
TEMPLATE M ETHOD (DP 325) Object Behavioral

Intent

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. Template
Method lets subclasses redefine certain steps of an algorithm without changing the algorithm’s
structure.

Structure

Description

Template Method may be #1 on the Design Patterns Pop Charts. Its structure and use are at the heart
of much of object-oriented programming. Template Method turns on the fundamental object-oriented
concept of inheritance. It relies on defining classes that differ only slightly from an existing class. It
does this by relying on the ability of classes to provide for new behavior by overriding inherited
methods.

The key to the Template Method pattern is a method that implements a broad message in terms of
several narrower messages in the same receiver. The broader method, a Template Method, is
implemented in a superclass and the narrower methods, Primitive Methods, are implemented in that
class or its subclasses. The Template Method defines a general algorithm and the Primitive Methods
specify the details. This way, when a subclass wants to use the algorithm but wishes to change some
of the details, it can override the specific Primitive Methods without having to override the entire
Template Method as well.

Reuse through Inheritance

Code and attribute sharing through inheritance is one of the most maligned techniques in object-
oriented programming. It is deceptively easy to use, but often difficult to use well. Some authorities
have dismissed implementation inheritance as confusing and unnecessary. As early as the first
OOPSLA, papers have documented potential problems with inheritance (e.g., Snyder, 1986). The
object-oriented language SELF (Ungar & Smith, 1987) does not even support class inheritance;
instead, it uses object composition exclusively. Design Patterns advocates favoring object composition
over class inheritance (pages 18-21). Many patterns transform code that relies on class inheritance to
use object composition instead: State, Strategy, Decorator, Bridge, and Abstract Factory are a few of
them.

Nevertheless, inheritance is a fundamental feature of most object-oriented languages, including
Smalltalk. Good class hierarchies allow for reuse of abstraction, design, and implementation. Because

templateMethod

AbstractClass

ConcreteClassA

primitiveMethod2
primitiveMethod1

primitiveMethod1
primitiveMethod2

...
self primitiveMethod1.
...
self primitiveMethod2.
...

ConcreteClassB

primitiveMethod1
primitiveMethod2

ConcreteClassC

primitiveMethod2

of inheritance, these hierarchies are easier to understand, maintain, and extend, and their classes are
much more reusable. We can define new classes which differ slightly from existing classes by
specializing those existing classes rather than starting from scratch. Even as Design Patterns shows
poor examples of inheritance that work better as composition, it still advocates using inheritance to
define and implement interfaces (pages 14-18). Most of the patterns feature at least one class
hierarchy with an abstract class at the top that defines an interface and several concrete subclasses
that implement it: Adapter’s Target hierarchy, Composite’s Component hierarchy, State’s State
hierarchy, etc.

The Template Method pattern encourages proper use of inheritance. The pattern can also be very
helpful for refactoring related classes that share common behavior (DP 326). The key to factoring for
reuse is to separate the stuff that changes from the stuff that doesn’t, and Template Method
encourages this by factoring the reusable code into the superclass and the specifics that can change
into the subclasses.

How Template Method Works

Abstract classes and the Template Method pattern go very much hand-in-hand. An abstract class is a
superclass that defines the behavior of the classes in its hierarchy while deferring the implementation
details to its subclasses. The superclass is abstract because it does not implement all of the behavior it
defines. The subclasses are concrete because each one implements all of the behavior, either by
inheriting it from its superclasses or implementing the behavior itself.

Template Method is the same technique at the method level instead of the class level. Here is what a
Template Method generally looks like:

AbstractClass>>algorithmA
self

algorithmAStep1;
algorithmAStep2;
algorithmAStep3

The class defines a method, such as algorithmA , for each unit of behavior that it can perform. But
the method does not do much work; instead, it provides a template listing the steps to be performed,
but delegates each of the steps back to the receiver (self). In this way, the Template Method gets to
decide what steps are done, but the receiver gets to decide how each step is done. This separates the
steps which must be performed from how they are performed.

The beauty is that not only can the abstract class define how each of these steps is done, but each
concrete subclass has the opportunity to override each of these decisions. If a concrete class generally
likes the way algorithmA works, but doesn’t like the way algorithmAStep2 works, it can
subimplement (override) algorithmAStep2 without changing algorithmA or the superclass’
implementation of steps 1 and 3. This allows the subclass to override just the parts that it needs to
while inheriting the rest, which minimizes the amount of code each subclass must implement itself
and emphasizes the subclass’ differences with its superclass.

