonth
firstDayOfMonth
fixedWidth
floatError
floor
flush
flushFromCache:
font
for:
forceEndOntoDisplay
forceSelectionOntoDisplay
forClass:
foreColor
foreColor:
foreColor:backColor:
forgetlmage
fork
fork:
fork:at:
forkAt:
form
form:
formatted
formCoordinates:
formPrint
fourteenline
frame
frame:
frame At :offset:
frame At :offset :put:
frameBiasUnit
framelndexAt:
frameOffset
frameOffset:
frameToProcessIndex:
framingBlock:
framingRatio:
freeDiskSpace

Implementing Classes

Dictionary, IdentityDictionary
IndexedCollection
Directory
IndexedCollection
Date
Date
Font
Float class
Number
File, FileStream
MethodDictionary
Characters canner, Pane
StringModel class
TextPane
TextPane
ClassReader class
BiColorForm, Form, TopPane
BiColorForm, Form, TopPane
BiColorForm, BiColorForm class, Form class
S creenDispatcher
Context
ProcessS cheduler
ProcessS cheduler
Context
GraphPane, Icon
GraphPane, Icon
Directory
TextPane
Date
Font class
CharacterScanner, Icon, Pane, Pen, TextPane, TopPane
Pen, StringModel
Process
Process
Process class
Process
HomeContext
HomeContext
Process
SubPane
SubPane
Directory

Appendix 4: Method Index 523

Method Selector

from:to:
from:to:by:
fromDays:
fromDisplay
fromDisplay:
fromlnteger:
fromSeconds:
fromString:
fullDirName
functionlnput
gcd:
get Bits:
getCurrentPen:
getDate
getDevices
getEnvironment:keyWord:
getlndex:
getPointAt:
getS electionFrom :to:
getS ourceClasses
glyphs
go:
goto:
gotoDos
gray

gray:
gray Selection
grid:
grow

growSize
growS ymbolHash Array
growTo:
halt
hand
hasBlock
hasCursor
hash

hash:

Implementing Classes

Interval class
Interval class
Date class
Form
BiColorForm, Form, Form class
Float class
Time class
Date class
Directory
InputEvent, Terminals tream
Integer
ColorForm, Form
Animation
File
S creenDispatcher
Dos class
Font
StringModel
StringModel
S ystemDictionary
Font
Commander, Pen
Commander, Pen
S creenDispatcher
BiColorForm class, Display Medium,'Form class, Pen,
TextS election
CharacterScanner, DisplayMedium
GraphPane, ListPane, SubPane, TextPane, TopPane
Pen
Dictionary, IdentityDictionary, IndexedCollection,
OrderedCollection, Set, SortedCollection, SymbolSet,
WriteS tream
IndexedCollection
SymbolSet
OrderedCollection
Object
CursorManager class
CompiledMethod
Pane, TopPane
Association, Character, Date, Float, Fraction, Integer,
Magnitude, Object, Point, String, Symbol, Time, True
Object

524 Appendix 4: Method Index

Method Selector

hasSignals
hasS ubdirectory
hasZoomedPane
height

height:
hercules
hide
hideCursor
hideDirectory
hideGap
hideGapFlag
hidelconsExcept:
hideS election
hideSelection:to:
hideShow
hideX:y: width :height:
hierarchy
hierarchy:
highlightLabel
highUserPriority
home
homeContext
homeCursor
homeFrameOf:
hop
hotSpot
hours
IBM3270
icAt:
icons Width:
ifFalse:
ifFalse:ifTrue:
ifTrue:
ifTrue:ifFalse:
image
implemen t edBy S ubclass
implementors

implementorsOf:
includes:

Implementing Classes

Semaphore
Directory
Pane
Bit Bit, DisplayObject, Font, Form, Rectangle,
TextS election
BitBlt, Rectangle
DisplayS creen class
CursorManager, Icon, NoMouseCursor, TextS election
BitBlt
DiskBrowser
SubPane, TextPane, TextSelection
SubPane, TextPane, TextSelection
TopPane
ListPane, TextPane, TextSelection
TextSelection
ClassHierarchyBrowser, DiskBrowser
NoMouseCursor
ClassHierarchyBrowser
ClassHierarchyBrowser
TopDispatcher, TopPane
ProcessS cheduler
Pen
Context
Dispatcher, Pane, TopDispatcher
Process
Debugger
CursorManager
Time
DisplayS creen class
Process
TopPane
False, True
False, True
False, True
False, True
CursorManager
Object
QassBrowser, ClassHierarchyBrowser, Debugger,
MethodBrowser
Behavior, SystemDictionary
Bag, Collection, Dictionary, DispatchManager,
IndexedCollection, OrderedCollection, Set

Appendix 4: Method Index 525

Method Selector Implementing Classes

includes: with:
includesKey:
includesSelector:
increment
indexOf:
indexOf:ifAbsent:
indexOfMon th:
inheritsFrom:
initBegin :end:incr:
initDependents
initFlags
initForm:hotSpot:
initHandles
initialize

initialize:
initialize :fon t:
initialize :font :dest:
initialize :hotSpot:
initializeClass
initializeMouse
initializeTranscript
initials ize
initials tate
initLabellcons
initPen:
init Positions:
initScanner
initSystem
initTopCorner
initWindowClip
init WindowS ize

inject:into:
input

CompiledMethod
Dictionary, IdentityDictionary
Behavior
Interval
IndexedCollection
IndexedCollection
Date class
Behavior
Interval
Object class
TextS election
CursorManager
FileHandle class
Bag, Behavior class, Class, Date class, Dispatcher,
DispatchManager, DispatchManager class, Dos,
GraphPane, Icon, InputEvent, ListPane,
MethodDictionary class, NoMouseCursor, Object class,
Pane, Pattern class, PointDispatcher, Process,
ProcessScheduler, ScreenDispatcher class, Semaphore,
TerminalStream, TextEditor, TextEditor class,
TextPane, TextS election, Time class, TopDispatcher
class, TopPane
Animation, Commander, Set
CharacterScanner
CharacterScanner
CursorManager
Class
CursorManager, NoMouseCursor
TextEditor class
IdentityDictionary class
Terminals tream
TopPane class
Pen
OrderedCollection
GraphPane
DisplayS creen class
GraphPane
Pane class
ClassHierarchyBrowser, Debugger, DiskBrowser,
MethodBrowser, TopDispatcher
Collection
Pattern

526 Appendix 4: Method Index

Method Selector

inset By:
inspect
inspectMenu
inspects election
installFixedS ize:

charSize:
startChar:
endChar:
basePoint:

instance
instance:
instanceClass
instanceHeaderOn:
instances
instance VariableS tring
instSize
instVarAt:
instVarAt:put:
instVarList
instVarNames
instVarNames:
integerCos
integerS in
intern:
internalForm
interrupt:
interruptFrame:
intersect:
intersects:
invalidMessage
ioErrorlnterrupt
isAlphaNumeric
isBefore:
isBits
isBytes
isContext
isControlActive
isControlWanted
isDigit
isEmpty
isFixed
isGap

Implementing Classes

Rectangle
Dictionary, Object
Dictionarylnspector, Inspector
Debugger, Dictionarylnspector, Inspector
Font

Debugger, Dictionarylnspector, Inspector
QassHierarchyBrowser
MetaClass
ClassReader
ClassHierarchyBrowser
Behavior
Behavior
Object
Object
Dictionarylnspector, Inspector
Behavior
Behavior
Number
Number
Symbol class
Form class
Dos, Process class
Process
Rectangle, TextSelection
Rectangle
Object
Process class
Character
Point
Behavior
Behavior
Context, Object
Dispatcher, PromptEditor, TextEditor, TopDispatcher
Dispatcher
Character
Collection, Stream
Behavior
TextSelection

Method Selector

isGapS election
isHidden
isKindOf:
isLetter
isLowerCase
isMemberOf:
isNil
isPointers
isSeparator
isTherelnput
isUpperCase
isUserIF
isVariable
isVowel
is Zoomed
jump
jumpDown
jumpLeft
jumpRight
jumpUp
key
key:
key: value:
key At Value:
key At Value: if Absent:
keyboardlnterrupt
keys
keysDo:
kindOfSubclass
label

label:
label Array :lines selectors:
labelFrame
labels:lines:
labels:lines:selectors:
last
launch
lcm:
leapYear:
leapYearsTo:
left