Types of Methods

There are four types of methods which the abstract class may implement: template, concrete, abstract,
and hook (DP 327-328). The last three are types of Primitive Methods.

1. Template. A Template Method is one in the abstract class that combines concrete, abstract,
and/or hook methods together into an algorithm. Subclasses usually inherit it unchanged,
although they may subimplement the methods invoked therein—this is the heart of the Template
Method pattern.

2. Concrete. A Concrete Method is one that the abstract class defines and that subclasses do not
subimplement.

3. Abstract. An Abstract Method is one in the abstract class that “declares” a message but defers its
implementation to the subclasses. Each subclass must subimplement the abstract methods it
inherits. (Design Patterns refers to these as “Primitive operations.” This should not be confused
with a “primitive” in Smalltalk, which is a different concept entirely.)

4. Hook. A Hook Method is one in the abstract class that declares a message’s behavior and
provides a default implementation for it. Sometimes the default is simply to do nothing.
Subclasses may subimplement the method to change this default.

Design Patterns also lists a fifth type, Factory Method, but this is really just a special case of a
concrete or hook method (see Factory Method).

It is usually easy to identify which methods ought to be concrete. It is more difficult to determine
which methods will be abstract and which will be hooks. The question you need to ask here is: Is
there a reasonable default implementation for this method? If so, the abstract class’ implementation
should be a hook method. If not, the method will be abstract.

According to Design Patterns (page 329), one design goal is to minimize the number of primitive
operations that subclasses must override. One way to reduce the number of primitive operations
(abstract methods) is to implement those messages as hook methods instead. An abstract method
forces a developer implementing a subclass to override the method. On the other hand, he can choose
to inherit a hook method unchanged. In this way, hook methods make subclassing easier than abstract
methods.

A potential problem with using a hook method rather than an abstract one is that it is may not be
obvious to the subclass developer that the method is a candidate for overriding. Only class or method
documentation provides this level of information. If a subclass developer forgets to override an
abstract method, he will discover his mistake when he runs the code and gets a walkback from a
subclassResponsibility error. But, should he inadvertently inherit inappropriate behavior
from a hook method, his code will run, but not necessarily correctly.

A “Do Nothing” Hook

As mentioned above, a hook method defined in an superclass must provide a reasonable default of an
operation for its subclasses. A special case of a reasonable default is an implementation of the method
that does nothing, that is, only returns self . This sort of “do nothing” method is often useful when
there is the potential for an operation to occur, but not all subclasses may need that operation. Two
examples of this sort of method are VisualWorks’ ApplicationModel>>preBuildWith: and
postBuildWith: methods. These methods provide hooks for those ApplicationModel
subclasses that need to modify the behavior of UI widgets at two different points in the UI building
process. However, ApplicationModel itself does not need to do anything at either stage, so it
implements the messages to do nothing. This default behavior is appropriate for most subclasses as
well.

Another example of this, from IBM Smalltalk, is Class>>initialize . Not all classes need
initialization, so the default implementation is to do nothing—this makes it possible to safely use
super initialize in any class’s initialization method. By the way, this is something you should
not do in class methods in VisualWorks; in VisualWorks, Object class>>initialize has the
undesirable side effect of removing all dependents!

Another example is Stream>>close in VisualWorks and Visual Smalltalk. It is often useful to
have clients be unaware of what kind of stream they are using, be it on an internal collection or an
external object (like a socket or file handle). Thus, the default implementation of close is to do
nothing. External stream subclasses redefine this method to clean up external resources.

Designing and Refactoring Hierarchies

When you are refactoring, or initially designing, a hierarchy for reuse, it is often beneficial to move
behavior up the hierarchy and state down the hierarchy. Auer (1995) describes this process in four
heuristic patterns:

1. Define Classes by Behavior, not State. Initially implement a class to define its behavior without
regard to its structure.

2. Implement Behavior with Abstract State. Implement behavior that needs state information to
access that state indirectly through messages rather than referencing the state variables directly.

3. Identify Message Layers. Implement a class’ behavior through a small set of kernel methods that
can easily be subimplemented in subclasses.

4. Defer Identification of State Variables. The abstract state messages become kernel methods that
require state variables. Rather than declaring those variables in the superclass, declare them in a
subclass and defer the kernel methods’ implementation to the subclass.

This process develops a hierarchy that separates interface from implementation. A superclass
abstractly defines the hierarchy’s behavior and one or more subclasses implement it. The superclass is
easy to subclass because it uses kernel methods and because it does not force subclasses to inherit state
that they may not need.