Appendix 4: Method Index

Implementing Classes

TextPane
Icon
Object
Character
Character
Object
Object, UndefinedObject
Behavior
Character
CursorManager
Character
Process
Behavior
Character
TextPane
Debugger
CursorManager
CursorManager
CursorManager
CursorManager
Association
Association, Association class
Association class
Dictionary
Dictionary, IdentityDictionary
Process class
Dictionary, IdentityDictionary
Dictionary
Behavior
ClassHierarchyBrowser, Debugger, DiskBrowser,
MethodBrowser, TopDispatcher, TopPane
Debugger, MethodBrowser, TopPane
Menu class
TopPane
Menu
Menu class
IndexedCollection
S ystemDictionary
Integer
Date class
Date class
CursorManager, Rectangle

527

528 Appendix 4: Method Index

Method Selector

leftArrow
leftButton:
leftlcons:
leftPartBefore:
lightGray
line At:
lineDelimiter
lineDelimiter:
linelnPane:
linesln:
lineToRect:
lineUpFrom:to:
listMenu
listS tring:
literal:
In
loadEntireFile
loadPrimitivesFrom:
location
log:
logEvaluate:
logSource:forClass:
logS ource :forS elector: inClass:
lookUpKey:
lowRes
lowUserPriority
magnify:by:
magnifyBy:
makeCurrent
makeLabel:
makeS election Visible
makeUserIF
mandala
mandala:diameter:
mask
mask:
mask Form:
match:
match :index:
matchBlock:
max:
maxLineBet ween :and:

Implementing Classes

CursorManager class
Terminals tream
TopPane
StringModel
BiColorForm class, Form class
ListPane, StringModel, TextPane
FileStream, Stream
FileStream, Stream
ListPane
StringModel
ListPane
Commander
MethodBrowser
MethodBrowser
CompiledMethod, MethodBrowser
Float, Number
DiskBrowser
S ystemDictionary
Commander, Pen
Number
S ystemDictionary
S ystemDictionary
S ystemDictionary
Dictionary
DisplayS creen class
ProcessS cheduler
Form
String
Directory
Debugger
TextPane
Process
DemoClass
Pen
BitBlt
BitBlt
BiColorForm
Pattern, WildPattern
Pattern, WildPattern
Pattern
Magnitude, Point
ListPane, StringModel

Appendix 4: Method Index 529

Method Selector

menu

menu:
merge:
message:
method
method:
method At:
methodAt:put:
methodDictionaries
methodDic t ionaries:
methodDictionary
methodList
methods
millisecondClock Value
millisecondsToRun:
min:
minBoxExtent:
minimumSize
minimumSize:
minutes
misc
model
model:
modified
modified:
monthlndex
monthName
monthNameFromS tring:
mouseButton
mouseButtonDown
mouseButtonUp
mouseClock Value
mouseMove
mouseOffset
mousePr im With:
mousePrim With: with:
mousePrim With: with: with: with:
mouseScroll
mouseS electOn
mouseS tillDown
move

Implementing Classes

ClassHierarchyBrowser, Debugger, Prompter,
TextEditor class, TopDispatcher class
Pane
Rectangle, TextSelection
Menu class
Debugger
MethodBrowser
Process
Process
Behavior
Behavior
Behavior
MethodBrowser
Behavior
Time class
Time class
Magnitude, Point
PointDispatcher
TopPane
TopPane
Time
TextEditor
Pane
Pane
Dispatcher, TextEditor
TextEditor
Date
Date
Date class
InputEvent
InputEvent, Terminals tream
InputEvent, Terminals tream
Time class
InputEvent, Terminals tream
Terminals tream
CursorManager
CursorManager
CursorManager
S crollDispatcher
Terminals tream
Terminals tream
TopDispatcher

530 Appendix 4: Method Index

Method Selector Implementing Classes

move:
move:by:
moveBy:
moveCursor:
moveDownln:
moveOrS izeBox:
moveTo:
moveUpIn:
multiEllipse
multiMandala
multiPentagon
multiPolygon:
multiSpiral
mustBe Boolean
mustBeS ymbol:
name
name:
name:

environment:
subclassOf:
instance VariableNames:
variable:
words:
pointers:
class VariableNames:
poolDictionaries:
comment:
changed:

nameOfDay:
nameOfMonth:
negated
negative
new

TopPane
Animation
Point, Rectangle
Menu
SubPane
PointDispatcher
Rectangle
SubPane
DemoClass
DemoClass
DemoClass
DemoClass
DemoClass
Object
Symbol class
Class, File, Icon, MetaClass, Process
Icon, Process, SubPane
MetaClass

Date class
Date class
Float, Fraction, Integer, Number, P<
Number
Bae class. Behavior. BiColorForm cL
Character class, Color Form class, Dispatcher class,
DispatchManager class, DisplayScreen class, Dos class,
Form class, Icon class, IdentityDictionary class,
InputEvent class, NoMouseCursor class, Number class,
OrderedCollection class, Pane class, Pen class,
PointDispatcher class, Process class, Semaphore class,
Set class, TextSelection class, UndefinedObject class

Appendix 4: Method Index 531

Method Selector

new:

newDay:month:year:
newDay:year:
newdropFrame
newFile:
newLabel
newMethod
newNameS y mbol:
newPage2
newSize:
next

next:
next:put:
nextByte
nextBytePut:
next Chunk
nextChunkPut:
nextEvent
nextFourBytesPut:
nextFrameAt:
next Line
nextMatchFor:
next Piece
nextPut:

nextPutAll:

nextTwoBytesPut:
nextWord
noChanges
noGraphPane
nonlntersections:
normal
north
not
notEmpty
notifier :content :at:

Implementing Classes

Behavior, Boolean class, Commander class,
IdentityDictionary class, Number class,
OrderedCollection class, Pattern class, Pen class, Set
class, SortedCollection class, Symbol class,
UndefinedObject class, WildPattern class
Date class
Date class
Process
Directory
TopDispatcher
QassHierarchyBrowser
Behavior, MetaClass
DisplayS creen class
IdentityDictionary class
FileStream, ReadStream, ReadWriteStream,
Terminals tream
Stream
Stream, TextEditor
Read WriteS tream
WriteS tream
Stream
Stream
InputEvent
WriteS tream
Process
FileStream, Stream
Stream
Stream
Debugger, FileStream, ReadWriteStream,
TerminalStream, TextEditor, WriteStream
Debugger, FileStream, ReadWriteStream,
TerminalStream, TextEditor, WriteStream
WriteStream
Stream
TextPane
TopPane
Rectangle
CursorManager class
Pen
False, True
Collection
GraphPane class

532 Appendix 4: Method Index

Method Selector

notifier:content:at:menu:
notNil
now
nullEvent
numerator
numerator denominator:
occurrencesOf:
odd
offset
offset:
on:
open

open:in:
openChangeLogln:
openClassBrowser
openDiskBrowser
openln:
openOn:

open Window
open Workspace
or:
origin
origin:
origin :corner:

origin :extent:
orRule
orThru
other
outByte:toPort:
output :head: tail:
output:head:tail:headS ize:
outputToPrinter
outputToPrinterUpright
outputToPrinterUpright:
over
overClickDelay
overrunlnterrupt
pageSize
pageSize:

Implementing Classes

GraphPane class
Object, UndefinedObject J

Time class
InputEvent, Terminalstream
Fraction, Number
Fraction, Fraction class
Bag, Collection, Dictionary, Set
Number
CursorManager, DisplayObject, Form
CursorManager, DisplayObject, Form, NoMouseCursor
Stream class
Dispatcher, File, ListPane, SubPane, TextPane,
TopPane
File class, FileHandle class
S y stemDictionary
S creenDispatcher
S creenDispatcher
Dispatcher, FileHandle
ClassBrowser, ClassHierarchyBrowser, DiskBrowser,
Inspector, MethodBrowser
Dispatcher
S creenDispatcher
False, True
CursorManager class, Rectangle, TextSelection
Icon, TextSelection
Rectangle, Rectangle class, TextSelection, TextSelection
class
Rectangle, Rectangle class
Form class
Form class
S creenDispatcher
Dos
Form
Form
DisplayScreen, Form, String
DisplayS creen, Form
Form
Form class
Terminals tream
Process class
File class
File class

Appendix 4: Method Index 533

Method Selector

pane
pane:
paneScanner
pasteS election
pathName
pathName:
pathName:in:
peek
peekFor:
peekFrom:
perform:
perform: with:
perform: with: with:
perform: with: with: with:
perfornv.with Arguments:
performMenu

Pi
place:
pointer: word: variable:
pointFromUserDisplaying:offset:
poke .to :
polygon :sides:
popUp:
popUp:at:
popUpAt:
popUpAt:for:
position
position:
positionsOf:in:
positionsOf:in:notifying:ifFail:
positive
previous Weekday:
primitive:
primitiveClose
primitiveFailed
primitiveGetEvent
primitiveLoadModule:
primitiveNextPut:
primitiveNumber
print
printerMode:
printFile