This process leads to Template Methods and primitive methods. The primitive methods are what
Auer’s patterns call kernel methods. The Template Methods are the layers that use the kernel
methods. What these patterns also show is that Template Method can be nested; each message layer
has its own template/primitive relationship. The primitive messages that a Template Message sends
can themselves be Template Methods that send other primitive messages.

Here’s an example of nested Template Methods from the Collection hierarchy in VisualWorks:

Collection>>removeAll: aCollection
"Remove each element of aCollection from the receiver.
 ..."

aCollection do: [:each | self remove: each].
^aCollection

Collection>>remove: oldObject
"Remove oldObject as one of the receiver's elements. ..."

^self remove: oldObject ifAbsent: [self notFoundError]

Collection>>remove: oldObject ifAbsent: anExceptionBlock
"Remove oldObject as one of the receiver's elements. ..."

self subclassResponsibility

When a Collection receives removeAll: , the implementation is a Template Method that
delegates to the primitive message remove: . However, remove: ’s implementation is not primitive,
it is another Template Method that delegates to remove:ifAbsent: . Finally,
remove:ifAbsent: really is a primitive method, an abstract method that delegates to its
subclasses. We’ll see another example of this iterative Template Method implementation in the
WindowPolicy example in the Known Smalltalk Uses section.

What to Delegate

When a method is well written, all of its tasks should be performed at the same level of abstraction.
That is to say, its steps shouldn’t look like, “Do something general; Do something general; Do

something very specific.” Instead, the specific code should be factored into another method that this
one calls. Then all of this method’s steps are at the same level of generality or specificity.

Certain code details jump out as being too specific for general algorithms. These details may include
constants, classes, and specific algorithms or portions thereof.

Delegating Constants. One obvious case for a simple Template Method is in factoring out the
“declaration” of a constant into a separate method, rather than hardcoding it inline. You usually
specify constants in Smalltalk either through the use of a Pool variable, or by defining a separate
method that simply returns the constant (“Constant Method,” Beck, 1997). Pool dictionaries have
many drawbacks. The main arguments against them are that they are poorly supported by the
language and class libraries, and that they adversely affect reuse (Ewing, 1994). Because of these
drawbacks, specifying a method to return a constant is the more flexible approach, because subclasses
can implement the method differently to return different constant values. In this way, the methods
that use that constant are Template Methods, since the method returning the constant is now a hook.

You can see an example of defining a constant value that differs in various subclasses in the
EtBrowser hierarchy in IBM Smalltalk. The superclass EtBrowser defines the method
classDoubleClickSelector to return nil . This means that nothing special happens when
you double-click the selection in the classes list of a browser. Subclasses redefine this method to
return a message selector. This message selector is used to do something else: in some classes,
double-click means browse the selected class; in others, it means expand or contract the class
hierarchy rooted at this class.

Also in IBM Smalltalk, the message fixedSize in the OsObject hierarchy returns the size (in
bytes) of the structure each OsObject subclass represents. This use of polymorphism allows
Template Methods defined in OsObject , like copyToOsMemory , to operate on any structure,
regardless of its actual size.

Delegating Classes. Smalltalk classes are a special case of constants. In the Factory Method pattern,
a Smalltalk method returns a class and that class is then used to create instances (see Factory
Method). In general, even if you do not wish to use the Factory Method pattern initially, it is a good
idea to isolate class names into their own methods. Doing so makes it easier to maintain the code if
the name of a class changes.

Delegating Subparts of Algorithms. Often you may want to isolate away a particular sub-part of an
algorithm that varies from class to class—again, this is the main motivation behind the Template
Method pattern. Part of the challenge of OO design is finding and setting up such relationships
between algorithms and their component subtasks—something that simply cannot be done in
procedural languages because they lack inheritance and delegation.

You can find an example of this in VisualWorks in the Controller hierarchy. One of the
fundamental parts of the VisualWorks windowing system is the notion of the “control loop” that
defines how each Controller gains control of the mouse. A Template Method named
controlLoop , shown below, implements this notion:

Controller>>controlLoop
[self poll.
self isControlActive]

whileTrue: [self controlActivity]

The message controlActivity is a hook method defined in Controller as simply passing
control along to the next level of controllers. Subclasses of Controller override this method to
perform a specific action whenever they receive control. It is interesting to note that one subclass of
Controller , ControllerWithMenu , overrides this method with yet another Template Method,
shown below.

ControllerWithMenu>>controlActivity
self sensor redButtonPressed & self viewHasCursor

ifTrue: [^self redButtonActivity].
self sensor yellowButtonPressed & self viewHasCursor

ifTrue: [^self yellowButtonActivity].
super controlActivity

Subclasses of ControllerWithMenu can override the messages redButtonActivity and
yellowButtonActivity to perform specific actions while the “yellow” or “red” mouse buttons
are depressed.

A Case Study in Refactoring

Examining a case study in refactoring can help to understand how Template Methods arise during
this process, and how the issues discussed above play themselves out. Probably the best known and
best described example of refactoring in Smalltalk was the refactoring of the Smalltalk-80 View
classes between Objectworks\Smalltalk 2.5 and Objectworks\Smalltalk 4.0.

As both Johnson and Foote (1988) and Rubin and Liebs (1992) describe, the original class View in
Smalltalk-80 was extremely large and unwieldy. It suffered from trying to be all things to all people.
Views were capable of edge decoration (knowing their border thickness and color), containing and
managing subviews, and handling their own layout inside a parent view. They were also responsible
for communicating with a model (via the Observer pattern), and communicating with their associated
controller. As a result, each View contained a large number of instance variables; however, each
instance only used a subset of those variables.

Objectworks\Smalltalk 4.0 (the precursor to VisualWorks) solved this problem through a significant
refactoring of the View hierarchy, as described by Rubin and Liebs (1992). Each of the previously
listed responsibilities of View were refactored into different classes in the View hierarchy. There are
now three sets of subclasses of the abstract visual superclass VisualPart . The View hierarchy
consists of those objects that have a model and controller. The Wrapper hierarchy consists of those
objects that use the Decorator pattern to modify the display or positioning of other visuals. Finally, the
CompositePart hierarchy consists of those visuals that use the Composite pattern to combine
other visuals. As a result, the classes are much lighter weight and a developer can choose more
carefully where he will subclass to inherit only those parts that he needs.

One of the other crucial points to emerge during the refactoring was the previously described
principle of trading state for behavior in an abstract superclass. In particular, a problem arose when
trying to deal with control in the different types of visuals that resulted from the refactoring.

In the refactored hierarchy, the three basic branches described above suffice for most purposes. In
most cases, View s (visuals with Controller s) are the leaves of a visual tree made up of
Composites and Decorators. However, there is one case where this breaks down. Occasionally you
need a View that has a controller, but that also contains other visuals; this is a CompositeView .
An example of a CompositeView is the VisualWorks canvas editor, which is an instance of
UIPainterView . The individual views within a UIPainterView have their own controllers that
describe how they react when they are selected and moved. However, the UIPainterView itself
also needs a controller to describe how the menu for the canvas as a whole operates. At first glance
this problem of how to give View behavior to a subclass of CompositePart appears to require
multiple inheritance. However, VisualWorks solves it through a clever application of Template
Method.

The abstract superclass VisualPart implements the method objectWantingControl as a
Template Method. The method objectWantingControl returns the controller in the receiver’s
visual tree that wants control. The method utilizes the method getController which is a hook
method. Here’s the method from the VisualWorks image:

VisualPart>>objectWantingControl
"The receiver is in a control hierarchy and the
 container is asking for an object that wants control.
 If no control is desired then the receiver answers
 nil. If control is wanted then the receiver answers
 the control object."

| ctrl |
ctrl := self getController.
ctrl isNil ifTrue: [^nil].
"Trap errors occurring while searching for
the object wanting control."
^Object errorSignal

handle: [...] "Handle error"
do: [ctrl isControlWanted

ifTrue: [self]
ifFalse: [nil]]

The default behavior of getController as defined in VisualPart , is to return nil meaning
there is no Controller that wants control. However, this method is reimplemented as state in the
subclasses View and CompositeView to return their respective controllers. In this way, the objects
in both hierarchies can get the behavior they want without unnecessary code duplication.

There are many other uses of Template Method in the VisualWorks visual component hierarchy.
Finding them and understanding their use can be an enlightening exercise for the interested reader.

Implementation

Here’s one way to implement a complex method that we want to be a Template Method:

1. Simple implementation. Implement all of the code in one method. When trying to factor code, it
is often more convenient to just write the code before trying to refactor it. This large method will
become the Template Method.