Implementing Classes '*

Dispatcher
Dispatcher, TextS election
Pane
TextEditor
Directory, FileStream
Directory, Directory class, File class
File class
Stream
Stream
Dos
Object
Object
Object
Object
Object
SubPane, TextPane, TopPane
Float class
Commander, Pen
Class
PointDispatcher class
Dos
Pen
Pane
Pane
Menu
Menu
Cursor Manager, FileStream, Stream
FileStream, Stream, WriteStream
Compiler class
Compiler class
Number
Date
CompiledMethod
FileHandle
Object
InputEvent
SystemDictionary
FileStream
CompiledMethod
TextEditor, TextPane
Form class
DiskBrowser

534 Appendix 4: Method Index

Method Selector

printFraction:
printlt
printLimit
printOn:

printOn:base:
printPaddedTo:
printRecursionOn:
printRounded:
printS tring
priority
priority:
private Add:
processControlKey:
processFunctionKey:

processlnput
processlnput Key:
processKey:
processLast Input:
prompt :default:
prompt :de£aultExpression:
promptForPathName
prompt WithBlanks:default:
purgeUnusedS y mbols
putHeaderOf:into:
putMethod: withlndex:to:
putSpaceAfter:
putSpaceAtEnd
putSpace AtS tart
queue Walkback:

makeUserIF:
resumable:

quo:
radiansToDegrees
radix:
raisedTo:
raisedToInteger:
read

Implementing Classes

Number
TextEditor
Collection
Array, Association, Behavior, Boolean, Character,
Collection, Date, Float, Fraction, Integer, Number,
Object, Point, Rectangle, Smalllnteger, String,
Symbol, Time, UndefinedObject
Integer
Integer
Object
Number
Object
Process
Process
SymbolS et
Dispatcher, PromptEditor, TextEditor
Dispatcher, GraphDispatcher, PointDispatcher,
PromptEditor, ScreenDispatcher, ScrollDispatcher,
TextEditor
Dispatcher, PointDispatcher, TextEditor, TopDispatcher
Dispatcher, TextEditor
Dispatcher, PointDispatcher
Dispatcher
Prompter, Prompter class
Prompter class
DiskBrowser
Prompter class
Symbol class
S ystemDictionary
S ystemDictionary
OrderedCollection
OrderedCollection
OrderedCollection
Process class

Integer, Number
Float, Number
Integer
Number
Number
Terminals tream

Appendix 4: Method Index 535

Method Selector

readBuffer:atPosition:
readlnto ratPage:
readlnto ratPage :pageS ize:
readInto:atPosition:
readLimit
receiver At:
reciprocal
recompile:
recover:
recoverLine:
redraw
reflectDrawX:Y:
reframe
reframe:

reframeLabel
refreshAll
refreshColor
refreshFrom:for:atX:Y:
registers
rehash
rehashFrom:
reinitialize
reject:
release
rem:
remove
remove:
remove:ifAbsent:

remove All:
remove Association:
removeBreak
removeClass VarName:
removeDirectory
removeFile
removeFirst
remove FromS ystem
removelndex:
removeKey:
removeKey :ifAbsent:
removeLast

Implementing Classes

File
FileHandle
FileHandle
FileHandle
FileStream, Stream
Process
Float, Fraction, Integer, Number
Behavior
Characters canner
Menu
S creenDispatcher
Pen
TopPane
CharacterScanner, GraphPane, SubPane, TextPane,
TopPane
TopPane
ListPane, TextPane
ColorScreen, Display Screen
ListPane
Dos
Dictionary, IdentityDictionary, Set
Dictionary, IdentityDictionary, Set
DispatchManager
Collection
Object, Pane
Integer, Number
Dictionarylnspector, Directory
Collection, Directory class, DispatchManager, File class
Bag, Collection, Dictionary, FixedSizeCollection,
OrderedCollection, Set
Collection
Dictionary
Debugger
Class
DiskBrowser
DiskBrowser
OrderedCollection
Class
OrderedCollection
Dictionary
Dictionary, IdentityDictionary, MethodDictionary
OrderedCollection

536 Appendix 4: Method Index

Method Selector

removeS elector
removeS elector:
removeSharedPool:
removeS ubClass
removeS ubclass:
rename:
renamerin:
rename :to:
renameFile
replace: withChar:
replace: withText:
replaceAll
replaceAllOld
replace AtColumns :by:
replace AtColumns :by:start At:
replaceAtPattern:by:
replaceCrsIn:
replaceFrom:to:with:
replaceFrom :to: with starting At:
replaceFrom :to:withObject:
replaceGapBef ore: withChar:
replaceLinesIn: with:
replaceString:
replace WithChar:
replace WithLf:
replace WithTab:
replaceWithText:
reply
reply:
reset

resetPrinter
resize
resize:
reSort
respondsTo:
restart
restart At:
restore
restoreDirList
restoreMode
restoreS elected

Implementing Classes

ClassBrowser, ClassHierarchyBrowser, MethodBrowser
Behavior
Class
QassHierarchyBrowser
Behavior
Class
Class
File class
DiskBrowser
StringModel
StringModel
TextEditor
TextPane
TextPane
StringModel
TextPane
DiskBrowser
IndexedCollection, OrderedCollection
Bitmap, ByteArray, IndexedCollection, String
Bitmap, IndexedCollection, String
StringModel
StringModel
TextPane
TextPane
StringModel
StringModel
TextPane
Prompter
Prompter
CursorManager, NoMouseCursor, Pattern, Stream,
WildPattern
DiskBrowser
TopDispatcher
TopPane
S ortedCollection
Object
Debugger
Process
ListPane
DiskBrowser
DisplayS creen class
ListPane

Method Selector

restoreS elected:
restore WithRefresh:
resumable:
resume
resume:
return:
returnlndex:
reverse
reverse:
reverseContents
reversed
reverseDo:
reverseLine:
right
rightArrow
right Button:
right Icons:
rightPart After:
rounded
roundTo:
run
runDemo
save
saveAs
saveExit
saveGraph
savelmage
scaleBy:
scaleTo:
scanForWordAt:
scanner:
scanZero:
schedule
schedule:
schedule Window
scroll
scrollBarFini
scrollBarlncludes:
scrollBarlnit
scrollBarUpdate
scrollDelay:
scrollDownAt:

Appendix 4: Method Index

Implementing Classes

ListPane
ListPane
Debugger
Debugger, DispatchManager, Process
Process, ProcessScheduler
PointDispatcher
ListPane
Form, Form class
CharacterScanner
Stream
IndexedCollection
IndexedCollection
Menu
CursorManager, Rectangle
CursorManager class
Terminals tream
TopPane
StringModel
Integer, Number, Point, Rectangle
Number
DemoClass, DispatchManager
S creenDispatcher
S creenDispatcher, S ystemDictionary
DiskBrowser
S creenDispatcher
GraphPane
S creenDispatcher
Rectangle
Rectangle
StringModel
StringModel
Directory class
ProcessS cheduler
DispatchManager
Dispatcher
CursorManager class
SubPane
SubPane
GraphPane, SubPane
SubPane
S crollDispatcher
S crollDispatcher

537

538 Appendix 4: Method Index

Method Selector

scrollHand:to:
scrollLeft:
scrollTopCorner:
scrollUp:
scrollUpAt:
search
searchBack
searchBack :for:
searchBackOld
searchForActiveDispatcher
searchForActivePane
searchForLineToS how:
searchFrom:for:
searchlnit
searchOld
seconds
seconds:
select

select:
selectAfter:
selectAll
selectAtCursor
selectAtEnd
selectBefore:
selectDirectory:
selectedString
selectFrom:to:
selectlnstance:
selection
selection:
selectLine AtCurrentS election
selectLines :height:
selector
selector:

selectorMenu
selectors
selectors:
selectTo:
selectToBit:
selectToCursor

Implementing Classes

ListPane, TextPane
ListPane, TextPane
ListPane, TextPane
ListPane, TextPane
S crollDispatcher
TextEditor, TextPane
TextEditor, TextPane
StringModel
TextPane
DispatchManager
Dispatcher, TopPane
ListPane
StringModel
TextPane
TextPane
Time
Time
Dispatcher, ListSelector, PointDispatcher,
ScreenDispatcher, TopDispatcher, TopPane
Collection, Dictionary, FixedSizeCollection
TextPane, TextSelection
TextPane
GraphPane, ListPane, TextPane
TextPane
TextPane, TextSelection
DiskBrowser
TextPane
TextPane
Inspector
ListPane, TextPane
GraphPane, ListPane
TextPane
TextPane
CompiledMethod, Message
ClassBrowser, ClassHierarchyBrowser, CompiledMethod,
Message
ClassBrowser, ClassHierarchyBrowser
Behavior, ClassBrowser, ClassHierarchyBrowser
Menu
TextPane, TextSelection
TextSelection
TextPane