2. Break into steps. Use comments to break the method apart into logical steps: use a comment to
describe each step.

3. Make step methods. Make a separate method out of each step in the Template Method. Put these
methods in the same class as the Template Method. Name each step method based on the
comment from step #2 and move its code from the Template Method. If the step method needs
temporary variables from the Template Method, pass them in as parameters.

4. Call the step methods. Simplify the Template Method to perform each step by calling the
corresponding step method. What’s left in the Template Method is an “outline” of the entire
algorithm. This is now a true Template Method.

5. Make constant methods. If the Template Method still contains literals, class names, or other
constants, factor them into separate methods. For each constant, define a method that does
nothing but return the constant. Then change the Template Method to call these methods instead
of hardcoding the constants.

6. Repeat. Repeat this process for each of the step methods you’ve created. This will factor them
into Template Methods that call primitive methods. Continue until all of the steps in each
method have the same level of generality and until all constants have been factored into their own
methods.

Sample Code

One of the more common uses of Template Method (described by Auer (1995)) is to isolate away a
default value in a lazy initialization method. Consider the following method:

Circle>>radius
radius == nil ifTrue: [radius := 10].
^radius

While this method works fine in a superclass, the problem occurs when subclasses want to substitute a
default value for radius other than 10. In this case they must reimplement the radius method to
include all of the above code except for the constant. A better version of this method makes uses
Template Method and defines a hook method called defaultRadius . Subclasses can override this
default, or they can choose to inherit the superclass’ default as is.

Circle>>radius
radius == nil ifTrue:[radius := self defaultRadius].
^radius

Circle>>defaultRadius
"This can be overridden in subclasses."
^10

Then BigCircle , a subclass of Circle , can easily change its default radius without having to
reimplement the lazy initialization.

BigCircle>>defaultRadius
"Override the inherited default."
^100

Even if you do not use lazy initialization, the same technique applies in an initialize method.
Here’s the non-Template Method approach:

Circle>>initialize
radius := 10.
"other variable declarations"

BigCircle>>initialize
"Have to re-set the value of variableName in the subclass"
super initialize.
radius := 100.

A better version of the previous implementation would be:

Circle>>initialize
variableName := self defaultRadius.
"other variable declarations"

The implementations of the defaultRadius methods are the same as in the previous example.

Known Smalltalk Uses

The previous discussion has given many examples of the use of the Template Method pattern in the
various Smalltalk dialects. There are several other places the pattern has been used in the Smalltalk
base class libraries. We offer these not only as known uses, but as additional Sample Code examples
for the pattern.

WindowPolicy

In Visual Smalltalk, every window has an associated window policy object which is called upon to
decide which (if any) pulldown menus should be added to the window’s menu bar. WindowPolicy
defines the interface for all concrete policy classes. Instances of the SmalltalkWindowPolicy
subclass, for example, ensure that the “Smalltalk” pulldown is added to a window’s menu bar.
StandardWindowPolicy objects add the standard “File” and “Edit” pulldowns. A generic
Template Method in WindowPolicy is invoked to add all of the pulldown menus; it looks like this:

WindowPolicy>>addMenus
"Private - add the menus for the window to the
 menu bar."
...
self

addSystemMenus;
addStandardLeftMenus;
addApplicationMenus;
addStandardRightMenus

All of these add...Menus messages are implemented in WindowPolicy as empty methods.
Concrete subclasses of WindowPolicy override these implementations as necessary. For example:

StandardWindowPolicy>>addStandardLeftMenus
"Private - add the menus that are to be located
on the menu bar before any application-specific
menus (File & Edit)."

self addFileMenu.
self addEditMenu.

Note that this is, in turn, another Template Method, allowing still lower-level subclasses to determine
for themselves which menu items to include on the “File” and “Edit” pulldowns.

Collection Examples

The Collection hierarchies in the various Smalltalk dialects contain examples of all four types of
methods found in abstract classes. Let’s look at a couple of examples from VisualWorks.

The method collect: is a Template Method that sends several primitive messages:

Collection>>collect: aBlock
"Evaluate aBlock with each of the values of the
 receiver as the argument. Collect the resulting
 values into a collection that is like the receiver.
 Answer the new collection."

| newCollection |
newCollection := self species new.
self do: [:each |

newCollection add: (aBlock value: each)].
^newCollection

The message species returns the class for an object’s “kind,” rather than its actual class. Since
Collection uses it as a primitive message, you might expect to find it implemented in
Collection , but Collection actually inherits it from Object :

Object>>species
"Answer the preferred class for reconstructing the
 receiver. ..."

^self class

This is a hook method because it permits overriding but provides a default implementation that is
suitable for most subclasses. One subclass it is not suitable for is Interval . It overrides species
like this:

Interval>>species
"Answer the preferred class for reconstructing the
 receiver, that is, Array."

^Array

The second primitive method is do: . It’s default implementation in Collection looks like this:

Collection>>do: aBlock
"Evaluate aBlock with each of the receiver's elements
 as the argument."

self subclassResponsibility

It is an abstract method because it does not provide a default implementation and is overridden by
numerous Collection subclasses. It does not provide a default implementation because the way
you iterate through the elements in, say, an OrderedCollection versus a Set is very different.

The third primitive operation is add: . Although it is actually not sent to the receiver (self), it is
sent to another Collection and thus is a primitive part of the larger collecting algorithm. It’s base
implementation looks like this:

Collection>>add: newObject
"Include newObject as one of the receiver's elements. ..."

self subclassResponsibility

Thus add: is another abstract method that all direct subclasses must override.

Another method in Collection , one that seems simple enough to be primitive but is actually a
Template Method, is remove: .

Collection>>remove: oldObject
"Remove oldObject as one of the receiver's elements. ..."

^self remove: oldObject ifAbsent: [self notFoundError]

The first primitive message is remove:ifAbsent: . Like add: , it is deferred to subclasses:

Collection>>remove: oldObject ifAbsent: anExceptionBlock
"Remove oldObject as one of the receiver's elements. ..."

self subclassResponsibility

Thus remove:ifAbsent: is an abstract method. The important insight is that remove: doesn’t
remove anything; it gets remove:ifAbsent: to do all of the work. Thus remove: isn’t really a
primitive method, it’s a Template Method.

The other primitive message that remove: sends is notFoundError .

Collection>>notFoundError
"Raise a signal indicating that an object is not
 in the collection."

^self class notFoundSignal raise

This works for all of the Collection classes, so none of them subimplement it. Thus it is a
concrete method because it implements real behavior and the subclasses don’t change that behavior.
If any subclasses did change the behavior, notFoundError would become a hook method.

Magnitude Examples

Another excellent place to look for Template Methods is in the Magnitude hierarchy. For instance,
consider the abstract class Magnitude in IBM Smalltalk. Its Common Language Definition API
protocol supplies the messages >, <=, >=, between:and: , max: , and min: . The first method, >,
is an abstract method that all subclasses must implement. The other methods are Template Methods
that are defined in terms of >, so any new subclass that implements > inherits the others for free. For
example, if you implement DollarAmount as a new subclass of Magnitude, you would only need to
override > to gain the rest of the Magnitude behavior.

Similarly, in VisualWorks, different Magnitude subclasses may implement local versions of the <
or > methods. Other Magnitude methods invoke these methods by sending “self > ” or “self
<”. For example, the >= method is defined to use < as follows:

Magnitude>> >= aMagnitude
"Answer whether the receiver is greater than or
 equal to the argument."

^(self < aMagnitude) not

The beauty of this approach is that subclasses may redefine < and then need not redefine >=.

Object>>printString

Perhaps the best example of a hook method providing a reasonable default is Object>>printOn: .
The Template Method printString defined in Object operates by using the current
implementation of printOn: as shown below (these methods are from the Visual Smalltalk image).

Object>>printString
"Answer a String that is an ASCII representation
of the receiver."

| aStream aString |
aString := String new: 20.
self printOn: (aStream := WriteStream on: aString).
^aStream contents

The definition of printOn: in Object , shown below, conveys only a minimum of information
about the object receiving the message.

Object>>printOn: aStream
"Append the ASCII representation of the receiver
to aStream. This is the default implementation which
prints 'a' ('an') followed by the receiver class name."

| aString |
aString := self class name.
(aString at: 1) isVowel

ifTrue: [aStream nextPutAll: 'an ']
ifFalse: [aStream nextPutAll: 'a '].

aStream nextPutAll: aString

However, in some subclasses, more information is useful. For instance, in String , the actual
characters are shown as a quoted string. To achieve this, String overrides the default
implementation of printOn: .

String>>printOn: aStream
"Append the receiver as a quoted string
to aStream doubling all internal single
quote characters."

aStream nextPut: $'.
self do: [:character |

aStream nextPut: character.
character = $'

ifTrue: [aStream nextPut: character]].
aStream nextPut: $'

In this way, printString and any other methods that rely on printOn: can remain unchanged.