Appendix 4: Method Index 539

Method Selector

selectToS hifted
select Word AtCurrentS election
selfCopyToX:Y:
senders

sendersOf:
sendFrame
sendFrame:
setBackground
setClass:
setCollection:
setDate:
setDispatchers
setFont:
setForeColor:backColor:
setlnstList
setLimits

setName :setDirectory:
setOffsetX:Y:
setPaletteRegister:to:
setReg:to:
setRegHigh:to:
setRegLow:to:
setSysFont:
setToEnd
setWidth:height:
shallowCopy

sharedPools
sharedPools:
shared VariableS tring
shiftRate:
show
show:
show:from:at:
showCurrentLine
showDirectory
showForm
showGap
showlcons

Implementing Classes

TextPane
TextPane
Characters canner
ClassBrowser, ClassHierarchyBrowser, Debugger,
MethodBrowser
Behavior, SystemDictionary
Process
Process
Animation
ClassReader
Stream
File
DispatchManager
Characters cann er
Characters canner
Dictionarylnspector, Inspector
FileStream, ReadStream, ReadWriteStream,
WriteStream
File
CursorManager
Dos
Dos
Dos
Dos
Font class
ReadWriteStream, Stream, WriteStream
DisplayS creen
Behavior, Boolean, Character, Collection, Dictionary,
Float, IndexedCollection, Integer, Object, Symbol,
UndefinedObject
Class, MetaClass
Class
Behavior
Animation
Icon
Stream, TextEditor
CharacterScanner
Menu
DiskBrowser
GraphPane
SubPane, TextPane, TextSelection
TopPane

540 Appendix 4: Method Index

Method Selector

showPartialFile
showS election
showS election :to:
showS election :to: with:
showSelectionFrom:to:
showWindow
sign
signal
significant!
sin
singleS tep
sixteenLine
size

skip
skip:
skipTo:
solidEllipse :aspect:
sort: to:
sortBlock
sort Block:
sortBy:
sortByDate
sortByName
sortBySize
sortMenu
source
sourceCodeAt:
sourceForm
sourceForm:
sourcelndex
sourceIndex:sourcePosition:
sourceOrigin:
sourcePosition
sourceRect:
sourceS tring
sourceS tring:
sourceX
sourceX:
sourceY
sourceY:

Implementing Classes

Disk Browser
ListPane, TextPane
TextS election
TextS election
TextPane
GraphPane, ListPane, TextPane
Number
Semaphore
Float
Float, Number
Debugger
Font class
Bag, File, FixedSizeCollection, IndexedCollection,
Interval, Object, OrderedCollection, Set, Stream,
String
Debugger
Stream
Stream
Pen
S ortedCollection
Class class, SortedCollection
S ortedCollection, S ortedCollection class
DiskBrowser
DiskBrowser
DiskBrowser
DiskBrowser
DiskBrowser
CompiledMethod
Behavior
BitBlt
BitBlt
CompiledMethod
CompiledMethod
BitBlt
CompiledMethod
BitBlt
CompiledMethod
CompiledMethod
BitBlt
BitBlt
BitBlt
BitBlt

Method Selector

space
species
speed:
speedSpace
spiral :angle:
splitPath:in:
spread:from:by:spacing:direction:
spreadFrom:

to:
width:
start At:
mask:
headS ize:

sqrt
squared
startPosition :endPosition:
startUp
status
steplnterrupt
storeOn:

storeString
strictlyPositive
string
string:
stringCoordinate:
stringHash
stringln:
string Width:
structure
structure:
subclass:

instance VariableNames:
class VariableNames:
poolDictionaries:

subclasses
subclasses:
subclassOf:
subdirectories
subtractDate:
subtractDays:

Appendix 4: Method Index

Implementing Classes

TextEditor, WriteStream
Interval, Object, Symbol, SymbolSet
Animation
S creenDispatcher
Pen
File class
Form
Form

Float, Number
Number
OrderedCollection
S ystemDictionary
Float class
Process class
Array, Association, Boolean, Character, Collection,
Dictionary, FixedSizeCollection, Number, Object,
String, Symbol, UndefinedObject
Object
Number
StringModel
StringModel
TextPane
String
StringModel
Font
Behavior
Behavior
Class, UndefinedObject

Behavior
Behavior
MetaClass class
Directory
Date
Date

541

542 Appendix 4: Method Index

Method Selector

subtractTime:
superclass
superclass:
superpane:
suspendActive
symbol
symbol At:
systemDispatcher
systemMenu
systemPrimFor:
tab
tabStringAt:
take:from:
tan
tell:bounce:
tell:direction:
tell:go:
tell:goto:
telLplace:
tell:turn:
temp At :number:
tempAt :number :put:
tempCount
template
tempList
tempValue
text
textMenu
textMenuInit
textModified
textPane:
timerlnterrupt
timesRepeat:
timesTwoPower:
to:
to:by:
to:by:do:
to:do:
today
top
topCorner
topCorner:

Implementing Classes B

Time 1
Behavior B
Behavior I
Pane B
ProcessScheduler B
Behavior B
SymbolS et B
DispatchManager B
ScreenDispatcher class
Compiler class
TextEditor, WriteStream
StringModel
Debugger
Float, Number
Animation
Animation
Animation
Animation
Animation
Animation
Process
Process
CompiledMethod
ClassHierarchyBrowser
Debugger
Debugger
ClassBrowser, QassHierarchyBrowser, MethodBrowser
DiskBrowser
DiskBrowser
TopPane
StringModel
Process class
Integer
Float, Number
Number
Number
Number
Number
Date class
Rectangle, TextSelection
GraphPane, ListPane, TextPane
ListPane, StringModel, TextPane

Method Selector

topDispatcher
topPane
topPriority
toshiba
totalLength
totalS econds
transcriptMenu
transient WriteFini:
transient WriteOn:
translateBy:
transpose
trimBlanks
truncate
truncated
truncateTo:
turn:
type
type:
under
unusedMemory
unusedMemoryPrim
unzoom
up
up Arrow
update

update:

update: with:
update: with: with:
updateBreaks
updateLastByte
updateS ortPane
upTo:
userPrimFor:
userPriority
validateClass:

instance VariableNames:
value
value:
value:value:
values

Appendix 4: Method Index

Implementing Classes

Dispatcher, DispatchManager
SubPane, TopPane
ProcessS cheduler
DisplayS creen class
GraphPane, ListPane, StringModel, TextPane
Time class
TopDispatcher
DispatchManager
DispatchManager
Rectangle
Point
String
Read WriteS tream
Float, Fraction, Integer, Point, Rectangle
Number
Commander, Pen
InputEvent
InputEvent
Form class
S ystemDictionary
S ystemDictionary
Pane, TextPane class
Commander, CursorManager, Pen
CursorManager class
ClassHierarchyBrowser, DiskBrowser, GraphPane,
ListPane, SubPane, TextPane
ClassHierarchyBrowser, Object, SubPane, TextPane,
TopPane
Object, SubPane
Object, SubPane
Debugger
FileS tream
DiskBrowser
Stream
Compiler class
ProcessS cheduler
Class

Association, Context, InputEvent
Association, Character class, Context
Context
Dictionary, IdentityDictionary

543

544 Appendix 4: Method Index

Method Selector

variableBy teS ubclass :
class VariableNames:
poolDictionaries:

variableS ubclass:
instance VariableNames:
class VariableNames:
poolDictionaries:

VGA640x480
vmlnterrupt:
volumeLabel
wait
walkback
walkback:
walkbackFor:label:
walkbackLabel:
walkbackMenu
walkbackOn:
walkLine
whileFalse:
whileTrue:
white
white:
width
width:
width :height:
width:height :initialByte:
width:height:initialColor:
wildcardChar
windowClip
windowClip:
windowFrame
windowLabeled :frame:
with:
with:do:
with: with:
with:with:with:
with: with: with: wit h:
with A11S ubclasses
withBlank:
withCrs
workSpaceMenu
write:

Implementing Classes

Class

Class

DisplayS creen class
Object
Directory
Semaphore
Debugger
Debugger
Debugger
Debugger
Debugger
Process
DemoClass
Context
Context
BiColorForm class, Display Medium, Form class, Pen
DisplayMedium
BitBlt, DisplayObject, Font, Form, Icon, Rectangle
BitBlt, Rectangle
Form, Form class
ColorForm, Form
ColorForm
Pattern class
Pane class
Pane class
TopPane
TextEditor class
Collection class, FixedSizeCollection class
IndexedCollection
Collection class, FixedSizeCollection class
Collection class, FixedSizeCollection class
Collection class, FixedSizeCollection class
Behavior
Prompter
String
TopDispatcher
Terminals tream

Appendix 4: Method Index 545

Method Selector Implementing Classes

writeBuffer :ofS ize ratPosition:
writeFrom:toPage:for:
writeFrom:toPage:for:pageSize:
writeFrom:toPosition:for:
writeLimit
writePage
Wyse640x400
X

x:
xor:
y
y-
year
yield
yourself
zapBackup
zeroDivisor
zoom
1

File
FileHandle
FileHandle
FileHandle
WriteStream
FileStream
DisplayS creen class
Point
Point
False, True
Point
Point
Date
ProcessS cheduler
Object
TopPane
Integer
TextEditor, TextPane, TopDispatcher, TopPane
False, True
Integer, Object
Object

INDEX

abstract class, 79
abstract data types, 68
accept function, 139,277
access.usr file, 500-502
accessing,

files, 217
streams, 211,213

activating a window, 30,32,264
active process, 258-259,260
active window, 30,32,264
add breakpoint function, 307-308
add function, 304
add subclass function, 298,299
add: message, 95,225,229
add All: message, 225
adding

breakpoints, 308
classes,

88,92-93,99,193-194,298-299
methods, 70,72,300,302-303

addSubPane: message, 141
allReferences message, 300
and rule, 125-126,128,247
and: message, 59,64-65,201
animal,

classes, 82-83,149-151
habitat, 99-102,141-154,164,166
hierarchy, 80-82

Animation, 136-138,146-154,254-255
application,

case study, 161-183
class, 230-237
model,

142,157-159,163-165,171-181,
231-232,233-237

states, 233
application development,

155-161,161-184
application development cycle,

155-160,161-184
describing object states of, 155,157
drawing window of,

155,156,163-164
identifying classes for, 155,157,165

implementing methods of,
155,159-160

listing object interfaces, 155,158
stating problem for,

155-156,162-163
application development tips,

164,172,174,175,178,179,181,183-184
arguments,

blocks as, 97,200,201,226
message, 7,8,46,47,48,68,195
method, 68,113,188-189

arguments of block, 61,188-189,199-200
arithmetic, 199,207-210

coprocessor, 48,210
floating point, 48,210
messages, 48,199,203,207
mixed mode, 207,208
point, 118,242
rational, 48,207,208-210

Array, 88,94,188,196,198,223,228
array, iterate, 62
array literals, 45,88,198,223,224
arrow key, 263
ASCII, 130,204,250,283,289
Aspect, 132-133,253-254,278
aspect ratio, 132-233,253-254,278
asSet message, 96
assignment expressions, 7,52,187
Association, 189,227
at: message, 88,94
at:put: message, 94,188,279
atEnd message, 60,212,213,215
automatic logging of changes,

282-283,284,285,299,300
available memory, 277
background color, 122,130,250
backing up Smalltalk/V, 284,285,286
backspace key, 39,41,271,273
Bag, 11,95,110,223,225,226-227
baU, 31
Bell, 280
BiColorForm,

120,122-123,124,244,247,248,255
binary expression, 199

548 Index

binary message, 48-49,198-199,207
binary selector, 199
BitBlt, 121-129,241,243-249

creation, 248-249
defaults, 248-249
messages, 249
subclasses of, 130-138,230,251

BitEditor, 292
bitmap, 117,120,241,244

images, 250,289
bitmapped graphics, 117,241,245,289
black, 117,131
block, 51,58-65,97,195,199-200

arguments of, 61,188-189,199-200
as argument, 97,200,201,226
execution, 97,200
exit, 200
invoking, 189
sort, 230

blocked process, 258-259
Boolean, 79-80,201

expressions, 8,59,201
border, window 26,263
breakpoints, 115,307

adding, 308
removing, 308

browse classes function, 32,44,79
browse disk function, 32,43,293
browse function, 301
browsers, 43,164,178,268,293
browsing, 43-44

a class, 301-303
classes, 44,69,297-301
directories, 293,294-295
disk, 32,43,293-297
files, 295-296
lists, 43,231
methods, 300,302

Bs, 280
buffered files, 217
button, 26-27

close, 27,33,47,140,142,266
collapse, 27,267
hop, 115,307

jump, 115,307
resize, 27-28,32,33,267
skip, 115,307
zoom, 27,39,178,267

buttons, mouse, 25,263
byte instance variables, 188,193-194
ByteArray, 223,228
cancel function, 277
caret, 9,52,64,72,198,200
carriage return, 63
cascaded messages, 50,198,199
change log,

277,280,282-283,284,285,296,299,300
and saving the image, 282,286
compressing, 277,284,285
format of, 282-283,286,296

change: message,
159,178,233-234,235-236

changed: message, 149,236
changes, logging,

282-283,284,285,299,300
changing,

shape of pen, 131,252
system font, 298
the cursor, 144,291

Character, 196-197,204-205
character literals, 196,197,204
CharacterConstants, 278,280-281
CharacterScanner,

121,130-131,220,250-251,289
class, 13,67,69,75,189-194,278

abstract, 79
application, 230-237
changing definition, 179,299
definition,

69,89,99,193-194,296,299
hierarchy, 15-17,79-80,190-191,297
instances of, 13,67,187
messages, 192-193
methods, 89,194,298,300-301,302
names, 278
pane, 89
pool for, 189
protocol, 194

Index 549

selecting, 298
variables, 75,189,192,193,299

inheritance of, 192
Class Browser window,

231-237,264,301-303
Glass Hierarchy Browser,

32,35,44,69-70,72,79-80,171,193,293,
297-301

class message, 187
classes,

adding,
88,92-93,99,193-194,298-299

browsing, 44,69,297-301
defining, 14,81,172,193-194,299
filing out, 298
identifying application, 155,157
removing, 298,299-300
specifying, 193-194

classifying objects, 67
click, 264

double, 38,79,272,293,307
clipping rectangle, 129,245,247-248,250
cloning, 287
close button, 27,33,47,140,142,266
close message, 217
closing a window,

27,33,140,142,266,268
coprocessor, 48,210
code, recycling, 162,165-175

through borrowing existing code,
165-166,171-176

through inheritance, 165-170
collapse button, 27,267
collapsing a window, 27,267,268
collect: message, 64,96,226
collecting garbage,

9-10,17-18,287,299-300,499,502
Collection, 86,94-96,98-106,222-230

attributes of, 223
class hierarchy, 174
common protocol, 222,225-226
conversions, 224
creating instance of, 224
emumerating messages, 226

fixed sized, 224,228-229
variable sized, 224,228,229-230

color, background, 122,130,250
color, foreground, 122,130,250
color of a pen, 131,132
ColorForm,

120,121-123,124,241,244,247,255
ColorScreen,

121,122-123,241,244,247,255
combination rule, 125-129,245,246,247
ComEvent, 165-170
comma, 49
command line, 500,505-508
command templates, 276
C0MMAND.COM, 288-289
Commander, 135,254
comments, 53,174,197,276
comparing messages, 57,58,203,204,206
compatibleForm message, 255
compatibleMask message, 255
compilation errors, 40-41,276,300
compiling methods, 70,300,301
compressChanges message, 280,284
compressing,

the change log, 277,284,285
the source file, 280,284-285

compressSources message, 280,285
computing letter pair frequencies, 98
concatenation, 49
conditional execution, 8,58-59,201
conditional expressions, 57
configuring,

memory, 505-507
Smalltalk/V, 505-508

contents message, 92,212,213
continue function, 275
continuous scrolling, 38,270
control structures, 57-65,200-201
control-break, 111,305,306
converting files, 218
copy function, 295
copy text, 30,72,171,273-274
Cr, 218,281
cr message, 140,215

550 Index

create function, 295
creating,

cursor shape, 292
directories, 218,295
file streams, 217
forms, 120,244-245
instances, 89
menus,

143-144,175,233-234,236-237
methods, 70,72,300,302-303
objects, 70,192
panes, 233-235
points, 117,208,241-242
processes, 256,258
rectangles, 118,243
streams, 91,212

CurrentEvent, 219,278
CurrentProcess, 278
Cursor, 278,291
cursor, 25,144,263,278,290-292

arrow keys, 263
changing, 144,291
displaying, 291-292
hiding, 291
hot spot, 292
hour glass, 144,290,291
moving, 25,263
shapes, 290-292

creating, 292
prebuilt, 291

CursorManager, 290-292
cut text, 30,273-274
cycle windows function, 30,265,268
cycling,

panes, 265
windows, 265,268

data abstraction, 14
data structures, 14,189,222

recursive, 87
Date, 70-71,205-207
deactivating a window, 30,32,264
dead process, 258-259
debug function, 111,112,306

debugger window,
36,111-115,293,304,306-308

label bar, 115,306-307
debugging, 107-116,259,304-308

adding breakpoints, 308
removing breakpoints, 308
restarting execution,

113,114,307-308
resuming execution,

111,306,307-308
stepping through execution, 115,307

defining classes, 14,81,172,193-194,299
Del, 281
deleting text, 39,273
DemoClass, 74-75
demonstration program, 30-31,73-74
Dependents, 179
deselect text, 37,272
destination,

bits, 246,247
form, 121-123,129,245,247,248
rectangle, 129,245,248

detect: message, 226
device driver interrupts, 261
Dictionary, 94-95,165,176-177,223,227
dictionary,

pool, 167,189,193,227,280-281,299
system, 189,277-281

dictionary inspector, 95,177,178,304
Directory, 216,217,218-219
directory,

contents of, 296-297
browsing, 293,294-295
creating, 218,295
selecting, 294
Smalltalk, 11

disasters, 285-287
discrete event simulation, 257
Disk, 53,217,218,278
disk, free space, 294
Disk Browser, 32,34,43,44,293-297

label bar, 294
disk devices, 218
DiskA, 218

Index 551

DiskB, 218
Dispatcher,

129,221,230,231-232,236,237,238-239
classes, 231,238

DispatchManager, 141,239-240
Display, 121,244,250,252,255,278
displayable bitmapped shapes, 250
displaying,

forms, 120,168-170
strings, 250-251
the cursor, 291-292

DisplayMedium, 224
DisplayObject, 224
DisplayS creen,

120-121,123,241,244,255
do it, 30,40,276,295
do: message, 62-63,213
document retrieval system, 107
doesNotUnderstand: message,

114,181,285
doing, 276
DOS,

command processor, 288
exit command, 288
File System, 216-219
menu, 288
memory, 506
reserving space for, 288,500
shell, 288-289,500

dos shell function, 288
double click, 38,79,272,293,307
dragon, 135
drawing, 253

lines, 249
the window, 155,156

driver, mouse, 290
edit message, 301
editing,

files, 295-296
text, 271-274,276

eightLine message, 289
enablelnterrupts: message, 260
encapsulation of code and data, 13-14,17
Encyclopedia of Classs, 178

environment, 18,21-44
equality, 57,87-88,228
equivalence, 87-88,228
erase rule, 125-126,247
error recovery, 285-287
errors,

compilation, 40-41,276,300
runtime, 6,41-42,304-308

Esc, 281
evaluating an expression, 40,275-277
evaluation order, 8,48,49,198,199,207
events, reading, 219-220
example.prm file, 503
executeCommands: message, 288
execution state, 115
exiting,

a block, 200
a menu, 29,265
Smalltalk/V, 24-25,67,275

expressions, 194,198-199
assignment, 7,52,187
binary, 199
boolean, 8,59,201
classes in, 189
conditional, 57
evaluation of, 40,275-277
keyword, 199
message, 194,198-199
nesting of, 59
return, 9,52,59,175
series of, 7,49-50,200
unary, 199

extend selection, 271
extended memory, 506
factorial message, 46,49
factorial method, 71
false, 57-60,63,201
far call, 503
Ff, 281
Fibonacci method, 72
Fibonacci number, 72
File, 216,217,219
file out function, 298

552 Index

file streams, 109,216,217-218,219
accessing, 217
buffered, 217
converting, 218
creating, 217
iterating across, 62-63

FileHandle, 216,219,249
files,

browsing, 295-296
editing, 295-296
installing, 81-82
selecting, 295

FileStream, 91,216
filing out classes, 298
fixdptrs.usr file, 499
FixedSizeCollection, 223,228-229
Float, 196,207,210
floating point arithmetic, 48,210
flush message, 217
Font, 130,250,289-290
forget image function, 25,275,286
forgetting the image, 25,275,284,286
foreground color, 122,130,250
fork message, 256,257-258
fork At: message, 256,257-258

creation, 120,244-245
device type, 244
displaying, 120,168-170
messages, 197-198

form,
destination,

121-123,129,245,247,248
mask, 124-125,245,247,248
source, 121-123,129,247-248

format a floppy disk, 288
formating of code, 50,51
fourteenLine message, 289
Fraction, 68,69-70,196,207-210
frame function 30,33,268
framing windows, 267,268
framingBlock: message, 233-234
framingRatio: message, 147-148,159

free space on disk, 294
function, 49

call, 46
definition, 68
name, 46
parameter 46

function keys, 220,221,278,281
FunctionKey, 220,221,278,281
FunctionPrefix, 281
garbage collection,

9-10,17-18,287,299-300,499,502
generalized iterators, 62-65
generic code, 79,85,96,204
global variables,

52-53,75,84-85,94,189,194,278,280
creating, 84-85,94

go file, 23,500
grab and pull, 270
graph panes, 147,268
graphic classes, 117-138,241-256
graphical program, 53-54
graphics, 103-138,241
graphics controllers supported, 2,22-23
GraphPane, 164,231,238
halftone form, 124-125,245,247,248
halt message, 111,303,304
hard disk, 21-23
hide/show function,

79-80,82,283,295,298
hiding a menu, 29,265
hiding the cursor, 291
hop button, 115,307
hot spot, 292
hourglass cursor, 144,290,291
I-beam, 25,37,39,271
identifier, 195
IdentityDictionary, 223,228
if statements, 8,58-59
if messages, 58-59,72,201
image, 274-275,283,286

file, 18,274,275,282-287
forgetting, 25,275,284,286
saving,

18,25,67,274-275,283-284,286,287

Index 553

Image diskette, 2,21-22
implementors function, 301,302,307-308
implementors window, 308-309
implementorsOf: message, 280
includes: message, 95,225
includesKey: message, 94
indexed instance variables,

71,76,140,188,193-194,303
IndexedCollection, 87,223,228
indexOfCollection: method, 86,88
indexOfString: method, 72-73,86
information hiding, 13-14,68
inheritance, 17,79-90,165-170,190,192

of class variables, 192
of instance variables, 81-82,192
of methods, 83-84,192

inject: message, 226
InputEvent, 219-220
inserting text, 39,271-272
insertion point, 25,37,39,271
inspect function, 177,304,307
inspect message, 75-76,178,303
inspecting dictionaries, 95,177,178,304
Inspector,

35,75-76,95,113,178,293,303-304
install function, 286-287,296
installation program, 23
installing,

a file, 81-82
methods, 286-287,296,300,301
Smalltalk/V, 21-23

instance, 13,67,187
instance pane, 89,99
instance methods, 194,300,301-302
instance variables,

13,67,68,71,81-82,157,187,188,192,
193,299,303

byte, 188,193-194
indexed,

71,76,140,188,193-194,303
inheritance of, 81-82,192
named, 71,76,188,193-194,303
pointer, 188,193-194

instances, creating, 188

instances, lost, 179
instances, removing, 179,300
Integer, 196,207,210
interrupt service routines, 502-503
interrupts, 260-261

device driver, 261
predefined events, 261

Interrupts electors, 261
Interval, 208,223,228,229
interval creation, 208
invoking user primitives, 504
isEmpty message, 214,215,225
iteration, 9,61-65,200,201
iterative statements, 9,61-65
iterators, generalized, 62-65
iterators, simple, 61
jump button, 115,307
keyboard,

input, 219,230,238
scan codes, 220
using the, 26,29,37-39,263

KeyboardSemaphore, 219,259,279
keypad, 25,27,28,29,263-264
keys message, 280
keyword expression, 199
keyword messages, 47,49,198-199
label bar,

26-28,32,33,39,40,47,115,238,263,264,
266-267,294,307

label bar, Disk Browser 294
label function, 268
label: message, 233-234
LabelFont, 289
LargeNegativelnteger, 210

precision of, 210
LargePositivelnteger, 210

precision of, 210
letter pair frequencies, 98
Lf, 218,281
line delimiters, 217-218
line drawing, 249
line feed, 63
list panes, 112,147,268,294
ListFont, 289

554 Index

ListPane, 164,178,231,238
lists,

browsing, 43,231
scrolling, 38-39,43,269-270

literals, 194,196-198,204
arrays, 45,88,198,223,224
characters, 196,197,204
numbers, 196,207-210
strings, 41,45,196,224
symbols, 197-198,224

loadPrimitivesFrom: message, 500
loading primitives, 500
logging of changes,

282-283,284,285,299,300
Logitech mouse, 290
looping messages, 50-51,60,201
lost instances, 179
macros, 500-502
Magnitude, 15,85,203-204
Magnitude class hierarchy, 203
magnitude classes, 15,203-210
maintaining Smalltalk/V, 281-287
mandala method, 132
mask bits, 246
mask form, 124-125,245,247,248
max: message, 85
memory,

available, 277
configuring, 505-507
DOS, 506
extended, 506

menu: message, 143,159,233-234
menus,

28-31,143-144,164,175,236-237,
265-266

creating,
143-144,175,233-234,236-237

designing, 156,164
DOS, 288
exiting, 29,265
hiding, 29,265
modifying, 74
pane,

28,29,30,143-144,159,236-237,266

pop-up, 26,29,265-266
selecting from, 24,29,265
system,

24,29,30,32,34,43-44,74,265
window, 27,29,30,238,265-266,277

message, 13,45-55,194-195,198-201
arguments, 7,8,46,47,48,68,195
expressions, 194,198-199
lookup, 83,192
names, 8
pattern, 200
protocol, 85,189
result, 52,195
selector, 13,46,47,48,195,305
send, 115
separator, 50

messages, 13,45-55,194-195,198-201
arithmetic, 48,199,203,207
binary, 48-49,198-199,207
cascaded, 50,198,199
class, 192-193
evaluation order, 8,48,198,199,207
keyword, 47,49,198-199
looping, 50,51,60,201
messages inside of, 49
ordering, 57,58,203,204-207
sending, 7,13,195
simple, 46
unary, 47,49,198-199

metaclass, 192-193
metalanguage definition, 195,491
Method Browser,

280,293,300,301,308-309
Method Index, 178
method, 13,68-74,194-201

arguments, 68,113,188-189
implementation, 155,159-160
inheritance, 83-84,192
lookup, 83,192
name, 68,195
primitive, 200,495-504
result, 9,52,59,72
selector, 200
source code, 69

Index 555

specification, 200
template, 89,300
temporaries, 172,188,195
walkback, 112,113,305-306,307

methods, 13,68-74,189,194-201
adding, 70,72,300,302-303
browsing, 300,302
class, 89,194,298,300,301-302
compiling, 70,300,301
generic, 79,85,96,204
installing, 286-287,296,300,301
instance, 194,300,301-302
interim versions of, 175
modifying, 301,302-303
reinstalling, 282,284,286
removing, 300,302
selecting, 300,302

Microsoft mouse, 290
mixed mode arithmetic, 207,208
mode function, 295
model class,

142,157-159,163-165,171-181,231-232,
233-237

model,
pane, 142,159
state* transition, 161-162
super, 140

model: message, 142,159,233-234
modifying methods, 301,302-303
MonitoredArray, 88-90
mouse,

buttons, 25,263
driver, 290
input, 219,230,238
using 2,24,25,29,37-39,272

MouseButton, 281
MouseEvent, 220,221
moving a window, 33,267
moving the cursor, 25,263
multi-pane windows,

145-154,171-176,178-181
multi-windowed application, 240
multiprocessing classes, 256-261
name: message, 142,159,178,233-234

named instance variable,
71,76,188,193-194,303

names,
class, 278
message, 8
method, 68,195
path, 216
user-primitive, 503
variable, 7,187,194,195

nested data structures, 88
nested expressions, 59
Network, 102-106,134,164,165,166
NetworkNodes,

102,104-106,133-134,164,166-170
new message, 192,224
new method function,

70,72,89,168,171,300
new: message, 188,192,224,228
next message, 60,212,213,215
next: message, 214
next:put: message, 215
nextPut: message,

60,92,212,213,215,221
nextPutAll: message, 92,213,218
nib, 252
nil, 70,138
nodes, network,

102,104-106,133-134,166
NoMouseCursor, 290
Number, 207-210,229
number radix, 196
numbers, 196,207-210
numeric,

classes, 196,207-210
functions, 209-210
keypad, 25,27,28,263-264
messages, 207-210
precision, 210

numerical methods, 207-210
Object, 15,79-80,83,190-191,236,297
object,

checking class of, 499
creation, 70,192
displaying, 71

556 Index

header, 499
interface list construction, 155,158
pointers, 188-189,195,210,499
state, 51,155,157,188
state description, 155,157

object.usr file, 499
object-oriented development, 155-161
objects,

13,14,45-46,51,187189,274,287
classifying, 67

occurrencesOf: message, 225
on: message, 91,212
opaque rule, 127-128
opening a window, 32,266
operator precedence, 48,49,198,199,207
or: message, 59,201
or rule, 125-126,128,246,247
order of evaluaton, 8,48,49,198,199,207
OrderedCollection, 223,229
ordering messages, 57,58,203,204-207
orThru rule, 125-127,247
over rule, 125-127,247
pane,

26,28,140143,145-148,230-237,238
changing contents of, 235-236,240
class hierarchy, 230,231,238
clean up, 149
creation, 233-235
cycling, 265
initialization, 142,235
menu,

28,29,30,143-144,159,236-237,266
creating, 143,236-237

model, 142,159
position, 147-148,159
reinitialization, 149
size, 147-148,159
synchronization, 179,231,235-236

panes, 263,268-270
defining new, 231
graph, 147,268
list, 112,147,268,294
text, 147,268,275,294

parallel processing, 256

parentheses, 8,48,57,199
Pascal, 6-11
pasting text, 30,39,72,171,273-274
path names, 216
path name messages, 216
Pattern, 97
pattern matching, 72-73,86,97
PC mouse, 290
peek message, 214-215
peekFor: message, 214-215
Pen,

70-71,121,131-134,135-136,251-254
changing shape, 131,252
color of, 131,252
creation of, 70-71,252
drawing with, 253
messages, 252-253

PendingEvents, 259
period separator, 50,198
Point, 117-118,208,241-242

arithmetic, 118,242
comparing, 118
creation, 117,208,241-242
messages, 241-242

pointer instance variables, 188,193-194
pointers, object, 188-189,195,210,499
polygon flower, 53-54,73-74
polymorphism, 15,85-88
pool dictionaries,

167,189,193,277,280-281,299
pool variables, 189
pop up menu, 26,29,265-266
position message, 92,213,215
position: message, 92,213
prebuilt cursor shapes, 291
precedence, operator, 8,48,198,199,207
precision, numeric, 210
primitive number, 200,495
primitive number assignments, 495-498
primitive methods, 200,495-504

accessing objects within, 499
invoking, 504
loading, 500
macros for writing, 500-502

Index 557

names, 503
reserving space for, 500
Smalltalk/V 286,495-498
user-defined, 499-504

primitive modules,
constructing, 503-504

primitive: message, 495
PrinterStream, 92-94
print function, 295
printOn: message, 216
printOn: method, 216
printString message, 15,211
printString method, 211-212
priority of processes, 256,258,260
private variables, 187,195
problem statement, 155-156,162
Process, 183,256,257,258,260
process priority, 256,258,260
process state transitions, 258-259
process,

active, 258-259,260
blocked, 258-259
created, 256,258
dead, 258-259
forking, 256,258
ready, 258-259,260
signal, 257-258,259
user interface, 259
wait, 257-258

processing, parallel, 256
processFunctionKey: method, 221
Processor, 259,279
ProcessScheduler, 257,259-260
Prolog, 183
Prompter,

11,42,74,139,239,276-277,299
prompting for input, 239
protocol, class 194
protocol, message 85,189
purging unused symbols, 287
queue operations, 229
Quick Tour-windows and menus, 33-36
radix, 196
random access, 216

rational arithmetic, 48,207,208-210
rational numbers, 210
read it function, 117,296
reading,

events, 219-220
streams, 213-215

reading streams, 213-215
ReadStream, 91-92,212-215
ReadWriteStream, 91,216,220
ready process, 258-259,260

recovery from crash, 281,285-287
Rectangle,

117,118-119,216,241,242-243
messages, 216,243

rectangle,
destination, 129,245,248
source, 121,129,245,247

rectangles, creation of, 118,243
recursion, 71-72,103-104
recursive data structures, 71,87-88
recycling code, 165-175

through borrowing existing code,
165-166,171-176

through inheritance, 165-170
redraw screen function, 50,117
reinitialize message, 179
reinstalling methods, 282,284,286
reject: message, 63,64-65,96,226
relational operators, 58
remove breakpoint function, 307,308
remove class function, 298,299
remove function, 294,295,300,304
remove: message, 225
removeAll: message, 225
removing,

breakpoints, 308
classes, 299-300
instances, 300
methods, 300,302

removeKey: message, 280
rename function, 295
replacing text, 273

558 Index

requesting input, 277
reserving space, 500
reset message, 213
resize button, 27-28,32,33,267
resizing a window,

15,27-28,30,33,267,268
restart cpu, 507-508
restart execution, 113,114,307-308
restore function, 273,304
restoring text, 273
resume execution, 111,306,307-308
return expressions, 9,52,59,175
return key, 21-22,42,139,271,277
reusing code, 162,165-170
reusing text, 37,43,276
reverse rule, 125-126,128-129,247
run demo function, 30-31
runtime errors, 6,41-42,304-308
SalesCom, 162-183
sample.sml file, 276
save function,

70,76,89,113,172,177,304,307
save as function, 296
save image function, 275
saving text, 273
saving the image,

18,25,67,274-275,283-284,286,287
scan codes, 220
scanning input, 211
Scheduler, 141,239,279
scheduling windows, 141,239
screen, 244,264
screen aspect ratio,

132-133,253-254,278
ScreenDispatcher, 288
scroll bar, 28,38,269,270
scroll cursor, 28,38,269,270
scrolling lists, 38-39,43,269-270
scrolling,

continuous, 38,270
grab and pull, 270
horizontal, 38,269
pause, 270
quick jump, 269,270

resume, 270
speed of, 264,270
terminate, 270
vertical, 38,269
with keyboard, 38,269-270
with mouse, 269,270

select: message, 63,64,96,226
select: method, 96
select key, 263,264,265,271
selecting,

a class, 298
a directory, 294
a file, 295
a menu item, 24,29,265
a window, 264
from a list, 43
large pieces of text, 39
methods, 300,302

selecting text, 37-38,271-273
draw through, 272
single characters, 272
single lines, 38,273
single words, 38,272
using the keyboard, 37-38,271-272
using the mouse, 37,272

selector,
message, 13,46,47,48,195,305
method, 200

self, 70,84,187,192,260,303,305,307
Semaphore, 183,219,256,257-258
semi-colon separator, 50,199
send, message, 115
senders function, 300,302,307-309
senders window, 308-309
sendersOf: message, 280
sending messages, 7,13,195
separator,

message, 50
period, 50
semi-colon, 50

series of expressions, 7,49-50,200
series of statements, 7,49-50
Set, 96,222,223,227
setLoc message, 281

Index 559

shared variables,
75,187,188,189,193,195

shell, DOS, 288-289
shift key, 263
show it function,

30,40,46,53,139,276,295
showing, 276
shutdown, hardware 507-508
shutdown, software, 507-508
signal message, 257,260
signalling a process, 257-258,259
simple,

iterators, 61
loops, 50-51,60
messages, 47
objects, 45-46

simulation, discrete event, 257
single pane window, 140,141-145
size message, 188,228
skip button, 115,307
skip: message, 213,215
skipTo: message, 214-215
Smalllnteger, 210,228

range of, 210
Smalltalk, 189,277,278,279,500

directory, 11
expressions, 194,198-199
methodology, 188
vs conventional languages, 6-11

Smalltalk/V,
backing up, 284,285,286
configuring, 505-508
exiting, 24-25,67,275
installing, 21-23
maintaining, 281-287
starting up, 23-24
syntax summary, 491-494

smaltalk.bat, 288
sort blocks, 230
SortedCollection, 17,98,223,230
sorting, 230
source bits, 246,247
Source diskette, 2,21-22

source file, 18,280,282,284-285
compressing, 280,284-285

source form, 121-123,129,247-248
source rectangle, 121,129,245,247
Sources, 279
Space, 281
space/speed function, 508
space message, 215
space mode, 508
specifying classes, 193-194
speed/space function, 508
speed mode, 508
stack operations, 229
starting up Smalltalk/V, 23-24
state,

execution 115
object, 51,155,157,158

state transition model, 161-162
statement separator, 7
statements,

assignment, 7,52,53
if, 8,58-59
iterative, 9,61-65
series of, 7,49-50

states, application, 233
stating the problem, 155-156
Stream, 91-94,212-216

class hierarchy, 91,211
protocol, 213-216

streams, 91-94,212-216
accessing, 211,213
creating, 91,212
growing, 211
positioning, 92,211,213-215
random access, 211
reading, 213-215
testing for end of, 213
writing, 215-216

String,
72,94,196,211-212,222,223,224,228

string literals, 41,45,196,224
StringModel, 231
strings, displaying, 250-251
strings, iterate, 62

560 Index

subclass, 17,79-81,88,190-193
subclass class type, 92,193-194
SubPane, 231,238
subscripted variable access, 8
super, 84,192
super model, 240
superclass,

79-80,81,83,84,86,88,190-193,299,305
Symbol, 196,197-198,223,224,228,287
symbols, 197-198,224
symbols, unused, 287
syntax summary, Smalltalk, 491-494
SysFont, 279,289
system dictionary, 189,277-281
system menu, 24,29,30,32,34,43-44,265
SystemDictionary, 277,281,500
System Transcript,

34,53,84,94,179,216,264,279
Tab, 281
tab key, 271
tab message, 215
template, method, 89,300
temporary variables,

51-52,113,172,188,195,200
Terminal, 220,279
terminal input and output, 219-222
TerminalStream, 91,219-221,264
testing messages,

58,203,204-205,208-209
text,

copying, 30,72,171,273-274
cutting, 30,273-274
deleting, 39,273
deselecting, 37,272
edit buffer, 273-274
editing, 271-274,276
editor, 69,76,271-274,277
inserting, 39,271-272
pasting, 30,39,72,171,273-274
replacing, 273
restoring, 273
reusing, 37,43,276
saving, 273
selecting, 37,38,271-273

text insertion point, 25,37,39,271
text pane zoom, 27,39-40,178,267
text panes, 147,268,275,294
TextEditor, 140
TextFont, 289
TextPane, 140,164,177,178,231,238
Time, 70-71,205-207
timesRepeat: message, 60
tips, application development,

164,172,174,175,178,179,181,183-184
to dos function, 288
TopDispatcher, 238,239
TopPane, 141,231,238
Transcript,

34,53,84,94,179,216,264,279
true, 57-60,63,201
Turtle, 50-51,53,55,60
turtle graphics, 131,251-253
tutorial files, 44
unary expression, 199
unary message, 47,49,198-199
UndefinedObject, 70
under rule, 125-126,247
unused symbols, 287
unusedMemory method, 280
update function, 82,93,108,294,298
UpperToLower, 281
upTo: message, 214-215,218
user-defined primitives,
user interface process, 259

and debugging, 259
value messages, 97,188-189,200,201
variable names, 7,187,194,195
variableByteSubclass class type, 193-194
variablesubclass class type, 89,193-194
variable types, 187-188
variables, 15,187-189,195

class, 75,189,192,193,299
global,

52-53,75,84-85,94,189,194,278,
280

indexed instance,
71,76,140,188,193-194,303

Index 561

instance,
13,67,68,71,81,82,157,187,188,
192,193,299,303

kinds of, 187-188
named instance,

71,76,188,193-194,303
pool, 189
private, 187,195
self,

70,84,187,192,260,303,305,307
shared, 75,187,188,189,193,195
super, 84,192
temporary,

51-52,113,172,188,195,200
video adapters supported, 22-23
wait message, 257,259
walkback list, 112,113,305-306
walkback window,

36,41-42,46-48,51,83,110-112,173,179,
293,304-306

walkback, method, 112,113,305-306,307
while messages, 9,60,73,201
white, 117,131
window, 26-28,230-240

border, 26,263
button, 26-27
classes, 230-240
default size, 146,148
label bar,

26-28,32,33,39,40,47,115,238,
263,264,266-267,294,307

menu, 27,29,30,238,265-266,277
size, 146,148

windows, 26-28,139-154
activating, 30,32,264
active, 30,32,264
closing of, 27,33,140,142,266,268
collapsing, 27,267,268
cycling of, 265,268
deactivating, 30,32,264
debugger,

36,112-115,293,304,306-308
drawing, 155,156
framing, 267,268

labeling, 268
moving, 33,267
multi-pane,

145-154,171-176,178-181
multiple in application, 240
opening, 32,266
resizing, 15,27-28,30,33,267,268
scheduling, 141,239
selecting, 264
single-pane, 140,141-145
walkback,

36,41-42,46-48,51,83,110-112,
173,179,293,304

Wordlndex, 107-110
Workspace, 263,266
WriteStream, 91-93,211-213,215
writing streams, 215-216
zoom button, 27,39,178,267
zooming of text pane, 27,39-40,178,267

